
Learning with Regularizers in Multi-layer Neural NetworksDavid Saad and Magnus RattrayAston University, Computer Science & Applied Mathematics, Birmingham, B4 7ET, UK.AbstractWe study the e�ect of regularization in an on-line gradient-descent learningscenario for a general two-layer student network with an arbitrary number ofhidden units. Training examples are randomly drawn input vectors labelled bya two-layer teacher network with an arbitrary number of hidden units whichmay be corrupted by Gaussian output noise. We examine the e�ect of weightdecay regularization on the dynamical evolution of the order parameters andgeneralization error in various phases of the learning process, in both noiselessand noisy scenarios. I. INTRODUCTIONOne of the most powerful and commonly used methods for training large layered neuralnetworks is that of on-line learning, whereby the internal network parameters fJg are mod-i�ed after the presentation of each training example so as to minimize the correspondingerror. The goal is to bring the map fJ implemented by the network as close as possible toa desired map ~f that generates the examples. Here we focus on the learning of continuousmaps via gradient descent on a di�erentiable error function.Recent work [1]{ [5] provides a powerful tool for the analysis of gradient-descent learningin a very general learning scenario [6]: that of a student network with N input units, Khidden units, and a single linear output unit, trained to implement a continuous map froman N -dimensional input space � onto a scalar �. Examples of the target task ~f are in the1
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form of input-output pairs (��; ��). The output label �� for each independently drawn input�� is provided by a teacher network of similar architecture, except that its number M ofhidden units is not necessarily equal to K.Here we consider the e�ect of regularization on the learning process in the form ofweight decay, for both noiseless learning and for the case where a noise process corrupts theteacher output. Learning from corrupted examples is a realistic and frequently encounteredscenario and is commonly handled by some sort of regularization. Previous analysis ofnoisy training scenarios and the application of regularization have been based on variousapproaches: Bayesian [7], equilibrium statistical physics [8] and non-equilibrium techniquesfor analyzing learning dynamics [9]. Here we adapt our previously formulated techniques[2] to investigate the e�ect of di�erent noise mechanisms on the dynamical evolution of thelearning process and the resulting generalization ability.II. THE MODELWe focus on a soft committee machine [1], for which all hidden-to-output weights arepositive and of unit strength. Consider the student network: hidden unit i receives infor-mation from input unit r through the weight Jir, and its activation under presentation ofan input pattern � = (�1; : : : ; �N)T is xi = Ji � �, with Ji = (Ji1; : : : ; JiN)T de�ned as thevector of incoming weights to the i-th hidden unit. The output of the student network is�(J; �) = PKi=1 g (Ji � �), where g is the activation function of the hidden units, taken hereto be the error function g(x) � erf(x=p2), and J � fJig1�i�K is the set of input-to-hiddenadaptive weights.The components of the input vectors �� are uncorrelated random variables with zeromean and unit variance. Output labels �� are provided by a teacher network of similararchitecture: hidden unit n in the teacher network receives input information through theweight vector Bn = (Bn1; : : : ; BnN)T, and its activation under presentation of the inputpattern �� is y�n = Bn � ��. In the noiseless case the teacher output is given by ��0 =2



PMn=1 g (Bn � ��).The error made by a student with weights J on a given input � is given by the quadraticdeviation �(J; �; �0) � 12 [ �(J; �)� �0 ]2 = 12 " KXi=1 g(xi)� MXn=1 g(yn) #2 ; (1)measured here with respect to the noiseless teacher (we will also consider teachers corruptedby output noise, in which case deviations are with respect to the actual noisy output �).Performance on a typical input in the absence of noise de�nes the generalization error�g(J) � h�(J; �; �0)if�g, through an average over all possible input vectors � to be performedimplicitly through averages over the activations x = (x1; : : : ; xK)T and y = (y1; : : : ; yM)T.These averages can be performed analytically [2] and result in a compact expression for �g interms of order parameters: Qik � Ji �Jk, Rin � Ji �Bn, and Tnm � Bn �Bm, which representstudent-student, student-teacher, and teacher-teacher overlaps respectively. The parametersTnm are characteristic of the task to be learned and remain �xed during training, while theoverlaps Qik among student hidden units and Rin between student and teacher hidden unitsare determined by the student weights J and evolve during training.A gradient descent rule for the update of student weights results in J�+1i = J�i +�N ��i ��, where the learning rate � has been scaled with the input size N , and ��i �g0(x�i ) hPMn=1 g(y�n)�PKj=1 g(x�j )i. The time evolution of the overlaps Rin and Qik can bewritten in terms of di�erence equations. We consider the large N limit and introduce anormalized number of examples � = �=N to be interpreted as a continuous time variable inthe N !1 limit. The time evolution of Rin and Qik is thus described in terms of a coupledset of �rst-order di�erential equations [2].III. THE EFFECT OF REGULARIZERSA common method to overcome the e�ects of noise and parameter redundancy, frequentlyused in real world training scenarios, is the use of regularizers such as weight decay [10]. The3



role of regularizers has been analyzed for linear perceptrons [11{13] and optimal values forregularizers have been calculated. However, the e�cacy of regularizers for on-line learningin multi-layer networks is still somewhat unclear. The e�ect of weight decay on the trainingequations is the subtraction of a term 
NJ�i in each weight update. The di�erence equationfor J�i becomes J�+1i = J�i + �N ��i �� � 
N J�i ; (2)and the resulting equations of motion for the student-teacher and student-student overlapsare given in this case by: dRind� = � �in � 
 Rin ;dQikd� = �  ik + �2 �ik � 2
 Qik ; (3)where �in � h�i ynif�g,  ik � h�i xk+�k xiif�g and �ik � h�i �kif�g. The explicit expressions [2]for �in,  ik, �ik and �g depend exclusively on the overlaps Q;R and T . The only di�erencefrom the expressions in Ref. [2] is due to the presence of the weight decay terms. Theseequations can be solved numerically as demonstrated in Fig. 1 for the realizable trainingscenario of M = K = 3, � = 0:2 and an isotropic teacher (Tnm = �nm). The basic featuresof the dynamics for both noisy and noiseless learning exist here, i.e., a short transientfollowed by a prolonged symmetric phase, characterized by lack of di�erentiation betweendi�erent nodes of the student, specialization, as each student node begins to emulate aparticular teacher node, and �nally convergence to asymptotic values. The weight decayapplied in this case, 
 = 0:005 (Fig. 1(a), (c) and (d)), has a negligible e�ect on the locationof the �xed point in the symmetric phase and on the value of the generalization errorthere; however, it does a�ect the length of the symmetric phase, the convergence phase andthe asymptotic values of the order parameters and generalization error. The asymptoticvalues of the generalization error, the cross-correlation between vectors related to di�erentnodes (Qi6=k) and overlaps between student vectors and teacher vectors imitated by di�erentstudent vectors (Ri6=n) increase with the weight decay 
, while the length of the teacher4



vectors (Qii) and overlaps between student vectors and teacher vectors imitated by them(Rii) decrease. Moreover, above a certain weight decay value 
max the system is trappedinde�nitely in the symmetric subspace as shown in Fig. 1(b), for the student overlaps, wherea weight decay of 
 = 0:007 is used. These e�ects will be analyzed in the following sections,although we are limited to the consideration of small learning rates. A di�erent approachis introduced in section IV which allows us to determine the optimal weight decay as afunction of time for arbitrary learning rates. We �rst attempt to derive analytical resultsfor the dynamical behaviour during each phase of learning, with a constant weight decayparameter. For simplicity we will concentrate here on a noiseless, realizable learning scenario(M = K) with an isotropic teacher (T = �nm).A. The symmetric phaseIntroducing weight decay modi�es the �xed point during the symmetric phase. Fol-lowing [2], we reduce the dimension of the system by exploiting symmetries in the dy-namics which exist for realizable, isotropic learning: Qik = Q�ik + C(1 � �ik) and Rin =R�in + S(1 � �in) where each student node index coincides with that of the teacher nodeto which it will eventually specialize. One can then calculate the location of the symmet-ric �xed point, for small learning rates and small values of the regularization parameter,by truncating Eqs. (3) to �rst order in � and expanding with respect to ~
 = 
=�, re-garding the solution with weight decay as a small perturbation around the 
 = 0 result,S� = R� = 1=qK(2K � 1) and Q� = C� = 1=(2K � 1). Solving the truncated equationsresults in the following expressions for the new �xed point and generalization error (S = Rat the symmetric �xed point):R� = 1qK (2K � 1) � (2K + 1)3=2 (4K2 � 7K + 2)�K7=2 (2K � 1) (2K � 3) ~
 ;Q� = 12K � 1 � 2 (2K + 1)3=2 (4K2 � 6K + 1)� (2K � 1)3=2 (2K � 3)K2 ~
 ; (4)5



C� = 12K � 1 + 2 (2K + 1)3=2� (2K � 1)3=2 (2K � 3)K2 ~
 ;��g = K� ��6 �K arcsin� 12K�� :It is interesting to note that weight decay does not modify the generalization error to �rstorder in ~
.For the case shown in Fig. 1(a), (c) and (d) (
 = 0:005) we evaluated the overlaps andthe generalization error to obtain: R� = 0:2564, Q� = 0:1908 and C� = 0:2005, in closeagreement with the result presented above.A signi�cant di�erence to the dynamics without weight decay is a notable reduction inthe gap between the values of Q and C in the symmetric phase which may be attributed tothe suppression of excessive vector length by the weight decay mechanism. This inevitablyleads to higher similarity between student vectors and a delay in leaving the symmetricphase.To investigate the e�ect of weight decay on the length of the symmetric phase we ex-panded the truncated dynamical equations, derived from Eqs.(3), around the �xed pointfR�; S�; Q�; C�g to obtain the eigenvalues which control the dynamics of the system andescape from the symmetric phase. The dynamical evolution described by the linearizedequations of motion is characterized by three eigenvalues, one of which, � = �0 + �
~
, ispositive and controls the escape, where�
 = ��2 16K5 � 16K4 � 36K3 + 22K2 + 13K � 82K2 (2K + 1) (2K � 1) (2K � 3)and �0 is the eigenvalue obtained for the dynamics in the absence of weight decay [2].Dependence of �
 on the number of hidden units K is shown in Fig. 2(a), approaching theasymptotic value of ��=2 as K ! 1. The dependence on the weight decay is negative,suppressing the eigenvalue responsible for escape from the symmetric phase. The systemwill escape from the symmetric phase for weight decay values lower than ~
max where~
max = 8K3p2K � 1 (2K � 3)�2p2K + 1 (16K5 � 16K4 � 36K3 + 22K2 + 13K � 8)6



for which � = 0. The dependence of 
max on the number of hidden units K is shownin Fig. 2(b), which decays asymptotically as 1=(K�2). For the conditions of Fig. 1, i.e.K =M = 3 and � = 0:2, the maximal weight decay is �~
max = 0:006 in agreement with thenumerical solutions shown there.This analysis has been carried out for the case of small learning rate which is mosteasily amenable to analysis. However, the more realistic case of larger � (which includes, forexample, the optimal learning rate) is characterized by a di�erent behavior with respect to
. Analysing the large � case requires new tools and will be discussed in section IV.B. The asymptotic regimeAsymptotically, in the realizable noiseless case with no weight decay, the secondaryoverlaps S and C decay to zero while R and Q approach unity, indicating full alignmentfor an isotropic task (Tnm = �nm). We observe that in the presence of weight decay thestudent vectors converge to asymptotic values which are shorter than the teacher vectors:Qii ! Q1 < 1 and acquire a positive correlation with each other. Shorter norms for thestudent vectors result in a larger asymptotic generalization error.The asymptotic phase is characterized by a �xed point solution with R� 6= S�. Thecoordinates of the asymptotic �xed point can also be obtained analytically in the small �approximation: R� = 1 + ~
 ra, S� = �~
 sa, Q� = 1 + ~
 qa, and C� = �~
 ca, withra = 12� �9 + 8p3� �3K � 6 + 2p3�111K � 159 + 56p3 ;sa = 18� �9 + 8p3�111K � 159 + 56p3 ; qa = 2ra ; ca = 2sa :The asymptotic generalization error vanishes for the �rst order in 
. Expanding the asymp-totic order parameters to second order in 
, one obtains for leading order in ���g = 6� �9 + 8p3� �3K � 6 + 2p3� ~
2K�111K � 159 + 56p3� : (5)7



To examine the accuracy of the results we plotted the predicted asymptotic values forthe case K = M = 3 and � = 0:2 for various weight decay levels against the actualvalues obtained numerically as shown in Fig. 3: (a) shows predicted values for R and Qagainst actual values obtained numerically while (b) presents predicted values for S and Cagainst actual values. The results presented in Fig. 3 show that the approximation for theasymptotic values for R, Q, S and C are very accurate for low weight decay values. Similarly,the predicted asymptotic value of the generalization error is in reasonable agreement withthe numerical result; e.g., the asymptotic generalization error calculated for K = M = 3,� = 0:2 and 
 = 0:005 shows a value of ��g = 0:0193 in comparison to the numerical result��g = 0:0169. C. Noisy examples and redundant parametersFrom the analysis of the role played by the weight decay in the linear perceptron onewould expect the weight decay to alleviate the problem of noise [11,12] and to suppressredundant parameters [13], reducing the generalization error. We therefore examined thee�ect of weight decay on various learning scenarios in which training examples are corruptedby noise and in the presence of redundant weights, for small and intermediate learning rates.Our numerical and analytical investigations have revealed no scenario, either when trainingfrom noisy data or in the presence of redundant parameters, where a �xed weight decayimproves the system performance in the long run or speeds up the training process. For theasymptotic regime, especially in the case of noiseless systems with redundant units, this isprobably a generic feature of on-line learning with an in�nite data set, due to the absence ofthe numerous minima in the mean error surface which might be caused by a �nite trainingset (i.e. the mean error is the generalization error in our case). In o�-line (batch) learning,or on-line learning with recycled patterns, regularization may lead to improved performancethrough the modi�cation of the error surface.To demonstrate the e�ect of weight decay on the evolution of the generalization error8



in the case of corrupted examples and in the presence of redundant parameters, we showin Fig. 4 two typical training scenarios where weight decay has been applied. We consideradditive Gaussian output noise [4] so that the teacher output is �� = ��+PKn=1 g (Bn � ��),where the random variable �� is taken to be Gaussian with zero mean and variance �2.The example shown in Fig. 4(a) represents a training scenario were M = K = 3 andexamples are corrupted by Gaussian output noise with variance �2 = 0:1. It is clear thatemploying weight decay, with 
 = 0:001 : : : 0:003 in this example, has only increased theasymptotic generalization error and delayed the breaking away from the symmetric phase.The slight increase in generalization error during the symmetric phase is due to higher ordere�ects which are not analysed in this paper. Similar results have been obtained for di�erenttypes and levels of noise and weight decay, including weight decay which varies in timeaccording to hand crafted schedules.Figure 4(b) shows an over-realizable training scenario in which a student with �ve hiddennodes is trained on uncorrupted examples generated by a three node teacher. The learningrate in this case is � = 0:2. Again it is clear that optimal performance is achieved with noregularizers.Both these simulations used a rather low value for the learning rate, signi�cantly lowerthan the optimal setting. In the next section we observe how the behaviour of weight decayis signi�cantly di�erent during the symmetric phase for larger learning rates.IV. GLOBALLY OPTIMAL WEIGHT DECAYIn the previous sections we have been limited to using �xed or hand-crafted weight decayterms which restrict our ability to assess the potential contribution of general weight decayterms as only a limited number of conditions can be examined. In this section we take adi�erent approach, aiming at global optimization of a time-dependent weight decay term onthe basis of previous work on globally optimal learning rates [14] and learning rules [15].An optimal learning scenario with respect to some parameter (here 
) in a certain time9



window [�0; �1] corresponds to the largest decrease in generalization error between thesetwo times; i.e., we attempt to minimize ��g = �g(�1)� �g(�0) which may be written as anintegral of the form: ��g = Z �1�0 d�gd� d� : (6)Since the generalization error depends exclusively on the overlaps Q;R and T , for which thedynamical equations are known, one can rewrite the integrand L = d�gd� asL =Xin @�g@Rin dRind� +Xik @�g@Qik dQikd� �Xin �in  dRind� � � �in + 
Rin!�Xik �ik  dQikd� � �  ik � �2 �ik + 2
Qik! (7)The last two right hand terms in Eq.(7) force the correct dynamics using sets of Lagrangemultipliers �in and �ik for the corresponding equations dRin=d� and dQik=d�.Using variational techniques it is straightforward to obtain a set of coupled di�erentialequations for the Lagrange multipliers:d�kmd� = 
�km � �Xin �in @�in@Rkm � �Xij �ij @ ( ij + � �ij)@Rkmd�kld� = 2
�kl � �Xin �in @�in@Qkl � �Xij �ij @ ( ij + � �ij)@Qkl ; (8)as well as a set of boundary conditions�in(�1) = @�g@Rin �����1 and �ik(�1) = @�g@Qik �����1 : (9)A separate equation is derived for the functional derivative of ��g with respect to 
,which we use for iteratively updating 
 via gradient descent:
(t+ 1) = 
(t)� � ���g=�
 ; (10)where ���g�
 = �Xin �inRin � 2Xij �ijQij (11)10



Here, t is the iteration index and � is the learning rate for the optimization process.All terms required for carrying out the optimization of 
 using Eq.(10) can be obtainedby integrating the learning dynamics in Eqs.(3) forward from some initial conditions for theoverlaps, and then integrating the Lagrange multiplier dynamics backwards, using Eqs.(8)and the boundary conditions in Eq.(9). This process converges after a number of iterationsand results in an exact function for the optimal weight decay over the time window.We have employed this method to derive the optimal weight decay coe�cient in severalcases: structurally realizable and over-realizable noiseless scenarios with optimal and smalllearning rates and structurally realizable and over-realizable noisy scenarios with optimallearning rates.For small learning rates our results support the conclusions of section III. During thesymmetric phase a very small or negative value is chosen for the optimal weight decay 
opt,indicating that weight decay is at best useless and possibly detrimental during this phase.After the symmetric phase 
opt quickly approaches zero, as required in order to achieve zerogeneralization error asymptotically.For larger learning rates, however, we do �nd a positive 
opt which can shorten the sym-metric phase signi�cantly for both realizable and over-realizable learning scenarios. Fig. 5(a)shows the optimal weight decay for an over-realizable example (M = 2, K = 3) and thecorresponding generalization error is shown by the solid line in Fig. 5(b). The generalizationerror for learning in the absence of weight decay is shown as the dashed line in Fig. 5(b) andwe see how the weight decay results in a shortened symmetric phase. As expected, 
opt fallsquickly to zero as the generalization error converges towards zero. The learning rate chosenin this example (� = 0:7) is close to the optimal value in the absence of weight decay (asdetermined by similar methods to those employed here for the determination of 
opt [14])and we therefore see that the inclusion of weight decay can result in an improvement on theoptimal performance of standard gradient descent learning. Notice that we do not optimize� and 
 simultaneously here, as we are mainly concerned with the improvements due toweight decay given a �xed learning rate schedule. Similar results are found for realizable11



learning scenarios with large or near optimal learning rates.The picture developed above is not signi�cantly altered by the inclusion of Gaussianoutput noise. Fig. 6(a) shows 
opt for a structurally realizable task (M = K = 2) withnoise variance �2 = 0:01. The learning rate is given its optimal time-dependent value in theabsence of weight decay (shown by the dotted line in Fig. 6(a)), which is initially constant at� ' 1:6 until a decay towards the end of the given time-window as required for the system toachieve optimal asymptotic performance [14]. As in the previous example, Fig. 6(b) showsa signi�cant shortening of the symmetric phase when compared to learning without weightdecay. However, as the system escapes the symmetric phase and the weight decay drops tozero, the generalization error approaches the same decay as in the absence of weight decayand there is no asymptotic improvement in performance.V. CONCLUSIONIn this paper we have examined the e�ects of a simple regularizer, weight decay, under astatistical mechanics description of the learning process which is exact in the limit of largeinput dimension. General results are obtained for a noiseless, isotropic and structurallymatched scenario which is most amenable to analysis (a small learning rate is also assumed).In this case we �nd no bene�t in a �xed weight decay, which results in a lengthened symmetricphase and a non-zero asymptotic generalization error. In fact, we identify a critical valuefor the weight decay 
max above which the student will never leave the symmetric phase,resulting in very poor performance. Analytical results for both phases show this behaviourto hold for general model complexity K and we �nd that 
max is inversely proportional toK for large K. Numerical investigations also show that weight decay is not bene�cial (interms of either transient or asymptotic performance) for small learning rates when the taskbeing learned is over-realizable (K > M) or corrupted by Gaussian output noise.In order to determine the behaviour for arbitrary learning rates we employ recent methodsfor determining optimal time-dependent parameters over a �xed time window [14]. For small12



learning rates we �nd results consistent with the above discussion: the optimal weight decayparameter is very small and mostly negative during the symmetric phase, for realizable, over-realizable and noisy learning scenarios. However, for higher learning rates (we choose theoptimal value in the absence of weight decay) a positive weight decay is found to be bene�cialduring the symmetric phase, although we never �nd any bene�t after specialization occursand for noisy learning the asymptotic performance is not improved upon. The shortenedsymmetric phase is due to non-linear e�ects which are not incorporated by our small �analysis.Although we do identify a scenario in which weight decay is slightly bene�cial, this isprobably of little value in practice since in most situations we �nd �xed weight decay to bedetrimental to performance, especially at late times. Other more principled, and presumablymore successful, adaptations to the basic gradient descent algorithm have been suggested forreducing the length of the symmetric phase (see, for example, Ref. [16]). This is not to saythat weight decay is useless in general, however, since we have only considered learning withexamples drawn from an unlimited training set. One might expect some bene�t during theasymptotic phase of learning in the case where training examples are drawn with replacementfrom a �xed sample, since one then has to deal with a �xed error surface and consequentlyover-�tting, resulting in a much richer optimization landscape with many local minima.AcknowledgementWe would like to thank Sara A. Solla for useful discussions and for critical comments onthe text. The work was supported by the EPSRC grant GR/L19232 and EU grant CHRX-CT92-0063.
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FIGURES

FIG. 1. The order parameters evolution for low weight decay, 
 = 0:005, (~
 < ~
max - a, c andd) and high weight decay, 
 = 0:007, (~
 > ~
max - b) for a noiseless scenario with K =M = 3 and� = 0:2. Sub-�gures (a) and (b) show the evolution of student vector lengths and overlaps, (c) and(d) the overlaps between student and teacher vectors and the evolution of the generalization errorrespectively. 16
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FIG. 2. Weight decay and trapping in the symmetric phase. (a) The modi�cation of theeigenvalue controlling the escape from the symmetric phase due to weight decay, �
 as a functionof K. (b) Maximal weight decay as a function of K.
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FIG. 3. Asymptotic values for the overlaps in the case K = M = 3 and � = 0:2 for variousweight decay levels: (a) predicted values for R and Q (lines) against actual values obtained numer-ically (boxes and triangles). (b) predicted values for S and C (lines) against actual values (boxesand triangles).
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FIG. 4. The e�ect of weight decay on the evolution of the generalization error in two trainingscenarios: (a) Where examples are corrupted by output noise of zero mean and variance �2 = 0:1.In this case M = K = 3, the learning rate used is � = 0:2 and the weight decay values varybetween 
 = 0:001 : : : 0:003. (b) In a highly redundant (over-realizable) training scenario withM = 3, K = 5 and � = 0:2.
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�FIG. 5. The optimal time-dependent weight decay is shown in (a) for an over-realisable noiselesslearning scenario withM = 2, K = 3 and � = 0:7. The corresponding generalization error is shownby the solid line in (b) where it is compared to the generalization error without weight decay (dashedline).
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