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Abstract

The generation of very short range forecasts of precipitation in the

0–6 hours time window is traditionally referred to as nowcasting. Most

existing nowcasting systems essentially extrapolate radar observations

in some manner, however, very few systems account for the uncertain-

ties involved. Thus deterministic forecast are produced, which have

a limited use when decisions must be made, since they have no mea-

sure of confidence or spread of the forecast. This paper develops a

Bayesian state space modelling framework for quantitative precipita-

tion nowcasting which is probabilistic from conception. The model
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treats the observations (radar) as noisy realisations of the underlying

true precipitation process, recognising that this process can never be

completely known, and thus must be represented probabilistically. In

the model presented here the dynamics of the precipitation are dom-

inated by advection, so this is a probabilistic extrapolation forecast.

The model is designed in such a way as to minimise the computational

burden, while maintaining a full, joint representation of the probability

density function of the precipitation process. The update and evolu-

tion equations avoid the need to sample, thus only one model needs

be run as opposed to the more traditional ensemble route. It is shown

that the model works well on both simulated and real data, but that

further work is required before the model can be used operationally.

Keywords: Bayesian, quantitative precipitation forecasting, probabilistic,

state space models, data assimilation.

1 Introduction

The provision of reliable forecasts of precipitation over the 0–6 hour period

at high spatial resolution, often described as now-casting, is regarded as

essential for flood forecasting by the Environment Agency (Golding, 2000).

To adequately describe the spatial distribution and timing of precipitation

over catchments with areas of the order of 10 km2, prediction over a spatial

scale of the order of 1 km is required, with a temporal scale of the order

of 10 minutes. In the foreseeable future forecasts of precipitation at such

high resolutions will require the application of probabilistic methods since

precipitation generating processes are very sensitive to the correct specifi-

cation of initial and boundary conditions, which is unlikely to be resolved

in operational meso-scale models for some time, largely due to problems of

data assimilation and parameterisations.
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1.1 Current approaches to precipitation nowcasting

Operationally, precipitation forecasts are produced over a variety of time and

space scales, using a variety of methods. We shall assume that nowcasting

refers to the production of forecasts with lead times of 0 – 6 hours (Golding,

2000), while short-term forecasting refers to lead times of 6 – 24 hours

(Collier, 2000). Beyond 24 hour lead times it is widely accepted that NWP

based approaches are optimal for providing precipitation forecasts (Golding,

2000). In the range of 0 – 24 hours a variety of methods are used to provide

quantitative precipitation forecasts including:

• NWP based approaches (Kuligowski and Barros, 1999);

• model output statistics techniques (Antolik, 2000; Fox and Collier,

2000);

• purely statistical extrapolation methods, generally using radar data as

a first guess (Grecu and Krajewski, 2000; Toth et al., 2000; Mellor et

al., 2000);

• expert system based approaches which model precipitation cell evolu-

tion (Pierce et al., 2000).

These different approaches have strengths and weaknesses for a range of

forecast lead times, time scales and space scales. In the nowcasting range of

0 – 6 hours NWP based forecasts are less often used because the assimilation

and initialisation cycle of these models is of the order of 3 hours (Golding,

2000) and there are many unresolved issues surrounding the assimilation of

precipitation data into these models (Zou and Kuo, 1996). Thus, to produce

nowcasts of precipitation, various statistical methods have been developed,

which take advantage of the availability of high resolution radar. In the UK
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the radar system is only capable of providing information of instantaneous

rainfall rates, so this is what is assumed to be available.

Wheater et al. (2000) review a series of elegant statistical spatio-temporal

model for describing precipitation fields, based on a hierarchical decompo-

sition of the precipitation into precipitation fields, bands and cells, each of

which are modelled as point processes in space (precipitation fields), time

(precipitation bands) or space and time (cells). Thus the models are defined

as being continuous in space and time, and the actual precipitation field is

described by a series of precipitation cells. The models can be fit to radar

data, but this fitting is designed to to estimate the hyper-parameters of the

models, such as the rates of the corresponding Poisson processes. Thus the

models provide a statistical characterisation of the precipitation field but

are not directly suitable for use in operational forecasting.

In a similar vein Mellor et al. (2000) describe a statistical model for

the production of a space-time precipitation field, based on their so called

Modified Turning Bands method. This uses triangular prisms to define the

location of the regions with potential to generate precipitation, and these are

modulated by a paired sinusoidal function to produce temporal pulsing in

the resulting precipitation cell generation potential field. Cells are generated

from this potential as a Poisson process (the potential defines the rate of

the process). Each precipitation cell is described by an inverted parabola,

and has its own characteristic lifetime, width and maximal intensity. The

model requires manual intervention to be fit to data and is tuned to frontal

systems with a linear structure. By generating realisations of the Poisson

processes ensembles can be generated, but the rather ad-hoc nature of the

fitting of the model to data means that the operational use of this system

is currently limited.
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In the GANDOLF system, used operationally in the Met Office (Pierce

et al., 2000), convection is represented using an object-oriented approach

whereby each convective cell is identified and evolved through a life-cycle

model, which includes initiation of daughter cells. The system uses data from

a variety of sources including the Met Office mesoscale model, METEOSAT

images and the radar network. While the GANDOLF system has been

shown to produce reasonable convective precipitation forecasts (Pierce et

al., 2000), there are several areas which could be improved. One of the most

significant problems is that one single deterministic forecast is produced

which, for such a non-linear system, is unlikely to characterise the true

distribution of precipitation at a forecast lead time of say 3 hours.

Georgakakos (2000) developed a hybrid model, which has aspects of the

model output statistics approach, in that NWP derived fields are used ex-

tensively, for example to predict advection vectors, but also directly uses

radar data (both near ground precipitation rates and vertically integrated

water content) to produce a nowcast. The paper is novel in that a method

is developed which also incorporates model uncertainty, through the speci-

fication of both observation and model errors. In that respect is it similar

to the work described in this paper, however Georgakakos (2000) assumes a

discrete state space (that is a grid based model, with numerical integration

in the standard way) and thus can only represent the joint covariance matrix

of the precipitation field in neighbouring cells, which is rather restrictive.

While there have been some interesting research developments in statis-

tical modelling for precipitation forecasting, there remain many unanswered

questions, in terms of what framework is most appropriate and how model

uncertainty and observation uncertainty can be combined to capture the full

probability distribution function of precipitation through space and time. In
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the next section, one possible approach is reviewed.

1.2 Bayesian state space modelling

To progress to the development of probabilistic models for precipitation,

which can then be fed into a Bayesian hydrologic forecasting system such as

presented in Krzysztofowicz (1999), we essentially have three options:

1. use model output statistics techniques to post-process deterministic

NWP (Antolik, 2000);

2. use Monte Carlo (ensemble) methods with statistical or NWP models

(Mellor et al., 2000);

3. directly represent and evolve the probability density function of the

precipitation process (this paper, and to some extent (Georgakakos,

2000)).

The first method, using model output statistics has a disadvantage, that the

probability density function (pdf) of the precipitation process will be com-

plex and state dependent, which may make parameterisation very difficult.

In addition, many users (for instance those running distributed hydrological

models) will require the joint pdf for precipitation over some spatial domain,

so that the spatial structure of the precipitation is preserved, which will be

very difficult to achieve.

The second option, based on sampling methods uses a large number of

samples to characterise the pdf. The problem with these methods is that

to correctly characterise the joint pdf of precipitation over a spatial domain

may require many thousands of samples. Current operational ensemble pre-

diction systems use around 100 samples, and are computationally very ex-

pensive, since each member must be integrated separately (Molteni et al.,
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1996). However ensembles maintain an advantage in that any model can

readily be run as an ensemble, if the computational expense can be coped

with. In addition it may be possible to post-process output to produce bet-

ter approximations to the true forecast pdf (although this will again be very

difficult for joint pdfs) (Mylne et al., 2002).

The third option is pursued in this paper, that is a model will be con-

structed which retains a probabilistic representation of the evolution of the

precipitation field. Thus the model must propagate the full joint pdf of

the precipitation field, and update this as observations become available.

State space models provide a suitable framework, these being most readily

presented in their natural Bayesian context. Any dynamical system can be

represented in the state space modelling framework, which provides formal-

ism for the updating and propagation of the pdf of the state of a system. In

the linear, Gaussian case this is generally referred to as the Kalman filter.

For non-linear and non-Gaussian systems there are a large variety of exten-

sions to the Kalman filter (Chatfield, 1996), such as the extended Kalman

filter, the ensemble Kalman filter (Evensen, 2001) and particle filter (Doucet

et al., 2001) based methods.

State space models assume that the state of the system at time t, denoted

xt, is not directly observed (it is a latent variable). The state is taken to

evolve in time according to the (Markovian) state evolution equation:

xt+1 = f(xt) + ηt ,

where f() is the state evolution (or system) model which maps the state

at time t to the new value at time t + 1 and ηt is the system noise. This

system noise represents model error, and can often be difficult to determine.

The observations at time t, yt, are related to the state by the observation
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equation:

yt = h(xt) + εt ,

where h() is the observation (or forward / sensor) model which maps the

state variable to the observables. εt is the observation error and reflects

the uncertainty in the observations which may arise from several sources,

including incomplete knowledge of the observation process, such as arises

when using radar images, as well as the intrinsic measurement uncertainty

due to the observation system.

This framework is completely general, since there have been no restric-

tions imposed on f , h, η or ε. In the standard Kalman filter f and h are no

longer functions but linear operators (matrices) and η and ε are assumed

Gaussian, as is the initial distribution of the of the state x0. Thus for all

future times the state will remain Gaussian distributed.

In this work the aim is to track the pdf of the state given all the previous

observations, denoted by p(xt |Dt) = p(xt | yt,yt−1, ...,y1).

[Figure 1 about here.]

The observation process is written as p(yt | xt, h), the conditional prob-

ability of the observations at time t given our estimate of the state at time

t and the observation model, h. This reflects the assumption that the ob-

servation process in often not completely understood and that it has errors

associated with it. The evolution of the system is given by p(xt+1 | xt, f),

the conditional probability of the state at time t + 1 given our estimate of

the state at time t and the system model, f . In section 2 these are shown

for the precipitation model.

The Bayesian interpretation the state evolution (forecast) step becomes:

p(xt |Dt−1) =

∫

p(xt | xt−1)p(xt−1 |Dt−1)dxt−1 .
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The state update (assimilation) step can then be written as:

p(xt |Dt) =
p(yt | xt)p(xt |Dt−1)

∫

p(yt | xt)p(xt |Dt−1)dxt

,

which can be seen as the application of Bayes theorem to the inverse problem

of estimating the state given a set of observations, where the prior distribu-

tion, p(xt |Dt−1) comes from the state evolution step. These equations are

then applied sequentially, to propagate the pdf of the state forward in time

and update it given some observations, as illustrated in Figure 1.

This general framework is very flexible and can adapted to almost every

modelling situation. In section 2 the state space modelling framework is

extended to the probabilistic quantitative precipitation forecast model. In

section 3 the prior models are discussed and it is shown how these can

be used generatively, to simulate from the model, even when no data has

been seen. Section 4 discusses the results of the application of the model

to both simulated (where we know the true parameters) and real data and

conclusions are drawn in section 5.

2 Model framework

The state space for the precipitation model must consist of the key variables

necessary to forecast precipitation over the 0–3 hour range. At a minimum

there must be a representation of the instantaneous precipitation rate field,

which we will denote R. To account for advection, the state space must

be extended to include a vector field to represent the continuous spatial

behaviour of the advection of the precipitation, which we denote u. The

model dynamics are very simple, the evolution of R being given by:

∂R

∂t
+ u · ∇R ≈ 0 ,
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while u is a purely stochastic process. This reflects the belief that the ad-

vection field changes more slowly (in most situations) than the precipitation

field. The formulation of the model as approximately preserving precipita-

tion in the Lagrangian sense limits the applicability to short forecast lead

times, and the addition of external forcing terms will be the subject of future

work.

The model chosen to represent R is a radial basis function model given

by:

R(x) =
N
∑

k=1

hk exp

[

−
1

2

(x− ck)
2

w2
k

]

,

where hk represents the height, wk the width and ck the centre of the k’th

basis function and x represents a 2 dimensional position vector. By choosing

a suitable number of basis functions, N , it is possible to approximate any

continuous mapping (Bishop, 1995), thus this model is flexible enough to

represent any precipitation field over a spatial domain. The Gaussian form

of the basis functions, chosen for computational reasons to produce a contin-

uous model, implies that R is never truly zero, which is not very physically

realistic. When we use this model to produce predictions of precipitation

rates then we post-process the output, and assume that any values below

some threshold are assigned to zero.

The model for u is based on a vector Gaussian process, N(0,Σu), where

the covariance matrix Σu is carefully defined so that ∇ × u À ∇ · u. The

parameters that define the covariance matrix are set to give sensible space

and energy scales (Nabney et al., 2000).

[Figure 2 about here.]

In the state space modelling framework the aim is to propagate the prob-

ability distribution function of the state variables through time, updating

10



them once observations become available. The state vector for the model is

{c, w, h} and u, and it is necessary to propagate through time the means and

(co)variances of these variables. The complete model framework is shown

in Figure 2.

The model is initialised carefully using the first two radar images in

a sequence, but since this need only be done once, the mechanism is not

described here; essentially it is based on data assimilation steps, where the

forecast is assumed to be very bad. This provides initial estimates at t = 0 of

the state variables and their (co)variances. The model uses vector Gaussian

process priors over c of the form N(0,Σc), Σc is a full covariance matrix,

which ensures that centres can be correlated and thus take into account the

structure in u. The priors over h and w log-Gaussian priors, which ensures

R ≥ 0 and constrain the values to be physically realistic.

These prior distributions are only used at the first step, however the de-

composition of the posterior these imply is maintained. Thus the state vector

probability distribution function, which in the complete form is p(c, w, h,u|·)

is represented as a product (factorising) distribution p(c|·)p(w|·)p(h|·)p(u|·),

which makes inference more simple. Both p(c | ·) and p(u | ·) are represented

by Gaussian processes, and thus have full covariance matrices which allow

for complex correlation structures. p(w | ·) and p(h | ·) are assumed to have

log-normal distributions with diagonal covariance matrices: that is inter-

actions between basis functions are restricted to the locations of the basis

functions. This is reasonable since the aim is to capture the uncertainty in

the model estimates of advection and propagate these in a consistent and

computationally efficient manner.

11



2.1 Forecast step

To produce forecasts from the model, the methods used for state evolution

for R and u must be defined. R is predicted first (denoted the circled 1 in

Figure 2). It is assumed that:

∂R

∂t
≈ −u · ∇R .

With the radial basis function model for R, if u is assumed to be locally

constant, this yields a forecast step for R given by:

ct+1 = ct + δt ut + εc ,

where δt is length of the forecast step and εc is the error in the forecast due

to the simplifications of the model and that not all apparent cell motion

is due to advection. Since c and u are both Gaussian and εc is assumed

Gaussian, this forecast distribution is also Gaussian:

ĉt+1 ∼ N(c̄t + δt ∗ ūt,Σct
+ δt2Σut

+Σεc) , (1)

where the hat is used to denote forecast quantities and the over-bar denotes

the expectation (or mean). Σεc is the covariance of εc and it should be noted

that at the prediction steps the covariance matrices are added together,

implying that our uncertainty increase. The forecasts for w and h are more

simple since there is currently no explicitly resolved growth and decay. Thus

they can be written:

ŵt+1 ∼ N(w̄t,Σwt
+Σεw) , (2)

and

ĥt+1 ∼ N(h̄t,Σht
+Σεh) , (3)

where Σεw and Σεh are the system noise covariances for w and h respectively

and are assumed diagonal.
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The assumptions made about the evolution of c (particularly the locally

constant assumption on u) are not overly restrictive. The model is designed

to run on a 5 minute time step (determined by the frequency of radar obser-

vations available) and typical advection speeds are of the order of 10 ms−1,

this implies that the locally constant assumption need only apply over a

distance of ∼3 km. It is not difficult to produce a better approximation

using information on the gradient, even curvature of the u, but this was not

felt to be a significant source of error within the model.

The forecast step for u (denoted the circled 2 in Figure 2) is straight

forward since the assumption is made that this does not have temporal

dynamics. Thus:

ût+1 ∼ N(ūt,Σut
+Σεu) , (4)

where Σεu is the covariance matrix of the system noise (model uncertainty)

concerning u, and is a full covariance matrix, with a spatial structure sim-

ilar to that imposed by the prior, but with much smaller variances. The

estimation of these system noise variances is very non-trivial and will be

addressed later.

2.2 Assimilation step

Having forecast the state variables, then next step is to update the state

given the observations, which in the case of radar estimates of precipitation

intensity, have quite a large degree of associated uncertainty. The hierarchi-

cal nature of the model means that R must be update before u is updated,

and that the uncertainty in the estimates of R must be taken into account

when updating u.

Since the relation between the observations I and the parameterised

representation of R (that is {c, w, h}) is not linear, this update (denoted
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the circled 3 in Figure 2) is non-trivial . The aim is to determine

p(ct+1, wt+1, ht+1 | It+1) =
p(It+1 | ct+1, wt+1, ht+1)p(ct+1, wt+1, ht+1)

p(It+1)
,

(5)

where the ‘prior’ p(ct+1, wt+1, ht+1) = p(ĉt+1)p(ŵt+1)p(ĥt+1) is obtained

from Equations 1, 2 and 3. The likelihood p(I t+1 |ct+1, wt+1, ht+1) is defined

by the errors on the radar observations, but is a function of the R model

parameters. The normalising constant p(I t+1) is unknown.

In general, due to the non-linearity of the radial basis function model,

although the prior has been assumed Gaussian and the noise model for the

radar is also assumed Gaussian (see Collier (1999), Figure 1 for a justifi-

cation), the posterior distribution is not Gaussian. In this work a choice

was made to put the non-linearity into the observation process rather than

the system evolution process, for computational reasons. There are many

methods which could be used to resolve the estimation of the posterior

distribution. The method we adopt is pragmatic; the model is based on

propagating the first two moments of the pdf (and justifying the applicabil-

ity of this under assumptions of Gaussianity, driven by the Central Limit

Theorem), thus at the update step for the R model it is only necessary to

determine the first two moments of the posterior pdf.

The first moment, the mean, can be approximated by optimising (the

negative log of) Equation 5 with respect to the state vector for R, as is

frequently done in data assimilation (Ide et al., 1997). In this work the

optimisation was carried out using a scaled conjugate gradients algorithm

(Nabney, 2001). Having determined the most probable value, the second

moment can be approximated by analytically computing the Hessian of (the

negative log of) Equation 5, again with respect to the state vector for R.

This Hessian gives an approximation to the inverse covariance matrix for
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the Gaussian centred at the mean value. This approach is justified by the

belief that although the posterior distribution for R is not Gaussian, the

main features of the distribution can be described by the first two moments.

In future work it would be sensible to sample from this posterior distribu-

tion using Markov Chain Monte Carlo methods and assess the effect of the

Gaussian assumption.

The noise on the radar observations was assumed to be given by a Gaus-

sian on the precipitation intensity with a standard deviation of 4 mm hr−1.

In theory it makes more sense to have a noise model over the logarithm of

the precipitation intensity, with variance given by the assumption that the

root mean square factor error on the radar observations

exp





√

√

√

√

1

N

N
∑

i=1

log

(

Ri

Ii

)2



 ,

is approximately 2. This is likely to be a rather poor characterisation of

the magnitude and spatial structure of the errors on radar data, however

at present this was felt to be the optimal estimate. The UK Meteorological

Office is currently running a project to address issues of radar errors, but

the results of this are not currently available.

The update (or assimilation) step for u (denoted the circled 1 in Figure 2)

is more simple. However, the model is hierarchical and it is necessary to

integrate over the (conditional) uncertainty in R at both times:

p(ut+1|It+1, It) =

∫

p(ct+1|ct,ut+1)p(ct|It)dctp(ût+1)p(ct+1|It+1)dct+1 .

(6)

This update for u is a double Gaussian integral and can be computed an-

alytically, again invoking the approximation that u is locally constant, to

give ut+1 ∼ N(ūt+1,Σut+1
) where

Σ−1
ut+1

= Σ−1
ût+1

+ δt2
[

Σct
+Σct+1

+Σεc

]−1
,
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and

ūt+1 = Σut+1

[

Σ−1
ût+1

ūt + δt
[

Σct
+Σct+1

+Σεc

]−1
(c̄t+1 − c̄t)

]

.

Note that in this linearised update it is the inverse covariances which are

added together, implying a reduction in the estimate of our uncertainty. It is

also important that the uncertainties in the estimates of c at the two times

is accounted for in the update, so that the model does not become over

confident about the advection field without sufficient evidence in the data.

As the model is run through time, at each update (assimilation) step the

model probability distribution function for the state variables becomes more

strongly peaked about the mean values, with the limit behaviour determined

by the system and observation noises and the data distribution.

3 Generative model

The model has been completely specified, although there remain some (hy-

per)parameters (the system noise (co)variances) which must be defined. Ide-

ally these parameters would be estimated from data, using a method such

as Kalman smoothing. Time constraints meant this was not possible for this

prototype model, thus the values for these priors were set on the basis of

expert judgement. This is consistent with the Bayesian framework adopted.

The system noise covariances were estimated using arguments about

what the model was, and was not, resolving. The key omission from the

model is precipitation growth or decay dynamics. This could have a signifi-

cant impact over a forecast time frame of 3 hours, so the model uncertainties

in w and h, which would be most strongly affected by growth / decay should

be quite large. It would be quite possible for an active convective system to

completely decay within 3 hours, thus the system noise on h is quite large.
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The system noise covariances can be understood in terms of the standard

deviation of the added uncertainty, which in the case of h is log(16) mm over

one hour. The widths, w are less likely to change as dramatically, until the

system gets very weak, so these system noise on this is smaller, equivalent

to adding an uncertainty having a standard deviation of log(2) km over one

hour.

The uncertainty in the centres, c, should be rather less since the model

is capturing most of the uncertainty due to errors in the estimate of the

advection field. The remaining errors come from two main sources. The first

is the growth and decay of new cells, or so called daughter cell development

(Pierce et al., 2000) (which the model may partially capture as advection

in any case) but is not explicitly accounted for. The second error concerns

whether there is a single advection field for a precipitation field. Embedded

precipitation, or scale dependent advection could be important, and it might

be necessary to consider this in future work. At present the system noise on

c is set equivalent to adding an uncertainty having a standard deviation of

1 km over one hour.

[Figure 3 about here.]

In order to assess whether the R, u model is a reasonable approxima-

tion to reality, it can be very beneficial to regard the model in it’s generative

sense. This means that rather than trying to use data assimilation to condi-

tion the model on reality, a random realisation from the model (strictly the

realisation is a sample from the prior distribution defined over the model

parameters) is made and integrated forward in time. This is very simple

to do when working with properly specified probabilistic models, and can

produce visualisations which allow a subjective assessment of how well the

model characterises the processes being modelled. Figure 3 shows a sequence
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of synthetic radar images (with advection vectors) generated from the prior

model alone (that is without using any data).

4 Results and discussion

[Figure 4 about here.]

The model was first tested on synthetic data generated from the model

itself. This has the advantage that the true (generating) parameters are

known and thus we can check the inference within the model is operating

correctly. An example of a time series generated from the model, together

with the fit to that data (the assimilated fields at the same time) is shown

in Figure 4. While this sort of testing cannot be used to infer the ability

of the model to forecast real precipitation events, it does provide confidence

that modelling approach adopted is plausible, and consistent.

Testing the model on sequences of real radar images is more challeng-

ing, since in this case processes will be operating which are not explicitly

resolved in the model, particularly processes associated with the growth and

decay of precipitation. To test the model, one sequence of radar images was

used, so this cannot be considered a complete verification of the model and

the outcomes must be judged with care. Clearly further work on model

verification is required before this can be considered an operational model.

[Figure 5 about here.]

In Figure 5 the results of running the model on a sequence of NIMROD

processed (Golding, 1998) radar derived precipitation estimates is shown.

The model is able to learn the advection velocities (here drawn at the centre

of each basis function) as well as an approximation to the true underlying

precipitation field. The representation of R is rather smooth, this being
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largely due to the magnitude of the noise assumed on the radar images.

Note that in producing these images a threshold of 0.5 mm has been selected

below which the rain rate is plotted as zero.

[Figure 6 about here.]

Figure 6 shows the results of using the model to forecast the evolution of

the precipitation field, with a lead time of one hour. This is a difficult case

to forecast since the 30th of October 2000 was a very active situation with

a deep depression (central pressure of 950 hPa over Yorkshire) and active

cold front (with embedded convection) crossing the UK. Rainfall totals were

between 40 and 60 mm over a wide area. Even in this rapidly developing sit-

uation the model is able to provide a plausible forecast, and the realisations

from the forecast probability distribution function show that the uncertainty

in the joint basis function advection process is being captured, maintaining

the structure of the forecast precipitation field. While this falls a very long

way short of model validation, it shows the method has potential and should

be developed further.

5 Conclusions

This paper has described a fully probabilistic model for precipitation now-

casting. Wherever possible the assumptions which underly the model have

been explicitly stated, so that it is possible to appreciate the drawbacks

and advantages of the model. A methodology is proposed for placing ad-

hoc extrapolation based nowcasting models into a consistent probabilistic

framework. There is much that could be criticised about the model, and the

model deficiencies might be ranked in the following order:

• The model assumes that the precipitation field is passively advected
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over time, with no explicit growth or decay of precipitation. Thus

in situations where there is daughter cell development, or significant

decay of precipitation the model is likely to ascribe some of this to ap-

parent motion. However, due to the affect of the probabilistic update

for the advection field, u, it is likely that most of these effects will be

treated (correctly) as model errors on the positions of the centres and

thus not affect u.

• The assumption that the precipitation field and advection field prob-

ability distribution function can be fully characterised by the first two

moments (the Gaussian assumption) is quite strong. This means that

the model is not capable of resolving, for example a multi-modal proba-

bility distribution function for R, however, it must be understood that

the posterior distribution for c is a full covariance Gaussian, which can

generate quite complex ensembles when sampled from. Further work

is required to assess how restrictive this Gaussian assumption is, and

could use Markov Chain Monte Carlo methods, such as particle fil-

ters (Doucet et al., 2001), to undertake distribution assumption free

modelling.

• In the present framework there is assumed to be a single advection

field, u, for all precipitation features. In the case of embedded convec-

tion, it might be expected that the advection would be scale dependent.

It would be possible to extend this model to have multiple advection

fields which applied (probabilistically) to different basis function sizes

w, using a hierarchical approach, however assimilation in such a model

would be complex to implement and might require more data than is

currently available from the UK radar network.

20



• The hyper-parameters of the model (the system noise (co)variances)

are at present specified using expert judgement. This is reasonable,

since their magnitudes are probably well estimated, however the actual

values might more sensibly be learnt from long time series of observa-

tions, in a manner similar to Kalman smoothing. Since it is possible

that the hyper-parameters are state dependent, it could be argued that

these should be estimated as part of the data assimilation process, in

a hierarchical manner.

• The model only uses radar derived estimates of instantaneous precip-

itation rates. There are a much wider range of observations which

might also be usefully assimilated in the model (Collier, 2002), includ-

ing satellite observations, surface synoptic observations, real time rain-

gauge data, even information from web cams or other visual sources.

The probabilistic nature of the model means, that so long as it is possi-

ble to establish a link between the observations and the state variables,

and the errors on the observations can be characterised it will be pos-

sible to assimilate the new data. For longer range forecasts it might

be beneficial to consider using data from numerical weather predic-

tion models, as applied in the NIMROD forecasting system (Golding,

1998).

• There are several numerical aspects of the model which could be im-

proved, such as the initialisation and update of R, which could be

parallelised. This is important because this update takes 99 percent

of the overall time it takes to run the model. Additionally the model

would be more flexible were the radial basis functions to be given el-

liptical shape, rather than being forced to be circular. This additional

flexibility in the R model would allow a precipitation field to be well
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represented by a smaller number of basis functions. The use of Gaus-

sian functions in the basis means that precipitation, as modelled by

R is never zero, since the Gaussian function has infinite support. In

practice a threshold is selected when the output of the model is vi-

sualised below which all values are treated as zero. The benefit of

having infinite support comes during the data assimilation step for R,

which then always has well defined derivatives. Future models might

consider representations with basis functions having finite support.

• The model assumes that u has no dynamics. This is clearly not the

case, since the large scale movement of synoptic systems means that

in some situations u might change quite rapidly. The large scale evo-

lution of the atmosphere is generally well resolved and forecast in nu-

merical weather prediction models, thus it would make sense to take

advantage of this information, although a lack of information about

the error structure on these numerical weather prediction forecasts

would require further assumptions to be made.

• The Gaussian assumption on the radar derived precipitation estimates

should be improved when better estimates of the errors become avail-

able.

Of course a key issue which remains to be resolved is whether this model

adds any benefit to the operational forecaster. This issue is planned to

be addressed through a rigorous verification and comparison with existing

methods such as GANDOLF and NIMROD. It seems like that in many sit-

uations skill will be lost in quite a short time, but the advantage of this

model is that this will be apparent, since the probability distribution func-

tion will be very broad. To assess this will require the use of methods for
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probabilistic forecast verification, such as Relative Operator Characteristics

(ROC) curves and reliability diagrams.

Overall, the model produces a forecast probability distribution function

of R (and u). From the forecast probability distribution function it is possi-

ble to tailor the product delivered to the user. If the user wants realisations

or ensembles, then as many as desired can be constructed, or if the user just

wants one forecast the mean can be produced. It should be noted that the

realisations produced from this model will provide a sample from R, which

has the ’right’ spatial structure: that is all the basis functions are simulated

together from their joint distribution. These realisations can then processed

to provide radar like images, or catchment averages, or indeed whatever the

user desires since the model for R is continuous in space. Further work is

required to produce an operational model.
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Figure 3: A series of radar images generated from one realisation of the
proposed model.
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Figure 4: A series of radar images generated from one realisation of the
proposed model (top), and the associated precipitation fieldR and advection
vectors u learnt from these simulated images using the state space model
framework (bottom).

30



 km

 k
m

540 560 580 600 620 640 660

180

200

220

240

260

280

300

 km

 k
m

540 560 580 600 620 640 660

180

200

220

240

260

280

300

 km

 k
m

540 560 580 600 620 640 660

180

200

220

240

260

280

300

 km

 k
m

540 560 580 600 620 640 660

180

200

220

240

260

280

300

 km

 k
m

540 560 580 600 620 640 660
180

200

220

240

260

280

300

 km

 k
m

540 560 580 600 620 640 660
180

200

220

240

260

280

300

Figure 5: A series of radar images from 30th October 2000 (top), and the
associated assimilated precipitation field R and advection vectors u (bot-
tom).
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Figure 6: The verifying and one hour forecast radar images (left and right
respectively) from 30th October 2000 (top), and six realisations (samples)
from the forecast probability distribution function of the precipitation field
R (bottom).
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