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Statistial physis is employed to evaluate the performane of error-orreting odes in the ase of �nite message length for an ensemble ofGallager's error orreting odes. We follow Gallager's approah of upper-bounding the average deoding error rate, but invoke the replia method toreprodue the tightest general bound to date, and to improve on the mostaurate zero-error noise level threshold reported in the literature. The rela-tion between the methods used and those presented in the information theoryliterature are explored.
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Many of the problems addressed in the Information Theory (IT) literature show greatsimilarity to those treated in statistial physis. One of the main areas where these linksare partiularly strong is that of digital ommuniation and oding theory; these links havebeen reently examined in the area of Low Density Parity Chek (LPDC) [12,6℄ and turbo [8℄error-orreting odes. It is only natural to expet that some relations between the ana-lytial methods used in the two disiplines will emerge, and that advanes in one ould beemployed to improve results in the other. In this Letter we fous on suh an example. Weutilize the replia method of statistial physis to assess the performane of Gallager's errororreting ode in the ase of �nite message length, generalizing an established method inthe IT ommunity. The analysis reprodues the tightest general bound to date, but moreimportantly, it provides exat results to spei� ode onstrutions.Error orreting odes play a vital role in failitating reliable data transmission, rangingfrom ellular ommuniation to data storage on magneti media. In a general senario, theN dimensional Boolean message � 2 f0; 1gN is enoded to theM(> N) dimensional Booleanvetor z0, and transmitted via a noisy hannel, whih is taken here to be a Binary SymmetriChannel (BSC) haraterized by ip probability p per bit; other transmission hannels mayalso be examined within a similar framework. At the other end of the hannel, the orruptedodeword is deoded utilizing the strutured odeword redundany.The blok error rate PE, de�ned as the probability for a deoding error, serves as aperformane measure for the suess of the oding method. In his seminal work [13℄, Shannonshowed that the error rate an vanish for ode rates R below the hannel apaity in thelimit N;M ! 1; in the ase of the BSC and unbiased messages R = N=M < 1�H2(p);where H2(p)=�p log2 p� (1� p) log2(1� p). The upper bound, for in�nitely long messages,is often termed Shannon's limit to the error orreting ability. Evaluating PE for pratialodes of �nite length beame one of entral topis in IT.For maximum likelihood (ML) deoding where the most probable message given thepossibly orrupted odeword de�nes the message estimate, it is believed that PE of the bestode sales as exp[�ME(R)℄. The non-negative exponent E(R) is termed reliability funtion2



(RF); it beomes positive below the hannel apaity de�ning the sensitivity of the optimalerror rate to the message length, omplementing Shannon's result.Unfortunately, assessing the RF diretly is generally diÆult. Instead, Gallager's pow-erful method [3℄ bounds E(R) from the below utilizing the inequalityPE � Trfy;xgP 11+� (y;x) Trfx0 6=xgP 11+� (y;x0)!� ; (1)whih holds for any arbitrary ML estimation, inferring a binary vetor x after observing avetor y, and a positive variable �>0.The average error rate �PE for a ertain ensemble of odes is greater than the ensembleminimum. Therefore, averaging the RHS of Eq.(1) over the ensemble, one obtains an upper-bound to the minimum error rate that sales exponentially with M for large but �nite Nand M , exp[�MEav(�; R)℄; the exponent Eav(�; R) serves as a lower-bound of E(R). Onean tighten the lower bound by maximizing Eav(�; R) with respet to �>0.Evaluating Eav(�; R) is also diÆult (exept for �2IN). The strategy used by Gallager [3℄is to further upper-bound the RHS of Eq.(1) utilizing Jensen's inequality hx�i�hxi�, whihholds for any 0��� 1 with respet to the expetation over any arbitrary distribution of apositive variable. The added inequality presumably makes the bound looser. It is thereforesurprising that maximizing the exponent with respet to � 2 [0; 1℄ in the ensemble of allrandom odes having the same rate R, whih results in the random oding exponent Er(R),provides an exat evaluation of the RF for high R values.However, the bound by Er(R) beomes loose one the optimal value of � reahes theupper limit of the interval, i.e., � = 1 (orresponding to Bhattaharyya's bound). It isnot lear whether Jensen's inequality or Gallager's inequality (1) is responsible for thisbreakdown. Moreover, it is unlear how to devise a similar method for deriving bounds forother (non-random) odes, a question of high pratial signi�ane.In this Letter we demonstrate how the methods of statistial physis may be employedto obtain tighter bounds for spei� odes. This is arried out by a diret evaluation ofEav(�; R) for the ensemble of Gallager error-orreting odes [2℄. This (linear) ode was3



redisovered only reently [7℄, showing outstanding performane, ompetitive to other state-of-the-art tehniques. It is haraterized by a randomly generated (M � N) �M Booleansparse parity hek matrix H, omposed of K and C (� 3) non-zero (unit) elements perrow and olumn, respetively. Enoding the message vetor �, is arried out using theM �N generating matrix GT , satisfying the ondition HGT =0, where z0=GT� (mod 2).The M bit odeword z0 is transmitted via a noisy hannel, BSC in the urrent analysis; theorrupted vetor z=z0+� (mod 2) is reeived at the other end, where �2f0; 1gM representsa noise vetor with an independent probability p per bit of having a value 1. Deoding isarried out by multiplying z by the parity hek matrix H, to obtain the syndrome vetorJ =Hz=H(GT� + �)=H� (mod 2), and to �nd the most probable solution to the parityhek equation Hn=J (mod 2) ; for estimating the true noise vetor �. One retrieves theoriginal message using the equation GTS = z�n (mod 2); S to estimate of the originalmessage.To failitate the analysis we map the Boolean (0; 1) variables onto the binary (�1)representation. The binary vetors n and J , represent the noise estimate and syndromevetors respetively; the latter is generated by taking produts of the relevant noise bitsJ�= �i1�::�iK� , where the indies i1�; ::; iK� orrespond to the nonzero elements in row � ofthe parity hek matrix H.The similarity between error-orreting odes and physial systems was �rst pointed outby Sourlas [12℄, mapping a simple Boolean ode onto Ising spin models with multi-spininterations. We reently extended his work to more pratial parity hek odes [6℄. Weemploy a similar formulation using the HamiltonianH(n;J)=XG DG Æ 0�JG;�Yi2G ni1A� F MXi=1 ni ; (2)to evaluate the joint probability for J and nP (J ;n)= lim!1 exp[��H(n;J)℄(2 oshF )M : (3)Here, G�hi1; ::; iKi runs over all ombinations of K indies out of M ; JG�Qi2G �i and thesparse tensor DG beomes non-zero (unit) only when all indies in G orrespond to non-zero4



(unit) elements in a ertain row of the parity hek matrix H. Taking !1 enfores theparity hek equation. The additive �eld F =(1=2) ln [(1�p)=p℄ orresponds to the true priorprobability in the Bayesian framework, reeting the ip rate p. The inverse temperature� is introdued to emphasize the link with the statistial mehanis formulation and isgenerally �xed to �=1 unless spei�ed otherwise.One an then use (3) to evaluate �PE from (1) by alulating the bound without invokingJensen's inequality. The �rst part of the Hamiltonian (2) is invariant under gauge trans-formations of the form ni! ni�i, and JG ! JG Qi2G �i = 1, whih deouple the orrelationbetween the dynamial vetor n and the true noise �. Rewriting the Hamiltonian one ob-tains a similar expression to Eq. (2) apart from the last term on the right whih beomeF Pi �ini.Quenhed averages over the ensemble of odes is arried out with respet to the urrentrandom seletion of the sparse tensor D and the noise vetor, whih eventually results ina similar proedure to the replia method in statistial mehanis. This gives rise to a setof order parameters q�;�;:::;= 1M PMi=1 Zi n�i n�i :::ni ; where �, � : : : represent replia indies,and the variable Zi omes from enforing the restrition of C and L onnetions per indexrespetively as in [6℄. This interesting similarity between Gallager's method and the repliamethod has been pointed out by Iba in [4℄.To proeed further one has to make an assumption about the order parameter symmetry.As a �rst approximation we assume replia symmetry (RS) in the following order parametersand the related onjugate variablesq�;�;::;=q Z dx �(x)xl ; bq�;�;::;= bq Z dx̂ b�(x̂) x̂l ; (4)where l is the number of replia indies, q and bq are normalization variables (�(x) and b�(x̂)are probability distributions). Unspei�ed integrals are over the range [�1;+1℄.Originally, the summation Trfn6=�g(�) exludes the ase of n 6= �; however, it an beshown that in the limit of large M this beomes idential to the full summation in thenon-ferromagneti phase, where �(x) 6= Æ(x � 1) and b�(bx) 6= Æ(bx � 1). Then, one obtains5



the expressionEav(�; R)=� 1M ln24* TrfJ ;�gP 11+� (J ; �) Trfn6=�gP 11+� (J ;n)!�+D35=ln (2 oshF )� ln 2 osh F1 + �!!� 1M ln*Z�NF  �; D; F1 + �!+�j F1+� ;D ; (5)where ZNF(�; D; F1+�) denotes the partition funtion Trn lim!1 exp[��H℄ in the non-ferromagneti phase for a system with an e�etive additive �eld F=(1 + �). Averagesh�i�j F1+� ;D are over the distribution P (�; F1+�) = exp[ F1+� PMi=1 �i℄= �2 osh � F1+���M and theuniform distribution of D. Extremizing DZ�NF ��; D; F1+��E�j F1+� ;D with respet to the orderparameters q; bq; �(�) and b�(�), under the replia symmetry ansatz (4), one obtains for the�nal term in (5)1M ln*Z�NF  �; D; F1 + �!+�j F1+� ;D= Ext�fq;bq;�(�);b�(�)g(C qKK Z KYi=1 dxi�(xi) 1 +QKi=1 xi2 !�+ ln24Z CY�=1 dbx� b�(bx�)*0�e F1+� � CY�=1�1 + bx�2 � + e� F1+� � CY�=1�1� bx�2 �1A�+�j F1+�375+ C ln bq � Cqbq Z dx dbx �(x) b�(bx)�1 + xbx2 �� � �CK � C�) ; (6)where Ext� denotes extremization whih exludes the ferro-magneti solution and h�i�j F1+� isover P (�; F1+�).Before proeeding any further, we would like to mention some general properties ofEav(�; R). From Eqs. (5) and (6), it an be shown that lim�!0Eav(�; R) = 0 and�2Eav(�; R)=��2 < 0. This implies that Max�>0Eav(�; R), beomes positive if and onlyif �Eav(�; R)=��j�=0 > 0, for whih limM!1 �PE=0 holds. Therefore, the zero error thresh-old, de�ned as the ritial ip rate below whih the average error rate vanishes as M !1,is obtained by the ondition �Eav(�; R)=��=0. From (5), this beomesF tanhF � 1M hlnZNF (�; D;F )i�jF;D=0: (7)The seond term is the averaged free energy for the Hamiltonian (2) with respet to thequenhed randomness � and D, in the non-ferromagneti phase. Employing the ferromag-neti gauge [10℄ one obtains the following expression for the ferromagneti free energy (where6



�PE=0): (1=M) hlnZF (�; D;F )i�jF;D=F tanhF . Sine the orret prior information aboutthe ip rate p is used in the alulation, these two free energies are atually obtained in Nishi-mori's �nite deoding temperature (�=1) [12,11,10,5℄ for whih the bit error probability isminimized. By satisfying (7), the zero error threshold for ML deoding, whih orrespondsto the zero temperature limit (�!1) [12,5℄, is determined by the phase boundary betweenthe ferromagneti and non-ferromagneti phases at �=1.Using the ferromagneti gauge provides insight into the physial properties of the system.As the internal energy per bit in the non-ferromagneti system is �F tanhF under Nishi-mori's ondition, Eq. (7) implies that the entropy of the non-ferromagneti phase vanishesat the phase boundary for � = 1, suggesting that this phase exhibits a replia symmetrybreaking (RSB) at lower temperatures in general, and at �!1 in partiular. In this sense,the zero-error threshold predition obtained from Gallager's method and ML deoding, issurprising as it provides information about the ferro/non-ferro phase boundary at �!1whih is not easily obtained via the methods of statistial physis due to RSB e�ets. Thisargument an be extended to the ase of general � � 1, as will be presented elsewhere.An analytial expression to Eav(�; R) an be obtained in the limitK;C!1, keeping theode rate R=1�C=K �nite; for the non-ferromagneti solution one then obtains q=2�=K; bq=2�(1�1=K); �(x)=Æ(x) and b�(bx)=(1=2)(1+tanhF )Æ(bx�tanhF )+(1=2)(1�tanhF )Æ(bx+tanhF ):Using Eqs. (5) and (6), one obtains the expliit expression Eav(�; R) = ln 2 oshF � (1+�) ln �2 osh F1+��+�(1�R) ln 2. In addition, there exists another solution for � � 1, q =21=K ; bq = 21�1=K ; �(x)=(1=2)Æ(x� 1)+(1=2)Æ(x+1) and b�(bx)=(1=2)Æ(bx�1)+(1=2)Æ(bx+1)providing Eav(�; R)= ln 2 oshF�ln �2 oshF+2 osh �1��1+�F��+(1 � R) ln 2. Employing amethod similar to that in [9,8℄, it an be shown that both RS solutions are loally stableagainst perturbations to the replia symmetri solution.The relation between Eav(�; R) and the entropy of non-ferromagneti solutions SNF�Eav(�; R)�� =�hZ�NF ��; D; F1+��SNF ��; D; F1+��i�j F1+� ;DhZ�NF ��; D; F1+��i�j F1+� ;D ;suggests another type of RSB, indiated by the negative entropy. This implies that the7



entropy of the non-ferromagneti RS solutions vanishes at � = ��(R) whih maximizesEav(�; R); and the tightest lower bound of E(R) is therefore obtained at the RSB transition,whih an be alulated from the loally stable RS solutions.Solving the maximization problem one obtains
Max�>0 Eav(�; R)=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ln 2 oshF�(1�R) ln 2 F �2F �(R)�ln (2 oshF+2) ;ln 2 oshF�(1�R) ln 2 2F �(R)�F �F �(R)�F tanhF �(R) ;0 ; otherwise (8)

where F �(R) is the solution of the equation ln 2 oshF ��F � tanhF �� (1�R) ln 2 = 0.The position of the maximum is given as ��(R) = 1 for F � 2F �(R), F=F �(R)�1 for2F �(R)�F �F �(R) and 0, otherwise. Using the relation between F and p, this indiatesthat E(R) beomes positive if and only if R< 1�H2(p), whih orresponds to Shannon'slimit.Equation (8) is idential to the random oding exponent Er(R) obtained in the IT liter-ature [3℄, although one should emphasize the main di�erenes between the two approahes:a) Strating from Gallager's inequality (1) we diretly average over the ensemble while theEr(R) result is obtained by invoking Jensen's inequality. b) Our result is obtained for anensemble of a spei� ode.With some hindsight, this is not very surprising as Gallager odes beome similar torandom odes in the limit K;C ! 1 [7,6℄; this also implies that using Jensen's inequalitydoes not produe a looser bound as initially thought.To get a tighter bound for low R values we employ a re�ned inequality, upper-boundingthe ensemble minimum of PE by ��TrfJ ;�g P 11+� (J ; �) �TrfJ ;n6=�g P 11+� (J ;n)���m� 1mD (� >0; m > 0), as in (1). A similar alulation along the lines desribed here (details will beshown elsewhere) provides the expurgated exponent bound [3℄ result for low R values (seeFig.1); this links our results to the best bounds reported in the IT litereture to date.8



Without trivializing the results obtained in the ase of K;C !1, the main ahievementof our approah is the ability to investigate analytially the performane of Gallager (orsimilar) odes of �nite K and C. To demonstrate the auray of the bounds obtained weexamine the ase of K=6 and C=3. We numerially evaluated Eav(�; R) (5) for p=0:0915,a reent highly aurate estimate of the error threshold for this parameter [1℄, and forp = 0:0990, whih is the threshold predited by our analysis. The numerial results wereobtained by approximating �(�) and b�(�) using 106 dimensional vetors and iterating thesaddle point equations until onvergene. The results are shown in the inset; they indiatethat Max��0Eav(�; R) ' 1:0�10�4 > 0 for p=0:0915 while Eav(�; R) is maximized (to zero)in the viinity of �=0 for p=0:0990, suggesting a tighter estimate for the error thresholdthan those reported in the IT literature.In summary, we have developed a method to tightly upper-bound the dependene ofthe deoding error rate on the message length for Gallager odes. In the limit of in�niteonnetivity our result ollapses onto the best general random oding exponents reported inthe IT literatures, the random oding exponent and the expurgated exponent for high and lowR values respetively. The method provides one of the only tools available for examiningodes of �nite onnetivity; and predits the tightest estimate of the zero error noise levelthreshold to date for Gallager odes. It an be easily extended to investigate other linearodes of a similar type and is learly of high pratial signi�ane.We demonstrated how the methods of statistial physis may omplement and improveresults obtained in the IT literature. These methods are appliable to a broad range ofproblems, espeially within the sub-�eld of oding, and may be instrumental in improvingexisting results; some of these studies are already under way.Aknowledgement We aknowledge support from the JSPS-RFTF program (YK), EPSRC(GR/N00562) and the Royal Soiety (DS). YK would like to thank Y. Iba for kindly showing himan unpublished manusript [4℄ and D.J.C. MaKay for informing us of [1℄ prior to publiation.
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FIG. 1. Lower-bounds on the reliability exponent E(R) obtained for p = 0:01 in the limitK;C !1. Our method produes the same result as the random oding exponent Er(R) (solidline) whih provides an exellent bound for R>Rb. For low R<Ra values the bound beomes loose,and a better result (dashed line), idential to the expurgated exponent bound, is obtained (see text)by employing a re�ned inequality in (1). Inset - The exponent Eav(�;R) obtained numerially fora hoie of �nite parameters K=6 and C=3 (R=1=2). Symbols and and standard deviations areomputed using 50 numerial solutions. Curves are obtained via a quadrati �t. For p=0:0915,��(R)' 0:02, suggesting that this ip rate is still below the threshold. Left of the peak, the RSsolution (thin broken urve) is unstable. For p= 0:0990, our predited threshold, the maximumEav(�;R)'0 is obtained at �'0, implying that this is the orret threshold.
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