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Abstract

We study the effect of regularization in an on-line gradient-descent learning
scenario for a general two-layer student network with an arbitrary number of
hidden units. Training examples are randomly drawn input vectors labelled by
a two-layer teacher network with an arbitrary number of hidden units which
may be corrupted by Gaussian output noise. We examine the effect of weight
decay regularization on the dynamical evolution of the order parameters and
generalization error in various phases of the learning process, in both noiseless

and noisy scenarios.

I. INTRODUCTION

One of the most powerful and commonly used methods for training large layered neural
networks is that of on-line learning, whereby the internal network parameters {J} are mod-
ified after the presentation of each training example so as to minimize the corresponding
error. The goal is to bring the map f; implemented by the network as close as possible to
a desired map f that generates the examples. Here we focus on the learning of continuous
maps via gradient descent on a differentiable error function.

Recent work [1]- [5] provides a powerful tool for the analysis of gradient-descent learning
in a very general learning scenario [6]: that of a student network with N input units, K
hidden units, and a single linear output unit, trained to implement a continuous map from

an N-dimensional input space € onto a scalar (. Examples of the target task f are in the
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form of input-output pairs (¢, (#). The output label * for each independently drawn input
&" is provided by a teacher network of similar architecture, except that its number M of
hidden units is not necessarily equal to K.

Here we consider the effect of regularization on the learning process in the form of
weight decay, for both noiseless learning and for the case where a noise process corrupts the
teacher output. Learning from corrupted examples is a realistic and frequently encountered
scenario and is commonly handled by some sort of regularization. Previous analysis of
noisy training scenarios and the application of regularization have been based on various
approaches: Bayesian [7], equilibrium statistical physics [8] and non-equilibrium techniques
for analyzing learning dynamics [9]. Here we adapt our previously formulated techniques
[2] to investigate the effect of different noise mechanisms on the dynamical evolution of the

learning process and the resulting generalization ability.

II. THE MODEL

We focus on a soft committee machine [1], for which all hidden-to-output weights are
positive and of unit strength. Consider the student network: hidden unit ¢ receives infor-
mation from input unit r through the weight J;., and its activation under presentation of
an input pattern £ = (&,...,éy)  isx; = J; - €, with J; = (Ji1, ..., Jin)" defined as the
vector of incoming weights to the i-th hidden unit. The output of the student network is
0(J, &) =%, g (J;- &), where g is the activation function of the hidden units, taken here
to be the error function g(z) = erf(z/+/2), and J = {J;}1<i<k is the set of input-to-hidden
adaptive weights.

The components of the input vectors & are uncorrelated random variables with zero
mean and unit variance. Output labels (* are provided by a teacher network of similar
architecture: hidden unit n in the teacher network receives input information through the
weight vector B,, = (Bn1,...,Bnn)", and its activation under presentation of the input

pattern & is y# = B, - €. In the noiseless case the teacher output is given by (§ =



712/1:1 g (B, -&").

The error made by a student with weights J on a given input £ is given by the quadratic

deviation
1 ) 1 K M 2
€360 =5100.8 61 =5 | o) - o) | . 1

measured here with respect to the noiseless teacher (we will also consider teachers corrupted
by output noise, in which case deviations are with respect to the actual noisy output ().
Performance on a typical input in the absence of noise defines the generalization error

€,(J) = (€(J,&,¢0))1ey, through an average over all possible input vectors £ to be performed

Tandy = (y1,...,um)".

implicitly through averages over the activations x = (z1,...,zx)
These averages can be performed analytically [2] and result in a compact expression for €, in
terms of order parameters: Q;, = J;-Ji, Rip = J; - B, and T,,,, = B,, - B,,,, which represent
student-student, student-teacher, and teacher-teacher overlaps respectively. The parameters
T,.m are characteristic of the task to be learned and remain fixed during training, while the
overlaps @);; among student hidden units and R;, between student and teacher hidden units
are determined by the student weights J and evolve during training.

A gradient descent rule for the update of student weights results in J**' = J* 4+
¥ o' ¢, where the learning rate n has been scaled with the input size N, and ¢! =
g'(xt) { nyg(yh) — 35 g(xé‘)] The time evolution of the overlaps R;, and @ can be
written in terms of difference equations. We consider the large N limit and introduce a
normalized number of examples a = /N to be interpreted as a continuous time variable in

the N — oo limit. The time evolution of R;, and Q;; is thus described in terms of a coupled

set of first-order differential equations [2].

III. THE EFFECT OF REGULARIZERS

A common method to overcome the effects of noise and parameter redundancy, frequently

used in real world training scenarios, is the use of regularizers such as weight decay [10]. The



role of regularizers has been analyzed for linear perceptrons [11-13] and optimal values for
regularizers have been calculated. However, the efficacy of regularizers for on-line learning
in multi-layer networks is still somewhat unclear. The effect of weight decay on the training
equations is the subtraction of a term %Jf in each weight update. The difference equation

for J¥ becomes

gt = gug L ogngn T gu 2
) Z+N ZE NZ’ ()

and the resulting equations of motion for the student-teacher and student-student overlaps

are given in this case by:

pi =1 ¢in — 7 Rin ,

a

dQ;

ik =0 Y, + 1 vir, — 27 Qur (3)

where @in = (0; Yn) (e}, Yir = (0 Tr+0k i) ¢y and vy, = (0; 0x) ey The explicit expressions [2]
for ¢in, Yir, vir and €, depend exclusively on the overlaps ), R and T'. The only difference
from the expressions in Ref. [2] is due to the presence of the weight decay terms. These
equations can be solved numerically as demonstrated in Fig. 1 for the realizable training
scenario of M = K = 3, n = 0.2 and an isotropic teacher (Tp,;, = 0pm). The basic features
of the dynamics for both noisy and noiseless learning exist here, i.e., a short transient
followed by a prolonged symmetric phase, characterized by lack of differentiation between
different nodes of the student, specialization, as each student node begins to emulate a
particular teacher node, and finally convergence to asymptotic values. The weight decay
applied in this case, v = 0.005 (Fig. 1(a), (c) and (d)), has a negligible effect on the location
of the fixed point in the symmetric phase and on the value of the generalization error
there; however, it does affect the length of the symmetric phase, the convergence phase and
the asymptotic values of the order parameters and generalization error. The asymptotic
values of the generalization error, the cross-correlation between vectors related to different
nodes (Q;xx) and overlaps between student vectors and teacher vectors imitated by different

student vectors (R;z,) increase with the weight decay <, while the length of the teacher

4



vectors (Q;;) and overlaps between student vectors and teacher vectors imitated by them
(R;;) decrease. Moreover, above a certain weight decay value 7., the system is trapped
indefinitely in the symmetric subspace as shown in Fig. 1(b), for the student overlaps, where
a weight decay of v = 0.007 is used. These effects will be analyzed in the following sections,
although we are limited to the consideration of small learning rates. A different approach
is introduced in section IV which allows us to determine the optimal weight decay as a
function of time for arbitrary learning rates. We first attempt to derive analytical results
for the dynamical behaviour during each phase of learning, with a constant weight decay
parameter. For simplicity we will concentrate here on a noiseless, realizable learning scenario

(M = K) with an isotropic teacher (T' = ).

A. The symmetric phase

Introducing weight decay modifies the fixed point during the symmetric phase. Fol-
lowing [2], we reduce the dimension of the system by exploiting symmetries in the dy-
namics which exist for realizable, isotropic learning: Q;x = Qdy + C(1 — d;,) and Ry, =
Réin + S(1 — 0;,) where each student node index coincides with that of the teacher node
to which it will eventually specialize. One can then calculate the location of the symmet-
ric fixed point, for small learning rates and small values of the regularization parameter,
by truncating Eqs. (3) to first order in 1 and expanding with respect to 4 = v/n, re-
garding the solution with weight decay as a small perturbation around the v = 0 result,
S* = R* = l/m and Q* = C* = 1/(2K — 1). Solving the truncated equations
results in the following expressions for the new fixed point and generalization error (S = R

at the symmetric fixed point):

P 1 CRE+1)PUK-TE+2)_
T JKeK-1 KPQE-1)2K-3)
. 1 22K +1)*?(4K2—6K +1)_
Q GFY1 L )5, (4)

C2K-1 g (2K-1?(2K - 3)K?



N 2 (2K +1)%?
2K -1 7 (2K -1P?@2K -3)K?

K 1
e; = . (% — K arcsin <%>> )

It is interesting to note that weight decay does not modify the generalization error to first

)

C*

order in 4.

For the case shown in Fig. 1(a), (c¢) and (d) (v = 0.005) we evaluated the overlaps and
the generalization error to obtain: R* = 0.2564, @Q* = 0.1908 and C* = 0.2005, in close
agreement with the result presented above.

A significant difference to the dynamics without weight decay is a notable reduction in
the gap between the values of @) and C' in the symmetric phase which may be attributed to
the suppression of excessive vector length by the weight decay mechanism. This inevitably
leads to higher similarity between student vectors and a delay in leaving the symmetric
phase.

To investigate the effect of weight decay on the length of the symmetric phase we ex-
panded the truncated dynamical equations, derived from Egs.(3), around the fixed point
{R*, S*,Q*,C*} to obtain the eigenvalues which control the dynamics of the system and
escape from the symmetric phase. The dynamical evolution described by the linearized
equations of motion is characterized by three eigenvalues, one of which, A = Ay + A,7, is

positive and controls the escape, where

_ mI6K°—16K'—36K®+22K?>+ 13K —8
T2 2K2(2K+1)(2K —-1)(2K - 3)

and Ag is the eigenvalue obtained for the dynamics in the absence of weight decay [2].
Dependence of A\, on the number of hidden units K is shown in Fig. 2(a), approaching the
asymptotic value of —7/2 as K — o0o. The dependence on the weight decay is negative,
suppressing the eigenvalue responsible for escape from the symmetric phase. The system
will escape from the symmetric phase for weight decay values lower than 4,,,, where

8K3/2K —1(2K — 3)
V2K +1 (16 K5 — 16 K* — 36 K3 + 22 K2 + 13 K — 8)

Ymaz =
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for which A = 0. The dependence of 7,,,, on the number of hidden units K is shown
in Fig. 2(b), which decays asymptotically as 1/(Kn?). For the conditions of Fig. 1, i.e.
K =M = 3 and n = 0.2, the maximal weight decay is 7¥mq, = 0.006 in agreement with the
numerical solutions shown there.

This analysis has been carried out for the case of small learning rate which is most
easily amenable to analysis. However, the more realistic case of larger  (which includes, for
example, the optimal learning rate) is characterized by a different behavior with respect to

v. Analysing the large 1 case requires new tools and will be discussed in section IV.

B. The asymptotic regime

Asymptotically, in the realizable noiseless case with no weight decay, the secondary
overlaps S and C' decay to zero while R and ) approach unity, indicating full alignment
for an isotropic task (Tpm = 0nm). We observe that in the presence of weight decay the
student vectors converge to asymptotic values which are shorter than the teacher vectors:
Qii — Qs < 1 and acquire a positive correlation with each other. Shorter norms for the
student vectors result in a larger asymptotic generalization error.

The asymptotic phase is characterized by a fixed point solution with R* # S*. The
coordinates of the asymptotic fixed point can also be obtained analytically in the small 7
approximation: R* =1+ % r,, S* = =% 54, Q* =1+ 4 q,, and C* = —7 ¢,, with
127 (9+8V3) (3K —6+2+3)
a 111K — 159 + 56 /3

187r(9+8\/§)
111K — 159 +56+4/3

Ta )

a Qo = 27q, Cq = 284 .

The asymptotic generalization error vanishes for the first order in 7. Expanding the asymp-

totic order parameters to second order in +, one obtains for leading order in 7

. 67 (9+8V3) (3K —-6+2V3)2K
. (111 K — 159 + 56 v/3) '
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To examine the accuracy of the results we plotted the predicted asymptotic values for
the case K = M = 3 and n = 0.2 for various weight decay levels against the actual
values obtained numerically as shown in Fig. 3: (a) shows predicted values for R and @
against actual values obtained numerically while (b) presents predicted values for S and C
against actual values. The results presented in Fig. 3 show that the approximation for the
asymptotic values for R, @, S and C' are very accurate for low weight decay values. Similarly,
the predicted asymptotic value of the generalization error is in reasonable agreement with
the numerical result; e.g., the asymptotic generalization error calculated for K = M = 3,
n = 0.2 and 7y = 0.005 shows a value of €, = 0.0193 in comparison to the numerical result

e = 0.0169.

C. Noisy examples and redundant parameters

From the analysis of the role played by the weight decay in the linear perceptron one
would expect the weight decay to alleviate the problem of noise [11,12] and to suppress
redundant parameters [13], reducing the generalization error. We therefore examined the
effect of weight decay on various learning scenarios in which training examples are corrupted
by noise and in the presence of redundant weights, for small and intermediate learning rates.
Our numerical and analytical investigations have revealed no scenario, either when training
from noisy data or in the presence of redundant parameters, where a fized weight decay
improves the system performance in the long run or speeds up the training process. For the
asymptotic regime, especially in the case of noiseless systems with redundant units, this is
probably a generic feature of on-line learning with an infinite data set, due to the absence of
the numerous minima in the mean error surface which might be caused by a finite training
set (i.e. the mean error is the generalization error in our case). In off-line (batch) learning,
or on-line learning with recycled patterns, regularization may lead to improved performance
through the modification of the error surface.

To demonstrate the effect of weight decay on the evolution of the generalization error



in the case of corrupted examples and in the presence of redundant parameters, we show
in Fig. 4 two typical training scenarios where weight decay has been applied. We consider
additive Gaussian output noise [4] so that the teacher output is (* = p# + X ¢ (B, - €4),
where the random variable p# is taken to be Gaussian with zero mean and variance 2.

The example shown in Fig. 4(a) represents a training scenario were M = K = 3 and
examples are corrupted by Gaussian output noise with variance o2 = 0.1. It is clear that
employing weight decay, with v = 0.001...0.003 in this example, has only increased the
asymptotic generalization error and delayed the breaking away from the symmetric phase.
The slight increase in generalization error during the symmetric phase is due to higher order
effects which are not analysed in this paper. Similar results have been obtained for different
types and levels of noise and weight decay, including weight decay which varies in time
according to hand crafted schedules.

Figure 4(b) shows an over-realizable training scenario in which a student with five hidden
nodes is trained on uncorrupted examples generated by a three node teacher. The learning
rate in this case is 7 = 0.2. Again it is clear that optimal performance is achieved with no
regularizers.

Both these simulations used a rather low value for the learning rate, significantly lower
than the optimal setting. In the next section we observe how the behaviour of weight decay

is significantly different during the symmetric phase for larger learning rates.

IV. GLOBALLY OPTIMAL WEIGHT DECAY

In the previous sections we have been limited to using fixed or hand-crafted weight decay
terms which restrict our ability to assess the potential contribution of general weight decay
terms as only a limited number of conditions can be examined. In this section we take a
different approach, aiming at global optimization of a time-dependent weight decay term on
the basis of previous work on globally optimal learning rates [14] and learning rules [15].

An optimal learning scenario with respect to some parameter (here 7) in a certain time



window [ag, ] corresponds to the largest decrease in generalization error between these
two times; i.e., we attempt to minimize A€, = €,(a;) — €,() which may be written as an
integral of the form:

a1 d
Ae, = f %9 Ja (6)

agp do

Since the generalization error depends exclusively on the overlaps @), R and T', for which the

d€
—2Z as

dynamical equations are known, one can rewrite the integrand £ = —*

aeg dRzn aeg szk dRzn
dQ;
= Vi ( f £ i —n? v + 27Qik> (7)
ik a

The last two right hand terms in Eq.(7) force the correct dynamics using sets of Lagrange
multipliers u;, and v for the corresponding equations dR;,/da and dQ;x/de.
Using variational techniques it is straightforward to obtain a set of coupled differential

equations for the Lagrange multipliers:

d:ukm _ 8¢ ww + n Uzg)
do = VYHikm — 1] Z Min 6R n Z Vij 0ka

dvy 3¢m 0 (Yij +n vij)

= 201 =1’ fin e 8
as well as a set of boundary conditions
o€, o€

m d 1 J . 9
R A ¥

A separate equation is derived for the functional derivative of A€, with respect to 7,

which we use for iteratively updating v via gradient descent:
Yt +1) =(t) — 0 0Ae /by, (10)

where

5Aeg

Zum in — 2> VijQij (11)
ij
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Here, t is the iteration index and # is the learning rate for the optimization process.

All terms required for carrying out the optimization of v using Eq.(10) can be obtained
by integrating the learning dynamics in Eqgs.(3) forward from some initial conditions for the
overlaps, and then integrating the Lagrange multiplier dynamics backwards, using Eqgs.(8)
and the boundary conditions in Eq.(9). This process converges after a number of iterations
and results in an exact function for the optimal weight decay over the time window.

We have employed this method to derive the optimal weight decay coefficient in several
cases: structurally realizable and over-realizable noiseless scenarios with optimal and small
learning rates and structurally realizable and over-realizable noisy scenarios with optimal
learning rates.

For small learning rates our results support the conclusions of section III. During the
symmetric phase a very small or negative value is chosen for the optimal weight decay vopt,
indicating that weight decay is at best useless and possibly detrimental during this phase.
After the symmetric phase v,p¢ quickly approaches zero, as required in order to achieve zero
generalization error asymptotically.

For larger learning rates, however, we do find a positive 7op¢ Which can shorten the sym-
metric phase significantly for both realizable and over-realizable learning scenarios. Fig. 5(a)
shows the optimal weight decay for an over-realizable example (M = 2, K = 3) and the
corresponding generalization error is shown by the solid line in Fig. 5(b). The generalization
error for learning in the absence of weight decay is shown as the dashed line in Fig. 5(b) and
we see how the weight decay results in a shortened symmetric phase. As expected, v,pt falls
quickly to zero as the generalization error converges towards zero. The learning rate chosen
in this example (n = 0.7) is close to the optimal value in the absence of weight decay (as
determined by similar methods to those employed here for the determination of 7op [14])
and we therefore see that the inclusion of weight decay can result in an improvement on the
optimal performance of standard gradient descent learning. Notice that we do not optimize
n and ~ simultaneously here, as we are mainly concerned with the improvements due to

weight decay given a fixed learning rate schedule. Similar results are found for realizable
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learning scenarios with large or near optimal learning rates.

The picture developed above is not significantly altered by the inclusion of Gaussian
output noise. Fig. 6(a) shows <y for a structurally realizable task (M = K = 2) with
noise variance o2 = 0.01. The learning rate is given its optimal time-dependent value in the
absence of weight decay (shown by the dotted line in Fig. 6(a)), which is initially constant at
n =~ 1.6 until a decay towards the end of the given time-window as required for the system to
achieve optimal asymptotic performance [14]. As in the previous example, Fig. 6(b) shows
a significant shortening of the symmetric phase when compared to learning without weight
decay. However, as the system escapes the symmetric phase and the weight decay drops to
zero, the generalization error approaches the same decay as in the absence of weight decay

and there is no asymptotic improvement in performance.

V. CONCLUSION

In this paper we have examined the effects of a simple regularizer, weight decay, under a
statistical mechanics description of the learning process which is exact in the limit of large
input dimension. General results are obtained for a noiseless, isotropic and structurally
matched scenario which is most amenable to analysis (a small learning rate is also assumed).
In this case we find no benefit in a fixed weight decay, which results in a lengthened symmetric
phase and a non-zero asymptotic generalization error. In fact, we identify a critical value
for the weight decay ymax above which the student will never leave the symmetric phase,
resulting in very poor performance. Analytical results for both phases show this behaviour
to hold for general model complexity K and we find that ym,a, is inversely proportional to
K for large K. Numerical investigations also show that weight decay is not beneficial (in
terms of either transient or asymptotic performance) for small learning rates when the task
being learned is over-realizable (K > M) or corrupted by Gaussian output noise.

In order to determine the behaviour for arbitrary learning rates we employ recent methods

for determining optimal time-dependent parameters over a fixed time window [14]. For small
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learning rates we find results consistent with the above discussion: the optimal weight decay
parameter is very small and mostly negative during the symmetric phase, for realizable, over-
realizable and noisy learning scenarios. However, for higher learning rates (we choose the
optimal value in the absence of weight decay) a positive weight decay is found to be beneficial
during the symmetric phase, although we never find any benefit after specialization occurs
and for noisy learning the asymptotic performance is not improved upon. The shortened
symmetric phase is due to non-linear effects which are not incorporated by our small 7
analysis.

Although we do identify a scenario in which weight decay is slightly beneficial, this is
probably of little value in practice since in most situations we find fixed weight decay to be
detrimental to performance, especially at late times. Other more principled, and presumably
more successful, adaptations to the basic gradient descent algorithm have been suggested for
reducing the length of the symmetric phase (see, for example, Ref. [16]). This is not to say
that weight decay is useless in general, however, since we have only considered learning with
examples drawn from an unlimited training set. One might expect some benefit during the
asymptotic phase of learning in the case where training examples are drawn with replacement
from a fixed sample, since one then has to deal with a fixed error surface and consequently

over-fitting, resulting in a much richer optimization landscape with many local minima.
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FIG. 1. The order parameters evolution for low weight decay, v = 0.005, (¥ < maz - &, ¢ and

d) and high weight decay, v = 0.007, (¥ > Ymae - b) for a noiseless scenario with K = M = 3 and

n = 0.2. Sub-figures (a) and (b) show the evolution of student vector lengths and overlaps, (c) and

(d) the overlaps between student and teacher vectors and the evolution of the generalization error

respectively.
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FIG. 2. Weight decay and trapping in the symmetric phase. (a) The modification of the

eigenvalue controlling the escape from the symmetric phase due to weight decay, A, as a function

of K. (b) Maximal weight decay as a function of K.
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FIG. 4. The effect of weight decay on the evolution of the generalization error in two training
scenarios: (a) Where examples are corrupted by output noise of zero mean and variance o = 0.1.
In this case M = K = 3, the learning rate used is 7 = 0.2 and the weight decay values vary
between 4 = 0.001...0.003. (b) In a highly redundant (over-realizable) training scenario with

M=3,K=>5and n=0.2.
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learning scenario with M = 2, K = 3 and = 0.7. The corresponding generalization error is shown
by the solid line in (b) where it is compared to the generalization error without weight decay (dashed

line).
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structurally realizable task (M = K = 2) with examples corrupted by Gaussian output noise of
variance 02 = 0.01. The learning rate (dashed line) is fixed at its optimal time-dependent value
in the absence of weight decay (7 = n/10). The corresponding generalization error is shown by

the solid line in (b) where it is compared to the generalization error without weight decay (dashed
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