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Abstract 

 

In some applications of Data Envelopment Analysis (DEA) there may be doubt as to whether all the 

DMUs form a single group with a common efficiency distribution.  The Mann-Whitney rank statistic 

has been used to evaluate if two groups of DMUs come from a common efficiency distribution under 

the assumption of them sharing a common frontier and to test if the two groups have a common 

frontier.  These procedures have subsequently been extended using the Kruskal-Wallis rank statistic to 

consider more than two groups.  This paper identifies problems with the second of these applications 

of both the Mann-Whtney and Kruskal-Wallis rank statistics. It also considers possible alternative 

methods of testing if groups have a common frontier, and the difficulties of disaggregating managerial 

and programmatic efficiency within a non-parametric framework. 

 

Keywords: Data Envelopment Analysis (DEA); Statistics, Programmatic Efficiency. 
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In one of the first empirical applications of the DEA methodology Charnes, Cooper and Rhodes1 

introduce a distinction between two types of efficiency which are of interest to policymakers. These 

two types of efficiency are managerial efficiency and programmatic efficiency.  The managerial 

efficiency is the classic DEA efficiency and measures the performance of an individual decision 

making unit (DMU) in comparison with the observed production possibility frontier. The 

programmatic efficiency recognises that different groups of the DMUs may not have the same 

production possibility frontier because of programmatic differences and seeks to reveal potential 

efficiency differences between the productive programmes and to test the relative efficiency of each 

programme irrespective of potentially different distributions of managerial efficiency between them. 

 

Brockett and Golany (1996) re-analysed the data of Charnes, Cooper and Rhodes (1981) and proposed 

a process using the Mann-Whitney rank statistic to test if a group of DMUs representing on program is 

more efficient than another by the nature of the program as opposed to the efficiencies of the 

individual DMUs within it. These ideas have been subsequently extended to more than two groups by 

using a more general rank sum test, the Kruskal-Wallis rank test (Sueyoshi T, Aoki S (2001)).  
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The following steps are proposed by Brockett and Golany (1996) to estimate the programmatic 

efficiency (as opposed to managerial efficiency). 

 

1. Split the DMUs into the two groups according to their respective programmes and run DEA 

separately for each the two groups; 

2. In each of the two groups project the inefficient DMUs to the efficient frontier of this group, 

thus attempting to eliminate the effects of managerial inefficiencies within a programme. 

3. Run DEA on the combined set of the projected DMUs from both groups; which includes all 

DMUs. 

4. Apply a statistical test to test if the two groups have the same distribution of efficiency values 

  

First we will describe the difficulties in separating programmatic and managerial inefficiency within a 

DEA framework, and then we will demonstrate that the process used by Brockett and Golany (1996) is 

inappropriate and will invalidate the results of the statistical test. This is because of the process at step 

2 which will depend on how the efficient DMUs are distributed between the programmes. It is also 

demonstrated that it produces biased results, particularly favouring the larger of two unequally sized 

programmes. We then show that these problems will persist when more than two groups are 

considered.  Finally we make some suggestions as to how these problems maybe addressed. 
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1. Managerial Efficiency vs Programmatic Efficiency 

If different programmes transform the same inputs into the same outputs there is said to be no 

programmatic inefficiency if they share a common production possibility frontier. That is the outputs 

that can be obtained for a given set of inputs are the same for an efficient DMU each of the 

programmes. Managerial inefficiency refers to any short fall outputs or over consumption of inputs of 

a particular DMU relative to the production possibility frontier.  

 

So if we consider figure 1, then if the DMU A shown is a member of Programme A its managerial 

efficiency is given by OA/OA’  and the programmatic efficiency of Programme A for DMUs with this 

output mix would be given by OA’/OA’’. Whereas, if DMU A shown is a member of Programme B its 

managerial efficiency is given by OA/OA’’ and the programmatic efficiency of Programme A for 

DMUs with this output mix would be given by OA’’/OA’’=1. Hence, this DMU provides no evidence 

of programmatic inefficiency for programme B but does provide evidence of programmatic 

inefficiency for programme A. 

 

In Data Envelopment Analysis the observed best practice frontier is used rather than the true but 

unknown production possibility frontier.  Because, the observed frontiers of two randomly selected 

groups of DMUs having a common production possibility frontier would be expected to differ, there is 

a desire to ascertain if the observed differences provide sufficient evidence at a given level of 

significance to reject the null hypothesis at the production possibility frontiers are the same. 

 

In some circumstances there is an expectation that the managerial efficiencies of the programmes will 

differ, for example if one is a new initiative which was thought to have attracted the better managers, 
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and so it is desirable to allow for different distributions of managerial efficiency.  It is such a process 

that Brockett and Golany proposed; correcting for managerial inefficiency by projecting to the within 

programme frontier. Unfortunately because the this projection step is in general not equally effective 

for each of the programmes at removing the managerial inefficiency their test will generally be biased 

against programmes represented by fewer DMUs. 

We can at this point also note that there is an intrinsic difficulty in disaggregating managerial and 

programmatic efficiency. If we are consider the DEA frontier to be a statistical estimator of the true 

production possibility frontier on the basis of its asymptotic properties under the assumption of the 

distribution of managerial inefficiency being sufficiently dense that there is a reasonable expectation 

that DMUs will appear on the frontier, then unless we make further assumptions about how the 

managers are distributed between the programmes there is no guarantee that the distributions of 

managerial efficiency within programmes will both have this property.  For example consider the case 

where one programme has selected its managers from the top 20% of managers overall before the 

introduction of the programme, while the new programme will have the desired property, the old 

programme will have lost many of its best managers and so this expectation may no longer hold. 
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2.Problems with Brockett & Golany’s programme evaluation procedure 

We will demonstrate that this procedure results in seriously erroneous results by considering a simple 

case.  If we have 100 DMUs which all share a common production possibility frontier and are drawn 

from a common managerial efficiency distribution. We divide the set of DMUs into two groups at 

random. Hence we know there is no difference in programmatic efficiency between the two groups.  

We then apply the procedure proposed is as follows: 

I. Split the group of all DMUs into two groups (A and B) containing na and nb DMUs 

respectively. Run DEA separately for each of the two groups. 

II. In each of the two groups separately, adjust each inefficient DMU to its “level if efficient” 

value by projecting it onto the efficiency frontier for that group. 

III. Run a pooled DEA with all the projected DMUs 

IV. Apply Mann-Whitney Rank Test to the pooled DEA results. Computing 

 

 

 

 

Considering initially the two randomly selected groups to be Group A consisting of  24 DMUs 

and Group B consisting of the remaining 76 DMUs and that 10 of the DMUs define the efficient 

frontier of the whole set of 100 DMUs. 

The probability that all 10 of these globally efficient DMUs happen to have been put in Group B by 

chance is given by 

Probability = 76C10 / 
100C10 = 0.0551 

Now, if we project DMUs in each of the Groups A and B to their own respective frontiers and then 
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recalculate the efficiencies of the pooled DMUs. 

All 76 DMUs in Group B will appear efficient as the ten globally efficient DMUs all appear in this 

group and so also define its frontier. Hence all 66 of the inefficient DMUs will be projected to this 

globally efficient frontier. 

However none of the DMUs in Group A will appear on the joint efficient frontier. So none of the 

projected DMUs  in this group will be projected to the joint frontier. 

Hence, the DMUs in Group B will occupy ranks 1 to 76, and have a Rank Sum = 2926. 

Whereas the DMUs in Group will A occupy ranks 77 to 100 and have a Rank Sum = 2124 

So calculating the Mann-Whitney Rank Statistic gives Z=-7.36 hence suggests P=0.0000. 

That is the test statistic suggests that this distribution is highly significant indicating that there is 

practically no chance of the groups sharing a common frontier but in fact we know it will occur greater 

that 5% of the time when there is no difference between the two groups either in terms of the 

production frontier or managerial efficiencies! 

This problem will persist when the groups are of more similar sizes and when not all of the efficient 

DMUs fall in one of the groups, as we will illustrate in the following example. 

Again considering 100 DMUs but now divided into two randomly selected groups; Group A 

consisting of  37 DMUs and Group B consisting of the remaining 63 DMUs and again 10 of the 

DMUs define the observed efficient frontier of the whole set of 100 DMUs. 

The probability that all 10 of these globally efficient DMUs happen to have been put in Group B by 

chance is now given by 

Probability = 63C10 / 
100C10 = 0.0074 
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Which is quite small, but still considerably larger that the p-value that would be obtained by applying 

the procedure of Brocket and Golany , but let us now consider the probability that 9 of these globally 

efficient DMUs happen to have been put in Group B and 1 is placed in group A. 

Probability = 63C9 
37C1 / 

100C10 = 0.0506 

We now consider what happens when we project the DMUs to their respective frontiers. For 

simplicities sake we will consider a simple one input two output constant returns to scale DEA model 

as shown in figure 2. If we define i as the number of inefficient DMUs in group B that project onto 

the ith segment of frontier (numbering the segments in order of increasing ratio of output2 to output1).  

Then, for segments 2 to 10 (that is all the segments on the non-dominated part of the frontier) the 

inefficient DMUs in Group B will project to the joint efficient frontier if and only if both of the DMUs 

defining the segment are in Group B. 

The probability of this occurring is 8/10, but for segments 1 and 11 only a single DMU defines the 

segment so the probability becomes 9/10  

Hence we expect     2.52963
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 Whereas inefficient DMUs from Group A will only project to the joint frontier if they are un-

enveloped and the efficient DMU in Group A is the closest one as shown in figure 2. 

So we expect     6.4137
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appear on the joint efficient frontier. 

That is a total of about 57 DMUs are expected to appear on the joint efficient frontier and to tie for the 

top rank and will each be given a rank number of 29. The remaining 43 DMUs will share the 

remaining ranks (58 to 100) with an average rank number of 79. 

So the expected rank sum for group A is 4.6x29+32.4x79 =2693 

This would give Z =-5.89 and again P=0.0000. 

So once again the test has suggested a highly significant difference when the result is to be expected in 

more than 5% of the cases. 
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3 More than two groups: the Kruskal and Wallis Rank Test 

As already stated Sueyoshi & Aoki extend on the ideas of Brockett & Golany in line with the 

suggested extensions in their original paper to consider more than two groups of DMUs and use it to 

consider how a frontier may shift over time. 

Their procedure works in the same way projecting DMUs to the within group frontier then pooling the 

projected DMUs and ranking them using DEA. But now the sums of the ranks are compared using the 

Kruskal Wallis Rank test.  

If there are K groups and the jth group has nj DMUs and Rank Sums Rj and N=nj 

Then     
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12  Should follow a 2 distribution with K-1 degrees of freedom. 

We will again demonstrate that this procedure will be problematic by way of an illustrative example. 

If we have 60 DMUs which all share a common production possibility frontier and are drawn from a 

common managerial efficiency distribution. We divide the set of DMUs into three groups at random. 

Hence we know there is no difference in programmatic efficiency between the three groups.  

We will now consider each of the three randomly selected groups to consist of  20 DMUs, as this 

should minimise the problems with the procedure, and that 5 of the DMUs define the observed 

efficient frontier of the whole set of 60 DMUs. 

Firstly we note that the probability that all 5 globally efficient DMUs are in one of the groups is given 

by : Probability =3 20C5 / 
60C5 = 0.00852 

The group which possessed all the globally efficient DMUs would take up ranks 1 to 19 and the 

remaining ranks would be shared by the other two groups. Hence giving a minimum value of H when 

the remaining ranks are equally shared between these two groups of: 
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    34.391603
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which would give a p-value of 0.00000. So the probability of rejecting a true null hypothesis is again 

considerably larger than the test suggests. 

We also note that the if only 4 of the globally efficient DMUs are in one of the groups, 1 of them in 

another and none in the final group is given by as we would expect in more than 10% of the cases if 

the groups where randomly selected ( Probability = 6 20C4 
20C1 / 

60C5 = 0.10645) the problems will 

persist.  This is illustrated in figure 4 and using the same logic as we did for the two group case.  

So for Group A (the group with none of the efficient units) clearly none of its inefficient DMUs will 

project to the joint frontier. 

For Group B (the group with only one of the efficient units) the expected number of its inefficient 

DMUs that will project to the joint frontier is given by 

    8.3120
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So in total we expect less than 4.8 DMUs from this group on the joint frontier. 

But for Group C the expected number of its inefficient DMUs that will project to the joint frontier is 

given by 

    6.9420
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So in total we expect at least 4+9.6=13.6 of the DMUs from this group on the joint frontier 

In total this gives an expected 18.4 DMUs on the joint frontier (hence an average rank of 9.7) with the 

remaining 41.6 DMUs sharing the remaining ranks (with an average rank of 39.7). This gives the 
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following expected rank sums, under the conservative assumption that the remaining ranks are shared 

equally between the programmes. 

Group A Rank Sum = 20x39.7 =794 

Group B Rank Sum = 4.8x9.7 +15.2x39.7 = 650 

Group C Rank Sum = 13.6x9.7+6.4x39.7 = 386 

Then the expected value of H is greater than 
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which would give a p-value of less than 0.000895. 

So again the procedure has produced a highly significant result, for an occurrence which has a 

probability of greater than 10% of occurring when the null hypothesis is true! In this case, there is not 

bias against any particular programme, as each, being the same size are equally likely to be under 

represented in the number of DMUs on the joint frontier prior to projection, but there is a bias against 

the programme(s) which are under represented in this way because of the over sensitivity of the test. 
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4 Conclusions & Way Ahead 

It is clear that the current tests do not properly separate managerial and programmatic efficiency. 

The root cause of the problems is in the projection of units to the within programme frontier, which 

does not treat the programmes equivalently, particularly when the number of DMUs in the programs 

are unequal. 

One can however note that if instead of projecting the units before applying the non-parametric tests 

we simply applied them to the un-projected DMUs we have a test that will fairly detect shift in the 

programme frontier if the distribution of managerial efficiency is the same in the two groups. 

Unfortunately, it is this assumption of a common distribution of managerial efficiency between the 

programs or groups that we wish to avoid, but if we have data for several time periods this approach 

may prove fruitful. For example, if we have a single programme into which a new initiative is 

introduced into a subset of the DMUs , we could assume the overall distribution of managerial 

efficiency is the same before and after the introduction. Applying the Mann-Whitney test to the whole 

data sets before and after would then test for a shift in the frontier caused by the introduction of the 

new initiative. A similar test of the subset that introduced the initiative before and after would give the 

combined effect of the shift in frontier and any advantage in selecting the better managers. 

Alternatively, if we consider that if there is no programmatic inefficiency we do not expect there to be 

an association between which facets of the frontier are defined by DMUs in a particular programme 

and the facets that the inefficient units in that program will project to. So if we expect the input/output 

mixes to have the same distribution for the two programmes we could proceed with a test on these 

lines. Simpson (2004) has suggested such a test for the two programme case based on this approach 

and further work may allow a generalisation to the k programme case. 
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Figure 1: Managerial Vs Programmatic Efficiency 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Segments of the DEA frontier 
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Figure 3: A Segment of the DEA frontier where units from Group A project to the joint frontier 

 

Figure 4:  
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