
Globally Optimal Parameters for On-Line Learning in Multilayer Neural NetworksDavid Saad and Magnus RattrayDepartment of Computer Science and Applied Mathematics, Aston University, Birmingham B4 7ET, UK.We present a framework for calculating globally optimal parameters, within a given time frame,for on-line learning in multilayer neural networks. We demonstrate the capability of this method bycomputing optimal learning rates in typical learning scenarios. A similar treatment allows one todetermine the relevance of related training algorithms based on modi�cations to the basic gradientdescent rule as well as to compare di�erent training methods.Feed-forward neural networks have attracted interest in recent years for their ability to implement arbitrary con-tinuous and discrete input-output maps [1], corresponding to general regression and classi�cation tasks. For a givendesired map of the form ~f : X ! Y , where X and Y represent the input and output space respectively, one can con-struct a two layer feed-forward neural network, implementing a function fJ that emulates ~f to any desired accuracy.The process whereby the network's internal parameters fJg are optimized with respect to a set of examples instancingthe underlying rule, and some measure of the discrepancy between fJ and ~f , is termed training and may be carriedout by a variety of methods.One of the leading techniques in neural networks training, especially for large systems, is on-line learning ofcontinuous functions via gradient descent on a di�erentiable error measure. This technique has been successfullyapplied to many real-world problems and is arguably the most commonly used neural networks training technique.Many variations of the basic algorithm have been suggested over the years, for instance, adding weight decay andmomentum terms (for a review, see [2]). These modi�cations inevitably introduce new parameters which, in additionto the inherent stochasticity of the learning process, makes it very hard to assess their usefulness.A recent study [3{5], o�ers a framework for analytically examining di�erent aspects of on-line learning scenarios.We will employ the same framework to suggest a method for calculating, within given time windows, globally optimalparameters. The method will be demonstrated on one of the natural parameters in gradient descent on-line learning,the learning rate, although it can easily be generalized to accommodate other parameters and learning rules, as well asdiscrete architectures. This method can also be employed to assess the usefulness of various modi�cations to the basicgradient descent rule, or even to compare the e�ciency of di�erent training techniques, by examining the optimalvalues assigned to the related coe�cients. For instance, low optimal values, possibly in certain phases of the learningprocess, will indicate that these modi�cations are redundant.In this letter, we concentrate on maps from an N -dimensional input space � 2 <N onto a scalar � 2 <, realizedthrough a map �(J; �) =PKi=1 g (Ji ��), which can be viewed as a two layer neural network, where g is the activationfunction of the hidden units, taken here to be the error function g(x) � erf(x=p2), J � fJig1�i�K is the set of input-to-hidden adaptive weights for the K hidden nodes and the hidden-to-output weights are set to 1. The activation ofhidden node i under presentation of the input pattern �� is denoted x�i = Ji � ��. This general con�guration, usuallyreferred to as the `soft committee machine' [3], represents most of the properties of general multilayer networks andcan easily be extended to accommodate adaptive hidden-to-output weights [6].Training examples are of the form (��; ��) where � = 1; 2; : : : ; P . The components of the independently drawninput vectors �� are uncorrelated random variables with zero mean and unit variance. The corresponding output �� isgiven by a deterministic teacher of a similar con�guration to the student except for a possible di�erence in the numberM of hidden units and is of the form �� =PMn=1 g (Bn � ��), where B � fBng1�n�M is the set of input-to-hiddenadaptive weights for teacher hidden nodes. The activation of hidden node n under presentation of the input pattern�� is denoted y�n = Bn � ��. We will use indices i; j; k; l : : : to refer to units in the student network and n;m; : : : forunits in the teacher network.The error made by a student with weights J on a given input � is given by the quadratic deviation�(J; �) � 12 [ �(J; �)� � ]2 = 12 " KXi=1 g(xi)� MXn=1 g(yn) #2 : (1)This error is then used to de�ne the training dynamics via a gradient descent rule for the update of student weightsJ�+1i = J�i + �N ��i ��, where the learning rate � has been scaled with the input size N . Performance on a typicalinput de�nes the generalization error �g(J) � < �(J; �) >f�g through an average over all possible input vectors �.Expressions for the generalization error as well as for the learning dynamics have been obtained [4] in the ther-modynamic limit (N ! 1) and can be represented by a set of macroscopic variables of the form: Ji � Jk � Qik,1
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Ji �Bn � Rin, and Bn �Bm � Tnm, measuring overlaps between student and teacher vectors. The overlaps R and Qbecome the dynamical variables of the system while T is de�ned by the task. The learning dynamics is then de�nedin terms of di�erential equations for the macroscopic variables with respect to the normalized number of examples� = �=N playing the role of a continuous time variable:dRind� = � �in ;dQikd� = �  ik + �2 �ik ; (2)where �in �< �i yn >f�g,  ik �< �i xk + �k xi >f�g and �ik �< �i �k >f�g. The explicit expressions [4] for �in,  ik,�ik and �g depend exclusively on the overlaps Q;R and T .These equations, depending on a closed set of parameters, can be integrated and iteratively solved, providing a fulldescription of the order parameters evolution, from which the evolution of the generalization error can be derived.An optimal learning scenario in a certain time window [�0; �1] corresponds to the largest decrease in generalizationerror between these two times; i.e., we attempt to minimize ��g = �g(�1) � �g(�0) which may be written as anintegral of the form: ��g = Z �1�0 d�gd� d� (3)Since the generalization error depends exclusively on the overlaps Q;R and T , for which the dynamical equationsare known, one can rewrite the integrand L = d�gd� asL =Xin @�g@Rin dRind� +Xik @�g@Qik dQikd� +Xin �in �dRind� � � �in�+Xik �ik �dQikd� � �  ik � �2 �ik� (4)The last two right hand terms in Eq.(4) force the correct dynamics using sets of Lagrange multipliers �in and �ik forthe corresponding equations dRin=d� and dQik=d�.Using variational techniques it is straightforward to obtain a set of coupled di�erential equations for the Lagrangemultipliers: d�kmd� = ��Xin �in @�in@Rkm � �Xij �ij @ ( ij + � �ij)@Rkmd�kld� = ��Xin �in @�in@Qkl � �Xij �ij @ ( ij + � �ij)@Qkl ; (5)a separate equation for � as a function of the Lagrange multipliers� = �Pin �in�in +Pij �ij ij2Pij �ij�ij ; (6)and a set of boundary conditions�in�����1 = @�g@Rin �����1 and �ik�����1 = @�g@Qik �����1 ; (7)which correspond to the greedy optimization of the generalization error with respect to � at �1.To solve Eq.(6), which is found by setting the functional derivative of ��g with respect to � to zero, we usegradient descent (second order variations can also be employed to speed up convergence). All terms required forcarrying out the optimization of Eq.(6) can be obtained by integrating the equations forward, using Eq.(2) and someinitial conditions for the overlaps, and then backwards for the Lagrange multipliers, using Eq.(5) and the boundaryconditions expressed in Eq.(7). This process converges within a few iterations and results in an exact function for theoptimal learning rate over the time window.We demonstrate the results obtained by this method via two simple examples. In the �rst example we apply themethod to a realizable (K = M = 2) noiseless training task in the case of isotropic teacher vectors (Tnm = �nm),to obtain the optimal learning rate throughout the learning process. Initial conditions for the overlaps Rin and Qik,where i 6= k, are taken randomly from a uniform distribution between [0; 10�6] while the vector lengths Qii are taken2



from a uniform distribution between [0; 0:5]. The learning rate was initially �xed to some arbitrary value; the timewindow taken is 0 � � � 350.Applying the optimization process we obtain the results shown in Fig. 1 for the optimal learning rate and thecorresponding evolution of the generalization error. After a rapid initial decay the generalization error stabilizes at analmost �xed value, corresponding to the symmetric phase characterized by the lack of di�erentiation between di�erentteacher vectors [5]. At the same time the learning rate grows quickly until stabilizing at an almost �xed value. Thisvalue, � ' 1:66, corresponds to the maximal learning rate for which the vectors do not show an uncontrollable growth,thus resulting in the shortest symmetric phase [5]. This result is in close agreement with values obtained numericallyin separate studies [7]. As the system escapes the symmetric phase, we see an increase in the learning rate towardsanother �xed value. The new value � = 1:8808 is identical to the analytical results, obtained independently [5{7]by expanding the dynamical equations (2) around their asymptotic �xed point (Rin = �in and Qik = �ik , once theindices have been reordered).Towards the end of the time window we see an unexpected drop in the learning rate to a value of about � = 0:59.Examining the expression for the generalization error in the vicinity of its asymptotic �xed point we see that it ispossible to gain an immediate reduction by choosing an appropriate direction for the decay eigenvectors. This isachieved by reducing the learning rate which results in a slower decay of the order parameters. Using the symmetryof the problem we expand the generalization error around the �xed point via Rin = �in(1 � r) + (1 � �in)s andQik = �ik(1 � q) + (1 � �ik)c to �nd two contributions to the leading term of opposite sign, proportional to 2r � qand 2s � c respectively. These quantities are shown in the inset to Fig. 1, for 310 � � � 350, which also showsthe corresponding generalization error. The constant exponential decay is interrupted by a rapid reduction in thedi�erence between these two opposing contributions to the generalization error. This greedy procedure slows theasymptotic decay of the order parameters and is therefore unsustainable in the long term. Thus, this drop o� in thelearning rate only ever occurs towards the end of the given time window.In the second example we apply our method to an unrealizable learning scenario, by introducing additive uncorre-lated Gaussian output noise of zero mean and some variance �2 to the examples. Similar results are obtained for struc-tural unrealizability (K < M). The picture that emerges, shown in Fig. 2(a) for various noise levels (�2 = 10�2; 10�5and 10�7), is initially similar to that of the realizable case but changes dramatically as the system escapes the sym-metric phase towards the asymptotic regime. In this case the learning rate starts from a �xed value but decaysincreasingly rapidly until it reaches a decay inversely proportional to �, proved to be optimal for linear systems (fora review see [8]). As in the realizable case one observes a greedy selection of the learning rate for obtaining aninstantaneous reduction of the generalization error, in the form of a kink in the curve after � = 420. The log-log plotin Fig. 2(b) shows the optimal learning rate as a function of � for various time windows (increasing �1). The dropo� towards the end of each time window is due to the greedy e�ect discussed above and corresponds to a similar fastreduction in the generalization error. Before this point is reached the decay of the learning rate and generalizationerror becomes inversely proportional to � asymptotically, which presumably corresponds to the optimal sustainablelearning schedule in this regime. As the symmetry breaks one should therefore gradually modify the decay rate froma constant until it is proportional to 1=�. However, it will often take a prohibitively long time until the 1=� decayrate becomes optimal, making it completely irrelevant in many instances. Moreover, if one decays the learning rateat a �xed rate (for example, inversely with �) it may take an extremely long time before losses, incurred due to theuse of sub-optimal learning rates in earlier stages of the dynamics, can be recovered.In this letter we have merely demonstrated the capability of the method for a single parameter. However, a similarapproach can be applied to incorporate information about the curvature, e.g., in the form of di�erent learning ratesapplied to the various student vectors, and to examine the relevance of many modi�cations that have been suggestedover the years to the basic gradient descent rule. It is also possible to determine globally optimal learning rules,extending existing results for discrete machines [9]. In addition, by constraining the di�erential equations (5) on thebasis of the numerical solutions, one can analyse the behavior of the di�erential equations for speci�c phases in theevolution of � to obtain a more generic description for its behavior as a function of the network size and other relevantparameters such as noise and weight decay. These aspects and others will be discussed in future publications.Acknowledgement This work was supported by the EPSRC grant GR/L19232. The authors would like tothank Ansgar West and Bernhard Schottky for useful discussions.
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FIG. 1. The optimal learning rate (a) and the resulting generalization error (b) as a function of � for the case of a two hiddennode student trained to emulate a teacher of a similar con�guration. Inset - the evolution of the generalization error (solidline) and the magnitude of the opposing contributions to the leading term (dashed lines - upper line proportional to 2r � q,lower line proportional to 2s� c) for 310 � � � 350.
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FIG. 2. Optimal learning rate for a two hidden node student trained on corrupted examples generated by a teacher of asimilar con�guration. (a) shows behaviour for three noise levels �2 = 10�2, 10�5 and 10�7 (from left to right) over a �xed timewindow 0 � � � �1 = 600. (b) shows the asymptotic decay for �2 = 10�7 over di�erent time windows, with �1 = 600, 2000 and104 (from left to right). The curves lie on top of one another until a drop o� towards the end of each curve which corresponds toa greedy minimization of the generalization error. The overall trend before this point is towards a decay inversely proportionalto �.
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