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Abstract

Wavelet families arise by scaling and translations of a prototype function, called the

mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally

carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing

the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We

show here that, when working on a compact interval, the identical effect can be achieved

without changing the wavelet scale but reducing the translation parameter. By such a

procedure we generate a redundant frame, called a dictionary, spanning the same spaces

as a wavelet basis but with wavelets of broader support. We characterise the correlation of

the dictionary elements by measuring their ‘coherence’ and produce examples illustrating

the relevance of highly coherent dictionaries to problems of sparse signal representation.

1 Introduction

Canonical Coherent States have played an important role in quantum physics from the early

days to the present time [1–9]. Mathematically they have been studied within the structure

of frames [6, 10, 11]. Their equivalent in the context of signal processing were first introduced

by Gabor and nowadays frequently appear in some contexts under the name of Gabor frames

or Weyl-Heisenberg frames [12, 13]. On the other hand, the particular class of coherent states

arising from the affine group on the real line, called wavelets [6,11–15], have also been broadly

applied in physics [16–19], as well as in signal processing. The applications of wavelets notably

increased when fast techniques, arising from the multi-resolution analysis scheme, became avail-

able. Ever since wavelet analysis has been a popular tool among practitioners.

For the most part multi-resolution analysis has been applied for generating orthogonal,

semi-orthogonal and biorthogonal wavelet bases. Some redundant frames have been constructed

within this framework as well. However, we should recall that countable sets of frame wavelets

were first constructed by discretisation of the translation and scaling parameters of affine co-

herent states. According to the mathematical measure of coherence introduced in [20] an

orthogonal basis has coherence zero and a non-orthogonal basis, although not redundant by

definition, has coherence greater than zero. It is the purpose of the present effort to show that,
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in some finite dimensional spaces, by properly increasing the coherence one can generate spaces

of higher dimension.

The success in constructing a number of linearly independent wavelets with good mathe-

matical properties, such as regularity or localisation, is very much appreciated by researchers

in different fields (including the authors of this contribution) as a major achievement in the

design of wavelets. Nevertheless, in this communication we would like to illustrate, by recourse

to a very interesting example, a remarkable property of a class of highly coherent redundant

wavelet systems. We will construct such systems for finite dimensional cardinal splines spaces,

which are well characterised from a mathematical viewpoint [21] and will be shown to be useful

for the problem of sparse signal representation by non-linear approximation.

The problem of non-linear approximation concerns the representation of a given function

(signal) through the selection of waveforms, frequently called atoms, which are taken from a

redundant set, called a dictionary [22]. This problem has been the subject of quite recent

theoretical work with regard to quasi incoherent dictionaries [20, 23].

The term spline wavelets comprises a number of wavelet systems ranging from Haar piece-

wise constant wavelets to wavelet functions of much higher regularity. In our framework all

such systems admit an equivalent construction and a particular one is obtained by setting the

order of the corresponding B-spline scaling function. We will restrict wavelet systems to an

interval and construct spline wavelet dictionaries on the basis of the following result: Let us

focus on a cardinal spline space on a compact interval with distance 2−j, j > 0 between two

adjacent knots. We prove that such a space can be spanned by translating a wavelet taken

from a multi-resolution subspace corresponding to a fixed scale, say scale 2i, 0 < i < j, as

long as the distance between two consecutive functions is reduced to be 2i−j . This interesting

feature provides the foundations for the construction of a large variety of possible dictionaries for

the identical space. In particular, multi-resolution-like dictionaries can be constructed by spline

wavelets whose support at the finest scale is larger than that corresponding to the finest scale in

a multi-resolution analysis of the identical space. This property provides a clear explanation of

the ‘power of coherence’. Our results for finite dimensional cardinal spline spaces on a compact

interval assert that the benefit of increasing coherence, by decreasing the translation parameter

of the functions, is not only a consequence of incorporating redundancy but also of the fact that

by such a procedure one may increase the dimension of the space. This phenomenon emerges

clearly from our construction.

As will be illustrated by numerical simulations, transforming a spline wavelet basis into

highly coherent dictionaries has a significant impact on signal representation by non-linear

techniques. It will be shown that some of these dictionaries may yield a significant gain in

the sparseness of a representation with respect to the results produced by means of the corre-

sponding basis. This is enhanced by the comparison with other techniques such as Best Basis

Selection using Wavelet Packets.

The paper is organised as follows: Section 2 introduces some background on spline multi-
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resolution analysis on a compact interval relevant for our purpose. Section 3 establishes the

fact that, rather than increasing the wavelet scale to provide a representation of a cardinal

spline space of higher dimension, the representation can be achieved by appropriate reduction

of the distance between two consecutive wavelets. This result is used for constructing a multi-

resolution-like redundant dictionary that, through the numerical examples of Section 4, is shown

to be useful for sparse signal representation. The conclusions are drawn in Section 5.

2 Cardinal spline multi-resolution analysis on a compact

interval

Let us recall that multi-resolution analysis restricted to the interval [c, d], involves a sequence of

nested spaces V0 ⊂ V1 ⊂ · · · satisfying that
⋃

j∈Z+ Vj is dense in L2[c, d]. The complementary

wavelet subspaces Wj are constructed in order to fulfil

Vj+1 = Vj ⊕Wj, j ∈ Z
+ (1)

so that

L2[c, d] = V0 ⊕W0 ⊕W1 ⊕ · · · = V0 ⊕
⊕

j∈Z+

Wj . (2)

Without loss of generality we will assume throughout the paper that c, d ∈ Z. Let us consider

now that Vj, j ≥ 0 are cardinal spline spaces of order m with simple knots at the equidistant

partition of the interval [c, d], having distance 2−j between two adjacent knots. This implies that

each Vj consists of piece-wise polynomials of order m having m− 2 continuous derivatives [21].

A basis for Vj arises from the restriction of the functions

φj,k(x) := 2j/2φ(2jx− k), k ∈ Z (3)

to the interval [c, d]. The corresponding scaling function φ(x) ≡ φ0,0(x) is the cardinal B-spline

of order m associated with the uniform simple knot sequence 0, 1, . . . , m. Such a function is

given as

φ(x) =
1

m!

m
∑

i=0

(−1)i
(

m

i

)

(x− i)m−1
+ , (4)

where (x− i)m−1
+ is equal to (x− i)m−1 if x− i > 0 and 0 otherwise.

It should be stressed that different ways of constructing the boundary functions give rise

to different bases for Vj . The restriction of the scaling functions to the interval [c, d] provides

one such basis, which is easy to construct. Indeed, considering that the support of φj,k(x) is

supp φj,k =
[

k
2j
, k+m

2j

]

, one has:

Vj = span{φj,k : k ∈ (2jc−m, 2jd) ∩ Z}. (5)

Without loss of generality, we assume that at least one scaling function from V0 and one

wavelet from W0 are completely contained in [c, d]. This is equivalent to assuming that d− c ≥
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max{m,w} where w is the length of suppψ. A basis for Wj can then be constructed by

restricting the functions

ψj,k(x) := 2j/2ψ(2jx− k), k ∈ Z (6)

to the interval [c, d] and eliminating some redundancy introduced by the cutting process. One

can start by considering all the functions ψj,k(x) having non-trivial intersection with the interval

(c, d), which restricts the values of the index k to k ∈ (2jc− w, 2jd) ∩ Z. Since the cardinality

of such a set is (d− c)2j−1+w, but dimWj = dimVj+1−dim Vj = (d− c)2j, in order to have a

basis it is necessary to eliminate w−1 boundary functions. A natural choice is to eliminate the

first ⌈z⌉ left boundary functions and the last ⌊z⌋ right boundary functions where z = (w−1)/2

and ⌈·⌉, ⌊·⌋ indicate the upper and lower integer part, respectively. A basis for Wj constructed

by the cut-off process is thereby given as:

Wj = span
{

ψj,k : k ∈
(

2jc− ⌊z⌋ , 2jd− ⌊z⌋
)

∩ Z
}

. (7)

3 Spline wavelet dictionaries

In a previous publication we have shown that a cardinal spline space on a compact interval can

be spanned by dictionaries consisting of functions of broader support than the corresponding

B-spline basis [24]. In the present notation this entails that for an integer ℓ ≥ 1 the set of

B-splines of order m

Vj,ℓ = {φj,kℓ : kℓ ∈ (2jc−m, 2jd) ∩ Z/2ℓ} (8)

satisfies

span{Vj,ℓ} = Vj+ℓ. (9)

Note that the support of a function in (8) completely contained in [c, d] is 2ℓ-times the support of

a corresponding basis function from Vj+ℓ, and we have introduced a new translation parameter

kℓ which is no longer an integer but kℓ ∈ Z/2ℓ.

We call the set Vj,ℓ a B-spline dictionary and wish to consider now the possibility of creating

cardinal spline dictionaries of wavelets. To this end we construct the set Wj,ℓ, ℓ ≥ 1 as follows:

The wavelets are translated using the translation parameter, kℓ, defined above. All the functions

ψj,kℓ(x), kℓ ∈ Z/2ℓ whose supports have non-trivial intersection with the interval (c, d) are

considered. Thus

Wj,ℓ := {ψj,kℓ : kℓ ∈ (2jc− w, 2jd) ∩ Z/2ℓ}. (10)

Our proposal for constructing cardinal spline wavelet dictionaries stems from the fact that

span{Wj,ℓ} = Vj+ℓ. This result is established in the next theorem. The proof is achieved

by using an equivalent technique to that for the proof of Theorem 1 in [24] and is given in

Appendix A.

Theorem 1. Let Wj,ℓ be given as in (10) for a given integer ℓ ≥ 1. Then the following relation

holds:

span{Wj,ℓ} = Vj+ℓ. (11)
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Remark 1. The above theorem gives us a tool for designing different wavelet dictionaries for

cardinal spline spaces. Notice that simply by setting different values of the index ℓ in (10) we

obtain dictionaries of wavelets of different support spanning the identical cardinal spline space

Vj+ℓ.

As described below the result of Theorem 1 allows us to create multi-resolution-like dictio-

naries for the space being considered.

We denote by Vj,0 the B-spline basis (5) for Vj and by Wj,0 the spline wavelet basis (7) for

Wj . The classical wavelet decomposition Vj = V0 ⊕W0⊕ · · ·⊕Wj−1 in terms of bases can then

be expressed in our “dictionary notation” as Vj = span{Dj,0} where:

Dj,0 = V0,0 ∪W0,0 ∪W1,0 ∪ · · · ∪ Wj−1,0. (12)

Considering ℓ ≥ 1 we construct multi-resolution-like dictionaries spanning Vj as

Dj,ℓ = V0,ℓ ∪W0,ℓ ∪W1,ℓ ∪ · · · ∪ Wj−ℓ,ℓ. (13)

Remark 2. It follows from (12) and (13) that the minimum support of an inner wavelet in

Dj,ℓ is 2
ℓ−1-times the minimum support of an inner wavelet in Dj,0.

The top left graph of Fig. 1 shows two consecutive scaling functions (dark line) and two

consecutive wavelets at the coarsest scale (light line) in a linear spline basis (order m = 2). The

right graph shows the equivalent functions in a dictionary constructed by considering ℓ = 2.

The bottom graphs depict an equivalent example but involving cubic splines, which correspond

to order m = 4. Let us remark that, since in both examples the dictionaries arise by setting

ℓ = 2, for representing the same space as the corresponding basis we should consider a coarser

scale, i.e, if the finest scale in the basis corresponds to a scaling factor 2j in the dictionary the

finest scale corresponds to a scaling factor 2j−1.

Of course, considering the result of Theorem 1 one could construct many different dictio-

naries for the identical space. Each such dictionary constitutes a frame for a cardinal spline

space of order m with distance 2−j between knots. As will be illustrated in the next section,

particular dictionaries constructed as in (13) may yield a significant gain, as far as sparseness

is concerned, in problems of signal representation.

For the examples given in Section 4 we construct specific dictionaries on the interval [0, 8] as

follows: We consider cubic splines and use the semi-orthogonal wavelets (Chui-Wang4 family)

introduced in [25] to construct the basis for each Wi,0, i = 1, . . . , j − 1 by the simple cut off

process described in Section 2. In order to construct the dictionary we take a prototype function

from each subspace Wi,0, i = 1, . . . , j − 2 (and also from V0,0) and translate such a function to

a distance 2−2. Notice that we do not use functions from Wj−1,0. This is because by reducing

the distance between functions to 2−2 we need one less scale than the wavelet basis to represent

the same space.
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Figure 1: The top left graph shows two consecutive scaling functions (dark line) and two
consecutive wavelets at the coarsest scale (light line) in a linear spline wavelet basis (order m =
2). The right graph shows the equivalent functions in a dictionary constructed by considering
ℓ = 2. The bottom graphs have the same description as the top ones, but involving cubic spline
wavelets (order m = 4).

In order to characterise the coherence of the dictionaries at hand we use the cumulative

coherence function, µ(p), introduced in [20]. Given a dictionary {αω}ω∈Ω, where Ω is the set

of indices labelling the dictionary atoms, µ(p) measures how much a collection of p atoms

resembles a fixed one. It is defined by

µ(p) = max
|Λ|=p

max
ω 6∈Λ

∑

λ∈Λ

|〈αω, αλ〉|, (14)

where |Λ| indicates the cardinality of the set Λ.

The cumulative coherence for the basis D6,0 and the dictionary D6,2, which will be used

in the next section, is plotted in Fig. 2. It is clear from this figure that the coherence of the

dictionary D6,2 is much more larger than the coherence of the basis D6,0.

Remark 3. An increment in coherence also implies that the construction of the dual frame for

the dictionary may become an ill posed problem. However, when the aim is to use dictionaries
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Figure 2: Cumulative coherence function µ(p), p = 1, . . . , 200 as defined in (14). The lower line
corresponds to the basis D6,0 of cubic spline wavelets for V6. The other line corresponds to the
dictionary D6,2 for the same space.

for sparse signal representation one is not interested in the dual frame for the whole space. On

the contrary, in order to produce orthogonal projections onto the approximation subspace, the

duals for the particular subspace need to be determined. For the representation to be useful

for compression purposes the dimension of the approximation subspace should be considerable

smaller that the dimension of the dictionary space. Thus, the construction of the duals in

the corresponding subspace is well posed. Recursive techniques for adapting dual functions are

discussed in [26–28].

4 Application to sparse signal representation

In this section we use the multi-resolution-like dictionary characterised in the previous section,

corresponding to considering ℓ = 2. The central aim is to compare the sparseness of the signal

representation achieved by using the basis Dj,0 and the dictionary Dj,2. Moreover, the results

produced by a number of other techniques will be presented for further comparison. The two

signals to be represented are the chirp and the seismic signal of Fig. 3.

The piece of seismic signal was taken from the WaveLab802 Toolbox [29] (it is acknowledged

there that such a signal is distributed throughout the seismic industry as a test dataset). Both

signals have a good approximation, coinciding with the graphs of Fig. 3, in V6, the space of

cardinal cubic splines with the distance 2−6 between two adjacent knots. In order to represent

this space we will use: The basis D6,0 and the dictionary D6,2. In both cases we apply the

same strategy for selecting the atoms {αln}
N
n=1 to approximate the given signal by the atomic

decomposition

fN =
N
∑

n=1

cNn αln , (15)

where the superscript indicates that the coefficients cNn yield the orthogonal projection of the
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Figure 3: Chirp signal f = cos(2πx2) (left). Seismic signal (right).

given signal onto the subspace spanned by the selected atoms {αln}
N
n=1.

Our strategy evolves by stepwise minimum residual error selection and is carried out in

three stages:

i) The atoms are selected one by one according to the adaptive pursuit method [30] in order

to reach a predetermined precision in the representation of the signal.

ii) The previous approximation is improved by means of a “swapping procedure” which

operates as follows: at each step an atom of the atomic decomposition is replaced by a

dictionary atom, provided that the operation improves the residual error [31].

iii) A backward pursuit method [32] is applied to disregard some coefficients in order to

produce an approximation up to the error of i).

MATLAB codes for constructing the proposed dictionaries and implementing the selection

strategy are available at [33].

For further comparison we have represented the signals using Fast Wavelet Transform

(FWT) with the biorthogonal (cubic spline) family Bior4.4 and the Daubechies orthogonal

family Daub10. With these two families we also considered a number of different criteria for

Best Basis Selection (BBS) from the corresponding Wavelet Packets (WP) [34]. These tech-

niques were applied by using the Wavekit tool [35] and iteratively tuning the threshold in order

to produce a signal approximation of the same quality (with respect of the L2 error norm) by

all the approaches. The results are presented in Table 1. The first column labels the wavelet

families. The second one specifies the approach and the third and fourth column the number

of atoms needed by those approaches to represent the corresponding signal up to the same

precision.

8



Table 1: Comparison of the sparseness achieved by selecting atoms from the basis D6,0, the
dictionary D6,2, FWT and BBS from WP using different criteria and wavelet families.

Family Approach N (chirp) N (seismic)

Chui-Wang4 Basis D6,0 254 210
Dictionary D6,2 166 125

Bior4.4 FWT 423 223
BBS Shannon entropy 315 217

BBS L1 norm 301 206
BBS L0.5 norm 289 206

Daub10 FWT 401 222
BBS Shannon entropy 279 201

BBS L1 norm 271 195
BBS L0.5 norm 271 194

As can be seen in Table 1, to obtain the desired approximation of the chirp of Fig. 3 using

the basis D6,0 we need 254 atoms. Sparseness is improved to 166 atoms by using the proposed

redundant dictionary D6,2 involving functions of the same nature. On the contrary, the number

of atoms that are needed to represent the chirp signal by all the other approaches is larger.

The same feature is exhibited in the representation of the seismic signal. However, there is

an interesting phenomenon that can be observed: In the previous case the FWT (for both

the Bior4.4 and Daub10 families) was shown to produce a much poorer sparseness property

than the basis D6,0. In this case the results yielded by the three wavelet bases are comparable.

This is due to the fact that the nature of the chirp near the left boundary is very different

from that near the right one. Hence, the periodic boundary conditions in the implementation

of FWT have a very negative effect in relation to the spareness of the representation. We

believe this is the reason why the cut-off approach performs much better in representing the

chirp. However, in the case of the seismic signal for which the two ends of the signal are not

so different and of small magnitude, the approximations obtained by all the wavelet bases are

comparable. The representation of this signal by selecting atoms from the proposed dictionary

is again significantly superior to all the other techniques.

5 Conclusions

The construction of wavelet dictionaries for cardinal spline spaces on a compact interval was

discussed. It was first proved that if 2−j is the distance between consecutive knots in a cardinal

spline space on a compact interval, such a space can be spanned by translating wavelets at scale

2i a distance 2i−j. This result can be used for building a large variety of wavelet dictionaries for

the identical space. In particular, multi-resolution-like highly coherent dictionaries of wavelets

of different supports were constructed. An interesting feature of the proposed construction

is that it allows us to span a spline space of given dimension by using wider wavelets than
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those necessary in multi-resolution analysis. As illustrated by the numerical examples, this

feature is relevant to sparse signal representation by non-linear techniques. The simulations

presented here clearly show that the proposed multiresolution-like dictionaries, which are easily

constructed by simple translations of prototype functions at different scales, may yield a very

significant gain in the sparseness of a signal representation by step-wise selection techniques.

This outcome could be somewhat ‘expected’, since by decreasing the translation step one also

generates more choice so as to chose the suitable functions for representing a given signal.

However, what is definitely a very interesting and somewhat surprising result is that, when

working on a compact interval, by decreasing the translation step of a wavelet family one can

generate higher dimensional spaces. In our mind this is a mathematical characterisation of the

‘power of coherence’.
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Appendix A: Proof of Theorem 1

Proof. The inclusion span{Wj,ℓ} ⊂ Vj+ℓ is obvious because for ℓ ≥ 1 all the spline wavelets in

Wj are, by definition, in Vj+ℓ. Since the distance between two adjacent knots in Vj+ℓ is 2
−(j+ℓ),

by moving the wavelets such a distance it is ensured that they remain in Vj+ℓ. We can then

build scaling-like equations for all the functions of the dictionary Wj,ℓ:

ψj,kℓ(x) =

2ℓ(kℓ+w)−m
∑

n=2j+ℓc−m+1

gkℓ,nφj+ℓ,n(x), kℓ ∈ (2jc− w, 2jc) ∩ Z/2ℓ, (16a)

ψj,kℓ(x) =

2ℓ(kℓ+w)−m
∑

n=2ℓkℓ

gkℓ,nφj+ℓ,n(x), kℓ ∈ [2jc, 2jd− w] ∩ Z/2ℓ, (16b)

ψj,kℓ(x) =

2j+ℓd−1
∑

n=2ℓkℓ

gkℓ,nφj+ℓ,n(x), kℓ ∈ (2jd− w, 2jd) ∩ Z/2ℓ. (16c)

The proof of the inclusion span{Wj,ℓ} ⊃ Vj+ℓ is achieved by showing that every function

φj+ℓ,n(x) ∈ Vj+ℓ can be written as a linear combination of functions from Wj,ℓ. For every

n ∈ [2j+ℓc, 2j+ℓd) ∩ Z (corresponding to an inner or right boundary function φj+ℓ,n(x)) there

is a unique index p(n) = n/2ℓ such that gp(n),n 6= 0 and gp(n),i = 0 for every i < n. Hence, in

the line of [24], by using (16b) or (16c) the function φj+ℓ,n(x) is substituted by ψj,p(n)(x)/gp(n),n

plus a linear combination of φj+ℓ,l(x), l > n. This recursive process ends with the substitution

φj+ℓ,n(x) = ψj,p(n)(x)/gp(n),n where n = 2j+ℓd− 1.

As for every n ∈ (2j+ℓc−m, 2j+ℓc)∩Z (corresponding to a left boundary function φj+ℓ,n(x))

there is also a unique index p(n) = (n + m)/2ℓ − w such that gp(n),n 6= 0, and gp(n),i = 0

10



for every i > n. Thus using (16a) the function φj+ℓ,n(x) is substituted by ψj,p(n)(x)/gp(n),n

plus a linear combination of φj+ℓ,l(x), l < n. The recursive process ends with the substitution

φj+ℓ,n(x) = ψj,p(n)(x)/gp(n),n where n = 2j+ℓc−m+ 1.

Consequently, by back-substitution, we have the decomposition of each function φj+ℓ,n(x), n ∈

(2j+ℓc−m, 2j+ℓd) ∩ Z in terms of ψj,kℓ(x), kℓ ∈ (2jc− w, 2jd) ∩ Z/2ℓ.
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[12] C. E. Heil, D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Review 31 (4)

(1989) 628–666.

[13] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Series in Applied Math.,

SIAM, Philadelphia, PA, 1992.

11



[14] E. W. Aslaken, J. R. Klauder, Continuous representation theory using the affine group,

Journal of Mathematical Physics 10 (12) (1969) 2267–2275.

[15] L. Rebollo-Neira, Frames in two dimensions arising from wavelet transforms, Proceedings

of the Royal Society, series A 457 (2013) (2001) 2079–2091.

[16] G. Kaiser, Physical wavelets and their sources: real physics in complex spacetime, J. Phys.

A: Math. Gen. 36 (30) (2003) R291–R338.

[17] M. Andrle, C. Burdik, J.-P. Gazeau, R. Krejcar, Wavelet multiresolution for the Fibonacci

chain, Journal of Physics A: Mathematical and General 33 (2000) L47–L51.

[18] M. Andrle, P. Kramer, Inflation and wavelets for the icosahedral Danzer tiling, Journal of

Physics A: Mathematical and General 37 (2004) 3443–3457.

[19] J. C. van den Berg (Ed.), Wavelets in Physics, Cambridge Univerity Press, Cambridge,

1999.

[20] J. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE Transactions

on Information Theory 50 (10) (2004) 2231–2242.

[21] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.

[22] S. Mallat, A wavelet tour of signal processing, Academic Press, London, 1998.

[23] R. Gribonval, M. Nielsen, Nonlinear approximation with dictionaries. I. Direct estimates,

Journal of Fourier Analysis and Applications 10 (2004) 55–71.

[24] M. Andrle, L. Rebollo-Neira, Cardinal B-spline dictionaries on a compact interval, Appl.

Comput. Harmon. Anal. 18 (2005) 336–346.

[25] C. Chui, J. Wang, On compactly supported spline wavelets and a duality principle, Trans.

Amer. Math. Soc. 330 (1992) 903–915.

[26] L. Rebollo-Neira, Recursive bi-orthogonalisation approach and orthogonal projectors,

math-ph/0209026 (2002);

L. Rebollo-Neira, New Topics in Mathematical Physics Research, Nova Science Publishers,

New York, 2006, Ch. On non-orthogonal signal representation.

[27] L. Rebollo-Neira, Backward adaptive biorthogonalization, International Journal of Math-

ematics and Mathematical Science 2004 (35) (2004) 1843–1853.

[28] L. Rebollo-Neira, Constructive updating/downdating of oblique projectors: generalization

of the Gram-Schmidt process, Journal of Physics A: Mathematical and Theoretical 40 (24)

(2007) 6381–6394.

12



[29] Wavelab802, web page <http://www-stat.stanford.edu/˜wavelab>.

[30] L. Rebollo-Neira, D. Lowe, Optimized orthogonal matching pursuit approach, IEEE Signal

Processing Letters 9 (2002) 137–140.

[31] M. Andrle, L. Rebollo-Neira, A swapping-based refinement of orthogonal matching pursuit

strategies, Signal Processing 86 (2006) 480–495.

[32] M. Andrle, L. Rebollo-Neira, E. Sagianos, Backward-optimized orthogonal matching pur-

suit approach, IEEE Signal Proc. Let. 11 (2004) 705–708.

[33] M. Andrle, L. Rebollo-Neira, Biorthogonal techniques for optimal signal representation.

URL http://www.ncrg.aston.ac.uk/Projects/BiOrthog

[34] R. R. Coifman, M. V. Wickerhauser, Entropy based algorithms for best basis selection,

IEEE Transactions on Information Theory 32 (1992) 712–718.

[35] H. Ojanen, Wavekit: a wavelet toolbox for Matlab, web page

<http://www.math.rutgers.edu/˜ojanen/wavekit> (1998).

13

http://www.ncrg.aston.ac.uk/Projects/BiOrthog

	Introduction
	Cardinal spline multi-resolution analysis on a compact interval
	Spline wavelet dictionaries
	Application to sparse signal representation
	Conclusions

