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A Hierarchical Latent Variable Model
for Data Visualization
Christopher M. Bishop and Michael E. Tipping

Abstract—Visualization has proven to be a powerful and widely-applicable tool for the analysis and interpretation of multivariate
data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space.
However, for complex data sets living in a high-dimensional space, it is unlikely that a single two-dimensional projection can reveal
all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be
visualized at the top level, with clusters and subclusters of data points visualized at deeper levels. The algorithm is based on a
hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximization algorithm. We
demonstrate the principle of the approach on a toy data set, and we then apply the algorithm to the visualization of a synthetic data
set in 12 dimensions obtained from a simulation of multiphase flows in oil pipelines, and to data in 36 dimensions derived from
satellite images. A Matlab software implementation of the algorithm is publicly available from the World Wide Web.

Index Terms—Latent variables, data visualization, EM algorithm, hierarchical mixture model, density estimation, principal
component analysis, factor analysis, maximum likelihood, clustering, statistics.

——————————   ✦   ——————————

1 INTRODUCTION

ANY algorithms for data visualization have been pro-
posed by both the neural computing and statistics

communities, most of which are based on a projection of
the data onto a two-dimensional visualization space. While
such algorithms can usefully display the structure of simple
data sets, they often prove inadequate in the face of data
sets which are more complex. A single two-dimensional
projection, even if it is nonlinear, may be insufficient to
capture all of the interesting aspects of the data set. For ex-
ample, the projection which best separates two clusters
may not be the best for revealing internal structure within
one of the clusters. This motivates the consideration of a
hierarchical model involving multiple two-dimensional
visualization spaces. The goal is that the top-level projec-
tion should display the entire data set, perhaps revealing
the presence of clusters, while lower-level projections dis-
play internal structure within individual clusters, such as
the presence of subclusters, which might not be apparent in
the higher-level projections.

Once we allow the possibility of many complementary
visualization projections, we can consider each projection
model to be relatively simple, for example, based on a lin-
ear projection, and compensate for the lack of flexibility of
individual models by the overall flexibility of the complete
hierarchy. The use of a hierarchy of relatively simple mod-
els offers greater ease of interpretation as well as the bene-
fits of analytical and computational simplification. This

philosophy for modeling complexity is similar in spirit to
the “mixture of experts” approach for solving regression
problems [1].

The algorithm discussed in this paper is based on a
form of latent variable model which is closely related to
both principal component analysis (PCA) and factor
analysis. At the top level of the hierarchy we have a single
visualization plot corresponding to one such model. By
considering a probabilistic mixture of latent variable
models we obtain a soft partitioning of the data set into
“clusters,” corresponding to the second level of the hier-
archy. Subsequent levels, obtained using nested mixture
representations, provide successively refined models of
the data set. The construction of the hierarchical tree
proceeds top down, and can be driven interactively by
the user. At each stage of the algorithm the relevant
model parameters are determined using the expectation-
maximization (EM) algorithm.

In the next section, we review the latent-variable model,
and, in Section 3, we discuss the extension to mixtures of
such models. This is further extended to hierarchical mix-
tures in Section 4, and is then used to formulate an interac-
tive visualization algorithm in Section 5. We illustrate the
operation of the algorithm in Section 6 using a simple toy
data set. Then we apply the algorithm to a problem in-
volving the monitoring of multiphase flows along oil
pipes in Section 7 and to the interpretation of satellite im-
age data in Section 8. Finally, extensions to the algorithm,
and the relationships to other approaches, are discussed
in Section 9.

2 LATENT VARIABLES

We begin by introducing a simple form of linear latent vari-
able model and discussing its application to data analysis.
Here we give an overview of the key concepts, and leave
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the detailed mathematical discussion to Appendix A. The
aim is to find a representation of a multidimensional data
set in terms of two latent (or “hidden”) variables. Suppose

the data space is d-dimensional with coordinates y1, º, yd

and that the data set consists of a set of d-dimensional

vectors {tn} where n = 1, º, N. Now consider a two-

dimensional latent space x = (x1, x2)T together with a lin-
ear function which maps the latent space into the data
space

y = Wx + m                                         (1)

where W is a d ¥ 2 matrix and m is a d-dimensional vector.
The mapping (1) defines a two-dimensional planar sur-
face in the data space. If we introduce a prior probability
distribution p(x) over the latent space given by a zero-
mean Gaussian with a unit covariance matrix, then (1)
defines a singular Gaussian distribution in data space with
mean m and covariance matrix ·(y - m)(y - m)TÒ = WWT. Fi-
nally, since we do not expect the data to be confined ex-
actly to a two-dimensional sheet, we convolve this distri-
bution with an isotropic Gaussian distribution p(t|x, s2)

in data space, having a mean of zero and covariance s2I,
where I is the unit matrix. Using the rules of probability,
the final density model is obtained from the convolution
of the noise model with the prior distribution over latent
space in the form

p p p d( ) = ( | ) ( )  t t x x xz .                              (2)

Since this represents the convolution of two Gaussians, the
integral can be evaluated analytically, resulting in a distri-
bution p(t) which corresponds to a d-dimensional Gaussian
with mean m and covariance matrix WWT + s2I.

If we had considered a more general model in which the
conditional distribution p(t|x) is given by a Gaussian with
a general diagonal covariance matrix (having d independ-
ent parameters), then we would obtain standard linear
factor analysis [2], [3]. In fact, our model is more closely
related to principal component analysis, as we now discuss.

The log likelihood function for this model is given by L =

Ân ln p(tn), and maximum likelihood can be used to fit the
model to the data and hence determine values for the pa-
rameters m, W, and s2. The solution for m is just given by
the sample mean. In the case of the factor analysis model,
the determination of W and s2 corresponds to a nonlinear
optimization which must be performed iteratively. For the
isotropic noise covariance matrix, however, it was shown
by Tipping and Bishop [4], [5] that there is an exact closed
form solution as follows. If we introduce the sample co-
variance matrix given by

S t t= - -
=

Â1

1
N n n

n

N

m mc hc hT
,                        (3)

then the only nonzero stationary points of the likelihood
occur for:

W = U (L - s2I)1/2R,                              (4)

where the two columns of the matrix U are eigenvectors
of S, with corresponding eigenvalues in the diagonal ma-
trix L, and R is an arbitrary 2 ¥ 2 orthogonal rotation ma-
trix. Furthermore, it was shown that the stationary point
corresponding to the global maximum of the likelihood
occurs when the columns of U comprise the two principal
eigenvectors of S (i.e., the eigenvectors corresponding to
the two largest eigenvalues) and that all other combina-
tions of eigenvectors represent saddle-points of the likeli-
hood surface. It was also shown that the maximum-
likelihood estimator of s2 is given by

s lML
2

3

1
2= -

=
Âd j
j

d

,                               (5)

which has a clear interpretation as the variance “lost” in the
projection, averaged over the lost dimensions.

Unlike conventional PCA, however, our model defines
a probability density in data space, and this is important
for the subsequent hierarchical development of the model.
The choice of a radially symmetric rather than a more
general diagonal covariance matrix for p(t|x) is motivated
by the desire for greater ease of interpretability of the
visualization results, since the projections of the data
points onto the latent plane in data space correspond (for
small values of s2) to an orthogonal projection as dis-
cussed in Appendix A.

Although we have an explicit solution for the maximum-
likelihood parameter values, it was shown by Tipping and
Bishop [4], [5] that significant computational savings can
sometimes be achieved by using the following EM (expec-
tation-maximization) algorithm [6], [7], [8]. Using (2), we
can write the log likelihood function in the form

L p p dn n
n

N

n n= zÂ
=

ln t x x xd i c h
1

,                        (6)

in which we can regard the quantities xn as missing vari-
ables. The posterior distribution of the xn, given the ob-
served tn and the model parameters, is obtained using
Bayes’ theorem and again consists of a Gaussian distribu-
tion. The E-step then involves the use of “old” parameter
values to evaluate the sufficient statistics of this distribu-
tion in the form

·xnÒ = M-1WT(tn - m)                               (7)

x x M x xn n n n
T T= +-s 2 1 ,                          (8)

where M = WTW + s2I is a 2 ¥ 2 matrix, and · Ò denotes the
expectation computed with respect to the posterior distri-
bution of x. The M-step then maximizes the expectation of
the complete-data log likelihood to give

~
W t x x x= -

L
N
MM

O
Q
PP
L
N
MM

O
Q
PP= =

-

Â Ân n
n

N

n n
n

N

mc h T T

1 1

1

                  (9)

~s 2 =

1
2

2

1
Nd n n n n n

n

N

t W W x x x W t- + - -
=

Â m mTr T T T T~ ~ ~e j c h{ }(10)
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in which ~ denotes “new” quantities. Note that the new
value for 

~
W  obtained from (9) is used in the evaluation of

s2 in (10). The model is trained by alternately evaluating
the sufficient statistics of the latent-space posterior distri-
bution using (7) and (8) for given s2 and W (the E-step),

and re-evaluating s2 and W using (9) and (10) for given

·xnÒ and x xn n
T  (the M-step). It can be shown that, at each

stage of the EM algorithm, the likelihood is increased un-
less it is already at a local maximum, as demonstrated in
Appendix E.

For N data points in d dimensions, evaluation of the
sample covariance matrix requires O(Nd2) operations, and
so any approach to finding the principal eigenvectors based
on an explicit evaluation of the covariance matrix must
have at least this order of computational complexity. By
contrast, the EM algorithm involves steps which are only
O(Nd). This saving of computational cost is a consequence
of having a latent space whose dimensionality (which, for
the purposes of our visualization algorithm, is fixed at two)
does not scale with d.

If we substitute the expressions for the expectations
given by the E-step equations (7) and (8) into the M-step
equations we obtain the following re-estimation formulas

~
W  = SW(s2I + M-1WTSW)-1                       (11)

~ ~s 2 11
= - -

d Tr TS SWM Wo t                       (12)

which shows that all of the dependence on the data occurs
through the sample covariance matrix S. Thus the EM algo-
rithm can be expressed as alternate evaluations of (11) and
(12). (Note that (12) involves a combination of “old” and
“new” quantities.) This form of the EM algorithm has been
introduced for illustrative purposes only, and would in-
volve O(Nd2) computational cost due to the evaluation of
the covariance matrix.

We have seen that each data point tn induces a Gaussian
posterior distribution p(xn|tn) in the latent space. For the
purposes of visualization, however, it is convenient to
summarize each such distribution by its mean, given by
·xnÒ, as illustrated in Fig. 1. Note that these quantities are
obtained directly from the output of the E-step (7). Thus, a
set of data points {tn} where n = 1, º, N is projected onto a
corresponding set of points {·xnÒ} in the two-dimensional
latent space.

3 MIXTURES OF LATENT VARIABLE MODELS

We can perform an automatic soft clustering of the data
set, and at the same time obtain multiple visualization
plots corresponding to the clusters, by modeling the data
with a mixture of latent variable models of the kind de-
scribed in Section 2. The corresponding density model
takes the form

p p ii
i

M

t ta f c h=
=
Âp

1

0

                               (13)

where M0 is the number of components in the mixture, and

the parameters pi are the mixing coefficients, or prior prob-
abilities, corresponding to the mixture components p(t|i).
Each component is an independent latent variable model

with parameters mi, Wi, and s i
2 . This mixture distribution

will form the second level in our hierarchical model.
The EM algorithm can be extended to allow a mixture of

the form (13) to be fitted to the data (see Appendix B for
details). To derive the EM algorithm we note that, in addi-
tion to the {xn}, the missing data now also includes labels
which specify which component is responsible for each
data point. It is convenient to denote this missing data by a
set of variables zni where zni = 1 if tn was generated by
model i (and zero otherwise). The prior expectations for
these variables are given by the pi and the corresponding
posterior probabilities, or responsibilities, are evaluated in
the extended E-step using Bayes’ theorem in the form

R P i
p i

p ini n
i n

i i n

= =
Â ¢¢ ¢

t
t

t
d i c h

c h
p
p

.                     (14)

Although a standard EM algorithm can be derived by

treating the {xn} and the zni jointly as missing data, a more
efficient algorithm can be obtained by considering a two-
stage form of EM. At each complete cycle of the algorithm

we commence with an “old” set of parameter values pi, mi,

Wi, and s i
2 . We first use these parameters to evaluate the

posterior probabilities Rni using (14). These posterior prob-
abilities are then used to obtain “new” values ~p i  and ~

m i

using the following re-estimation formulas

~p i ni
n

N R= Â1
                               (15)

~
m i

n ni n

n ni

R
R

=
Â
Â

t
.                               (16)

The new values ~
m i  are then used in evaluation of the suffi-

cient statistics for the posterior distribution for xni

x M W tni i i n i= --1 T ~
mc h                          (17)

x x M x xni ni i i ni ni
T T= +-s 2 1                      (18)

where M W W Ii i i i= +T s 2 . Finally, these statistics are used to

evaluate “new” values 
~
Wi  and ~s i

2  using

Fig. 1. Illustration of the projection of a data point onto the mean of the
posterior distribution in latent space.
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~ ~W t x x xi ni n i ni
n

ni ni ni
n

R R= -
L
N
MM

O
Q
PP
L
N
MM

O
Q
PPÂ Â

-

mc h T T
1

         (19)

~ ~s i
n ni

ni
n

n id R
R2 21

= tÂ
R
S|
T|

-Â m

- - +
U
V|
W|Â Â2 R Rni

n
ni i n i ni ni ni i i

n

x W t x x W WT T T TTr
~ ~ ~ ~

mc h  (20)

which are derived in Appendix B.
As for the single latent variable model, we can substitute

the expressions for ·xniÒ and x xni ni
T , given by (17) and (18),

respectively, into (19) and (20). We then see that the re-
estimation formulae for 

~
Wi  and ~s i

2  take the form

~
W S W I M W S Wi i i i i i i i= + - -

s 2 1 1Te j                  (21)

~ ~s i i i i i id
2 11

= - -Tr TS S W M We j,                      (22)

where all of the data dependence been expressed in terms
of the quantities

S t ti
i

ni n i n i
n

N R= - -Â1 ~ ~
m mc hc hT

,                 (23)

and we have defined Ni = ÂnRni. The matrix Si can clearly
be interpreted as a responsibility weighted covariance ma-
trix. Again, for reasons of computational efficiency, the
form of EM algorithm given by (17) to (20) is to be pre-
ferred if d is large.

4 HIERARCHICAL MIXTURE MODELS

We now extend the mixture representation of Section 3 to
give a hierarchical mixture model. Our formulation will be
quite general and can be applied to mixtures of any para-
metric density model.

So far we have considered a two-level system consisting
of a single latent variable model at the top level and a
mixture of M0 such models at the second level. We can now
extend the hierarchy to a third level by associating a group
*i of latent variable models with each model i in the second
level. The corresponding probability density can be written
in the form

p p i ji j i
ji

M

i

t ta f d i=
Œ=
ÂÂp p ,
*1

0

,                       (24)

where p(t|i, j) again represent independent latent variable
models, and pj|i correspond to sets of mixing coefficients,
one for each i, which satisfy Âjpj|i = 1. Thus, each level of
the hierarchy corresponds to a generative model, with
lower levels giving more refined and detailed representa-
tions. This model is illustrated in Fig. 2.

Determination of the parameters of the models at the
third level can again be viewed as a missing data problem
in which the missing information corresponds to labels
specifying which model generated each data point. When
no information about the labels is provided the log likeli-
hood for the model (24) would take the form

L p i ji j i
ji

M

n

N

i

=
R
S|
T|

U
V|
W|Œ==

ÂÂÂ ln ,p p td i
*11

0

.                   (25)

If, however, we were given a set of indicator variables zni
specifying which model i at the second level generated each
data point tn then the log likelihood would become

L z p i jni
i

M

i j i
jn

N

i

=
R
S|
T|

U
V|
W|= Œ=

Â ÂÂ
11

0

ln ,p p td i
*

.                  (26)

In fact, we only have partial, probabilistic, information in
the form of the posterior responsibilities Rni for each model
i having generated the data points tn, obtained from the
second level of the hierarchy. Taking the expectation of (26),
we then obtain the log likelihood for the third level of the
hierarchy in the form

L R p i jni
i

M

i j i
jn

N

i

=
R
S|
T|

U
V|
W|= Œ=

Â ÂÂ
11

0

ln ,p p td i
*

,                 (27)

in which the Rni are constants. In the particular case in
which the Rni are all 0 or 1, corresponding to complete cer-
tainty about which model in the second level is responsible
for each data point, the log likelihood (27) reduces to the
form (26).

Maximization of (27) can again be performed using the
EM algorithm, as discussed in Appendix C. This has the
same form as the EM algorithm for a simple mixture,
discussed in Section 3, except that in the E-step, the poste-
rior probability that model (i, j) generated data point tn is
given by

Fig. 2. The structure of the hierarchical model.
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Rni,j = RniRnj|i,                                  (28)

in which

R
p i j

p i jnj i
j i n

j j i n

=
Â ¢¢ ¢

p

p

t

t

,

,

d i
d i

.                          (29)

Note that Rni are constants determined from the second
level of the hierarchy, and Rnj|i are functions of the “old”
parameter values in the EM algorithm. The expression (29)
automatically satisfies the relation

R Rni j
j

ni

i

,
Œ
Â =
*

                                  (30)

so that the responsibility of each model at the second level
for a given data point n is shared by a partition of unity
between the corresponding group of offspring models at
the third level.

The corresponding EM algorithm can be derived by a
straightforward extension of the discussion given in Sec-
tion 3 and Appendix B, and is outlined in Appendix C. This
shows that the M-step equations for the mixing coefficients
and the means are given by

~ ,p j i
n ni j

n ni

R
R

=
Â
Â ,                                (31)

~
,

,

,
m i j

n ni j n

n ni j

R
R

=
Â
Â

t
.                              (32)

The posterior expectations for the missing variables zni,j are
then given by

x M W tni j i j i j n i j, , , ,
~= --1 T
me j                       (33)

x x M x xni j ni j i j i j ni j ni j, , , , , ,
T T= +-s 2 1                 (34)

Finally, the Wi,j and s i j,
2  are updated using the M-step

equations

~ ~
, , , , , , ,W t x x xi j ni j n i j ni j

n
ni j ni j ni j

n

R R= -
L
N
MM

O
Q
PP
L
N
MM

O
Q
PPÂ Â

-

me j T T
1

  (35)

~ ~
,

,
, ,s i j

n ni j
ni j n i j

n
d R

R2 21
= Â -

R
S|
T|Â

t m

- -Â2 Rni j
n

ni j i j n i j, , , ,
~ ~x W tT T

me j

+
U
V|
W|Â Rni j

n
ni j ni j i j i j, , , , ,

~ ~
Tr T Tx x W W .                 (36)

Again, we can substitute the E-step equations into the
M-step equations to obtain a set of update formulas of the
form

~
, , , , , , , ,W S W I M W S Wi j i j i j i j i j i j i j i j= + - -

s 2 1 1Te j             (37)

~ ~
, , , , , ,s i j i j i j i j i j i jd

2 11
= - -Tr TS S W M We j                 (38)

where all of the summations over n have been expressed in
terms of the quantities

S t ti j
i j

ni j
n

n i j n i jN R,
,

, , ,
~ ~= - -Â1
m me je j

T
              (39)

in which we have defined Ni,j = ÂnRni,j. The Si,j can again be
interpreted as responsibility-weighted covariance matrices.

It is straightforward to extend this hierarchical modeling
technique to any desired number of levels, for any para-
metric family of component distributions.

5 THE VISUALIZATION ALGORITHM

So far, we have described the theory behind hierarchical
mixtures of latent variable models, and have illustrated the
overall form of the visualization hierarchy in Fig. 2. We
now complete the description of our algorithm by consid-
ering the construction of the hierarchy, and its application
to data visualization.

Although the tree structure of the hierarchy can be pre-
defined, a more interesting possibility, with greater practi-
cal applicability, is to build the tree interactively. Our multi-
level visualization algorithm begins by fitting a single la-
tent variable model to the data set, in which the value of
m is given by the sample mean. For low values of the data
space dimensionality d, we can find W and s2 directly by
evaluating the covariance matrix and applying (4) and (5).
However, for larger values of d, it may be computationally
more efficient to apply the EM algorithm, and a scheme for
initializing W and s2 is given in Appendix D. Once the EM
algorithm has converged, the visualization plot is gener-

ated by plotting each data point tn at the corresponding

posterior mean ·xnÒ in latent space.
On the basis of this plot, the user then decides on a suit-

able number of models to fit at the next level down, and

selects points x(i) on the plot corresponding, for example, to

the centers of apparent clusters. The resulting points y(i) in
data space, obtained from (1), are then used to initialize the

means mi of the respective submodels. To initialize the re-
maining parameters of the mixture model, we first assign

the data points to their nearest mean vector mi, and then
either compute the corresponding sample covariance ma-
trices and apply a direct eigenvector decomposition, or use
the initialization scheme of Appendix D followed by the
EM algorithm.

Having determined the parameters of the mixture
model at the second level we can then obtain the corre-
sponding set of visualization plots, in which the posterior
means ·xniÒ are again used to plot the data points. For
these, it is useful to plot all of the data points on every
plot, but to modify the density of “ink” in proportion to
the responsibility which each plot has for that particular
data point. Thus, if one particular component takes most
of the responsibility for a particular point, then that point
will effectively be visible only on the corresponding plot.
The projection of a data point onto the latent spaces for a
mixture of two latent variable models is illustrated sche-
matically in Fig. 3.
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Fig. 3. Illustration of the projection of a data point onto the latent
spaces of a mixture of two latent variable models.

The resulting visualization plots are then used to select
further submodels, if desired, with the responsibility
weighting of (28) being incorporated at this stage. If it is
decided not to partition a particular model at some level,
then it is easily seen from (30) that the result of training is
equivalent to copying the model down unchanged to the
next level. Equation (30) further ensures that the combina-
tion of such copied models with those generated through
further submodeling defines a consistent probability
model, such as that represented by the lower three models
in Fig. 2. The initialization of the model parameters is by
direct analogy with the second-level scheme, with the co-
variance matrices now also involving the responsibilities
Rni as weighting coefficients, as in (23). Again, each data
point is in principle plotted on every model at a given level,
with a density of “ink” proportional to the corresponding
posterior probability, given, for example, by (28) in the case
of the third level of the hierarchy.

Deeper levels of the hierarchy involve greater numbers
of parameters, and it is therefore important to avoid over-
fitting and to ensure that the parameter values are well-
determined by the data. If we consider principal compo-
nent analysis, then we see that three (noncolinear) data
points are sufficient to ensure that the covariance matrix
has rank two and hence that the first two principal compo-
nents are defined, irrespective of the dimensionality of the
data set. In the case of our latent variable model, four data
points are sufficient to determine both W and s2. From this,
we see that we do not need excessive numbers of data
points in each leaf of the tree, and that the dimensionality
of the space is largely irrelevant.

Finally, it is often also useful to be able to visualize the
spatial relationship between a group of models at one
level and their parent at the previous level. This can be
done by considering the orthogonal projection of the la-
tent plane in data space onto the corresponding plane of
the parent model, as illustrated in Fig. 4. For each model
in the hierarchy (except those at the lowest level), we can
plot the projections of the associated models from the
level below.

In the next section, we illustrate the operation of this al-
gorithm when applied to a simple toy data set, before pre-
senting results from the study of more realistic data in Sec-
tions 7 and 8.

6 ILLUSTRATION USING TOY DATA

We first consider a toy data set consisting of 450 data points
generated from a mixture of three Gaussians in a three-
dimensional space. Each Gaussian is relatively flat (has
small variance) in one dimension, and all have the same
covariance but differ in their means. Two of these pancake-
like clusters are closely spaced, while the third is well sepa-
rated from the first two. The structure of this data set has
been chosen order to illustrate the interactive construction
of the hierarchical model.

To visualize the data, we first generate a single top-level
latent variable model, and plot the posterior mean of each
data point in the latent space. This plot is shown at the top
of Fig. 5, and clearly suggests the presence of two distinct
clusters within the data. The user then selects two initial
cluster centers within the plot, which initialize the sec-
ond-level. This leads to a mixture of two latent variable
models, the latent spaces of which are plotted at the sec-
ond level in Fig. 5. Of these two plots, that on the right
shows evidence of further structure, and so a submodel is
generated, again based on a mixture of two latent variable
models, which illustrates that there are indeed two fur-
ther distinct clusters.

At this third step of the data exploration, the hierarchi-
cal nature of the approach is evident as the latter two
models only attempt to account for the data points which
have already been modeled by their immediate ancestor.
Indeed, a group of offspring models may be combined
with the siblings of the parent and still define a consistent
density model. This is illustrated in Fig. 5, in which one of
the second level plots has been “copied down” (shown by
the dotted line) and combined with the other third-level
models. When offspring plots are generated from a par-
ent, the extent of each offspring latent space (i.e., the axis
limits shown on the plot) is indicated by a projected rec-
tangle within the parent space, using the approach illus-
trated in Fig. 4, and these rectangles are numbered se-
quentially such that the leftmost submodel is “1.” In order
to display the relative orientations of the latent planes,
this number is plotted on the side of the rectangle which
corresponds to the top of the corresponding offspring plot.
The original three clusters have been individually colored,
and it can be seen that the red, yellow, and blue data

Fig. 4. Illustration of the projection of one of the latent planes onto its
parent plane.
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points have been almost perfectly separated in the third
level.

7 OIL FLOW DATA

As an example of a more complex problem, we consider a
data set arising from a noninvasive monitoring system
used to determine the quantity of oil in a multiphase
pipeline containing a mixture of oil, water, and gas [9].
The diagnostic data is collected from a set of three hori-
zontal and three vertical beam-lines along which gamma
rays at two different energies are passed. By measuring
the degree of attenuation of the gammas, the fractional
path length through oil and water (and, hence, gas) can
readily be determined, giving 12 diagnostic measure-
ments in total. In practice, the aim is to solve the inverse
problem of determining the fraction of oil in the pipe. The
complexity of the problem arises from the possibility of
the multiphase mixture adopting one of a number of dif-
ferent geometrical configurations. Our goal is to visualize
the structure of the data in the original 12-dimensional
space. A data set consisting of 1,000 points is obtained
synthetically by simulating the physical processes in the
pipe, including the presence of noise dominated by pho-
ton statistics. Locally, the data is expected to have an in-
trinsic dimensionality of two corresponding to the two
degrees of freedom given by the fraction of oil and the

fraction of water (the fraction of gas being redundant).
However, the presence of different flow configurations, as
well as the geometrical interaction between phase
boundaries and the beam paths, leads to numerous dis-
tinct clusters. It would appear that a hierarchical ap-
proach of the kind discussed here should be capable of
discovering this structure. Results from fitting the oil flow
data using a three-level hierarchical model are shown in
Fig. 6.

In the case of the toy data discussed in Section 6, the
optimal choice of clusters and subclusters is relatively
unambiguous and a single application of the algorithm is
sufficient to reveal all of the interesting structure within
the data. For more complex data sets, it is appropriate to
adopt an exploratory perspective and investigate alterna-
tive hierarchies, through the selection of differing num-
bers of clusters and their respective locations. The exam-
ple shown in Fig. 6 has clearly been highly successful.
Note how the apparently single cluster, number 2, in the
top-level plot is revealed to be two quite distinct clusters
at the second level, and how data points from the “homo-
geneous” configuration have been isolated and can be
seen to lie on a two-dimensional triangular structure in
the third level.

Fig. 5. A summary of the final results from the toy data set. Each data point is plotted on every model at a given level, but with a density of ink
which is proportional to the posterior probability of that model for the given data point.
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8 SATELLITE IMAGE DATA

As a final example, we consider the visualization of a data
set obtained from remote-sensing satellite images. Each
data point represents a 3 ¥ 3 pixel region of a satellite land
image, and, for each pixel, there are four measurements of
intensity taken at different wavelengths (approximately red
and green in the visible spectrum, and two in the near
infrared). This gives a total of 36 variables for each data
point. There is also a label indicating the type of land repre-
sented by the central pixel. This data set has previously
been the subject of a classification study within the STATLOG

project [10].
We applied the hierarchical visualization algorithm to

600 data points, with 100 drawn at random of each of six
classes in the 4,435-point data set. The result of fitting a
three-level hierarchy is shown in Fig. 7. Note that the class
labels are used only to color the data points and play no
role in the maximum likelihood determination of the
model parameters. Fig. 7 illustrates that the data can be
approximately separated into classes, and the “gray soil”
Æ “damp gray soil” Æ “very damp gray soil” continuum
is clearly evident in component 3 at the second level. One
particularly interesting additional feature is that there
appear to be two distinct and separated clusters of “cot-
ton crop” pixels, in mixtures 1 and 2 at the second level,
which are not evident in the single top-level projection.
Study of the original image [10] indeed indicates that
there are two separate areas of “cotton crop.”

9 DISCUSSION

We have presented a novel approach to data visualization
which is both statistically principled and which, as illus-
trated by real examples, can be very effective at revealing
structure within data. The hierarchical summaries of Figs.
5, 6, and 7 are relatively simple to interpret, yet still convey
considerable structural information.

It is important to emphasize that in data visualization
there is no objective measure of quality, and so it is difficult
to quantify the merit of a particular data visualization tech-
nique. This is one reason, no doubt, why there is a multi-
tude of visualization algorithms and associated software
available. While the effectiveness of many of these tech-
niques is often highly data-dependent, we would expect
the hierarchical visualization model to be a very useful tool
for the visualization and exploratory analysis of data in
many applications.

In relation to previous work, the concept of subsetting,
or isolating, data points for further investigation can be
traced back to Maltson and Dammann [11], and was further
developed by Friedman and Tukey [12] for exploratory
data analysis in conjunction with projection pursuit. Such
subsetting operations are also possible in current dynamic
visualization software, such as “XGobi” [13]. However, in
these approaches there are two limitations. First, the parti-
tioning of the data is performed in a hard fashion, while the
mixture of latent variable models approach discussed in
this paper permits a soft partitioning in which data points
can effectively belong to more than one cluster at any given
level. Second, the mechanism for the partitioning of the
data is prone to suboptimality as the clusters must be fixed

Fig. 6. Results of fitting the oil data. Colors denote different multiphase flow configurations corresponding to homogeneous (red), annular (blue),
and laminar (yellow).
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by the user based on a single two-dimensional projection.
In the hierarchical approach advocated in this paper, the
user selects only a “first guess” for the cluster centers in the
mixture model. The EM algorithm is then utilized to de-
termine the parameters which maximize the likelihood of
the model, thus allowing both the centers and the widths of
the clusters to adapt to the data in the full multidimen-
sional data space. There is also some similarity between our
method and earlier hierarchical methods in script recogni-
tion [14] and motion planning [15] which incorporate the
Kohonen Self-Organizing Feature Map [16] and so offer the
potential for visualization. As well as again performing a
hard clustering, a key distinction in both of these ap-
proaches is that different levels in the hierarchies operate
on different subsets of input variables and their operation is
thus quite different from the hierarchical algorithm de-
scribed in this paper.

Our model is based on a hierarchical combination of
linear latent variable models. A related latent variable
technique called the generative topographic mapping (GTM)
[17] uses a nonlinear transformation from latent space to
data space and is again optimized using an EM algorithm.
It is straightforward to incorporate GTM in place of the
linear latent variable models in the current hierarchical
framework.

As described, our model applies to continuous data
variables. We can easily extend the model to handle dis-
crete data as well as combinations of discrete and con-
tinuous variables. In case of a set of binary data vari-

ables yk Œ {0, 1}, we can express the conditional distribution
of a binary variable, given x, using a binomial distribution

of the form p k k k

t

k k

tk k
t x w x w xc h e j e j= ’ + - +

-
s m s mT T1

1
,

where s(a) = (1 + exp(-a))-1 is the logistic sigmoid function,

and wk is the kth column of W. For data having a 1-of-D
coding scheme we can represent the distribution of data
variables using a multinomial distribution of the form

p mk
D

k
xkt xc h = ’ =1  where mk are defined by a softmax, or

normalized exponential, transformation of the form

mk
k k

j j j

=
+

Â +

exp

exp

w x

w x

T

T

m

m

e j
e j

.                        (40)

If we have a data set consisting of a combination of con-
tinuous, binary and categorical variables, we can formulate
the appropriate model by writing the conditional distribu-
tion p(t|x) as a product of Gaussian, binomial and multi-
nomial distributions as appropriate. The E-step of the EM
algorithm now becomes more complex since the marginali-
zation over the latent variables, needed to normalize the
posterior distribution in latent space, will in general be
analytically intractable. One approach is to approximate the
integration using a finite sample of points drawn from the
prior [17]. Similarly, the M-step is more complex, although
it can be tackled efficiently using the iterative reweighted
least squares (IRLS) algorithm [18].

One important consideration with the present model is
that the parameters are determined by maximum likeli-
hood, and this criterion need not always lead to the most
interesting visualization plots. We are currently investigat-
ing alternative models which optimize other criteria such
as the separation of clusters. Other possible refinements

Fig. 7. Results of fitting the satellite image data.
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include algorithms which allow a self-consistent fitting of
the whole tree, so that lower levels have the opportunity to
influence the parameters at higher levels. While the user-
driven nature of the current algorithm is highly appropriate
for the visualization context, the development of an auto-
mated procedure for generating the hierarchy would
clearly also be of interest.

A software implementation of the probabilistic hierar-
chical visualization algorithm in MATLAB is available from:

http://www.ncrg.aston.ac.uk/PhiVis

APPENDIX A
PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS
AND EM

The algorithm discussed in this paper is based on a latent
variable model corresponding to a Gaussian distribution
with mean m and covariance WWT + s2I, in which the pa-

rameters of the model, given by m, W, and s2 are deter-
mined by maximizing the likelihood function given by (6).
For a single such model, the solution for the mean m is
given by the sample mean of the data set. We can express
the solutions for W and s2 in closed form in terms of the
eigenvectors and eigenvalues of the sample covariance
matrix, as discussed in Section 2. Here we derive an alter-
native approach based on the EM (expectation-

maximization) algorithm. We first regard the variables xn

appearing in (6) as “missing data.” If these quantities were
known, then the corresponding “complete data” log likeli-
hood function would be given by

L p p pn n
n

N

n n
n

N

nC = =
= =

Â Âln , lnt x t x xc h d i c h
1 1

.         (41)

We do not, of course, know the values of the xn, but we can
find their posterior distribution using Bayes’ theorem in the
form

p
p p

p
x t

t x x
tb g b g a f
a f= .                             (42)

Since p(t|x) is Gaussian with mean Wx + m and covariance
s2I, and p(x) is Gaussian with zero mean and unit variance,
it follows by completing the square that p(x|t) is also Gaus-

sian with mean given by M-1WT(tn - m), and covariance

given by s2M-1, where we have defined M = WTW + s2I.
We can then compute the expectation of LC with respect

to this posterior distribution to give

L
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which corresponds to the E-step of the EM algorithm.
The M-step corresponds to the maximization of ·LCÒ with

respect to W and s2, for fixed ·xnÒ and x xn n
T . This is

straightforward, and gives the results (9) and (10). A simple
proof of convergence for the EM algorithm is given in
Appendix E.

An important aspect of our algorithm is the choice of an
isotropic covariance matrix for the noise model of the form
s2I. The maximum likelihood solution for W is given by the
scaled principal component eigenvectors of the data set, in
the form

W= Uq (Lq - s2I)1/2R                            (44)

where Uq is a d ¥ q matrix whose columns are the eigen-
vectors of the data covariance matrix corresponding to the q
largest eigenvalues (where q is the dimensionality of the
latent space, so that q = 2 in our model), and Lq is a q ¥ q
diagonal matrix whose elements are given by the eigenval-
ues. The matrix R is an arbitrary orthogonal matrix corre-
sponding to a rotation of the axes in latent space. This re-
sult is derived and discussed in [5], and shows that the im-
age of the latent plane in data space coincides with the
principal components plane.

Also, for s2 Æ 0, the projection of data points onto the

latent plane, defined by the posterior means ·xnÒ, coincides
with the principal components projection. To see this we

note that when a point xn in latent space is projected onto a

point Wxn + m in data space, the squared distance between

the projected point and a data point tn is given by

iWxn + m - tni2.                              (45)

If we minimize this distance with respect to xn we obtain a

solution for the orthogonal projection of tn onto the plane
defined by W and m, given by Wx~n + m  where

~x W W W tn n= -
-T Te j c h1

m .                     (46)

We see from (7) that, in the limit s2 Æ 0, the posterior mean

for a data point tn reduces to (46) and hence the corre-

sponding point  W·xnÒ + m is given by the orthogonal pro-

jection of tn onto the plane defined by (1). For s2 π 0, the
posterior mean is skewed towards the origin by the prior,
and hence the projection Wx~n + µ  is shifted toward m.

The crucial difference between our latent variable model
and principal component analysis is that, unlike PCA, our
model defines a probability density, and hence allows us to
consider mixtures, and indeed hierarchical mixtures, of
models in a probabilistically principled manner.

APPENDIX B
EM FOR MIXTURES OF PRINCIPAL COMPONENT
ANALYZERS

At the second level of the hierarchy we must fit a mixture
of latent variable models, in which the overall model distri-
bution takes the form

p p ii
i

M

t ta f c h=
=
Âp

1

0

,                             (47)
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where p(t|i) is a single latent variable model of the form
discussed in Appendix A and pi is the corresponding mix-
ing proportion. The parameters for this mixture model can
be determined by an extension of the EM algorithm. We
begin by considering the standard form which the EM al-
gorithm would take for this model and highlight a number
of limitations. We then show that a two-stage form of EM
leads to a much more efficient algorithm.

We first note that in addition to a set of xni for each
model i, the missing data includes variables zni labeling
which model is responsible for generating each data point
tn. At this point, we can derive a standard EM algorithm by
considering the corresponding complete-data log likeli-
hood which takes the form

L z pC ni i n ni
i

M

n

N

=
==
ÂÂ ln ,p t xc hn s

11

0

.                  (48)

Starting with “old” values for the parameters pi, mi, Wi, and

si
2 we first evaluate the posterior probabilities Rni using

(14) and similarly evaluate the expectations ·xniÒ and

x xni ni
T  using (17) and (18) which are easily obtained by

inspection of (7) and (8). Then we take the expectation of LC

with respect to this posterior distribution to obtain
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where ◊  denotes the expectation with respect to the

posterior distributions of both xni and zni. The M-step then

involves maximizing (49) with respect to pi, mi, s i
2 , and Wi

to obtain “new” values for these parameters. The maximi-

zation with respect to pi must take account of the constraint

that Âipi = 1. This can be achieved with the use of a La-

grange multiplier l [8] by maximizing

L i
i

M

C + -
F
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I
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Âl p 1
1

0

.                          (50)

Together with the results of maximizing (48) with respect to
the remaining parameters, this gives the following M-step
equations
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Note that the M-step equations for ~m i  and 
~
Wi , given by (52)

and (53), are coupled, and so further manipulation is re-
quired to obtain explicit solutions. In fact, a simplification
of the M-step equations, along with improved speed of
convergence, is possible if we adopt a two-stage EM proce-
dure as follows.

The likelihood function we wish to maximize is given by

L p ii n
i

M

n

N

=
R
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ÂÂ ln p tc h
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.                        (55)

Regarding the component labels zni as missing data, we can
consider the corresponding expected complete-data log
likelihood given by

$ lnL R p ini
i

M

i n
n

N

C =
==
ÂÂ

11

0

p tc hn s,                     (56)

where Rni represent the posterior probabilities (corresponding

to the expected values of zni) and are given by (14). Maxi-

mization of (56) with respect to pi, again using a Lagrange
multiplier, gives the M-step equation (15). Similarly, maxi-
mization of (56) with respect to m i  gives (16).

In order to update Wi and s i
2 , we seek only to increase

the value of $LC  and not actually to maximize it. This

corresponds to the generalized EM (or GEM) algorithm.

We do this by treating the labels zni as missing data and
performing one cycle of the EM algorithm. This involves
using the new values ~

m i  to compute the sufficient statis-

tics of the posterior distribution of xni using (17) and (18).
The advantage of this strategy is that we are using the
new rather than old values of m i  in computing these sta-
tistics, and overall this leads to simplifications to the algo-
rithm as well as improved convergence speed. By inspec-
tion of (49) we see that the expected complete-data log
likelihood takes the form
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We then maximize (57) with respect to Wi and s i
2  (keeping

~
m i  fixed). This gives the M-step equations (19) and (20).
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APPENDIX C
EM FOR HIERARCHICAL MIXTURE MODELS

In the case of the third and subsequent levels of the hierar-
chy we have to maximize a likelihood function of the form
(27) in which the Rni and the pi are treated as constants. To
obtain an EM algorithm we note that the likelihood func-
tion can be written as

L L L R p i j
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i ni i j i
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= =
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W|= Œ=

Â ÂÂwhere        
1 1

0

ln ,p p td i
*

.  (58)

Since the parameters for different values of i are independ-
ent this represents M0 independent models each of which
can be fitted separately, and each of which corresponds to a
mixture model but with weighting coefficients Rni. We can
then derive the EM algorithm by introducing, for each i, the
expected complete-data likelihood in the form

L R R p i ji ni nj i
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N
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C =
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ÂÂ
*

ln ,p td i{ }
1

               (59)

where Rnj|i is defined by (29) and we have omitted the con-

stant term involving pi. Thus, the responsibility of the jth

submodel in group *i for generating data point tn is effec-
tively weighted by the responsibility of its parent model.
Maximization of (59) gives rise to weighted M-step equa-

tions for the Wi,j, m i j, , and s i j,
2  parameters with weighting

factors Rni,j given by (28), as discussed in the text. For the

mixing coefficients pj|i, we can introduce a Lagrange multi-

plier li, and hence maximize the function
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              (60)

to obtain the M-step result (31).
A final consideration is that while each offspring mixture

within the hierarchy is fitted to the entire data set, the re-
sponsibilities of its parent model for many of the data
points will approach zero. This implies that the weighted
responsibilities for the component models of the mixture
will likewise be at least as small. Thus, in a practical im-
plementation, we need only fit offspring mixture models to
a reduced data set, where data points for which the parental
responsibility is less than some threshold are discarded. For
reasons of numerical accuracy, this threshold should be no
smaller than the machine precision (which is 2.22 ¥ 10-16 for
double-precision arithmetic). We adopted such a threshold
for the experiments within this paper, and observed a con-
siderable computational advantage, particularly at deeper
levels in the hierarchy.

APPENDIX D
INITIALIZATION OF THE EM ALGORITHM

Here we outline a simple procedure for initializing W and
s2 before applying the EM algorithm. Consider a covari-
ance matrix S with eigenvalues uj and eigenvalues lj. An
arbitrary vector v will have an expansion in the eigenbasis

of the form v = Âjvjuj, where vj = vTuj. If we multiply v by S,
we obtain a vector Âjljvjuj which will tend to be dominated
by the eigenvector u1 with the largest eigenvalue l1. Re-
peated multiplication and normalization will give an in-
creasingly improved estimate of the normalized eigenvec-
tor and of the corresponding eigenvalue. In order to find
the first two eigenvectors and eigenvalues, we start with a
random d ¥ 2 matrix V and after each multiplication we
orthonormalize the columns of V. We choose two data
points at random and, after subtraction of m, use these as
the columns of V to provide a starting point for this proce-
dure. Degenerate eigenvalues do not present a problem
since any two orthogonal vectors in the principal subspace
will suffice. In practice only a few matrix multiplications
are required to obtain a suitable initial estimate. We now
initialize W using the result (4), and initialize s2 using (5).
In the case of mixtures we simply apply this procedure for
each weighted covariance matrix Si in turn.

As stated this procedure appears to require the evalua-
tion of S, which would take O(Nd2) computational steps
and would therefore defeat the purpose of using the EM
algorithm. However, we only ever need to evaluate the
product of S with some vector, which can be performed in
O(Nd) steps by rewriting the product as

Sv t t v= - -
=

Â n n
n

N

m mc h c hT

1

                       (61)

and evaluating the inner products before performing the
summation over n. Similarly the trace of S, required to ini-
tialize s2, can also be obtained in O(Nd) steps.

APPENDIX E
CONVERGENCE OF THE EM ALGORITHM

Here we give a very simple demonstration that the EM al-
gorithms of the kind discussed in this paper have the de-
sired property of guaranteeing that the likelihood will be
increased at each cycle of the algorithm unless the parame-
ters correspond to a (local) maximum of the likelihood. If
we denote the set of observed data by D, then the log like-
lihood which we wish to maximize is given by

L = p(D|q)                                     (62)

where q denotes the set of parameters of the model. If we
denote the missing data by M, then the complete-data log
likelihood function, i.e., the likelihood function which
would be applicable if M were actually observed, is given
by

LC = ln p(D, M|q).                                (63)

In the E-step of the EM algorithm, we evaluate the poste-
rior distribution of M given the observed data D and some
current values qold for the parameters. We then use this
distribution to take the expectation of LC, so that

·LC(q)Ò =z ln {p(D, M|q)}p(M|D, q old)dM.          (64)

In the M-step, the quantity ·LC(q)Ò is maximized with re-
spect to q to give qnew. From the rules of probability we
have
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p(D, M|q) = p(M|D, q) p(D|q)                    (65)

and substituting this into (64) gives

·LC(q)Ò = lnp(D|q) + z ln {p(M|D, q)} p(M|D, qold)dM. (66)

The change in the likelihood function in going from old to
new parameter values is therefore given by

lnp(D|qnew) - lnp(D|qold) = ·LC(qnew) Ò - · LC (qold)Ò

-
R
S|
T|

U
V|
W|

z ln
,

,
,

p M D

p M D
p M D dM

q

q

q
new

old
old

d i
d i d i .             (67)

The final term on the right-hand side of (67) is the Kull-
back-Leibler divergence between the old and new posterior
distributions. Using Jensen’s inequality it is easily shown
that KL(q iqold) ≥ 0 [8]. Since we have maximized ·LCÒ (or
more generally just increased its value in the case of the
GEM algorithm) in going from qold to qnew, we see that
p(D|qnew) > p(D|qold) as required.
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