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Statistial Mehanis of Low Density Parity Chek Codes 21. Introdution1.1. Error CorretionEletroni ommuniation plays an important role in the modern soiety and has aprofound impat on the way we live. It appears in various forms and in a broad rangeof appliations, from mobile and satellite ommuniation to able TV and the internet.Two features ommon to most modern digital ommuniation systems are theneed for eÆient soure and hannel oding methods. Soure oding relates to theompression of redundant information (e.g., pitures, musi), even at the expense of�delity (lossy ompression); while hannel oding relates to the introdution of someontrolled redundany prior to transmission in order to protet the information againstorruption in a noisy transmission medium (e.g. deep-spae, atmosphere, optial �bres).In this review paper we mainly fous on error orretion (hannel oding) althoughwe also mention appliations of statistial mehanis analysis to soure oding, multi-terminal ommuniation hannels, ryptography and other areas of information theory.In his 1948 papers Shannon [Sha48℄ proved general results on the limits ofompression and error-orretion by setting up the framework to what is now knownas information theory (IT). Shannon's hannel oding theorem states that error-freeommuniation is possible if some redundany is added to the original message in theenoding proess. A message enoded at rates R (message information ontent/ode-word length) up to the hannel apaity Channel an be deoded with a probabilityof error that deays exponentially with the message length. Shannon's proof is non-onstrutive and assumes enoding with unstrutured random odes and impratialdeoding shemes (requiring a omputing e�ort that grows non-polynomially with theodeword length) [CT91℄. Finding pratial odes apable of reahing the oding limitsestablished by Shannon has been one of the entral issues in oding theory ever sine;and only reently, due to some ingenious ode designs, we are within reah of losingthe remaining gap to the bounds set by Shannon.Figure 1 illustrates the problem of hannel oding. On the top left of Fig.1 werepresent the spae of words (a message is a sequene of words), eah irle representsone sequene of binary bits. The word to be sent is represented by a blak irle inthe left side �gure. Corruption by noise in the hannel is represented in the top right�gure as a drift in the original word loation. The irle around eah word representsa deision boundary sphere for the partiular word, any signal inside a ertain deisionregion is reognized as representing the word at the entre of the sphere. In the asedepited in Fig.1 the drift aused by noise plaes the reeived word within the deisionboundary of another word vetor, ausing a transmission error. Error-orretion odesare based on mapping the original spae of words onto a higher dimensional spae ina way that the typial distane between enoded words inreases. The olletion of allenoded words (odewords) onstitute a odebook. If the original spae is transformed,the same drift shown in the top of Fig.1 is insuÆient to push the reeived signal outsidethe deision boundary of the transmitted odeword (bottom �gure).
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Figure 1. In the top �gure we illustrate what happens when a word is transmittedwithout error-orretion. White irles represent possible word vetors, the blakirle represents the word to be sent. The hannel noise orrupts the original word,represented by a drift in the top right piture. The dashed irles indiate deisionboundaries in the reeiver; in the ase depited, the orruption leads to a transmissionerror. In the bottom �gure we show qualitatively an error orretion mehanism. Theredundant information hanges the spae geometry, inreasing the distane betweenwords. The same drift as in the top �gure does not result in a transmission error.Good odes should be as short as possible, yet should learly allow for a largenumber of odewords (for a large set of words) and deision spheres must be as large aspossible (for large error-orretion apability). The general oding problem onsists ofoptimizing one of these oniting requirements given the other two.1.2. Low-Density Parity-Chek CodesFor long, the best pratial odes known were variants of Reed-Solomon odeswhih form the basis for most urrent tehnologial standards (e.g., in deep-spae ommuniations [MS77, VO79℄). The situation has hanged dramatiallyabout a deade ago with the introdution of Turbo odes [BGT93℄. These odesare omposed of two onvolutional odes working in parallel and show pratialperformane lose to Shannon's bound when deoded with iterative methods knownas probability propagation [Pea88℄ or belief propagation; these iterative methods were�rst studied in the ontext of oding by Wiberg [Wib96℄ (exluding Gallager's originalformulation [Gal62, Gal63℄). The area experiened a seond dramati developmentwhen Gallager's low-density parity-hek odes have been redisovered by MaKay andNeal in 1995 [MN95, Ma99℄; this led to renewed ativity in the general area of low-density parity-hek odes (LDPC) [RU01a, RSU01, LMSS01℄ leading to the design ofreord breaking odes (e.g., [Chu00, Dav99, Dav98℄) and greater understanding of theirproperties.Gallager odes were �rst proposed in 1962 [Gal62, Gal63℄ and then were all but



Statistial Mehanis of Low Density Parity Chek Codes 4forgotten soon after due to omputational limitations of the time and due to the suessof onvolutional odes. LDPC odes are muh easier to understand and analyse thanTurbo odes, and arguably represent the future of error-orretion. Throughout thisreview paper we onentrate on LDPC error orreting odes in general and Gallagerand MaKay-Neal odes in partiular.1.3. Information Theory and Statistial Mehanis of CodingThe study of error-orreting odes is learly one of the main topis in informationtheory. While the main properties of ommuniation hannels an be easily obtainedfrom simple entropi onsiderations [CT91℄, the onstrution and analysis of pratialodes, partiularly LDPC odes of �nite onnetivity, is rather diÆult. In most ases,pratial and/or theoretial limitations are derived, in the in�nite odeword limit, inthe form of bounds as diret average properties are diÆult to obtain.The statistial mehanis of odes represents a ompletely di�erent approah. Byexploiting similarities between error-orreting odes and spin glass models, as well asmethods developed in the study of Ising spin systems, one arries out exat averagesover ode ensembles, possible messages and noise vetors to alulate the free-energy ofa given system; studying its properties one obtains exat results for their pratial andtheoretial limitations.In Setion 2 we provide a general desription of the ommuniation hannels studiedand the notation used; in setion 3 we briey review several LDPC ode onstrutions,followed by a more detailed review of reent statistial mehanis based analyses andtheir relation to analyses arried out in the information theory ommunity (setion 4).In setion 5 we fous on analytial methods for obtaining the theoretial limitations ofodes used in the IT literature and their equivalents in the statistial mehanis-basedapproah; appliations of LDPC odes to a range of other problems in informationtheory and ryptography will be reviewed in setion 6 followed by a brief summary.2. Communiation ChannelsA general ommuniation senario is desribed in Fig.2(a). It is based on enoding aK dimensional message s to an N dimensional odeword t whih is then transmittedthrough a noisy ommuniation hannel. Codeword orruption during transmission anbe desribed as a probabilisti proess de�ned by the onditional probability P (r j t)where t and r represent transmitted and reeived messages respetively. We assume nointerferene e�ets between odeword omponents, binary messages/odewords (f0; 1g)and a memoryless hannel, so that P (r j t) =QNi=1 P (ri j ti). The reeived odeword ris then deoded to retrieve the original message s. In this paper we will onsider severalhannel types desribed shematially in Figs.2(b)-(d), although other hannels analso be onsidered and analysed using similar approahes. The di�erenes between thevarious hannels stem from the orruption probability P (rj j tj). The Binary Symmetri
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�Figure 2. (a) Mathematial model for a ommuniation system. (b) BinarySymmetri Channel (BSC). () Binary Erasure Channel (BEC). (d) Real valuedsymmetri hannels (Gaussian - AWGN, Laplaian et.).Channel (BSC), desribed shematially in Fig.2(b), is de�ned by binary input andoutput alphabets and by the onditional probabilityP (r 6= t j t) = p ; P (r = t j t) = 1� p : (1)In the Binary Erasure Channel (BEC) (Fig.2()), binary odeword bits arriveunorrupted with probability 1� p; no information is given in the ase of orruption asindiated by the '?' symbol. The onditional probability of a reeive bit being identialto the transmitted one is therefore P (r = t j t) = 1 � p : In the ase of hannelswith real valued noise, desribed in Fig.2(d), binary transmitted odeword bits beomereal reeived values. Suh ommuniation hannels are desribed by some onditionalprobability P (r j t); whih, for instane, in the ase of a Additive-White-Gaussian-Noisehannel (AWGN), takes the form:P (r j t) = 1p2��2 e� 12 (r�t)2�2 ; (2)where �2 represents the variane of the Gaussian noise.The maximal information per bit that the hannel an transport de�nes the hannelapaity [CT91℄ and an be easily derived from entropi onsiderations; for perfetretrieval, the soure vetor binary entropy plus that of the noise vetor must be smallerthan the odebook entropy. Sine all odewords may be used with equal probability,the latter (per symbol) equals the (base 2) logarithm of the alphabet size, i.e., 1 in thease of a binary alphabet f0; 1g. The entropy of any binary vetor is alulated diretlyfrom the probability of having a value of 0/1. For instane, for the binary noise vetor



Statistial Mehanis of Low Density Parity Chek Codes 6(1) the entropy per bit beomesH2(p) = �p log2(p)� (1� p) log2(1� p) ; (3)and the BSC apaity is given byCBSC = 1� H2(p) ; (4)similarly, for the BEC the hannel apaity isCBEC = 1� p : (5)Channel apaity expressions for real valued noisy hannels are slightly more omplex;for instane, Shannon's bound in the ase of AWGN is given byCAWGN = 12 log2(1 + SNR) ; (6)where SNR is the signal to noise ratio, de�ned as the ratio of energy per bit of the soure(squared amplitude) over the spetral density of the noise (variane). If one onstrainsthe enoded bits to binary values f�1g (binary-input additive-white-Gaussian-noisehannel - BIAWGNC) the apaity beomes:CBIAWGNC = Z dr P (r j 1) log2P (r j 1)� Z dr P (r) log2P (r); (7)where P (r j t) is as in equation (2).The analysis presented in this paper fouses on the binary symmetri hannel butan be easily extended to other hannel types [KS99a, VSK99, TS03, SvMS03, Mon01,FLMRT02℄ that are arguably of greater pratial relevane [VO79, CT91℄.3. Low Density Parity Chek CodesParity hek odes have been used in various error-orretion mehanisms almost fromthe very beginning of the �eld. One of the most well known parity hek mehanisms isthe Hamming ode [CT91℄ and its generalization to the family of linear odes.Most pratial linear odes tend to o�er a relatively low error protetion for a giventransmission ratio, far below the Gilbert-Varshamov limit [Var57, Gil52℄, boundingall linear odes. The performane improves as the number of elements summed ineah hek grows; however, the deoding proess beomes omputationally hard andunfeasible for a pratial odeword length.3.1. Gallager's CodeLDPC odes have been originally introdued by Gallager in 1962 [Gal62℄. They relyon a sparse linear transformation of binary messages at the deoding stage, makingit omputationally feasible; while enoding relies on a dense matrix generated by theinverse of the sparse linear transformation. The signi�ane of Gallager's disovery wasnot fully appreiated at the time due to the limited omputing resoures at the timeas well as the inreasing popularity of onvolutional odes that require only a simplesystem of shift registers to operate e�etively.



Statistial Mehanis of Low Density Parity Chek Codes 7Gallager's ode is de�ned by a binary matrix H = [A j B℄, onatenating twovery sparse matries known to both sender and reeiver, with B (of dimensionality(N � K) � (N � K)) being invertible and A of dimensionality (N � K) � K. Thematrix H an be either random or strutured, haraterized by the number of non-zeroelements per row/olumn. These numbers, whih we denote as k and j respetively,an be onstants for all rows/olumns (de�ning a regular ode) or may vary from rowto row (or olumn to olumn) giving rise to an irregular ode.Irregular odes show superior performane with respet to regular onstru-tions [RU01a, RSU01, KS99b, KS00b, VSK00b℄ if they are onstruted arefully. How-ever, to simplify the presentation, we fous here on regular onstrutions; the gen-eralization of the methods presented here to irregular onstrutions is straightfor-ward [VSK02, VSK00b℄.Enoding refers to the mapping of a K dimensional binary vetor s 2 f0; 1gK(original message) to N dimensional odewords t 2 f0; 1gN (N > K) by the linearprodut t = GTs (mod 2) ; (8)where all operations are performed in the �eld f0; 1g and are indiated by (mod 2). Thegenerator matrix is of the formG = [I j B�1A℄ (mod 2) ; (9)where I is the K � K identity matrix. By onstrution HGT = 0 (mod 2) and the�rst K bits of t orrespond to the original message s. Note that the generator matrix isdense and eah transmitted parity-hek arries information about O(K) message bits.In the ase of unbiased messages, with equal bit probability of having the values 1and 0, the ode rate orresponds to the ratio of message to odeword bits R = K=N .Counting the number of unit elements in the matrixH one easily establishes the relationj = (1�K=N)k, from whih the ode rate expression R = (1� j=k) an be derived. Inthe ase of biased messages one should replae the number of bits K by the logarithm(base 2) of the orresponding entropy.To demonstrate the way in whih Gallager's ode is utilized we onsider the BSC,where the enoded vetor t is orrupted by a noise vetor n 2 f0; 1gN with omponentsindependently drawn fromP (n) = (1� p) Æ(n) + p Æ(n� 1) : (10)The reeived vetor takes the formr = GTs+ n (mod 2) : (11)Deoding is arried out by multiplying the reeived message by the matrix H toprodue the syndrome vetorz = Hr = Hn (mod 2) : (12)Deoding refers to �nding an estimate of n knowing z and H; this of ourse enablesone to obtain the original message vetor s (the �rst K bits of r + n (mod 2)). Thefollowing estimators may be employed in priniple:



Statistial Mehanis of Low Density Parity Chek Codes 8� Maximum a Posteriori (MAP) - based on seleting the noise vetor of thelowest weight (smallest number of '1's) that obeys all parity heks (12); thisorresponds to mapping the reeived vetor onto the nearest odeword. It alsoimplies the maximization of the posterior probability P (njz; H). The noise vetorMAP estimator, whih is also the maximum likelihood (ML) estimator of theodeword, minimizes the blok error probability [Iba99℄ (i.e., of having any errorsin a deoded message) but is omputationally demanding and annot be used inpratie.� Marginal Posterior Maximizer (MPM) - seleting the most probable noise-bit estimator, while marginalizing over all other bits (i.e., summing up over theprobabilities of all other variables). This relies on hoosing the right prior forthe estimated noise vetor bits; it has the property of minimizing the bit errorprobability [Iba99℄ (the average error probability per bit) . MPM is in generalequally diÆult to MAP deoding. However, good approximation methods existfor odes that an be mapped onto sparse graphs, leading to suessful deoding ina broad range of noise values.In pratie, deoding is arried out mainly by employing some message passing algorithmsuh as Belief Propagation (BP) [Pea88℄ (also known as probability propagation,Bayesian networks) and its variations.Irregular Gallager odes deoded using BP o�er the best performane to date; theseresults follow from the work of [RSU01, RU01a, RU01b℄.3.2. Sourlas CodeIn 1989 Sourlas pointed to the relation between simple LDPC odes and spin-glassmodels [Sou89℄. Although the odes presented by Sourlas are of limited pratialrelevane they made a signi�ant ontribution to establishing the links betweenstatistial mehanis and information theory.The ode presented by Sourlas is strongly related to both Gallager and MN odes. Itis based on a regular generator matrix G giving rise to a odeword in the form (11). Thedeoding problem an be mapped to known physial systems, Sourlas's original paperfouses on the SK [SK75, KS78℄ and random energy models [Der81, Saa98℄, where theirperformane an be analysed.The results presented are of little pratial signi�ane sine sparse generatormatries of the form presented (e.g., with two non-vanishing elements per row, k = 2)result in a non-vanishing error probability; while using dense generator matries, whihwould potentially allow for a perfet retrieval of messages, is unfeasible due to deodingdiÆulties (in fat, deoding odes with k � 3 is already diÆult).



Statistial Mehanis of Low Density Parity Chek Codes 93.3. MN CodeMaKay and Neal introdued the MN odes in 1995 [MN95, Ma99℄, a variation onGallager odes whih they disovered independently, giving rise to renewed interest inLDPC odes.MN odes are de�ned by two very sparse matries; the main di�erene with respetto Gallager odes is that information on both noise and signal is inorporated to thesyndrome vetor. Both enoding and deoding follow a similar proedure as in (8)-(12)exept that the generator and deoding matries take a di�erent form.The generator matrix G is an N �K dense matrix de�ned byG = B�1A (mod 2) ; (13)with B being an N �N binary invertible sparse matrix and A an N �K binary sparsematrix. Also MN odes ome in both regular and irregular forms; again, for brevity weonentrate here on regular odes, where the number of unit elements per row/olumnin A is k and j respetively, and l in B (for both row/olumn).Using ommuniation through a BSC as an example, the transmitted vetor t isthen orrupted by a binary noise vetor n 2 f0; 1gN as in (10) and the reeived vetortakes the same form as in (11). Deoding is performed by matrix multipliation of theorrupted odeword by the matrix B, giving rise to the syndrome vetorz = Br = As+Br (mod 2) : (14)Estimating the original message and noise vetor from the syndrome z and matries Aand B is arried out in the same way as in Gallager odes.Spei� onstrutions of MN odes, espeially those using Galois �elds, rather thanthe basi binary representation, show very good performane [Dav99, Dav98℄.3.4. Designing Capaity Approahing CodesThe main breakthrough in the design of apaity approahing odes ame with the workof Rihardson and Urbanke [RSU01℄. They analysed a BP-based deoding mehanism,by onsidering a marosopi representation of the loal �elds, in the form of probabilitydistributions. The method, termed density evolution (DE), is employed for analyzingthe deoding proess and used to derive stability onditions whih failitate the design ofapaity approahing odes. In fat, DE is similar to the Bethe approximation [MPV87℄used in the study of diluted systems. The relation between BP, density evolution andthe Bethe approximation has been pointed out in [KS98, VSK00a, YFW02℄ (see alsosetion 4.4). Later on, Chung et al [CRU01℄ presented a Gaussian-based approximatedDE and applied it to the design of apaity approahing odes.Both DE and its Gaussian-based approximated version are aimed at designingirregular onstrutions, we will therefore not review them in detail, but rather pointto the similarities between them and the statistial mehanis approah [VSK02℄.



Statistial Mehanis of Low Density Parity Chek Codes 103.5. Turbo odesThe exiting developments in the area of LDPC odes were preeded by the disoveryof another family of apaity approahing odes - the Turbo odes [BGT93℄. Theintrodution of Turbo odes reated exitement in the information theory ommunityas they represented a step inrease in performane towards saturating Shannon's limit,with respet to previous reord holders - BCH and Reed-Solomon odes [MEon℄.Turbo ode is a variant of reursive onvolutional odes; the latter are based onshift registers (two in most ases, but more in general), used to generate odewords bya reursive onvolution of message bits. Various strutures an be used in general,although in most ases, the odeword omprises the original message segment andreursively onvoluted segments of it. Deoding an be arried out in various ways, inonjuntion with the onvolution mehanism; for instane by employing BP tehniquesfor �nding the most probable message bits [Fre98, FM98℄.In the ase of turbo odes two vetors, representing the original message and apermuted version of it, are used as inputs in a reursive onvolutional proedure forgenerating the odeword. The deoding proess exploits orrelations between bits ofthe message vetor and of the permuted vetor, to obtain an estimate of the originalmessage.An additional advantage of turbo odes is that they an be easily implementedusing simple eletroni iruits (shift registers); the drawbak is that they are diÆultto analyse and systematially improve. Turbo odes were also analysed using methodsof statistial mehanis [MS00, Mon00℄. A brief desription of onvolutional mehanisontext, an be found in [Nis01℄.4. Statistial Mehanis of CodingThe link between error orreting odes and statistial mehanis was �rst pointed out bySourlas [Sou89℄. He mapped a simple parity hek ode onto spin glass models [Sou89℄,fousing on the SK [SK75℄ and random energy models [Der81, Saa98℄ and showing thatthe latter an be viewed as an ideal ode apable of saturating Shannon's bound atvanishing ode rates (without taking into aount pratial deoding onsiderations).A few papers relating spin glass models and oding have been published sine thenand before the renewed interest in LDPC odes. Among them one should mentionseveral studies of �nite temperature deoding [Ruj93, Nis93, Sou94℄ and the analysis ofonvolutional odes via transfer-matrix methods and power series expansions [AL95℄.The redisovery of LDPC odes brought with it exitement also to the statistialmehanis ommunity. After extending Sourlas's work to the ase of �nite oderates [KS99a, VSK99℄, regular and irregular MN [KMS00b, MKSV00, VSK00b,KMSV00℄ and Gallager [VSK00a, VSK01, Mon01, KSNS01, vMSK01, vMSK02, NKS01℄odes have been studied using statistial mehanis, and a link between the twoframeworks has been established [KS98, VSK02, FLMRT02℄. Insight gained from the



Statistial Mehanis of Low Density Parity Chek Codes 11statistial mehanis analysis also ontributed to the design of highly eÆient irregularodes [KS99b, KS00b, KS00a, VSK02℄.The similarity between Ising spin models and LDPC odes stems from theformulation of the deoding problem. Employing the isomorphism between the additiveBoolean group (f0; 1g;�) and the multipliative binary group (f+1;�1g;�), wherebyevery addition in the Boolean group orresponds to a unique produt in the binarygroup and vie-versa, one an map the deoding problem to a Gibbs distribution byonstruting an appropriate Hamiltonian.The deoding problem depends on posteriors like P (� j r), where r is theobservation (reeived message or syndrome vetor) and � is a andidate estimate of theunknown original message s (or alternatively the noise vetor from whih an estimateof the noise an be obtained). Applying Bayes' theorem this posterior takes the form:P�(� j r) = 1Z(r) exp [ln P(r j � ) + ln P�(� )℄ ; (15)where � and  are hyper-parameters assumed to desribe features like the enodingsheme, soure distribution and noise level. This form suggests the following family ofGibbs measures (� being the inverse temperature):P��(� j r) = 1Z exp [��H�(� ; r)℄ (16)H�(� ; r) = � ln P(r j � )� ln P�(� ): (17)The reeived orrupted odeword depends on the oding mehanism and hannel noise,both of whih represent the quenhed disorder in the system.The MAP estimator of s is learly obtained at the ground state of the Hamiltonian,i.e. by the sign of thermal averages bsMAPj = sgn(h�ji�!1) at zero temperature.The MPM estimator orresponds to the sign of thermal averages bsMPMj =sgn(h�ji�=1) at a �nite temperature, where true prior probability is assumed [Iba99℄.This orresponds to using the Nishimori ondition [Nis80, Nis93, Nis01, Ruj93℄; and inthe notation we use here to a temperature � = 1.4.1. Gallager's CodeTo provide a more detailed desription of the analysis we have to fous on a spei�ode and hannel noise. We will explain the analysis for Gallager's ode and the BSC;the analysis of the MN ode and other hannel types follows along the same lines.A key point is the de�nition of an appropriate Hamiltonian; this an be done invarious ways. We identify two main omponents in the Hamiltonians that are neessaryfor the analyses of all LDPC odes: a term that guarantees that all parity heks aresatis�ed and a prior term that provides some statistial information on the dynamialvariables (� ). In the ase of a BSC, the Hamiltonian takes the form:H =X� ��z� = [H� ℄��� F NXj=1 �j; (18)



Statistial Mehanis of Low Density Parity Chek Codes 12The parity heks ��z� = [H� ℄�� = 0 if parity hek � is obeyed by the vetor �and � (�) = 1 otherwise; this orresponds to the parity heks (12). The oeÆientF = (1=2) ln[(1 � p)=p℄, in onjuntion with the appropriate hoie of temperature� = 1, orresponds to the orret prior assumption for the noise variables � .An expliit expression for � (�) in this ase takes the form��z� = [H� ℄�� = � lim!1  Xhi1���ikiDhi1���iki(Jhi1���iki �i1 � � � �ik � 1) (19)where the tensor J represents the unorrupted syndrome (12) in the binary (�1)representation Jhi1;i2:::iKi = ni1ni2 : : : nik (ordered indies) and the tensor D representsthe onnetivities of the matrix H; it takes the value 1 if the orresponding noise vetorindies are hosen (i.e., all orresponding indies of the matrix H are 1) and 0 otherwise.For the time being we assume some �xed value for , but later on we will take the limit !1 to obtain the desired properties of � (�).To simplify the analysis and deouple the two quenhed variables (true noise vetorn and the parity hek matrix H) we use the gauge transformation �i 7! �ini andJhi1���iki 7!Jhi1���ikini1 � � �nik = 1 . This maps any general message to the ase ni = 18i (ferromagneti on�guration). We rewrite the Hamiltonian in the form:H(� ) = � Xhi1���ikiDhi1���iki (�i1 � � � �ik � 1)� F NXi=1 ni�i : (20)One the Hamiltonian has been de�ned one an alulate the free energy of thesystem and study emerging solutions for various hoies of the parameters k; j andlevels of hannel noise.Two main methods an be employed for arrying out the analysis, thereplia method for diluted systems [KMS00b, MKSV00, FLMRT02℄ and the Betheapproximation [VSK99℄. In all alulations arried out under the Nishimoriondition, the dominant solution is known to be obtained under the replia symmetry(RS) assumption [NS01℄, providing similar results to those obtained by the Betheapproximation [VSK99℄.4.1.1. Replia Calulation - Analyzing the typial performane of Gallager odes isbased on similar studies of diluted systems [WS87a℄. The aim is to ompute the freeenergy: F = � 1� limN!1 1N hln ZiD;n where, Z = Tr� exp (��H(� ;n)) : (21)from whih the typial marosopi (thermodynami) behaviour an be obtained usingthe Hamiltonian (20). Quenhed averages are arried out over the onnetivity tensorD and the true noise vetor n under the following onstraints: The onnetivity tensorDhi1���iki 2 f0; 1g is a random symmetri tensor with the properties:Xhi1���ikiDhi1���iki = N �K Xhi1=l;���;ikiDhi1=l;���;iki = j 8l; (22)



Statistial Mehanis of Low Density Parity Chek Codes 13orresponding to the seletion of N � K sets of indies. Noise vetor bits ni take thevalues �1=1 with probabilities p=1� p respetively.To arry out the alulation one may use the replia approahF = � 1� limN!1 1N ��n ����n=0 lnhZniD;n : (23)Averages over the onnetivity tensor h(� � �)iD and noise vetor n take the forms:h(� � �)iD = 1NXfDg NYl=1 Æ0� Xhi1=l;i2;���;ikiDhi1=l;���;iki � j1A (� � �)= 1NXfDg NYl=1 "I dZl2�i 1Zj+1l ZPhi1=l;i2;���;ikiDhi1=l;���;ikil # (� � �) ; (24)and h(� � �)in = Xn=�1;+1 [(1� p) Æ(n� 1) + p Æ(n + 1)℄ (� � �) (25)respetively. Computing the averages and introduing auxiliary variables (orderparameters) through the identityZ dq�1����mÆ q�1����m � 1N NXi Zi��1i � � � ��mi ! = 1 (26)gives rise to the following expression (details of the alulation an be found in [VSK02,MKSV00℄):hZniD;n = 1N Z �dq0dbq02�i � nY�=1 dq�dbq�2�i ! exp24Nkk! nXm=0 Xh�1����mi Tmqk�1����m� N nXm=0 Xh�1����mi q�1����mbq�1����m35 NYi=1 Trf��g "*exp"F�n nX�=1 ��#+n� I dZ2�i exp hZPnm=0Ph�1����mi bq�1����m ��1 � � � ��miZj+1 35 ; (27)where Tm = e�n� oshn(�) tanhm(�) and N is a normalization fator.4.1.2. Replia Symmetri Solution - The replia symmetri ansatz onsists in assumingthe following form for the order parameters:q�1����m = Z dx �(x) xm bq�1����m = Z dbx b�(bx) bxm: (28)By performing the limit  ! 1, using (28) in (27), omputing the normalizationonstant N , integrating in the omplex variable Z, omputing the trae and using the



Statistial Mehanis of Low Density Parity Chek Codes 14replia identity, n! 0, one �nds:F = � 1� Extr�;b�� jk ln2 + j Z dxdbx �(x) b�(bx) ln(1 + xbx)� jk Z kYi=1 dxj �(xj) ln(1 + kYi=1 xi) (29)� Z jYi=1 dbxi b�(bxi)*ln"X�=�1 e��Fn jYi=1(1 + �bxi)#+n) :Variation with respet to the parameters yields the saddle-point equations:b�(bx) = Z k�1Yi=1 dxi �(xi) Æ "bx� k�1Yi=1 xi# (30)�(x) = Z j�1Yl=1 dbxl b�(bxl) *Æ "x� tanh �Fn + j�1Xl=1 atanh bxl!#+n ;where � = 1 and F = 12 ln (1�pp ) (Nishimori temperature) for MPM deoding in BSC.One of the most important marosopi parameters we would like to �nd is thetypial overlap � = h 1N PNi=1 nibnjiD;n between the estimate bni = sgn(h�ii�) and theatual noise ni; this an be alulated from� = Z dh P (h) sgn(h) (31)P (h) = Z jYl=1 dbxl b�(bxl) *Æ "h� tanh �Fn + jXl=1 atanh bxl!#+n :4.1.3. Typial Performane - To study the various phases of the system one should �rstsolve the saddle point equations (30). In most ases this requires resorting to numerialmethods, exept for some expeted states suh as the ferromagneti and paramagnetisolutions. For instane, the free energy for the ferromagneti state (F), where�F(x) = Æ[x� 1℄ b�F(bx) = Æ[bx� 1℄ ; (32)and at Nishimori's temperature, is simply FF = �F (1� 2p), with overlap � = 1.The ferromagneti solution is the only stable solution up to a spei� noise level pd, whihidenti�es the dynamial transition noise level, where meta-stable states �rst appear.Above pd, numerial alulations show the emergene of a seond stable solution with� < 1 (suboptimal ferromagneti); and omputationally eÆient deoding algorithmsannot identify the dominant solution in feasible time sales. A sketh desribing thedependene of the free energy landsape on the noise level is shown in Fig.3(a) togetherwith a typial numerially-obtained suboptimal ferromagneti solution (Fig.3(b)) fork = 4, j = 3 and p = 0:2. The ferromagneti state is always a stable solution of(30) and is present for all hoies of noise level and onstrution parameters j and k.It remains dominant up to the thermodynami transition point p, above whih, the



Statistial Mehanis of Low Density Parity Chek Codes 15suboptimal ferromagneti solution beomes the global minimum dominating the systemthermodynamis. The identi�ation of both transition points pd and p provides aomplete desription of the typial performane of in�nitely long Gallager odes.Transitions for Gallager odes with k = 6 ompared with Shannon's bound (dashedline), the information theory upper bound (full line) and thermodynami transitionpoints obtained numerially (Æ) are shown in Fig.4(a). The thermodynami transitionpoint obtained p oinides, within the numerial preision, with the informationtheoreti upper bound [Ma99℄. The ferromagneti and suboptimal ferromagneti freeenergies are shown in Fig.4(b), for k = 4 and R = 1=4, de�ning the ritial points pdand p.However, the suboptimal ferromagneti solution has been obtained under the RSansatz; one an show that above pd its entropy beomes negative and, therefore,unphysial (at p the entropy of the suboptimal ferromagneti state beomes positiveagain). This is a lear indiation that the replia symmetri solution beomes unstable.A 1-step replia symmetry breaking ansatz has been employed in [FLMRT02℄ to obtainthe solution and omplexity of the suboptimal ferromagneti state and to identify theexat dynamial transition point pd. The alulation, that onsidered both BSC andBEC, but fouses on the latter, leads to the same result as that obtained by the RSalulation.To study the dynamial transition, Franz et al [FLMRT02℄ alulated the number ofmeta-stable states with a given energy density �, for the BEC, using established methodsfrom the physis of disordered systems [Mon95, FP95℄. The number of metastable states
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Figure 5. The omplexity �(�) for (from top to bottom) p = 0:45 (below p),p = 0:5, and p = 0:55 (above p); alulated for the ase of a BEC and a (6; 3)regular ode (Copied under permission from S. Franz, M. Leone, A. Montanari andF. Rii-Tersenghi, The Dynami Phase Transition for Deoding Algorithms, Phys.Rev. E 66, 046120, (2002)[FLMRT02℄. Copyright (2002) by the Amerian PhysialSoiety.).odewords. Moreover, �(0) (whih gives the number of suh odewords) oinideswith the omplexity of the paramagneti entropy [FLMRT02℄.4.2. MaKay-Neal CodesThe analysis of MN odes is quite similar to that of Gallager's odes, the onlydi�erene being the onsideration of both message and noise vetors in onstrutingthe appropriate Hamiltonian whih, after gauging, takes the formH(�; � ; s;n) = � XhiriDhiri (�i1 � � ��ik�r1 � � � �rl � 1)� Fs kXi=1 si�i � Fn NXr=1 nr�r; (34)where hiri is a shorthand for hi1 � � � ikr1 � � � rli; Fs and Fn orrespond to the respetiveNishimori onditions (Fs = 0 in the ase of unbiased messages).A similar analysis to that of Gallager odes results in the following expression forthe free energyF = � 1� Extrfb�;�;b�;�gn� ln 2 + j Z dx �(x) dbx b�(bx) ln (1 + xbx)+ � l Z dy �(y) dby b�(by) ln (1 + yby)� � Z " kYi=1 dxi�(xi)#" lYr=1 dyr�(yr)# ln 1 + kYi=1 xi lYr=1 yr!



Statistial Mehanis of Low Density Parity Chek Codes 18� Z " jYi=1 dbxi b�(bxi)#* ln"X�=�1 e�s�Fs jYi=1(1 + �bxi)#+s� � Z " lYr=1 dbyr b�(byr)#* ln"X�=�1 e�n�Fn lYr=1(1 + �byr)#+no;where � = N=K = j=k, and b�; �; b�; � orrespond to RS order parameters obtained forboth signal and noise vetors, respetively, in the same manner as in setion 4.1.2. Fulldetails of the alulation an be found in [VSK02, MKSV00℄.The theoretial framework employed for both odes is very similar; however, thesolutions obtained analytially and numerially show some interesting di�erenes. Inthe ase of biased messages (Fs 6= 0), the results obtained are qualitatively similar tothose obtained for Gallager odes, but a di�erent piture emerges when the messagesare unbiased, summarized in Fig.6 for the ases k = 1; 2 and k � 3.Arguably the most intriguing solution is for the ase of k � 3, suggesting thatall regular MN odes with k � 3 are theoretially apable of saturating Shannon'slimit [KMS00b, MKSV00℄. This result has been reeived with great surprise by theinformation theory ommunity as it is believed that saturating Shannon's limit is onlypossible by LDPC odes of in�nite onnetivity [Ma99, SU03℄. One intuitive argumentthat we an o�er [vMSK02℄ is to do with the randomness of the syndrome vetor:Any �nite onnetivity Gallager ode takes modulo 2 sums of elements sampled froma biased noise vetor and therefore produes a slightly biased syndrome vetor; it willonly beome unbiased one the number of elements sampled diverges. In MN odes,on the other hand, eah syndrome bit is obtained from a ombination of biased (noise)and unbiased (message) bits, and is therefore truly unbiased even when the number ofsampled bits is small.4.3. Other ChannelsExtending the analysis above to other hannel types is straightforward. The AWGNhas been studied in a very similar ontext in [Ruj93, KS99a, NW99, Mon01, TS03℄.Eah real valued odeword bit an be interpreted as an e�etive ip rate, leading to asimilar HamiltonianH =N�KX�=1 ��z� = [H� ℄��� NXi=1 log p(�iyi): (35)where the last term represents the reeived real valued vetor y and the e�etive ip noisevetor � . It is the log-likelihood ratio h(yj) � (1=2) log(p(yj)=p(�yj)) of the hannelnoise yj that serves as the external �eld ating on site j; the hannel harateristisde�ne the �eld distribution. Analyzing the e�et of having di�erent ommuniationhannels on the ode properties, therefore redues to investigating the e�et of di�erent�eld distributions on the physial properties of the system. For instane, for the AWGN,
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Statistial Mehanis of Low Density Parity Chek Codes 21but �) of polygons in the previous generation:P�i(�i) = 1N Trf�lg exp24�0�J��i Yl2L(�)ni �l � 11A+ �F�i35 (37)� Y�2G(l)n� Yl2L(�)niP�l(�l);where L(�) denotes the polygon � of the lattie and the trae is over the spins �l suhthat l 2 L(�) n i; J� represents the orresponding syndrome vetor.Calulating the e�etive �eld bx�l on a base spin l due to neighbours in polygon�, taking  ! 1 and � = 1, one obtains the e�etive loal magnetization due tointerations with the nearest neighbours in one branh bm�l = tanh(bx�l), wherebx�i = atanh24J� Yl2L(�)ni tanh(F + X�2G(l)n� bx�l)35 (38)The e�etive loal �eld on a base spin l of a polygon � due to j � 1 branhes in theprevious generation and due to the external �eld isx�l = F + X�2G(l)n� bx�l : (39)The set of equations (38-39) an be rewritten in terms of bm�l and m�l [Ma99, KS98,KF98℄ m�i = tanh0�F + X�2G(l)n� atanh (bm�i)1Abm�i = J� Yl2L(�)nim�l (40)giving rise to a losed set of iterative equations (idential to those of BP) that an alsobe used for deoding. Iterating the oupled set of equations (40) one onverges to astable minimum and an ompute the following approximated free energy:F(fm�i; bm�ig) = N�KX�=1 Xr2L(�) ln(1 +m�r bm�r)� N�KX�=1 ln(1 + J� Yr2L(�)m�r)� NXl=1 ln24eF Y�2G(l)(1 + bm�l) + e�F Y�2G(l)(1� bm�l)35 : (41)Equations (40) represent the interdependene of mirosopi quantities; amarosopi desription an be onstruted by retaining only statistial informationabout the system, namely by desribing the evolution of histograms of variables x�i andbx�i. Assuming that the e�etive �elds x�i and bx�i are random variables independentlysampled from the distributions P (x) and bP (bx) respetively, and that ni is sampled from



Statistial Mehanis of Low Density Parity Chek Codes 22P (n) = (1 � p) Æ(n � 1) + p Æ(n + 1), one an then establish the following reursionrelation in the spae of probability distributions [BL82℄:Pt(x) = Z dn P (n) Z j�1Yl=1 dbxl bPt�1(bxl) Æ "x� Fn� j�1Xl=1 bxl#bPt�1(bx) = Z k�1Yl=1 dxl Pt�1(xl) Æ "bx� atanh k�1Yl=1 tanh(xl)!# ; (42)where Pt(x) is the distribution of e�etive �elds at the t-th generation due to the previousgenerations and external �elds; in the thermodynami limit the distribution far fromthe boundary is P1(x) (generation t ! 1). The loal �eld distribution at the entralsite is omputed by replaing j � 1 by j in the �rst equation (42):P (h) = Z dn P (n) Z CYl=1 dbxl bP1(bxl) Æ "x� Fn� CXl=1 bxl# : (43)It is easy to see that P1(x) and bP1(bx) satisfy equations (30) obtained by the repliasymmetri assumption [KMS00b, MKSV00, VSK00b℄ if the variables desribing �eldsare transformed to those of loal magnetizations through x 7! tanh(�x). It is thereforenot surprising that one obtains idential results to those obtained using the RS analysisand using BP deoding. In fat, the DE method used extensively in the IT ommunityfor analyzing LDPC odes is similar to the marosopi iterative equations (42).4.5. Weight and Magnetization EnumeratorsA di�erent approah to analyzing properties of LDPC odes relies on a mirosopialulation where solution vetors are fored to lie on a shell de�ned by the overlapwith the true solution (weight enumerator) or by a ertain magnetization value(magnetization enumerator); both an be used to de�ne ritial transition points ofLDPC odes. We fous here on the magnetization enumerator (M); alulationsinvolving the weight enumerator will be mentioned in setion 5.2.The orresponding Hamiltonian is similar to (20) exept for the seond term thatde�nes the magnetization shell (after gauging)H;m(� ) = � Xhi1���ikiDhi1���iki (�i1 � � � �ik � 1)� Æ NXl=1 nl�l �m! : (44)Calulating the related entropy as a funtion of the magnetization m provides anintuitive and transparent explanation to the relation between di�erent deoding shemessuh as typial set deoding, MAP, and �nite temperature deoding (MPM) [vMSK01,vMSK02℄.Carrying out the analysis along the same lines as before [Mon01, vMSK01,vMSK02℄, one obtains expressions for the magnetization enumerator as a funtion of m,similar to those skethed in Fig.8; from these plots one an provide a simple explanationto the relation between various (theoretial) deoding methods, and alulate the
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Figure 8. The qualitative piture of M(m)�0 (solid urve lines) for di�erent valuesof p. For MAP, MPM and typial set deoding, only the relative values of m+(p)and m0(p) determine the ritial noise level. Dashed lines orrespond to the energyontribution of ��F at Nishimori's ondition (� = 1). The states with the lowestfree energy are indiated by a point �. a) Sub-ritial noise levels p < p, wherem+(p) < m0(p), there are no solutions with higher magnetization than m0(p), andthe orret solution has the lowest free energy (free energy di�erene orresponds tothe distane between the dashed line and the magnetization enumerator urve). b)Critial noise level p=p, where m+(p)=m0(p). The minimal free energy of the sub-optimal solutions oinides with that of the orret solution at Nishimori's ondition(all meet at m+(p)=m0(p)). ) Over-ritial noise levels p>p where many solutionshave a higher magnetization than the true typial one. The minimal free energy ofsub-optimal solutions is lower than that of the true solution.thermodynami transition point p. The magnetization enumeratorM(m) (urved solidline) takes positive values only in the interval [m�(p); m+(p)℄; for even k, M(m) is aneven funtion of m and m�(p) = �m+(p). The maximum value of M(m) is always(1�R) ln(2) for Gallager odes, and R ln(2) for MN odes. The true noise n has thetypial magnetization of the noise vetor; in the ase of a BSC m(n)=m0(p)=1�2p (thetypial set magnetization is denoted by a dashed-dotted line). States with the lowestfree energy are denoted by a point (�).Seletion of the best estimates by the various deoding shemes an be summarizedas follows:� Maximum likelihood (MAP) deoding - selets the solution vetor � (obeyingall parity heks) with the highest magnetization. As the noise level inreases, thegap between m0(p) and m+(p)) loses; the ritial noise level p is determined bythe ondition m+(p)=m0(p).



Statistial Mehanis of Low Density Parity Chek Codes 24� Typial set deoding - is based on randomly seleting a solution vetor �with the expeted magnetization m(� ) = m0(p) [AJK+01℄; an error is delaredwhen there is no suh vetor or when there are several solution vetors withmagnetization m(� ) = m0(p). The ritial noise level p is determined by theonditionm+(p)=m0(p), and is idential to the point obtained by a MAP deoder.� Finite temperature (MPM) deoding - Seletion is based on a free energyminimization [KMS00b℄, where an energy term �Fm(� ) is added to the parityhek term (20). Using the thermodynami relation F = U � 1�S, � being theinverse temperature (Nishimori's ondition orresponds to setting � = 1), U theinternal energy and S the entropy; the free energy of the sub-optimal solutions isgiven by F(m)=�Fm� 1�M(m) (forM(m)�0), while that of the true solution isgiven by �Fm0(p).The seletion proess is explained graphially in Fig.8. The energy di�erenebetween sub-optimal solutions relative to that of the orret solution, is given by thedashed line of slope �F through the point (m0(p); 0); to alulate the free energyof any suboptimal solution one should also onsider its entropy, represented by themagnetization enumerator urve (the true solution is of zero entropy). Therefore,the distane betweenM(m) and the dashed line represents the di�erene betweenthe lowest free energy among suboptimal solutions and that of the true solution.Solutions of magnetization m for whih M(m) lies above/below this line, have alower/higher free energy, respetively. The ritial noise level p is de�ned by thelowest p value for whih there are sub-optimal solutions with a free energy equal to�Fm0(p) (i.e., a single ontat point between the dashed line and the magnetizationenumerator urve). It oinides with the point obtained by MAP [MN00℄ andtypial set deoding [vMSK02℄.The ritial noise level is de�ned by following the dependene of m+ on the noiselevel and �nding the pointm+(p)=m0(p) as desribed in Fig.9; results obtained for theritial noise level in the ase of Gallager odes of various parameters are also shown (forboth quenhed and annealed alulations of the free energy related to (44), denoted bya subsript a=q). The annealed approximation gives a muh more pessimisti estimatefor p as it overestimatesM by giving high weight to exponentially rare events. Resultsobtained by the quenhed alulations are similar to those reported in [KSNS01℄ usinganother method as explained in setion 5.2, but are more optimisti than those reportedin the IT literature whih rely on bounding tehniques.The analysis has also been arried out for MN odes [vMSK01, vMSK02℄ and ina range of hannel types [SvMS03℄. Interestingly, the loation of m+ remains �xedfor MN odes with k � 3 and for k = 2; l � 3, leading to a thermodynamialtransition point that saturates Shannon's limit in agreement with our previousresults [KMS00b, MKSV00℄.
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b) (k; j) (6; 3) (5; 3) (6; 4) (4; 3)Code rate 1=2 2=5 1=3 1=4IT 0.0915 0.129 0.170 0.205p;a (Ma) 0.031 0.066 0.162 0.195p;q (Mq) 0.0998 0.1365 0.1725 0.2095Shannon psh 0.109 0.145 0.174 0.214Figure 9. a) Determining the ritial noise levels p;a=q (quenhed and annealedalulations) based on the funtion Ma=q for Gallager odes. b) Comparison ofdi�erent ritial noise level (p) estimates for Gallager odes. Typial set deodingestimates have been obtained via the methods of IT [AJK+01℄, based on the weightenumerator. Shannon's limit denotes the highest theoretially ahievable ritial noiselevel psh for any ode [Sha48℄.5. Optimal Performane : Statistial Mehanis vs. ITDE o�ers a useful framework for evaluating error orretion performane ahieved bya pratial deoding algorithm on the basis of the BP/TAP approah. However, thisdoes not neessarily mean the best performane among all possible deoding shemes.For larifying the potential of a ode ensemble, it is important to assess the theoretialerror orretion ability, disregarding omputational ost. Several methods have beendeveloped for this purpose in the IT literature. In this setion, we introdue tworepresentative shemes, termed the Gallager's methodology and typial set analysis, andrelate them to methods known in statistial mehanis (SM). For simpliity, we hereafterfous on (j; k) regular Gallager-type LDPC odes and a BSC of ip probability p;extension to other types of odes suh as MN odes and other hannels is straightforward.5.1. Gallager's Methodology: Error Probability for Finite Code LengthsShannon's seminal papers indiated that the best ode an provide error freeommuniation if ode rate R is below Shannon's limit when the ode length beomesin�nite. However, as any ode in use has a �nite ode length N , it is pratiallyimportant and theoretially interesting to assess the probability of error orretionfailure as a funtion of the ode length.Gallager's variational method is a systemati sheme for upper-bounding the errorprobability of the best ode in a given ode ensemble C by averaging it over the ensemble.In the IT literature, it is usually assumed that deoding is performed diretly onodewords and, therefore, Gallager's method is onventionally introdued in a mannersuitable for this deoding approah. However, this formulation is not onvenient herebeause the deoding problem is provided �rst with respet to noise vetors for Gallager-type odes. We therefore introdue a slightly di�erent representation of Gallager'smethod, whih is appliable to a range of deoding shemes.



Statistial Mehanis of Low Density Parity Chek Codes 265.1.1. Gallager's Inequality for the MAP Estimator - Suppose that binary vetorsx and y, whih onsist of K-bit and N -bit omponents, respetively, are statistiallyrelated via a ertain joint distribution P (x;y). Let us onsider an estimation problemof x given y. Following the Bayesian framework, it an be shown that the blok errorprobability, whih is the probability that the estimation result x̂ given y is not identialto the vetor x, is minimized by the maximum a posteriori probability (MAP) estimatorx̂MAP = argmaxx fP (xjy)g = argmaxx � P (x;y)Px0 P (x0;y)�= argmaxx fP (x;y)g : (45)In order to evaluate the blok error probability of this estimator, we introdue anindiator funtion �MAP (x;y) whih returns 1 if x̂MAP 6= x and 0, otherwise. Then,the blok error probability is omputed asPB =Xx;y P (x;y) �MAP (x;y) : (46)Gallager's methodology relies on upper-bounding this probability by utilizing thefollowing inequality for the indiator funtion�MAP (x;y) � 0�Xx0 6=x�P (x0;y)P (x;y)��1A� ; (47)whih holds for arbitrary � � 0 and � � 0. This inequality is proved as follows: Ifx̂MAP = x, �MAP (x;y) = 0. However, the right hand side is always non-negative,whih means that Eq.(47) holds. On the other hand, if x̂MAP 6= x, �MAP (x;y) = 1.However, this implies that there exists at least one vetor x00 6= x suh that P (x00;y) �P (x;y). This an be generalized as �MAP (x;y) = 1 � (P (x00;y)=P (x;y))� �Px0 6=x (P (x0;y)=P (x;y))� for 8� � 0; Eq.(47) immediately follows beause the ratioP (x0;y)=P (x;y) is always non-negative and 8� � 0, x� � 1 holds for 8x � 1.Inserting Eq.(47) into Eq.(46) we obtain Gallager's inequalityPB � Xx;y P (x;y)0�Xx0 6=x�P (x0;y)P (x;y) ��1A�
= Xx;y P 1���(x;y)0�Xx0 6=xP �(x0;y)1A� ; (48)whih provides the tightest inequality by hoosing � = 1=(1+�) when � is �xed. As thisinequality holds for 8� � 0 and 8� � 0, the bound an be optimized by minimizationof the right hand side with respet to � � 0 keeping � = 1=(1 + �).5.1.2. Appliation for Deoding Gallager-type Codes - Equation (48) an be employedfor evaluating the blok error probability of the deoding problem of Gallager-type odes.For this, we introdue the joint probability of noise vetor n and syndrome vetor z



Statistial Mehanis of Low Density Parity Chek Codes 27given a parity hek matrix H; employing the Ising spin representationP (n; zjH) = N�KY�=1 Æ0�z�; Yi2L(�)ni1A� eFPNi=1 ni(2 osh(F ))N ; (49)where Æ(x; y) = 1 for x = y and 0 otherwise, L(�) denotes the set of indies hi1 � � � ikifor non-zero elements in the �-th row of H and F = (1=2) ln[(1 � p)=p℄. The �rstterm enfores the parity heks (12) (representing the likelihood term P (zjn)), whilethe seond represents the appropriate prior term; this is beause the noise vetor n isgenerated in the BSC with the prior probability P (n) = eFPNi=1 ni= (2 osh(F ))N .Using Eq.(48) in Eq.(49) leads to an upper-bound of the blok error probability ofthe MAP deoding for a given parity hek matrix H asPB(H) � Xn;z P 1���(n; zjH)0� Xn0 6=nP �(n0; zjH)1A� (50)= Xn e(1���)F PNi=1 ni(2 osh(F ))N 0� Xn0 6=n N�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e�FPNi=1 n0i1A� ;where summation over z has been already arried out, resulting in a ontributionQN�K�=1 Æ �Qi2L(�) ni;Qi2L(�) n0i� = QN�K�=1 Æ �1;Qi2L(�) nin0i�. For a given odeensemble, the minimum of the blok error probability P �B is always uppderboundedby the average error probability hPB(H)iH, where h(� � �)iH denotes average overthe ensemble of odes (or parity hek matries H) under appropriate onstraints.Therefore, we here obtain an upper bound for the blok error probability of the bestode in the (j; k)-Gallager ode ensemble byP �B � Xn e(1���)F PNi=1 ni(2 osh(F ))N *0� Xn0 6=nN�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e�FPNi=1 n0i1A�+H ; (51)whih an be optimized by minimizing the right hand side with respet to � � 0, keeping� = 1=(1 + �).5.1.3. Rigorous Bound - It has been shown, using methods of IT, that the right handside of Eq.(51) an be deomposed into two parts asO(N�) +O(exp [�NE℄); (52)for naively (and ompletely randomly) onstruted (j; k)-Gallager ode ensembles,where  is a ertain power determined by parameters j; k and N is assumed large[Gal63, MB01℄. This implies that the bound vanishes to 0 as N !1 if the exponent E,whih depends on the adjustable parameters �; � � 0, an be maximized to a positivevalue. The rate of onvergene is quite slow due to a polynomially small fration ofpoor odes in the ensemble, whih have short yles of partiular kinds in the parityhek matries (Fig.10). Therefore, the behaviour of the average bound (51-52) an be
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(b)i1i2
�1�2�3variables heksFigure 10. A on�guration in a parity hek matrix H of j = 3 that deterioratesthe deoding performane (a), represented as a short yle of a partiular type in thegraphial expression (b). When two variables indexed by i1 and i2 share all of thesame j = 3 heks whih are denoted as �1, �2 and �3, simultaneous ips of these twodo not break the parity hek ondition. This makes it diÆult to identify orretlythe true noise vetor n. When H is generated uniformly under the (j; k)-onstrains,this kind of on�guration ours with a probability of O(N�1) in the ase of j = 3,whih yields a polynomially slow deay in Eq.(51).improved by expurgating suh odes from the ensemble. In [MB01℄, it is shown that theexpurgated ensemble exhibits an exponential behaviour, haraterized by the seondterm of Eq.(52).For expurgated ensembles, one an evaluate a rigorous lower bound of the exponentE as a funtion of � and �, with an extra onstraint, by employing Jensen's inequalityhX�i � hXi�, whih is valid for a non-negative random number X and 0 � � � 1. Thisyields Ea(�; �;R; p) = Extrjxj<1;jx̂j<1�� �� jk ln�1 + xk2 �+ j ln�1 + x̂x2 �� ln" Xn0=�1 e�Fnn0 �1 + x̂n02 �j!#��35� ln 2 osh(1� ��)F + ln 2 oshFg ; (53)where [� � �℄�� = Pn=�1 �� � �)e(1���)Fn=(2 osh(1� ��)F � and Extr (� � �) denotesextremization over the variables jxj < 1 and jx̂j < 1. This proedure is analogousto the annealed approximation of SM, similar to the approah taken in [SST92℄.For j; k ! 1, while keeping R = 1 � j=k = K=N �nite, the maximization ofEq.(53) with respet to 0 � � � 1 keeping � = 1=(1 + �) reprodues the random oding



Statistial Mehanis of Low Density Parity Chek Codes 29Eq(�;R; p) �p = p low p
high pFigure 11. Shemati pro�les of Eq(�;R; p).exponent ERC(R; p) = 8><>: (1� R) ln 2� ln �pp+p1� p�2 ; 0 � p � pb ;p ln pp + (1� p) ln 1�p1�p ; pb < p � p;0; p < p; (54)whih is known in IT literature [Gal68℄, where the BSC ip rate p = (1� tanh(F ))=2,p is a ritial noise rate that satis�es the Shannon's limit R = 1 � H2(p) andpb = p2= (p2 + (1� p)2), is often termed the Bhattahalya's limit. For relatively highrates R, it is known that this exponent represents the exat deay rate of the bestpossible odes, whih implies that there is no room for improving the bound (54) inthe ase of j; k !1 (but obviously not for �nite j; k values where no exat expressionexists in the IT literature).5.1.4. Improving the Bound by the Replia Method - However, the exat result forin�nite j; k does not neessarily mean that the exponent (54) provides the tightestbound for �nite j; k as well. Atually, diret evaluation of Eq.(51) using the repliamethod yields another exponent [KSNS01℄Eq(�; �;R; p) = Extr��(�);�̂(�)(� jk ln* 1 +Qki=1 xi2 !�+� + j ln��1 + x̂x2 ����;�̂� ln*" Xn0=�1 e�Fnn0 jY�=1�1 + x̂�n02 �!�#��+�̂� ln 2 osh(1� ��)F + ln 2 oshFg ; (55)under the RS ansatz, where h� � �i� denotes an average with respet to dummy variablesxi 2 [�1; 1℄ (i = 1; 2; : : : ; k) over an idential variational distribution �(x), andsimilarly for x̂� 2 [�1; 1℄ (� = 1; 2; : : : ; j) and h� � �i�̂. The funtional extremizationExtr��(�);�̂(�) f� � �g exludes the ferromagneti solution of �F(x) = Æ(x � 1) and �̂F(x̂) =Æ(x̂� 1).For �nite j; k, Eq(�; �;R; p) is maximized by � = 1=(1 + �) for any given � � 0,whereas Ea(�; �;R; p) is not. For the partially maximized exponent Eq(�;R; p) �



Statistial Mehanis of Low Density Parity Chek Codes 30Eq(�; 1=(1 + �);R; p), the following properties generally hold (Fig. 11):lim�!0Eq(�;R; p) = 0 ; (56)�2��2Eq(�;R; p) < 0 : (57)This implies that for a given R, the noise threshold p below whih max��0fEq(�;R; p)gbeomes positive, indiating that the average error bound vanishes for N ! 1, isdetermined by a onditionlim�!0 ���Eq(�;R; p) = 0 : (58)Inserted into Eq.(55), this redues to the phase boundary onditionFNF � FF = 0 ; (59)where FF = �F tanh(F ) and FNF are the free energies of the ferromagneti and non-ferromagneti solutions, respetively, alulated from the quenhed variational freeenergy (29) for � = 1; the latter validates the RS ansatz, used here, as no repliasymmetry breaking e�et is expeted at the Nishimori ondition [NS01℄. This alsoimplies that the noise threshold of MAP deoding, whih orresponds to the zerotemperature state in statistial mehanis, is idential to that of the MPM deoding,the performane of whih is optimized at the Nishimori's temperature, in agreementwith results obtained in the IT literature [MN00℄.As the exponent Eq(�; �;R; p) is diretly evaluated from Eq.(51) without employingadditional inequalities, the optimized bound obtained should be tighter and providemore optimisti lower bounds for noise threshold p than that from Ea(�; �;R; p).Clearly one of the main drawbaks of the replia method is the lak of mathematialrigour; reent researh [Gue03, Tal03℄ proved the exatness of results obtained using thereplia methods in extensively onneted systems. One an hope that similar proofsfor diluted systems will follow, making these results muh stronger. In any ase thedi�erene between the two exponents beomes smaller as j; k !1 given a ode rate R(Table 1).5.1.5. Reliability Exponent - The exponent that represents the fastest deay rateof deoding error probability ahievable by the best odes in the ensemble is termedreliability exponent (RE) [Gal68℄. The random oding exponent (54) oinides with theRE for relatively high ode rates R. However, for a low ode rate region, there stillexists a narrow gap between the urrent tightest lower- and upper bounds of the RE,and the exat expression is yet to be determined [MB01, KSNS01, Bar03℄.Exat evaluation of RE by improving lower or upper bounds of the error probability,the preferred approah in the IT ommunity, may be diÆult sine using inequalitieshas the potential to provide loose bounds. In fat, starting from inequality (47), oneannot improve the bound further, sine inequality (47) itself does not provide a tight



Statistial Mehanis of Low Density Parity Chek Codes 31R (j; k) ANNEAL1 ANNEAL2 QUENCH SHANNON1/2 (3; 6) 0.0678 0.0915 0.0998 0.1092/5 (3; 5) 0.115 0.129 0.136 0.1451/3 (4; 6) 0.1705 0.1709 0.173 0.1741/3 (2; 3) 0 0.0670 0.0670 0.1741/2 (2; 4) 0 0.0286 0.0286 0.109Table 1. Comparison between di�erent evaluation shemes of the noise threshold pfor MAP deoding. ANNEAL1 indiates the lower bound of p obtained by maximizingEa(�; �;R; p) with respet to � with keeping � = 1=(1 + �). Lower bounds forANNNEAL2 are evaluated by maximizing the same exponent with respet to � � 0and � � 0 without imposing additional onditions; it provides a tighter bound sine theoptimization with respet to �, for a �xed �, is not ommutable with the average overa ode ensemble. QUENCH denotes the estimates of p obtained from Eq(�; �;R; p),evaluated diretly from Eq.(48) using the replia method without employing any extrainequalities; it therefore provides the most optimisti estimate. SHANNON o�ersritial noise rates psh at Shannon's limit for given ode rates R. Di�erene in theestimates between the three evaluation shemes beomes smaller as j and k inreases,keeping the ode rate �nite for j � 3. On the other hand, ANNEAL2 and QUENCHgenerally provide the same estimates for j = 2 sine p for this partiular parameterhoie is determined by the loal instability of the ferromagneti solution for whihthe two methods oinidently provide an idential ondition, whereas a disontinuousphase transition between the ferro- and paramagneti solutions determines p for j � 3.bound for the low R region [Gal68, KSNS01℄. Instead, evaluation based on an equalitywith respet to the error indiator�MAP (njH) = lim��!+1;��!�1Z�++ (�+jn; H) Z��� (��jn; H); (60)might provide the exat expression of RE, where n and H are the true noise and parityhek matrix, respetively, andZ+(�jn; H) � Xn0 6=nN�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e��FPNi=1 n0iZ�(�jn; H) � Xn0 N�KY�=1 Æ0�1; Yi2L(�)nin0i1A� e��FPNi=1 n0i (61)are the two partition sums.Equation (60) provides an expression for the blok error probabilityPB(H) = lim��!+1;��!�1Xn P (n) Z�++ (�+jn; H) Z��� (��jn; H); (62)for a given parity hek matrix H. Notie that the ability to separate suboptimalsolutions from the ferromagneti solution relies on the gap in the magnetizationenumerator that exists for all p < p (see Fig.8). Furthermore, employing an equalityP �B = minH fPB(H)g = limr!�1 (hP rB(H)iH)1=r, a diret expression of RE for a given



Statistial Mehanis of Low Density Parity Chek Codes 32ode ensemble is obtained asERE(R; p) = � 1N lnP �B = � limr!�1;��!+1;��!�1� 1rN� ln*"Xn P (n) Z�++ (�+jn; H) Z��� (��jn; H)#r+H) ; (63)whih an be evaluated by the replia method, onsidering �� and r as replia powers.A reent study along this diretion revealed that an expressionERE(R; p) = ( max0<r�1 n (1�R) ln 2r � 1r ln �1 + 2rpr=2(1� p)r=2�o 0 � p � paERC(R; p) pa < p � 1 ;(64)is derived for LDPC ode ensembles in the limit j; k ! 1, where ERC(R; p) isthe random oding exponent (54) and pa a ritial noise rate for whih (1�R) ln 2r �1r ln �1 + 2rpr=2(1� p)r=2� is maximized at r = 1 [SvMSK03℄. It is worthwhilementioning that this is idential to the existing lower bound of the RE evaluated forthe ensemble of all possible odes (in expurgated ensembles) [Gal68℄. It is well knownthat LDPC ode ensembles for j; k ! 1 have very similar properties to those of theensemble of all possible odes [MB01, Ma99℄; therefore, this result suggests that theexisting tightest lower bound of the RE represents the exat expression of the fastesterror exponent ahievable by the best possible odes, as is widely believed, while arigorous proof is still sought after.5.2. Typial Set Analysis: Simpler Method for Assessing Critial Noise LevelsAlthough Gallager's variational method is powerful enough to tightly bound the blokerror probability of MAP deoding for a wide lass of ode ensembles, it generallyrequires rather ompliated omputation even just for evaluating the noise threshold.In addition, it is quite tehnial and provides few insights for intuitive understandingthe various types of deoding errors.Typial set (pairs) analysis is an alternative approah to lowerbound the noisethreshold for a given ode ensemble fousing on typial set (pairs) deoding, whih is aslightly weaker deoding sheme than the MAP deoding (e.g., in rare ases, the truenoise may have a higher magnetization than that of the typial set; in suh a ase thetwo deoding shemes will di�er). Error evaluation in this sheme is relatively easy tounderstand beause ourrenes of deoding failure are diretly studied using the lawof large numbers and the weight enumerator; the latter is a standard quantity in ITliterature haraterizing the distribution of distanes between odewords. This methodwas pioneered by Shannon for the ensemble of all odes more than 50 years ago [Sha49℄;but was not applied to other ensembles until reently. Only after MaKay suessfullyemployed it for analysis of ertain LDPC ode ensembles, it is now beoming morepopular in the IT ommunity [Ma99, AJK+01℄.5.2.1. Typial Sequenes and Classi�ation of Errors - In order to introdue the typialset deoding approah, let us �rst provide the de�nition of a noise vetor being typial.



Statistial Mehanis of Low Density Parity Chek Codes 33Due to the law of large numbers, a noise vetor n0 generated by a BSC satis�es aondition ����� 1N NXi=1 n0i � p����� � �N ; (65)with a high probability for large N and a positive number �N � O(N�) (0 <  < 1=2),where 0 < p = (1� tanhF )=2 < 1=2 is the ip rate haraterizing the BSC. We de�neas typial any noise vetor n0 for whih this ondition holds. We also term the set ofall typial vetors the typial set.In typial set deoding one selets a vetor that belongs to the typial set andsatis�es the parity hek equation (12), as a valid noise vetor estimate (see alsosetion 4.5). Two types of deoding errors an our in this deoding sheme: TypeI error ours when the true noise vetor n is atypial. Type II error ours when nis typial and there are multiple typial vetors that satisfy the parity hek equation.By a straightforward extension of the law of large numbers, it an be shown that theourrene probability of type I errors, PI, vanishes in the limit N ! 1 [AJK+01℄.Therefore, the noise threshold p is determined only by the ondition that probabilityof type II errors PII vanishes. Sine PII depends on eah realization of the parity hekmatrix H, we de�ne p for a given ode ensemble C as the highest ip rate below whihthe average type II error probability hPII(H)iH vanishes in the limit N !1.5.2.2. Lower bound of Noise Thresholds and Weight Enumerator - In order to evaluatehPII(H)iH, it is onvenient to introdue an indiator funtion �II(njH) that returns 1,if the type II error ours, and 0 otherwise, for a true noise vetor n and parity hekmatrix H. Then, the type II error probability for a given H is alulated asPII(H) =Xn P (n) �II(njH) ; (66)and hPII(H)iH is obtained by averaging this over the ode ensemble.Unfortunately, it is diÆult to diretly express �II(njH) in a rigorously treatableform. However, one an easily produe an upper bound�II(njH) � VII(njH)� Æ NXi=1 ni �N tanhF! ; (67)in the Ising spin representation, whereVII(njH) � Xn0 6=nN�KY�=1 Æ0�1; Yi2L(�)nin0i1A Æ NXi=1 n0i �N tanhF!= Xx6=1N�KY�=1 Æ0�1; Yi2L(�) xi1A Æ NXi=1 nixi �N tanhF! : (68)Sine �II(njH) = 1 when errors do our, it is always upper-bounded by the number ofsolution vetors of the parity hek equation (exluding the true noise n) that belong to



Statistial Mehanis of Low Density Parity Chek Codes 34the typial set, VII(njH). In the last expression (68), we rewrote the summation over thedummy variable n0 using a new variable x = (xi) � (n0ini); the N -dimensional vetor1, with all elements being 1, represents the true noise vetor n in the new expression.Inserting Eqs.(67) and (68) into Eq.(66), and taking an average over the expurgated(j; k)-Gallager ode ensemble (i.e., of no atypially poor odes) in onjuntion withthe identity 1 = R dw Æ(PNi=1 xi � Nw), an upper bound of the average type II errorprobability is obtained ashPII(H)iH � Z dw exp [N (�K(w; p) +R(w))℄ ; (69)where K(w; p) is derived independently of the ode ensemble as exp [�NK(w; p)℄ �Pn P (n)Æ �PNi=1 nixi �N tanhF� Æ �PNi=1 ni �N tanhF� imposing a onstraint(1=N)PNi=1 xi = w; the weight enumeratorR(w) = 1N ln*24Xx6=1 N�KY�=1 Æ0�1; Yi2L(�) xi1A Æ NXi=1 xi �Nw!35+H ; (70)haraterizes the ode ensemble. Equation (69) implies that hPII(H)iH vanishes in thelimit N !1 as long as maxwf�K(w; p) +R(w)g < 0, whih yields a lower bound forp. The meaning of the exponent in the right hand side of Eq.(69) is intuitivelyunderstandable by onsidering the mehanism that gives rise to a deoding failure.Firstly, exp [�NK(w; p)℄ represents the probability that a `gauged noise vetor' n + x(mod 2) is typial, as well as the true noise vetor n, under a ondition that the numberof non-zero elements of x, PNi=1 xi, is onstrained to N(1 � w)=2 (also termed weightin this Boolean representation). In pratie, a odeword vetor t = GTs (mod 2),alternatively haraterized by the equation Ht = H(GTs) = 0 (mod 2), plays the roleof x; a type II error ours if both of n and the gauged vetor n + x (mod 2) beometypial beause there are at least two typial noise vetors satisfying the parity hekequation. However, this just provides an error probability aused by a single odewordx. Therefore, seondly, we have to evaluate the number of odewords that have aweight w, whih is provided by the weight enumerator R(w). Multiplying this numberof odewords to exp [�NK(w; p)℄ and taking a summation over the possible weight w,we �nally obtain Eq.(69).In the bound (69), all relevant properties of the ode ensemble are represented bythe weight enumerator R(w). This funtion is maximized to R ln 2 at w = 0, in general,and has a mirror symmetry R(�w) = R(w), in partiular, for even k. Pitorially, thelower bound of p an be obtained through the value for whih K(w; p) makes ontatwith R(w) (somewhat similar to the magnetization enumerator of Fig.8) at a ertainpoint w�, marked by a (�) in Fig.12. This an be analytially performed in the ase ofj; k !1 asR(w) an be expressed analytially, providing Shannon's limit psh as a lowerbound for p. However, psh also serves as the upper bound of p for any ode ensembles,this means that p = psh indiating that the Gallager ode saturates Shannon's limit
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Figure 12. The weight enumeratorR(w) for (j; k) = (3; 6) and in the limit of j; k !1with keeping the ode rate R = 1� j=k = 1=2. For p = 0:0915, the funtion K(w; p)has a ontat with the weight enumerator of (j; k) = (3; 6) at w� ' 0:735, whihimplies p � 0:0915 holds for the (3; 6)-Gallager ode ensemble. K(w; p) is generallyde�ned only for 1� 4p < w � 1 and beomes lower as p inreases. Therefore, roughlyspeaking, the lower bound of p beomes higher as a ode ensemble has a narrowerweight enumerator. For a �xed ode rate R, the ode ensemble of j; k ! 1 hasthe narrowest possible pro�le of R(w), whih provides the exat estimate of the noisethreshold p = psh where psh is Shannon's limit that satis�es R = 1� H2(psh).when j; k !1.Thus, typial set analysis an exatly evaluate p of the Gallager ode ensemblesin the limit j; k ! 1. Unfortunately, this may not neessarily be the ase for �nitej; k. It an be shown that the lower bounds of p o�ered by the typial set analysis arethe same as those obtained by Gallager's methodology for MAP deoding [AJK+01℄,whih in itself provides more pessimisti evaluations than the replia method as shownin Table 1. The gap between SM and typial set analysis results may be attributed tothe di�erent deoding shemes used. However, one an show that the replia methodyields more optimisti lower bounds for p also when typial set deoding is used, whihimplies that evaluation of the noise threshold utilizing the typial set analysis is rigorousbut not tight enough for �nite j; k.5.2.3. Improving the Bound by the Replia Method - A possible shortoming of thetypial set analysis relates to the upper-bounding of the average type II error probabilityby a produt of the error probability aused by a single odeword (exp [�NK(w; p)℄)and the number of odewords (exp [NR(w)℄), fousing on the most relevant weightw = w�. This bound would have been tight if eah odeword brought aboutestimation errors exlusively (i.e., eah noise vetor estimation error is generated by
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Figure 13. A possible shortoming of the typial set analysis. (a) If eah deodingerror in noise estimation were assoiated with a single odeword, a simple produtexp [�NK(w�; p)℄ � exp [NR(w�)℄ would have orretly evaluated hPII(H)iH . (b)However, when a single deoding error is assoiated with multiple odewords, theprodut overestimates hPII(H)iH .a di�erent odeword). However, sine eah noise vetor estimation error may beassoiated with multiple odewords belonging to the same odebook, the simple produtexp [�NK(w�; p)℄�exp [NR(w�)℄ may overestimate the orret type II error probability(Fig.13). Therefore, it is neessary to take orrelations between multiple odewordsassoiated with a single error into aount in order to improve the evaluation of p.An analysis based on an equality with respet to the error indiator�II(njH) = lim�!+0V�II(njH)  NXi=1 ni �N tanhF! ; (71)might naturally introdue suh orrelations asV�II(njH) = 0�Xx6=1N�KY�=1 Æ0�1; Yi2L(�) xi1A Æ NXi=1 nixi �N tanhF!1A� ;reates ertain interations among `odeword vetors' x. Substituting Eq.(71) intoEq.(66) and taking an average over the ode ensemble provide an equalityhPII(H)iH = lim�!+0 exp [�NEII(�;R; p)℄ ; (72)where EII(�;R; p) = � 1N ln*"Xn P (n)V�II(njH) Æ NXi=1 ni �N tanhF!#+H ; (73)that an be evaluated by the replia method. Equation (72) indiates that p an beassessed from the limit where lim�!+0EII(�;R; p) beomes positive.A reent study showed that noise thresholds obtained by SM typial setdeoding sheme are idential to those assessed by the replia approah to MAPdeoding [KNvM02℄. This indiates that di�erenes of error orretion abilities between



Statistial Mehanis of Low Density Parity Chek Codes 37the typial set and MAP deoding shemes are relatively small and vanish in the limitof long message lengths.6. Appliations of LDPC odesSo far we have foused on LDPC as error orreting odes. However, oding tehniquesare required for various purposes in digital ommuniation. In this setion, we mentionhow LDPC odes an be utilized for various purposes, other than simple error orretion.6.1. Lossless Data CompressionData ompression, or soure oding, is a sheme to redue the message size (data)by modifying the information representation. This is usually arried out prior totransmission in order to optimize ommuniation eÆieny by minimizing the data to besent. The possibility of data ompression was �rst pointed by Shannon in his elebratedsoure oding theorem [Sha48℄. He showed that for an information soure representedby a distribution P (s) of N -dimensional Boolean vetors s, one an employ anotherrepresentation of K(� N) dimensions without any distortion, if the ode rate R = K=Nsatis�es R � H2(S) in the limit K;N !1, where H2(S) � �(1=N)Ps P (s) log2 P (s)denotes the binary entropy per bit of the soure (S) distribution P (s). On the otherhand, it an also be shown that suh redution is impossible when R < H2(S). Therefore,H2(S) represents the optimal ompression rate, or ompression limit.Unfortunately, the soure oding theorem is non-onstrutive and suggests fewlues for designing good pratial ompression methods. However, after muh e�ort,a pratial ode that asymptotially saturates the optimal limit was �nally disoveredmore than a deade later [Jel68℄. Therefore, the ompression sheme based on LDPCodes presented below may not ompete with existing good pratial odes suh as thearithmeti odes [Jel68℄ and Lempel-Ziv (LZ) ompression [ZL77℄. Nevertheless, thisstill serves as a useful prototype for onstruting a more advaned ompression shemeused in network ommuniation [SW73, Mur02℄, desribed in the following setion.In order to ompress an N -dimensional Boolean soure vetor s to a K(< N)-dimensional odeword z on the basis of an LDPC sheme, let us introdue aK�N sparseBoolean matrix H with j and k non-zero elements per olumn and row, respetively.Using this matrix, one an ompress s to a shorter vetor z byz = Hs (mod 2) : (74)On the other hand, deoding z to retrieve the original representation s is performedwith a knowledge of the soure distribution P (s) utilizing the posterior distributionP (�jz) = P (�)Æ (z = H�)P� P (�)Æ (z = H�) ; (75)whih an be pratially arried out employing the BP/TAP algorithm.Similarly to the ase of error orretion, the performane of this sheme an beevaluated utilizing the replia method [Mur02℄. In the Ising spin representation, the



Statistial Mehanis of Low Density Parity Chek Codes 38free energy per element an be evaluated fromF = Extr�(�);�̂(�)(� jk *ln 1 +Qki=1 xi2 !+� + j �ln�1 + x̂x2 ���̂;�� 1N *ln"X�  NYi=1 jY�=1�1 + x̂�i�i2 �! P (� 
 s)#+�̂;s9=; ; (76)under the RS ansatz, where � 
 s = (�isi) (i = 1; 2; : : : ; N) stands for soure vetorsgauged by the true soure vetor s in the Ising spin expression and P (� 
 s) representsthe soure distribution in this expression. h� � �is denotes an average over the souredistribution.For j � 3, the ferromagneti solution �F(x) = Æ(x� 1) and �̂F(x̂) = Æ(x̂� 1), whihrepresents deoding suess, always extremizes the free energy (76) toFF = � 1N Xs P (s) lnP (s) = H2(S) ln 2: (77)In addition to this, another solution, whih stands for deoding failure, appears whenR is below a ertain ritial rate Rd, whih is determined by j and k. For �nite j,this solution is obtained only numerially. However, this solution an be analytiallyexpressed as �NF(x) = Æ(x) and �̂NF(x̂) = Æ(x̂) in the ase of j; k ! 1 under the �xedode rate. Inserting this solution into Eq.(76) provides the free energyFNF = jk ln 2 = R ln 2: (78)This, in onjuntion with Eq.(77), means that the deoding suess solution isthermodynamially dominant and, therefore, the original expression s is potentiallydeodable from the ompressed vetor z for R � H2(S) and an arbitrary souredistribution P (s). This implies that the urrent sheme ahieves Shannon's ompressionlimit for j; k !1.However, this does not imply that z an be deoded in pratial time sales. TheBP/TAP algorithm is likely to be trapped in suboptimal solutions for R < Rd; theompression limit for pratial deoding is therefore provided by Rd whih is alwayshigher than a ritial rate R, determined by the thermodynami transition betweenthe deoding suess and failure solutions. Roughly speaking, as j grows under a �xedrate R = j=k, R dereases, while Rd inreases. In partiular, in the ase of j !1, thepotential and pratial limits R and Rd onverge to H2(S) and 1, respetively, whihmeans that the urrent sheme is impratial in this limit although the theoretialperformane an saturate Shannon's limit.On the other hand, other existing shemes suh as the LZ odes are exeutable inpratial time sales and asymptotially ahieve the ompression limit even if details ofthe soure distribution are unknown [ZL77℄. Therefore, the LDPC-based ompressionsheme may not be ompetitive when used for the purpose of the simple noiseless dataompression.



Statistial Mehanis of Low Density Parity Chek Codes 396.2. Lossless Compression of Distributed SouresAlthough the pratial signi�ane of the LDPC-based sheme seems weaker than thatof existing state-of-the-art methods for the simple lossless ompression, it may not bethe ase for more advaned problems. This is beause optimal strategies sometimesannot be employed when onditions hange. A data ompression problem of distributedsoures, �rst addressed by Slepian and Wolf for data transmission in a network [SW73℄,o�ers one suh example.Let us assume that two orrelated soure vetors s1 and s2 of N dimensionsare generated from a joint soure distribution P (s1; s2). In a general senario of theSlepian-Wolf problem, s1 and s2 (from soures S1 and S2 respetively) are independentlyompressed to K1- and K2-dimensional vetors z1 and z2, respetively. On the otherhand, a single deoder simultaneously retrieves the original expressions s1 and s2 fromthe odewords z1 and z2 utilizing the knowledge of P (s1; s2) at the deoding stage(Fig.14(a)). For instane, this kind of problem arises when two satellites overingoverlapping regions transmit digital images to a single base station on earth.It is lear that a region spei�ed by R1 = K1=N � H2(S1) and R2 = K2=N � H2(S2)is ahievable without any distortion by optimal ompression odes for a single soure,dealing with s1 and s2 as vetors that independently follow marginal distributionsP (s1) = Ps2 P (s1; s2) and P (s2) = Ps1 P (s1; s2), respetively. However, Slepianand Wolf showed that the ahievable region an be further extended potentially asR1 � H2(S1jS2) ;R2 � H2(S2jS1) ;R1 +R2 � H2(S1;S2) ; (79)(Fig.14(b)) if the knowledge of the joint distribution P (s1; s2) is fully utilized, whereH2(S1;S2) = �(1=N)Ps1;s2 P (s1; s2) log2 P (s1; s2), H2(S1jS2) = H2(S1;S2) � H2(S2)and similarly for H2(S2jS1). Unfortunately, it is diÆult to ahieve this limit by theoptimal odes for a single soure sine inorporating the orrelation between s1 and s2with suh shemes is generally non-trivial.On the other hand, the LDPC-based ompression sheme is easily extended for thedistributed soure by using the LDPC matries H1 and H2, of dimensionalities K1 �Nand K2 �N respetively, suh thatz1 = H1s1; (mod 2) ;z2 = H2s2; (mod 2) : (80)In this sheme, one an diretly inorporate the soure distribution P (s1; s2) in thedeoding stage through the Bayes formulaP (�1;�2jz1; z2) = P (�1;�2)Æ (z1 = H1�1) Æ (z2 = H2�2)P�1;�2 P (�1;�2)Æ (z1 = H1�1) Æ (z2 = H2�2) : (81)Murayama showed that this sheme ahieves the Slepian-Wolf limit (79) when thenumbers of non-zero elements per olumn/row in H1 and H2 beome in�nite [Mur02℄.Furthermore, he illustrated that utilizing LDPC matries of �nite non-zero elements
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0H2(S2jS1)H2(S2)R2
H2(S1jS2)H2(S1) R1Figure 14. (a) The Slepian-Wolf System. Enoding is arried out independently atdistributed sites, whereas deoding is simultaneously performed by a single user. (b)The ahievable limit of the Slepian-Wolf System.per olumn/row, pratial deoding by BP/TAP beomes possible beyond the singlesoure oding limit R1 � H2(S1) and R2 � H2(S2) for a ertain distributed soures;this implies that LDPC-based ompression shemes may be a promising diretion fordistributed data ompression problems of this type.6.3. Lossy Data CompressionThe soure oding theorem indiates that it is impossible to redue the size of data belowthe ompression limit without allowing for any distortion. However, if a ertain level ofdistortion is allowed, one an further redue the data size. Compression of this type istermed lossy ompression. JPEG and MPEG, whih are examples of urrent standardshemes in use for ompressing data of images and movies, fall into this ategory.In general, as the allowed distortion inreases, the ahievable data size dereases;namely, there is a tradeo� between the optimal ompression rate and the distortion,whih is provided by the rate-distortion theorem presented by Shannon more than adeade after the soure oding theorem [Sha59℄.Unlike lossless ompression, no pratial algorithm apable of saturating theoptimal performane predited by the rate-distortion theory is known for lossyompression, even for simple information soures. Therefore, the quest for better lossyompression odes remains one of the important researh areas in IT [YZB97℄.Let us here fous on a simple lossy data ompression problem of an unbiasedBoolean soure of N -dimensional vetor s, the distribution of whih is assumed uniformP (s) = 1=2N . The distortion funtion d(s; ~s) is used to evaluate the distortion, where ~sis an N dimensional representative Boolean vetor used to approximate s with a reduedinformation ontent. Here, we employ the Hamming distaned(s; ~s) = NXi=1 (1� Æsi;~si) ; (82)



Statistial Mehanis of Low Density Parity Chek Codes 41where Æx;y = 1 if x = y and 0, otherwise.In the urrent ase, the lossless ompression limit is given by the binary entropy perbit of the soure distribution R � H2(S) = �(1=N)Ps 2�N log2 2�N = 1, whih impliesthat it is impossible to redue the size of the data any more without allowing somelevel of distortion. However, when a distortion up to ND measured by the Hammingdistane is allowed, it an be shown analytially that one an ompress s into aK = NR-dimensional Boolean vetor z if R � R(D), whereR(D) = 1� H2(D) ; (83)is termed the rate-distortion funtion of the urrent unbiased Boolean soure [CT91℄;suh analytial expressions of the rate-distortion funtions are not known for most othersoures.In order to devise a lossy ompression sheme, it is neessary to appropriately designa map from the ompressed expression z to the representative vetor ~s. One possibleonstrution of this map is to employ an N �K LDPC matrix H suh that~s = ~s(z) = Hz (mod 2) : (84)Then, given an N -dimensional soure vetor s, enoding is arried out by seleting suha vetor z that satis�es the distortion onstraint d (s; ~s(z)) � ND as the ompressedrepresentation of s. On the other hand, one an easily deode z to approximate theoriginal vetor s employing Eq.(84). It an be shown that this sheme saturates therate-distortion funtion (83) when the numbers of non-zero elements per olumn/row ofH beome in�nite [MO03, MY02℄.One shortoming of this LDPC-based sheme in the urrent suggestion is theomputational diÆulty at the enoding stage. Sine �nding z for a given s, whereboth are disrete variables, is a non-trivial searh problem that beomes pratiallydiÆult as the message length N inreases. A naive use of the BP/TAP approah doesnot serve as a satis�able approximation algorithm in this ase sine enoding requiresseletion of a single vetor z, whereas the BP/TAP method generally alulates variableaverages over the posterior distribution in whih lues for seleting a single vetor areerased. However, this diÆulty may be resolved by ertain advaned methods [MPZ02℄although further investigation is neessary.Another drawbak of the urrent method is the diÆulty in diretly extending thesheme to biased soures. It an be shown that for a uniformly biased Boolean soureharaterized by P (s) =QNi=1 psi(1�p)1�si where 0 � p � 1, the rate-distortion funtion(83) is modi�ed toR(D) = ( H2(p)� H2(D) for 0 < D < p0 for p � D � 1 ; (85)whih indiates that the data size an be redued further than Eq.(83) for biased souresbeause the original message distribution in itself inludes some redundany. Thislimit an be ahieved by appropriately onstruting biased representative vetors thatapproximate the biased vetors with the required distortion using as little information as



Statistial Mehanis of Low Density Parity Chek Codes 42possible. However, as addition modulo 2 generally redues the statistial bias of eah bit,onstrution of suh representative vetors by a linear map (84) is diÆult; this preventsthe urrent method from saturating the rate-distortion funtion of biased soure (85).In a reent study [HKN02℄, this diÆulty has been resolved by replaing the linearmap (84) with a non-linear map onstruted by pereptrons whih are haraterized bynon-monotoni transfer funtions of a spei� type [vMWB00℄.6.4. Error Corretion in a Broadast ChannelAs most existing odes are onstruted for simple point-to-point ommuniation, theydo not neessarily o�er the optimal performane for multi-terminal ommuniation suhas the Internet, mobile phones and satellite ommuniation. Designing odes that utilizeharateristi features of these ommuniation hannels may enhane their performane;this would greatly bene�t overloaded ommuniation hannels that su�er from an everinreasing information ow.The broadast hannel, whih models television and radio broadasting, is one ofthe most fundamental examples of multi-terminal ommuniation [CT91℄. We here showhow LDPC odes an be utilized for improving the ommuniation performane in abroadasting setup.In a general senario, a single sender (station) broadasts a odeword omposedof di�erent messages to multiple reeivers. For simpliity, we fous on the ase of tworeeivers; a single odeword t of N bits, omprising two messages s1 (NR1 bits) ands2 (NR2 bits), is transmitted to two reeivers. As eah hannel is noisy, reeivers 1and 2 obtain two orrupted odewords r1 and r2, respetively, whih is modelled by aonditional probability P (r1; r2jt). The reeived odewords are deoded by respetivereeivers to retrieve only the message addressed to eah of them.Combining odes is a known empirial strategy for designing high performaneommuniation shemes for broadast hannels on the basis of multiple linear error-orreting odes of relatively short message lengths [MS77, vG83, vG84℄. Inspired bythis, the performane of a linearly ombined oding sheme was reently examined forLDPC odes [NKMZS03℄. The ode is spei�ed by a parity hek matrix of an uppertriangular formH =  H1 H20 H3 ! ; (86)where the sizes of sub-matries H1, H2, H3 are [(1 � �)N � R1N ℄ � (1 � �)N ,[(1� �)N �R1N ℄� �N and [�N � R2N ℄� �N , respetively.Based on this matrix, the generator matrix GT is onstruted asGT =  GT1 GT20 GT3 ! ; (87)where Gti (i = 1; 3) are systematially designed so as to satisfy HiGTi = 0 (mod 2) andGT2 = �HT1 [H1HT1 ℄�1[H2GT3 ℄. In this sheme, two messages are enoded into a single
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Figure 15. (a) A broadast hannel of a single station and two reeivers. (b) Ashemati pro�le of Cover's limit (thik full urve). The dashed line indiates thetime-sharing limit ahievable by onatenating two independent odes.odeword using GT as t = GT (s1s2)T (mod 2). On the other hand, two orruptedodewords r1 and r2 are independently deoded by eah reeiver solving the parityhek equations zi = Hri = Hni (mod 2) (i = 1; 2).Analogously to the ase of single hannels, error free ommuniation beomestheoretially possible if the orresponding ode rate vetor (R1; R2) is plaed withina ertain onvex region, whih is termed the apaity region, when the ode lengthgrows in�nite. In partiular, the apaity region an be analytially expressed asR2 < 1� H2(Æ � p2) ;R1 < H2(Æ � p1)� H2(p2) ; (88)where the noise models for reeivers 1 and 2 are assumed as BSC spei�ed by ip ratesp1 and p2(< p1), respetively. Here, we introdue the notation Æ � p = Æ (1 � p) +(1� Æ) p. Eq.(88) is often termed Cover's apaity, depited by a solid urve in Fig.15.Unfortunately, the derivation of Cover's apaity is non-onstrutive and o�ers fewlues to design eÆient pratial odes. Furthermore, even ahieving the time-sharingapaity (a dotted straight line in Fig.15), whih is theoretially ahievable by simpleonatenation of two independent odewords, separately optimized for eah hannel, isin pratie never trivial, as there are no known odes that saturate the Shannon's boundeven for a single hannel.A statistial mehanis based analysis for the broadast hannel of this type revealsthat the suggested linearly ombined LDPC oding sheme provides an improvedperformane over the simple onatenation method, in both potential and pratiallimits, when the number of non-zero elements per olumn/row in the parity hek matrixis �nite [NKMZS03℄. Unfortunately, it was also shown that the optimal performaneahievable by this sheme annot go beyond the time-sharing apaity even theoretially.This analysis implies that di�erent oding shemes suh as non-linear odes should beexamined for ahieving Cover's limit.



Statistial Mehanis of Low Density Parity Chek Codes 446.5. LDPC for CDMAMultiple aess ommuniation is at the opposite end to broadasting, where multiplesoures transmit simultaneously to a single reeiver; the task of the reeiver is toseparate the ombined (possibly orrupted) signal and retrieve the original soures.Several methods an be used for separating the soures; two obvious solutions are forthe di�erent soures to transmit at di�erent times or using di�erent frequenies [Ver98℄.A di�erent, arguably more eÆient, approah is based on Code Division Multiple Aess(CDMA), where messages are enoded prior to transmission.Conventional modulation tehniques are based on modulating eah signal by arandom modulation vetor shown shematially in Fig.16(a). Demodulation is thenarried out by multiplying the reeived signal by the modulation sequene for eahsoure and estimating the original message. A statistial mehanis based analysis ofonventional CDMA modulation was reently introdued by Tanaka [Tan02℄.
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Figure 16. (a) Modulation in onventional CDMA, where random modulationsequenes are used to generate the transmitted signal from the original message. (b)LDPC oding of the soure sequenes si prior to modulation by random modulationsequenes �i. Demodulation and deoding provide the estimates ŝi.The idea of ombining LDPC odes with CDMA systems was originally introduedin [dBD03, dBD02, ADU03℄. The idea is to enode the messages by di�erent LDPCodes prior to the modulation stage as desribed shematially in Fig.16(b). Resultsobtained by omputer simulations, and after arefully designing LDPC odes by DE,show exellent performane [ADU03℄. However, these studies are limited to ases wherethe number of users is O(1) (one exeption is in [RCGV02℄, where the number of users isexpeted to be large; however, it relies on the assumption of near-apaity-approahingLDPC odes to be available).A reent study [TS03b, TS03a℄ o�ers a statistial mehanis based analysis of thejoint detetion/deoding for LDPC-oded CDMA system in the large-system limit. Theanalysis provides both pratial and theoretial limitations of the suggested methodobtained from the statistial mehanis based analysis, in the form of dynamial and



Statistial Mehanis of Low Density Parity Chek Codes 45thermodynamial transition point, respetively. The results reported indiate thatwhile the theoretial limits of the new methods are exellent, the pratial performaneis limited by a relatively low dynamial transition point [TS03b, TS03a℄. However,the analysis was arried out for regular LDPC odes; it is highly likely that pratialperformane an be pushed lose to the theoretial limits by lever irregular ode designs.6.6. Publi Key CryptographyPubli-key ryptography plays an important role in many aspets of modern informationtransmission, for instane, in the areas of eletroni ommere and internet-basedommuniation. It makes it possible for the servie provider to distribute a publikey whih may be used to enrypt messages in a manner that an only be deryptedby the servie provider [DH76℄ (Fig.17). The on-going quest for safer and more eÆientryptosystems produed many useful methods over the years suh as the RSA [RSA78℄,ElGammal [ElG85℄ and MEliee ryptosystems [ME78℄ to name but a few. We hereshow that another example of suh systems, whih is somewhat similar to the onepresented by MEliee, an be devised on the basis of signi�antly di�erent behaviourfor LDPC odes of the MN and Sourlas-types [KMS00a, SKM01℄.In the suggested ryptosystem, a plaintext represented by a K-dimensionalBoolean vetor s is enrypted to the N -dimensional Boolean iphertext r utilizinga predetermined Boolean matrix GT of dimensionality N � K, and a orrupting N -dimensional vetor n, the elements of whih beome 1 with probability p and 0,otherwise, in the following mannerr = GT t + n (mod 2) : (89)The matrix GT and the ip probability p onstitute the publi key. The orruptingvetor n is generated in the transmitting terminal.The matrix GT , whih is at the entre of the enryption/deryption proess, isonstruted by randomly hoosing a K�K dense invertible matrixD and two randomlyseleted LDPC matries A (of dimensionality N �K) and B (of dimensionality N �Nand invertible), via GT = B�1AD (mod 2). Similarly for the MN odes, the matries Aand B are haraterized by j and l non-zero elements per olumn and k and l non-zeroelements per row respetively in the simplest ase, whereas irregular onstrution usingvarying k; j and l for eah olumn/row may also be onsidered. The parameters j; k andl de�ne a partiular ryptosystem while the matries A, B and D onstitute the privatekey. The authorized user may derypt the iphertext r in a similar manner to the MNodes. Namely, a parity hek equation of the formz = Br = A(Ds) +Bn (mod 2) ; (90)whih is o�ered by multiplying the iphertext r (89) by the private key B; it is �rstsolved for ~s = Ds using the BP/TAP algorithm. Due to properties of the MN odes,



Statistial Mehanis of Low Density Parity Chek Codes 46(a)s! r: Easy (b)r ! s:� Easy with a seret keyHard without a seret keyFigure 17. Required properties of publi key ryptosystem. (a) A plain text s isenrypted into a ipher text r using the publi key with a low omputational ost. (b)Deryption of the ipher text r is omputationally hard without utilizing the seretkey, while it an be easily arried out if the seret key is available.this is easy if p is set below the dynamial transition point pd that is determined by theset of (j; k; l). After that, the plain text is �nally retrieved as s = D�1~s.On the other hand, an unauthorized user must extrat s from Eq.(89) knowingonly the iphertext r and the publi key (GT ; p). The �rst straightforward attemptto enumerate all possible s is learly doomed, unless p is vanishingly small, enoughto orrupt just a few bits. Deomposing GT into a ombination of sparse and densematries is known to belong to a lass of NP-omplete problem [GJ79℄.Another approah is to approximately derypt r using the BP/TAP sheme, whihyields an e�etively idential deoding problem to that of the Sourlas-type odes, withthe generator matrix GT being dense. However, due to properties of the Sourlasodes, �nding solutions to Eq.(89) is strongly dependent on initial onditions. Inpartiular, when GT is dense, whih is the ase in the urrent problem, for all initialonditions other than the plaintext itself, the BP/TAP algorithm fails to onverge to theplaintext solution [KMS00a, Ma99, KS87℄. Obtaining the orret solution for Eq.(89)without knowledge of the private key will therefore beome unfeasible, whih impliesthat deryption by unauthorized users is pratially impossible. Several attaks byunauthorized parties who have aquired partial knowledge of private key omponentsand/or of the plaintext have been reently studied, showing that the ryptosystem isfairly seure [SSK03℄.Before losing this setion, it may be worth while to briey ompare the urrentLDPC-based method to the leading publi key publi key ryptosystem of RSA [RSA78℄.RSA deryption takes O(K3) operations while the urrent method naively requiresO(K2) operations, whih an be further redued to O(K logK) by onstruting a densematrix D as a produt of random permutation and triangular matries. From thisaspet, the LDPC-based sheme may be superior to the RSA ryptosystem. Enryptionost is O(K2), whih is similar to that of RSA, whereas inverting the matries B andD is arried out only one and is of O(K3). A major drawbak of the urrent methodis the size of publi key. Sine GT is a dense matrix, the size of the publi key is ofO(N�K), while that for RSA is only O(K). However, as the transmission of the publikey is arried out only one, this may not be of great signi�ane.
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