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Edges are key points of information in visual scenes. One important class of models supposes
that edges correspond to the steepest parts of the luminance profile, implying that they can
be found as peaks and troughs in the response of a gradient (first derivative) filter, or as
zero-crossings in the second derivative (ZCs). We tested those ideas using a stimulus that

Keywords: has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to
Human vision the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases
Psychophysics

as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For
all image-blurs tested, observers marked edges at or close to the corner points in the gradient
profile, even though these were not gradient maxima. These Mach edges correspond to peaks
and troughs in the third-derivative. Thus Mach edges are inconsistent with many standard
edge detection schemes, but are nicely predicted by a recent model that finds edge points
with a 2-stage sequence of 1st- then 2nd-derivative operators, each followed by a half-wave
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rectifier.

1. Introduction

Edges are key points of information in visual scenes. But
despite much research it remains uncertain how edges are
extracted from the eyes neural output. It is widely accepted
that the retinal image is filtered by even- and odd-symmetric
spatial filters at various scales, early in the visual pathway (Burr,
Morrone & Spinelli, 1989; Field & Nachmias, 1984; Hubel &
Wiesel, 1968; Pollen & Ronner, 1981; Ringach, 2002) but how
the filters are used in feature detection remains an open question.
Early psychophysical work proposed an edge-detector role for
odd-symmetric filters and a bar-detector role for even-symmetric
filters (Kulikowski & King-Smith, 1973; Shapley & Tolhurst,
1973). This could be true, but as many have pointed out, such
a simple interpretation is incomplete because the ‘edge-detectors’
also respond to bars, and the ‘bar-detectors’ respond to edges
(Fig. 1), with peak responses offset to left or right of the feature
in question. The interpretive parsing rules of MIRAGE (Watt
& Morgan, 1985) and the quadratic summation of even and odd
responses in the local energy model (Morrone & Burr, 1988) were
both motivated by the need to resolve that ambiguity.

One attractive general view of receptive fields in early vision
is that they act as spatial derivative operators (Lindeberg, 1994;
Marr & Hildreth, 1980; ter Haar Romeny, 2003; Watt & Morgan,
1985; Young, 1985; Young & Lesperance, 2001). For example,
summation of the output of the two regions of the odd-symmetric
receptive field shown in Fig. 1 (left) is equivalent to obtaining the
difference in luminance between these two regions. If this filter
is convolved with a 1-D image, then the output at each point is
proportional to the spatial luminance gradient (the 1st derivative),
after a degree of smoothing that is determined by the scale (size)

of the receptive field (Fig. 1, middle row). By a similar argument
(with an increasing number of receptive field regions) filters can
be obtained that compute the 2nd, 3rd or any higher derivative.

Edge detection models based on derivative computation often
suppose that edges correspond to the steepest parts of the
luminance profile, implying that they can be found as peaks
and troughs in the response of a 1st derivative (gradient) filter
(Bergholm, 1987; Canny, 1986; Korn, 1988; Sarkar & Boyer,
1991; Zhang & Bergholm, 1997), or as zero-crossings in the
second derivative (Elder & Zucker, 1998; Georgeson, 1992; Marr
& Hildreth, 1980; Watt & Morgan, 1985).

The third spatial derivative has until recently played an
ancillary role in edge-detection schemes. Zero-crossings (ZCs) in
the 2nd derivative occur both at maxima and minima of gradient
magnitude (Clark, 1989). Clark regarded the minima (points
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Figure 1: Receptive fields of odd-symmetric and even-symmetric filters (left,
in plan view and cross-section), and their responses (right) to the blurred
bar and edge shown in the top row. Note that each filter responds to both
features.
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of locally shallowest slope) as spurious edges, and showed from
standard calculus how ZCs could be classed as ‘real’ or spurious
from the sign of the product of the 1st and 3rd derivatives at the
ZC. A negative sign identifies a real edge while a positive sign
identifies a spurious one. Thus the 3rd derivative was used to
categorize edges found at ZCs in the 2nd derivative.

Important theoretical developments, in the framework of
Gaussian scale-space theory, were made by Lindeberg (1998) who
used peaks in the multi-scale 1st derivative to find edge locations,
and then used the multi-scale 3rd derivative to determine the
strength and blur of each edge. This was followed by a step that
provided a measure of the saliency of each edge by integrating
edge strength along the contour. By selecting a restricted number
(such as 100) of the most salient curves, the algorithm produced
an effective line drawing of a variety of test images.

In this paper we ask whether the 3rd derivative may be used
directly for edge-finding in human vision. At first sight, it appears
unpromising because a 3rd derivative filter generates not only a
peak at the edge location, but also a pair of flanking troughs,
thus apparently signalling two spurious edges of opposite polarity
adjacent to the ‘real’ edge (Fig. 2A). Georgeson, May, Freeman &
Hesse (2007) however, showed that decomposing the 3rd derivative
into two stages overcomes the problem of spurious edges (Fig. 2B).
This scheme - a 1st derivative operator followed by an inverted 2nd
derivative, with half-wave rectification on the output of each stage
- creates a nonlinear channel sensitive to edges of a given polarity,
but the peak response to a preferred edge is unaffected by the
nonlinearities (Fig. 2B).

The multiscale model (called N3+) based on this approach
predicted very well the perceived blur of a wide variety of edge-like
waveforms, including sinusoids. May & Georgeson (2007) further
showed that the addition of a smooth, threshold-like suppression
of small values at the first rectifier accounted well for the finding
that reducing contrast made blurred edges appear sharper. The
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Figure 2: Two blurred edges and their first 3 derivatives. The 3rd derivative
is shown inverted. A) Sequence of derivatives computed without half-
wave rectification. B) Sequence of derivatives computed with half-wave
rectification after the 1st and -3rd derivatives were obtained. Responses
suppressed by rectification are shown by dashed lines. Key property of this
nonlinear model (sN3+) is that a single response peak occurs at the positive-
going (dark-to-light) edge location. A second, complementary channel
is needed for edges of the opposite polarity (cf. Fig.9). (Note: Each
derivative was computed in Matlab by convolution with the small-scale, 3-
point gradient operator whose weights were [-0.5, 0, 0.5]).

success of N3+, however, did not rule out a simpler multiscale
gradient model (N1), based solely on the first derivative, which
performed fairly well in edge-finding and blur coding in many
circumstances. Our aim therefore was to devise a more definitive
experimental test across the family of derivative-based models of
edge-finding outlined above.

The idea is inspired directly by the phenomenon of Mach
Bands, whose well-known ramp waveform has no peaks or troughs
in luminance, but does have a peak and a trough in the 2nd
derivative at the perceived location of the bright and dark bands.
This logic can be shifted up by one derivative order, to test the role
of 3rd derivative extrema in edge detection. The first derivative
of our stimulus is defined by a Mach ramp between two plateaux,
thus ensuring that the 3rd derivative (rather than the 2nd) has a
peak and a trough at the ends of the ramp, If edges are reliably
seen at these points, in the absence of gradient maxima, then we
propose that they be called ‘Mach Edges’, by direct analogy with
Mach Bands.

Our experiments are therefore a search for Mach Edges. We
designed luminance waveforms that contained peaks in the 3rd
derivative but had no corresponding peaks in the 1st derivative
nor zero-crossings in the 2nd derivative, at any scale. We then
used the feature-marking method (Hesse & Georgeson, 2005) to
determine whether edges were perceived in these stimuli, and if
so where. We consider a simplified version of the N3+ model that
uses filters at a single fine scale, which we shall refer to as the
sN3+ model (‘s’ meaning ‘single-scale’). Since the N3+ and sN3+
models produce very similar predictions for our stimuli, we can
simplify the multi-scale aspect of N34 while retaining the ability
to test its use of derivative filters and half-wave rectification.

2. Experiment 1

The purpose of this experiment is to test for the existence of
Mach Edges: that is, to determine whether edges are reliably seen
at or near 3rd derivative extrema in luminance waveforms designed
to have no corresponding gradient maxima.

2.1 Stimulus design

Since the absence of peaks in the 1st derivative was of prime
importance, the starting point was to create a peak-free waveform
representing the gradient profile, and then integrate it to form the
luminance profile. The gradient profile (Fig. 3) was a single period
of a trapezoidal wave whose ramps were 1, 2, 4, 8, 16, 32 or 64
pixels wide. This was integrated to form the luminance profile of
the vertical 1-D test image. The luminance profile can equivalently
be described as a triangle-wave blurred by a box function whose
width ranged from 1 to 64 pixels. We shall refer to this width as
blurwidth.

The stimulus design is analogous to the Mach Band stimulus,
but it is the luminance gradient (not the absolute luminance) that
increases as a linear ramp between two plateaux. Two example
images, their luminance waveforms and first three derivatives
are shown in Fig.3. A graph of the luminance profile reveals
no obvious edge locations: a uniform positive gradient shades
smoothly into a uniform negative one. It has no peak in the
1st derivative and no ZC in the 2nd derivative, so no edges are
predicted by models based on these derivative features. That
remains true at all filter scales, because Gaussian smoothing
does not introduce any new peaks (Babaud, Witkin, Baudin
& Duda, 1986; Koenderink, 1984; Lindeberg, 1990; Yuille &
Poggio, 1986). However, Fig.3 shows that there is a sharply
localized peak and trough in the 3rd derivative corresponding
to the corner points in the gradient profile. If such peaks and
troughs are taken as the signature of edges, then human observers
should see two edges, of opposite polarity, at these locations.
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Figure 3: Two images from experiment 1 (blurwidths 2 and 32 pixels, peak
central), their luminance waveforms and first three (linear) derivatives. The
1st derivative profiles have the form of a Mach ramp.

2.2 Method

Image arrays were generated in Matlab on a Macintosh G4
computer and displayed using PsychToolbox software on an Eizo
6600-M greyscale monitor, calibrated and gamma-corrected using
a Minolta LS110 digital photometer. A Cambridge Research
Systems Bits++ box was used in Mono++ mode to render 14-
bit greyscale resolution.

Images had one of two polarities: ‘peak central’ (see Fig. 3), or
a contrast inversion of this named ‘trough central’. Image size was
256 by 256 pixels and subtended 4° at the viewing distance of 131.6
cm. Test images had Michaelson contrasts of 0.2 or 0.4, and were
surrounded by a full-screen (16° x 12°) mid-grey of luminance 40.7
cd/m?. They were displayed flashing (on 0.3s, off 0.6s) in order
to reduce the build-up of afterimages that would cause instability
and possible shifts in edge location (Georgeson & Turner, 1985).
The inter-stimulus display was a full screen of mid-grey.

The task was to indicate the position and polarity of all edges
seen in each image. Their position was identified by moving a
marker across the image and pressing a button when the marker
was over an edge. A second button-press indicated the polarity of
the edge as either light-to-dark (LD) or dark-to-light (DL). Once
all the perceived edges had been marked, the observer initiated the
next trial. The marker consisted of two black dots, each 1 pixel
wide by 3 pixels high. One dot was centred 32 pixels (0.5 deg)
above, and the other 32 pixels below, the horizontal midline of the
image. The observer was instructed to fixate midway between the
two dots. The starting position of the marker alternated between
left and right on successive trials, and was 64 pixels (1 deg) from
the image border. Its movement was constrained to the central 2.5
degrees of the image. The 28 conditions (7 blurwidths, 2 phases,
2 contrast levels) were presented in randomised order, blocked by
contrast. This procedure was repeated a further two times in one
experimental session, which took about 30 minutes to complete.

The three observers (SAW, DHB and TAY) were all
experienced psychophysical observers and had normal uncorrected
vision. They viewed the display binocularly with natural pupils in
a darkened room, with the head supported by a chin-and-forehead
rest. They each completed three sessions, giving a total of 9
repetitions of each condition per observer.

2.8 Results: Mach Edges

Observers reliably saw pairs of edges at positions to the left and
right of the luminance peaks and troughs in each image. We shall
refer to these edges perceived without gradient peaks as Mach
edges. Plots of perceived edge position against blurwidth are
shown in Fig. 4 (symbols). Data were similar for all 3 observers
and group means are shown. The perceived separation between
those edges increased markedly with blurwidth.

Solid curves in Fig.4 trace the positions of peaks in the
sN3+ output derived from the luminance profile (i.e. with half-
wave rectification after the 1st and 3rd derivative operation, cf.
Fig. 2B). For this class of waveforms (but not in general), the
outcome is almost identical to that for the linear 3rd derivative
without rectifiers. The overall correspondence between observed
edges and 3rd derivative extrema is strikingly close. In contrast,
standard models based on the lower derivatives predict no edges
here. A 1st derivative filter at a broad scale does have peaks at
the mid-points of the luminance ramps (at position x=64 pixels),
but these points were not marked as edges. At small blurwidths,
the observed edges were systematically further apart than the 3rd
derivative extrema by about 3.3 min arc, considered further below.

Because it is linear, the 3rd derivative operator predicts
the same edge positions for peak-central and trough-central
conditions, but with reversed polarity, and this light-dark
symmetry is not affected by the rectification stages of the sN3+
model. Figure 4 shows, however, that in the experiment the two
edges were seen as slightly further apart in the peak-central than
the trough-central conditions, by an average of 1.9 min arc. This
appears to be an example of the Helmholtz irradiation effect which
may arise from compressive nonlinearity in the retinal response
to luminance (Georgeson & Freeman, 1997; Mather & Morgan,
1986).

2.8.1. No effect of edge length or marker location

We wondered whether the greater-than-predicted separation
between edges at small blurwidths might arise from an influence
of larger receptive fields in peripheral vision, given that the image
height was quite large (4 deg). If this were so, we might expect
the Mach edges to appear closer together when the image was
truncated to exclude the peripheral contribution.

Methods were as above, except (i) image height was reduced
to 8, 16 or 32 pixels (still 256 pixels wide), (ii) only one contrast
level (0.4) was used, (iii) only four blur-widths were used (1, 4, 16
and 64 pixels), (iv) marker-spots were 8 pixels above and below
the image borders, on the mid-grey background. Results (Fig. 5)
were very similar to those of the main experiment (Fig.4) and
any effect of image truncation was small. Rather than being
closer together, the perceived edges were, if anything, a little
further apart when most truncated (triangles in Fig. 5). Thus the
contribution of peripheral retina does not appear to be crucial. A
further experiment that used a single marker-spot on the image
mid-line gave almost identical results (not shown), suggesting that
the placement of the marker-spots on the image, or on the grey
background, was also not an important factor.

2.3.2. Optical and neural blur

The sN3+ predictions (Figs. 4 & 5) were computed at a single
fine scale, neglecting any impact of optical blur (Campbell &
Gubisch, 1966; Williams, Brainard, McMahon & Navarro, 1994)
or neural ‘intrinsic’ blur (Levi & Klein, 1990a; Levi & Klein,
1990b). To gauge the likely influence of blur, we applied Gaussian
blur to the luminance profile before computing the sN3+ peaks.
Gaussian blur had little effect on the predicted position of the
widely separated Mach edges (high blurwidth images), but for low
blurwidth images response peaks were shifted away from centre.
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Figure 4: Experiment 1. Perceived edge locations as a function of blurwidth.

Symbols show group mean data at two contrast levels, for dark-to-light

edges (DL, filled symbols) and light-to-dark edges (LD, open symbols). Positions of peaks in the two nonlinear 3rd derivative channels are shown by solid
curves. Dashed curves show the effect of including simulated Gaussian blur (0=4.6 arc mins) before the derivative operators. 64 pixels = 60 arc mins. Left:
peak-central waveform; right: trough-central waveform. Error-bars (+1 standard error) are plotted behind symbols and show between-observer variation

(n=3).

The dashed lines in Fig.4 show that the simulated blur gave
an improved and very close match between predictions and data
(without blur: rms error = 3.1 pixels, Pearsons X? = 1540; with
blur: rms error = 2.3 pixels, Pearsons X? = 823; this improvement
in the X? goodness-of-fit, distributed as chi-square with 1 d.f., is
hugely significant, p < 0.00001). The best fitting blur (with lowest
rms error) was 0=4.6 min arc. This is far too large to represent
dioptric blur alone, but could reflect the scale of the filter used by
the observer in this task.

2.8.8. Pre-cortical filtering?

Odd-symmetric filters (including 1st and 3rd derivatives)
necessarily have oriented receptive fields, and so presumably would
be implemented by cortical neurons. We should not ignore,
however, the possible role of earlier filtering in the retina or LGN.
We found that applying a broad, mildly bandpass Difference-of-
Gaussian (DoG) filter (Fig. 6A), similar in shape to the contrast
sensitivity function, followed by gradient peak detection, did
enable Mach edges to be detected and did predict the observed
edge positions well (Fig. 6B). This is not too surprising, because
to the extent that the DoG filter emulates a second-derivative
operator (Marr & Hildreth, 1980), this revised gradient (DoG+1st
derivative) model is analogous to a 3rd derivative filter. The
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gradient filter alone does not predict Mach edges. We therefore
devised a further experiment to distinguish between the revised-
gradient and sN3+ models.

3. Experiment 2

The aim of this experiment is to distinguish between the
two competing models (sN3+ vs DoG+1st derivative) that can
account for the results of experiment 1. The success of the
DoG+1st derivative model rests specifically on the low frequency
attenuation provided by the DoG’s inhibitory surround. Without
this attenuation the 1st derivative alone, as we have seen, does not
predict Mach edges. Experimentally, we can attempt to by-pass
this low-frequency attenuation in two ways: (i) by using a brief
presentation (e.g. 50 ms) that reduces the relative attenuation of
sensitivity to low spatial frequencies in the CSF (Legge, 1978),
and (ii) by shrinking the spatial period of the triangle-wave, and
thus increasing the fundamental frequency to (say) 4-6 c¢/deg, near
the peak of the MTF (Fig. 6A). The test image then contains
only high frequencies (> 4c/deg), which are not subject to low
frequency attenuation by the early pre-filter. If Mach edges
remain visible in high frequency, blurred triangle-wave gratings
then they are unlikely to arise from DoG+1st derivative filtering.
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Figure 5: Mean observed positions of dark-to-light (DL) and light-to-dark (LD) edges in blurred triangle-wave images of 3 different heights (8, 16, 32 pixels).

Other conventions as Fig. 4.
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Figure 6: (A) The difference of Gaussian (DoG) receptive field profile
and its MTF. The equation for this 1-D DoG function was DoG(z) =
G(z,0.) — K.G(z,05), where G(z,0) = exp(—z?/(202))/V2r02, with
0. =1, 05 =6, K = 0.5. These parameters correspond closely to the
median values given by Croner & Kaplan (1995) for P-cells in the monkey
central retina, allowing for the translation from 2-D to 1-D.

(B) Results of the peak-central condition (Fig. 4) with predictions from the
sN3+ (dashed curve, rms error = 3.1 pixels) and the DoG+1st derivative
model (solid curve, rms error = 2.9 pixels).

8.1 Method

Test images (Fig. 7A) were a high spatial frequency version
of those used in experiment 1. One set contained 16 cycles
of a blurred triangle-wave (512 pixels wide; period 32 pixels),
generated as in experiment 1. Blurwidth was 1, 2, 4 or 8 pixels
with the usual two polarities (peak or trough central). Since each
period occupied only 1/8 the number of pixels used in experiment
1, each level of blurwidth shown here is equivalent, in its effect on
waveform shape, to 8 times the previous amount of blurring.

These waveforms were also used to create a second set of
images, by shifting their Fourier phases through 90 degrees,
while leaving the amplitude spectrum unchanged. This produced
blurred waveforms that were akin to a square-wave, but whose
amplitude spectrum (before the blurring) declined as 1/f2, rather
than 1/f, where f is spatial frequency of the (odd) harmonics. For
brevity, we refer to these as ‘square-waves’ though strictly they are
not. The triangle-wave image (Fig. 7TA, left) appears to contain
a thin light (or dark) bar of high contrast at the centre of each
wide light (or dark) bar. These thin bars are not apparent in the
square-wave image (Fig. TA, right). Predictions of the two models
(sN3+ and DoG+1st derivative) will be considered later.

The test images subtended 2.67° x 2.67°, with a fundamental
frequency of 6 c/deg, at a viewing distance of 383cm (observer
SAW). For the second observer (SEW) viewing distance was
reduced to 255cm (fundamental frequency 4 c¢/deg) because she
was unable to discriminate between the triangle-wave and square-
wave images at 6 c¢/deg.
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Figure 7: Experiment 2. (A) Four periods of the two types of images used.
Here blurwidth=4, period=32 pixels.

(B) One period of the waveforms at blurwidth 1 and blurwidth 8. These
were the smallest and largest blurs used in experiment 2.

The test images were surrounded by a full screen of mid-
grey luminance and viewed in a darkened room. RMS contrast
(the ratio of the standard deviation of the luminance profile to
its mean) was the same for both triangle-wave and square-wave
images at a given blurwidth. A consequence of matching the
RMS contrasts was that Michaelson contrast for the triangle-
wave images was 0.4, while that of the square-wave images
was 0.32, 0.32, 0.33 and 0.37 for blurwidths 1, 2, 4 and 8
respectively. A subsidiary experiment controlled this factor by
matching Michaelson contrast instead of RMS contrast.

Before data collection began, each observer was shown a pair of
3 ¢/deg stimuli (blurwidth 8 pixels), and it was confirmed that a
pair of closely spaced edges was easily visible in the centre of each
half-period of the triangle-wave image but not in the square-wave
image.

The task was a single-interval procedure requiring a yes-no
decision about the presence or absence of the Mach edges. Each
trial consisted of a single stimulus presentation of 50ms, preceded
and followed by a full-screen of mid-grey showing a central small
fixation dot (4 x 4 pixels = 1.25 x 1.25mins). The observer had
unlimited time to indicate the presence or absence of a central
pair of edges in one or more half-periods of the grating. The
inter-trial interval was at least 1s. Each of the 4 blurwidths, 2
image-types and 2 polarities were shown 15 times in a randomised
block. The two observers each completed 9 blocks. The first block
from each subject was discarded as practice. No feedback was
given about the correctness of response because this experiment
was concerned with the perception of Mach edges, rather than the
ability to distinguish between the triangle-wave and square-wave
images per se, which could be based on other image properties
(such as the edge blur of the wide bars in the image). Nevertheless,
we can make use of signal detection measures (d') to quantify the
reliability with which Mach edges were reported.

3.2 Results

For each observer, the proportion of ‘yes’ responses was similar
for the peak- and trough-central images, so data were pooled
across both polarities. Z-scores corresponding to the proportion
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of ‘yes’ (Mach edge) responses for each condition, averaged across
stimulus polarity, are shown as filled symbols in Fig.8. Both
observers had a significantly higher proportion of ‘yes’ responses
for the triangle-wave than the square-wave images, except perhaps
at the greatest blur. Z-scores overall were higher for SAW than
SEW, implying a lower criterion on the internal decision axis for
SAW.

Treating ‘yes’ responses to the triangle stimulus as Hits, and
those to the square stimulus as False Alarms, the discriminability
index (d') was calculated in the standard way as Z(yes|triangle)
minus Z(yes|square), plotted as open symbols in Fig.8. The
d' values were all significantly greater than 0 (except for SEW,
blur 8), implying that both observers reliably associated Mach
edges with the triangle-wave rather than the square-wave test
images. Both observers showed a general trend of decreasing
discriminability as blurwidth increased. At each blurwidth, d’
values for the highly practised observer (SAW) were higher than
for SEW.

To test whether discrimination might be cued by the lower
Michaelson contrast of the square-wave images, observer SAW
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repeated the experiment with images whose Michaelson contrast
was always 0.4. Results were similar to those from the original
image set, implying no artefactual effect of contrast difference.

3.8 Modelling

The results of experiment 2 show that Mach edges were
reliably reported in blurred triangle-wave images that were high-
spatial-frequency, short-duration versions of the images used in
experiment 1. The use of high-frequency gratings is expected to
by-pass the influence of the DoG pre-filter’s inhibitory surround,
as outlined above, and so offer a critical test between two models.
Figure 9 shows the DoG+1st derivative output and the sN3+
output for this experiment, at blurwidth 4. For the square-wave
(Fig. 9, right) both models produced peaks and troughs, and
hence predicted edges, separated by half a period. These are not
Mach edges. For the triangle-wave (Fig. 9, left), the DoG+1st
model again predicted half a period separation. The sN3+ model
however yields a closely spaced peak-and-trough pair separated by
about 1/4 period. These are Mach edges. It is evident from Fig. 9

Blurred square-wave
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Figure 9: Experiment 2. One cycle of the luminance waveforms at blurwidth 4, with predictions of the DoG+1st derivative model and the sN3+ model.
[Note: For the latter, positive values are the output of the nonlinear cascade of filters that detects dark-to-light edges (Fig. 2, right); negative values are the
inverted output of the opposite channel whose 1st derivative stage is inverted, and which thereby detects light-to-dark edges.] The DoG+1st model did not

predict Mach edges for this experiment.



that the spatial arrangement of edges seen in both the square- and
triangle-wave cases is explained by extrema in the sN3+, while the
DoG+1st derivative fails to account for perception in the triangle-
wave case.

4. Discussion

Experiment 1 showed that observers reliably marked the
position and polarity of Mach edges. These are visible edges seen
at points on a luminance waveform where there was no peak in the
1st derivative and no zero-crossing in the 2nd derivative. Standard
edge detectors that are based on these derivative features must
therefore have great difficulty in accounting for Mach edges, but
we have shown that using peaks and troughs in the 3rd derivative
to locate edges readily predicts the occurrence, location and
polarity of the Mach edges. The predicted and observed locations
agreed especially well when a plausible amount of Gaussian
smoothing was introduced (Fig. 4) that might represent the scale
of the most sensitive filter for these stimuli.

We found that one way of rescuing the 1st derivative approach
was to introduce a centre-surround (DoG) filter (Fig. 6), perhaps
representing pre-cortical filtering, before the gradient operator.
But, in a critical test, this model did not predict the Mach
edges that were reliably observed at high spatial frequencies in
experiment 2, whereas the 3rd derivative model did do so. The
‘rescue’ of the DoG+1st model might be extended to higher spatial
frequencies by making the pre-filter even smaller, but the cost of
this ad hoc modification would be to make the model increasingly
similar to a 3rd derivative, thus underlining our point that peaks
in the luminance gradient are insufficient to account for human
edge-finding.

Our main aim in this paper was to contrast edge-finding models
based on different orders of spatial derivative: 1st, 2nd and 3rd.
Of these candidates, it seems clear that only the 3rd derivative
offers a straightforward account of Mach edges. Of course, the
Mach edges do leave some ‘fingerprint’ in the lower derivatives:
they sit at or near the corner points in the gradient profile and
at or near the abrupt steps in the 2nd derivative (Fig. 3). But we
emphasize (a) that those features in the 1st and 2nd derivative
are not the ones that have been widely proposed as edge markers
(namely, gradient peaks or 2nd derivative ZCs), and (b) that those
features have to be made explicit in some way, and finding peaks in
an appropriate higher derivative (the 3rd) seems a straightforward
and general way to do so. It is general because, as well as locating
Mach edges, the peaks and troughs in the 3rd derivative also locate
the more familiar (sharp or blurred) step edges that do give rise
to gradient peaks and ZCs (Fig. 2). Thus the 3rd derivative seems
the most parsimonious because the same rule accounts for Mach
edges and step edges, but this is not true for the 1st and 2nd
derivatives where different rules would be needed.

The linear 3rd derivative operator produces too many peaks
and troughs for step edges (Fig. 2, left), but this need not trouble
us, because the two-stage nonlinear 3rd derivative (Georgeson
et al., 2007) solves that problem in a physiologically plausible
way (Fig. 2, right), and gives very accurate predictions about
perceived edge location and blur, without introducing any other
difficulties that we are aware of. For the Mach edge (blurred
triangle) waveforms, even the linear 3rd derivative gives a single
peak (or trough) at the observed edge (Fig. 3), and so the presence
or absence of these interesting nonlinearities is immaterial for
those waveforms. In a broader context, the half-wave rectifiers
are crucial in making the 3rd derivative a viable and general basis
for edge detection.
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