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I. INTRODUCTIONMultilayer feedforward perceptrons (MLPs) are widely used in classi�cation and regres-sion applications mainly due to their ability to learn a wide range of maps [1] from examples.When learning a map f0 from N -dimensional inputs � to scalars � the parameters fW g ofthe student network are modi�ed according to some training algorithm so that the mapde�ned by these parameters fW approximates the teacher f0 as close as possible. The re-sulting performance can be measured by the generalization error �g, the average of an errormeasure � over input space �g = h�i�. The error measure or loss function is often de�ned asthe squared distance between the output of the network and the desired output, i.e.,� = 12[fW (�)� f0(�)]2: (1)One usually distinguishes between two learning paradigms: batch learning , where trainingalgorithms are generally based on minimizing the error on the whole set of given examples,and on-line learning , where single examples are presented serially and the training algorithmadjusts the parameters after the presentation of each example. The e�ciency of these train-ing algorithms is measured by their speed of convergence to an \acceptable" generalizationerror (in terms of training time or the number of example presentations).This research has been primarily motivated by recent work [2] investigating an on-linelearning scenario of a general two-layer student network trained by gradient descent (which isusually referred to in the neural network literature as back-propagation) on a task de�ned by ateacher network of similar architecture. It has been found that in the early stages of trainingthe student is drawn into a suboptimal symmetric phase, characterized by undi�erentiatedimitation, by student vectors, of parameter vectors related to the various teacher hiddennodes. Although student node symmetry is eventually broken and student performanceconverges to the minimal achievable generalization error, a signi�cant part of the trainingtime may be spent with the system trapped in the symmetric subspace. Speeding up theescape from the symmetric phase is likely to improve the training e�ciency signi�cantly; inthis paper we suggest a simple modi�cation of the basic back-propagation and analyse theresulting expected improvement in training e�ciency.The need for improved neural network training methods is clear as training e�ciency is inthe heart of the method itself and plays a signi�cant rôle in determining the usefulness of themethod as a whole; new tools may enable us to obtain better performance in shorter trainingtimes as well as to expand the envelope of feasible tasks. For batch training there is a varietyof e�cient training methods available, such as second order methods (e.g., Newton-Raphsonor conjugate gradient). However, as these methods are based on the entire training set theyare not applicable to on-line learning. Several di�erent methods have been employed forimproving on-line training in both discrete and smooth networks, most of which are basedon heuristics or on analysis in the asymptotic regime.Among the most common modi�cations to the conventional back-propagation algorithm,for smooth systems, is training with momentum. An analysis using stochastic approximationtheory [3] shows that for learning large example sets it merely rescales the learning rate inthe convergence phase. Similar trivial e�ects are also mirrored in the statistical mechanicsframework [4], unless di�erent scaling is used for the learning rate term. Its usefulness is sofar inconclusive. Other methods aimed at incorporating information about the curvature of2



the error surface into the learning rule have been proposed recently [3,5]. These rules areexpected to be e�cient asymptotically, although their e�ect on earlier stages of the learningprocess and especially on the length of the symmetric phase is not yet clear.Several e�cient methods have been suggested for on-line learning in discrete networks.Some of the methods are based on a greedy maximization of the local di�erence in gener-alization error [6] while others are based on structured learning rules [7,8]. It is howeverunclear whether these methods can be extended to accommodate smooth multi-layer net-works like the soft-committee machine [9,2] and whether these extensions would be usefulin devising an e�cient method for escaping the symmetric phase, especially since applyinglocal optimization in this phase is likely to fail (as demonstrated in [10]).A method for breaking the symmetry of the student network in smooth machines byenforcing a weight-ordering penalty term on the space of hidden units has been suggestedin [11], showing a considerable improvement in training time for a very simple networkarchitecture. A more detailed numerical investigation, however, shows that this methodfails completely in the case of isotropic teacher networks, with uncorrelated teacher weightvectors of similar length, where the student remains inde�nitely trapped in a suboptimalsymmetric phase [12]. In the case of a soft-committee machine where biases are applied tothe hidden layer nodes, as is the case in realistic networks, there is further evidence that thestrongest symmetry breaking e�ect is provided by the network biases [13], possibly leading toa stagnating competition in breaking the symmetry between biases and the weight-orderingpenalty term.The aim of this paper is twofold. It gives some insight into the reasons for the short-comings of back-propagation and it furthermore investigates possible improvements by in-troducing an adaptive back-propagation algorithm [14]. This algorithm features, besides thelearning rate �, a second adaptable parameter, the inverse temperature �, which improvesthe ability of the student to distinguish between hidden nodes of the teacher for � > 1. Wecompare its e�ciency with that of gradient descent in training two-layer networks follow-ing the framework of [2] and present numerical studies and rigorous analyses of both thebreaking of the symmetric phase and the asymptotic convergence. We note that althoughthese analyses provide us with optimal values of the user adjustable parameters � and � fordi�erent stages of the training process in a range of learning scenarios, it remains an openquestion how these parameters can be optimized adaptively on-line without a priori knowl-edge of the training task [15]. Within this limitation, we �nd that the optimized adaptiveback-propagation can signi�cantly reduce training time in both regimes by e�ciently break-ing the symmetry between hidden units and by providing faster exponential convergenceasymptotically.II. DERIVATION OF THE DYNAMICAL EQUATIONSThe student network we consider is a normalized soft committee machine, consisting ofK hidden units, which are connected to N -dimensional inputs � by their weight vectorsW = fWig (i = 1; : : : ; K). All hidden units are connected to the linear output unit witharbitrary but �xed gain  by couplings of �xed strength. The activation of any unit isnormalized (by the inverse square root of the number of weight connections into the unit)allowing all weights to be of O(1) magnitude, independent of the input dimension or the3



number of hidden units. Note that this is in contrast to most other on-line learning literature(e.g., [9]); however, as we will see later, this leads to a more intuitive and elegant result forthe optimal learning rates. The implemented mapping is thereforefW (�) = pK KXi=1 g 1pNWi ��! = pK KXi=1 g (xi) ; (2)where xi =Wi ��=pN is the student activation and g(�) is a sigmoidal transfer function.The map f0 to be learned is de�ned by a teacher network of the same architecture exceptfor a possible di�erence in the number of hidden units M and is de�ned by the weightvectors B = fBng (n = 1; : : : ;M). Training examples are of the form (��; ��), where thecomponents of the input vectors �� are drawn independently from a zero mean Gaussiandistribution with arbitrary variance �2. The targets therefore are�� = pM MXn=1 g  1pNBn ���! = pM MXn=1 g (y�n) ; (3)where y�n = Bn ���=pN is the activation of teacher hidden unit n. Note that we will useindices i; j; k; l to refer to units in the student network and n;m for units in the teachernetwork.An on-line training algorithm A is de�ned by the update of each weight in response tothe presentation of an example (��; ��), which can take the general formWi�+1 =Wi� +Ai(fg;W �; ��; ��); (4)where fg de�nes parameters adjustable by the user. In the case of standard back-propagation, i.e., gradient descent on the error function de�ned in Eq. (1):Agdi (�;W �; ��; ��) = ���i �� (5)with ��i = ��g0(x�i ) = [�� � fW (��)] g0(x�i ); (6)where the only user adjustable parameter is the learning rate �. One can readily see that eachof the three term in the back-propagation weight update plays a di�erent rôle. The di�erence�� between the student output and the target together with the learning rate determinesthe overall size of the update of all weight parameters, by specifying how closely studentand teacher are matched. The input vector �� discriminates between the weights leadingto di�erent inputs. However, only g0(x�i ), i.e., the derivative of the transfer function g(�),breaks the symmetry between di�erent hidden units. The fact that a prolonged symmetricphase can exist indicates that this term is not signi�cantly di�erent over the hidden unitsfor a typical input in the symmetric phase.The rationale of the adaptive back-propagation algorithm de�ned below is therefore toalter the g0-term, in order to magnify small di�erences in activation between hidden units.A simple way of enhancing these di�erences is by altering g0(xi) to g0(�xi), where � playsthe role of an inverse \temperature". Varying � changes the range of hidden unit activations4



relevant for training, e.g., for � > 1 learning is more con�ned to small activations, whencompared to gradient descent (� = 1), i.e., the training process is e�ectively \frozen" forlarger activations. One could also absorb this modi�cation into gradient descent with asite and activation dependent learning rate, making it more obvious that adaptive back-propagation deforms the search space spatially. The adaptive back-propagation learningrule is therefore Aabpi (�; �;W �; ��; ��) = ���g0(�x�i )�� = �f��i ��; (7)with �� as in Eq. (6). To compare the adaptive back-propagation (ABP) algorithm withconventional gradient descent (GD), we follow Ref. [2]. As we are interested in the typicalbehaviour of our training algorithm we average over all possible instances of the examples�. This average is most conveniently performed implicitly by averaging over the Gaussiandistribution of the activations x = (x1; : : : ; xK) and y = (y1; : : : ; yM). The Gaussian distri-bution has zero mean as hxii� = hyni� = 0 and a covariance matrix C whose components aregiven by the order parameters describing the overlaps between student and teacher nodes:hxi xji� = �2NWi �Wj� Qij (8a)hxi yni� = �2NWi �Bn� Rin (8b)hyn ymi� = �2NBn �Bm� Tnm (8c)The generalization error �g, measuring the typical performance, can be expressed in thesevariables only. We can also rewrite the update equations (7) in Wi as equations in theseorder parameters and the Qij and Rin become the new dynamical variables, which are self-averaging with respect to the randomness in the training data in the thermodynamic limit(N !1), whereas the Tnm are �xed and given by the task. We note that the variance ofthe input distribution merely rescales the length of the order parameters and the learningrate by �2 and can therefore be set to one without loss of generality.If we interpret the normalized example number � = �=N as a continuous time variable,the update equations for the order parameters become �rst order coupled di�erential equa-tions dRind� = � De�iynEfx;yg ; (9a)dQijd� = � De�ixj + e�jxiEfx;yg + �2 De�i e�jEfx;yg : (9b)All the integrals in Eqs. (9) and the generalization error can be calculated explicitly if wechoose the generalized error function g�(x) = erf(�x=p2) as the sigmoidal activation functionwith arbitrary gain �. For the exact form of the dynamical equations and the generalizationerror, we refer the reader to Appendix A. We only mention in passing that the sigmoidalgain � merely rescales all order parameters and the learning rate by �2, whereas the outputgain  rescales just the learning rate by 2. In the following both are therefore set to onewithout loss of generality.
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III. NUMERICAL INTEGRATION OF THE DYNAMICAL EQUATIONSThe di�erential equations can easily be integrated numerically for any number of Kstudent and M teacher hidden units. For the remainder of the paper, we will howeverfocus on the realizable case (K =M) and uncorrelated isotropic teachers of arbitrary lengthTnm = T�nm.The dynamical evolution of the overlaps Qij and Rin follows from integrating the equa-tions of motion (9) from initial conditions determined by the (random) initialization of thestudent weightsWi. For random initialization the resulting norms Qii of the student vectorwill be order O(1), while the overlaps Qij between di�erent student vectors, and student-teacher vectors Rin will be only O(1=pN). A random initialization of the weights andbiases can therefore be simulated by initializing the norms Qii, and the normalized overlapsQ̂ij = Qij=qQiiQjj and R̂in = Rin=pQiiTnn from uniform distributions in the [0; 1] and[�10�12; 10�12] intervals respectively.In Fig. 1 we show a typical di�erence in the evolution of the overlaps and the general-ization error for � = 12 and � = 1 (gradient descent) for K = 3 and � = 0:03. In bothcases, the student is drawn quickly into a suboptimal symmetric phase, characterized by a�nite generalization error (Fig. 1e) and no di�erentiation between the hidden units of thestudent. The student norms Qii and overlaps Qij are similar (Figs. 1a,1c), i.e., the studentsare highly correlated with each other. The overlaps of each student node with all teachernodes Rin are nearly identical (Figs. 1b,1d), i.e., each student unit imitates all teacher unitswith similar success. The student trained by GD (Figs. 1c,1d) is trapped in this unstablesuboptimal solution for most of the training time, whereas ABP (Figs. 1a,1b) breaks thesymmetry signi�cantly earlier.The convergence phase is characterized by a specialization of each student nodes to aparticular teacher node, which corresponds to an evolution of the overlap matrices Q andR to their optimal value T, except for the permutational symmetry due to the arbitrarylabelling of the student nodes.Examining the decay of the generalization error in Fig. 1e more closely, one can see thatthe choice � = 12 is suboptimal in this regime. The student trained with � = 1 convergesfaster to zero generalization error. In order to optimize both the learning temperature � andthe learning rate � simultaneously for both phases of the learning process: the symmetricand the convergence phase, we will examine the equations of motions analytically in thefollowing section.IV. ANALYSIS OF THE DYNAMICAL EQUATIONSIn the case of a realizable learning scenario (K =M) and isotropic teachers (Tnm = T�nm)the order parameter space can be very well characterized by similar diagonal and o�-diagonalelements of the overlap matrices Q and R, justifying the ansatzQij = Q�ij + C(1� �ij) (10a)Rin = R�in + S(1� �in); (10b)6



for the student-student overlaps and (apart from a relabelling of the student nodes) student-teacher overlaps respectively. As one can see from Fig. 1, this approximation is particularlygood in the symmetric phase and during the �nal convergence to perfect generalization.The reduction of the number of order parameters from O(K2) to just four simpli�esthe di�erential equations and the generalization error signi�cantly (see Appendix B). Thisallows us to analyse the learning dynamics exactly as a function of the size of the networkK, the length of the teacher hidden units T and the user adjustable training parameters:the learning rate � and the learning temperature �.A. Symmetric phase and onset of specializationNumerical integration of the equations of motion for a range of learning scenarios showthat the length of the symmetric phase depends on the number of hidden units K, theanisotropy in the length of the teacher vectors, the choice of the user adjustable parameters� and � and the anisotropy of the initial conditions. If we assume that the initial conditionsare random and K is �xed, the trapping in the symmetric phase is especially prolonged byisotropic teachers and small learning rates �.Initially, we will therefore study the dynamics (9) analytically in the symmetric phasefor isotropic teachers in the small � regime, where terms proportional to �2 can be neglected.Later, the e�ect of a �nite learning rate, i.e.,including �2 terms, will be studied analyticallyfor small � and numerically for arbitrary �.1. Truncated equationsThe truncated equations of motion have only one physical �xed point, given byQ�0 = C�0= TK(1 + T )� T and (11a)R�0 = S�0= sQ�TK = TqK[K(1 + T )� T ] ; (11b)which is independent of � and therefore identical to the one obtained in [2] for T = 1. The�xed point can be understood in geometrical terms: the student weight vectors are con�nedto the subspace spanned by the teacher weight vectors, and their projection onto each teacherweight vector is identical. However, this symmetric solution is an unstable �xed point of thedynamics and the small perturbations introduced by the generically non-symmetric initialconditions will eventually drive the student towards specialization.To study the onset of specialization, we expand the truncated di�erential equations to�rst order in the deviations q = Q�Q�0, c = C � C�0 , r = R �R�0, and s = S � S�0 from the�xed point values (11). The linearized equations of motion take the form dv=d� =M�v,where v = (r; s; q; c) and M is a 4 � 4 matrix whose elements are the �rst derivatives ofthe truncated update equations (B2) at the �xed point with respect to v. For the onset ofspecialization only the modes with positive eigenvalue are relevant being ampli�ed by the7



dynamics. For them we can identify the inverse eigenvalue as a typical escape time �i fromthe symmetric phase.For the truncated equations of motion, we �nd only one relevant perturbation [see Ap-pendix B 1 a, Eqs. (B6) and (B7)] with an associated eigenvector implying q = c = 0 ands = �r=(K � 1), i.e., a pure rotation of the student weight vectors inside the subspacespanned by the teacher weight vectors towards the teacher unit they will specialize on. Thiscan also be con�rmed by a closer look at Fig. 1. The onset of specialization is signalledby the breaking of the symmetry between the student-teacher overlaps, whereas signi�cantdi�erences from the symmetric �xed point values of the student norms and overlaps occurlater. The escape eigenvalue is�0(�) = 2� ��T 2qK(1 + T )� T [K(1 + T ) + �T ]3=2 : (12)Maximization of �opt0 (�) with respect to � yields�opt = 2K(1 + T )T ; (13)i.e., the optimal � scales with the number of hidden units, and also grows / 1=T for smallteacher lengths. The optimized escape eigenvalue is�opt0 (�opt) = 4p39� �TqK(1 + T )qK(1 + T )� T= �opt0 (1)2p39 [K(1 + T ) + T ]3=2TqK(1 + T ) : (14)Trapping in the symmetric phase is therefore for very small learning rates always inverselyproportional to the learning rate �. It is interesting to study two limiting cases: K ! 1,i.e., large networks, and T ! 0, i.e., small teacher weights or nearly linear functions. Inthese limits, one �nds that the escape eigenvalue is � / 1=K2 (� / T 2) for GD in contrastto � / 1=K (� / T ) for optimized ABP respectively, i.e., in these limits the time spent inthe symmetric phase can be reduced by an order of K or 1=T .2. Small � expansionNumerical integrations of the di�erential equations (A4) for larger learning rates indicatea reduced optimal value of �, with the ansatz (10) still valid. It is therefore desirable toanalyse the symmetric phase for �nite learning rates.Analytically, we can expand the full set of equations (B2) to �rst order in v = (r; s; q; c)around the �xed point of zeroth order (11) and �nd its �rst order correction in �, by solvingthe resulting set of linear equations. The new �xed point found is still characterized byQ� = C� and R� = S� (B8). This is in contradiction to the numerical results, which predicta �xed point with Q� > C� and R� = S�. This contradiction can be resolved by studyingthe linear dynamics around the new �xed point. An eigenvalue which was marginal (�2 = 0)8



for the truncated equations of motions acquires a positive contribution of O(�2) (B9). Themode associated to this eigenvalue increases di�erences between Q and C, leading primarilyto a growth of the student weight vectors outside the subspace spanned by the teacherweight vectors (see Appendix B 1 c) and no specialization. As these di�erences are typicallylarge for random initial conditions (unlike di�erences in R and S), this mode will drive thestudent quickly away from the �xed point characterized by Q� = C� to one with Q� > C�,where the student will be trapped until specialization between R and S will occur eventually.Unfortunately, this �xed point cannot be studied analytically, but can, however, be studiednumerically. 3. Numerical �nite � analysisIn Fig. 2a, we show the order parameter values at the �xed point, which are characterizedby Q� > C� and R� = S� for �nite � values. Whereas R� is nearly constant over a widerange of learning rates, the value of Q� increases and C� decreases rapidly. In fact, as �approaches a certain value, termed here �D, the values of the order parameters diverge.This behaviour can be understood by linearizing the dynamics around the �xed point andanalysing its eigenvalues [see Fig. 2b]. We �nd two eigenvalues which are always negative andof large magnitude and are therefore irrelevant to the long term behaviour of the dynamics.For the other two eigenvalues one �nds that �1 > 0 and �2 < 0 for small to intermediatelearning rates. The eigenvector associated with �1 is in fact identical to the one found for�xed points with Q� = C� and corresponds to a pure rotation and instability in R-S space.The eigenvector of �2 is also very similar to the eigenvector of the eigenvalue that caused theinstability of the Q� = C� �xed point in the Q-C space. For increasing learning rate, we �rst�nd a global maximum for �1 at the optimal learning rate �opt(�). For even larger learningrates, we �nd di�erent generic behaviours, depending on the values of the parameters K, Tand �. In general, there are two candidates for a maximal learning rate �max identi�able inFig. 2b. The �rst, �D, corresponds to �2 becoming positive, causing an instability in Q-Cspace and diverging values of the order parameters. The other candidate is given by thelearning rate �S, where �1 turns negative and the �xed point becomes attractive. One canidentify two phases, �S < �D and �D > �S (for which �S does not actually exist, since the�xed point vanishes above �D). However, in the following we will not distinguish betweenthese two phases, but simply de�ne �max = min(�D; �S).In order to estimate the potential gain by using ABP in the �nite learning rate case, weoptimize the dynamics with respect to the learning rate � under the constraint � = 1 (GD)and contrast it with results obtained by optimizing with respect to both the learning rate �and the inverse temperature � (ABP) for a range of K and T values. In Fig. 3 the optimalvalue of � is shown as a function of both K and T . Fig. 3a shows that �opt increases forgrowing network size K, as is expected from the small learning rate analysis. However, thesize of �opt grows signi�cantly slower and becomes dependent on the value of the productTK. For TK � 1 and K !1 one �nds �opt / pK, which has to be contrasted with thepreviously predicted �opt / K [see Eq. (13)], due to the inuence of �nite learning rates.Similarly, as shown in Fig. 3b, �opt grows for decreasing teacher lengths T but remainsconstant for large T as predicted previously. We �nd powerlaws for T ! 0, with exponents9



dependent on the value of TK. For TK � 1 however, the exponent approaches �1, whichis identical to the theoretical prediction in the small � regime.Having identi�ed the two interesting regimes, where the optimal inverse temperaturedeviates signi�cantly from its GD value: small teacher weight vectors T ! 0 and largenetworks K !1, we investigate the di�erences in optimal dynamics for GD and ABPfurther.In Fig. 4, we show the behaviour of both the optimal learning rate �opt (4a-4c) and theresulting optimal escape eigenvalue �opt (4d-4f) for GD in comparison to ABP for variousK-T scenarios.The optimal learning rate �opt(T ) of GD, depicted in Fig. 4a, exhibits a strongly Kdependent limit for large T and a universal limit for small T . In general, �opt(T ) decreasesfor increasing T and shows its most volatile behaviour in the region 0:1 � T � 10 andfor large K. These teacher values are the most reasonable for real learning problems, i.e.,in practice it will be generally di�cult to choose a good learning rate especially for largenetworks. This picture can be con�rmed by examining the inuence of K on �opt for GD asshown in Fig. 4b. For very small T , the learning rate exhibits hardly any dependence on K,whereas for TK large enough, one �nds that �opt / K� 23 .The behaviour of the optimal learning rate for optimized ABP is quite similar to GD.The main di�erence to GD can be seen in Fig. 4c, which shows that �opt(�opt) decays fasterfor ABP, with �opt(�opt) / K�1 for large TK. One also �nds that the optimal learning ratesaturates for large and small T values to K dependent constants. For large T this may beexplained by the fact that the error is limited by the saturation of all units.The optimized escape eigenvalue, which largely determines the training time spent inthe symmetric phase, is shown for GD in Fig. 4d, where we have multiplied �opt by K2 forconvenience. For small T , one �nds that �opt(T ) collapses on universal curve for all K andwe �nd the same powerlaw behaviour as predicted in the small � analysis (�opt / T 2=K2)[see Eq. (12)]. For large T , one also �nds that �opt becomes increasingly weakly dependenton T as expected. However, it also shows a further K dependence due to the decay of theoptimal learning rate and one �nds (�opt / �opt=K2).To highlight the possible gains of using ABP, �opt(�opt)=�opt(1) is plotted as a function ofT and K in Figs. 4e and 4f. In Fig. 4e, one �nds for small T a gain [16] of 1=T for TK � 1,which was predicted from the small � analysis [see Eq. (14)]. For large K (see Fig. 4f), wealso �nd a powerlaw gain in K for the optimized dynamics, but only for TK � 1 and withan exponent which is only 1=6, much smaller than the value of 1 predicted previously inEq. (14). This can be attributed to the slower than predicted increase in �opt and to thesmaller optimal learning rate for ABP in this regime.Of arguably further importance for training is the sensitivity of the choice of the learningrate, especially in the sense of how well the maximal learning rate is separated from its opti-mal value. Therefore, the normalized di�erence between the maximal and optimal learningrate ��optmax = (�max � �opt)=�opt is compared for ABP and GD as a function of T for two Kvalues in Fig. 5. Whereas, the optimal and maximal learning rates are well separated for allT (and K) for optimized ABP, this is not the case for small T for GD, where one �nds apowerlaw decay of ��optmax with an exponent which approaches 2=3 for TK � 1 from above,making an optimal selection of the learning rate increasingly more di�cult.Finally, we would like to compare the symmetric �xed point for the optimized dynamics10



for �nite learning rate with the theoretical values (11) for the truncated equations. Insteadof illustrating the behaviour graphically, we have summarized the results in Table I. Wehave found it most illuminating to compare the normalized di�erence P̂ � = (P ��P �0 )=P �0 forall relevant order parameters (note that the identity R� = S� is preserved for �nite �) in thevarious limits. In general, one �nds for both algorithms that Q� > Q�0 and R� > R�0. For C�,however, one �nds a T dependent behaviour with C� < C�0 for T < T crits (K) and C� > C�0for T > T crits (K), where T crits / K 13 for GD and T crits / K 12 for ABP. We furthermore �nd,that the optimal symmetric �xed point for ABP is always signi�cantly closer to the zerolearning rate �xed point than for GD.Before we turn our attention to the optimization of the dynamics in the convergencephase, we would like to summarize the results obtained so far and put them in the context ofprevious work. Unlike the small learning rate regime, which has been studied previously forboth GD [2] and ABP [14], we �nd that the amount of training time spent in the symmetricphase actually scales worse than K2 for the optimal choice of learning parameters (seeTable II for an overview of the numerical values of the powerlaws). This seems to be mainlydue to the need of reducing the learning rate � with increasingK. This reduction is arguablycaused by the high correlations between student nodes inside and the, mainly uncorrelated,increase of the student lengths Q� outside the space spanned by the teacher vectors, leadingto a discrepency between student and teacher output which increases signi�cantly faster thanK for large enough T . For K ! 1 (TK � 0), one also �nds that the gain, by using theoptimal ABP choice of �opt / pK, is only a factor K 16 and not K as predicted previously.We have furthermore relaxed the constraint T = 1 used in these works, and have foundthat the optimal learning parameter values change signi�cantly in the most relevant regionof teacher lengths, which makes it di�cult in practice to choose optimal learning param-eters without prior knowledge or estimation of the teacher lengths. For small T , whichcorresponds to nearly linear (but bounded) rules, one �nds that the specialization process isfurthermore slowed down by a factor of 1=T 2 for GD learning. This is arguably due to thefact that the symmetric �xed point is already a very good approximation to the true func-tion and information about the non-linearities is scarce. In this regime the optimal choice of�opt / 1=T helps the student signi�cantly in breaking the symmetry by reducing the regionof hidden unit activation relevant for training, and favouring rotational over longitudinalchanges. The gain achievable in this regime is of order 1=T .B. Convergence to optimal generalizationIn order to predict the optimal learning rate �opt and inverse temperature �opt for theconvergence phase, we linearize the reduced set of equations of motion (B2) in fR;Q;C; Sgaround the zero generalization error �xed point R� = Q� = T and S� = C� = 0 (see Ap-pendix B 2).The matrix M of the resulting system of four coupled linear di�erential equations inr = T �R, q = T �Q, s = S, and c = C has two pairs of eigenvalues (�1;2 and �3;4) whichare solutions of quadratic equations (B13). The dependence of these eigenvalues on thelearning rate is illustrated in Fig. 6a for K = 3, T = 1. The eigenvalues �3;4 are linear in �,whereas �1;2 have higher orders in �. One further can distinguish between two slow modesassociated with eigenvalues �1 and �3 and two fast modes associated with eigenvalues �211



and �4, which are negative for all learning rates and whose magnitude is signi�cantly largerin the region of interesting �. The fast modes decay quickly and their inuence on the long-time dynamics is negligible. The dependence of the two relevant eigenvalues �1 and �3 on �and � is more closely illustrated in Fig. 6b in the same learning scenario, and two � values.As mentioned, the eigenvalue �3 is negative and linear in �, whereas the eigenvalue �1 isa non-linear function of � and negative for small �. For large �, �1 becomes positive andtraining does not converge to the optimal solution de�ning the maximum learning rate �maxas �1(�max) = 0. For all � < �max the generalization error decays exponentionally to �g� = 0.In order to identify the optimal convergence eigenvalue �opt, which is the eigenvalueassociated with the slowest decay mode, we expand the generalization error to second orderin r, q, s, and c (B10). We �nd that the eigenvector (B14) associated with the lineareigenvalue �3 is orthogonal to the �rst order terms in the generalization error and cantherefore not contribute to their decay, but controls only the decay of second order termwith 2�3. The learning rate �opt which provides the fastest asymptotic decay rate �opt of thegeneralization error is therefore given by the condition�opt = ����min� [max (�1; 2�3)]���� : (15)This means either �1(�optr ) = 2�3(�optr ) or min�(�1) if �1(�optm ) > 2�3(�optm ), where �optm is thelearning rate at the minimum of �1. Examples for both two cases can be seen in Fig. 6b.For given K, one �nds that for GD (� = 1) the optimal learning rate is at the minimumof �1 for T < T critc (K) and by �1 = 2�3 otherwise, where T critc (K) is a function weaklydependent on K and T critc (1) = 1:2780 [see also Fig. 8c]. For optimized ABP, where thedecay rate �opt(�) has been maximized with respect to �, the optimal learning rate is givenby the root of �1 � 2�3 for all values of T .Both these optimizations are analytically infeasible for arbitrary K and T . However, forsome special cases further analytical progress can be made: K ! 1, T ! 1 and T ! 0.These cases are studied in detail in Appendix B 2 a �. The resulting powerlaws will bereferred to in the discussion of the appropriate �gures and are summarized for all relevantscenarios in Table III.As in the symmetric phase, one expects the largest gains by using ABP in regions of T -Kspace, where �opt deviates signi�cantly from 1. In Fig. 7 the optimal value of � is shownas a function of both K and T . Fig. 7a shows that �opt is only a weak function of K anddoes not change its order for K ! 1 unlike in the symmetric phase. The only signi�cantK dependence is found for large T and small K.This should be contrasted to the strong T dependence of �opt depicted in Fig. 7b, wherethe theoretical results for K ! 1 are included as well. For small T one �nds to leadingorder �opt = 2=T , independent of K, whereas a strong dependence of K on �opt is foundfor large T . For �nite K or T=K � 1, one �nds �opt / T� 13 , whereas �opt � 1=3 forT=K � O(1). The qualitative di�erence of learning for �nite and in�nite K in the large Tlimit will become clear later.Again, we would like to assess the potential bene�ts of ABP over GD. Note the dis-crepency between our results and those previously presented [2] for GD in the convergencephase for the special case T = 1, where an approximation by reducing the dynamics to theq-r space was employed, producing inaccurate results.12



In Fig. 8, we therefore show the behaviour of both the optimal learning rate �opt (Figs. 8a-8b) and the resulting optimal convergence eigenvalue �opt (Figs. 8d-8e) for GD in comparisonto ABP as a function of T for several values of K, including the dominant term for K !1.The optimal learning rate �opt(T ) of GD depicted in Fig. 8a has a universal limit of � for smallT identical to the symmetric phase. For large T the limit becomes strongly dependent onK. Again, there exists a qualitative di�erence between �nite K, where one �nds analytically�opt / K for T !1 and in�nite K where �opt / pT .The quotient between the optimal learning rates of ABP and GD in Fig. 8b shows nosigni�cant di�erence in stark contrast to results in the symmetric phase. In general one �ndsthat the learning rate for ABP is larger than for GD when �opt > 1 and vice versa. For smallT the optimal learning rate approaches p3 � for in�nite K (B22c) with minor correctionsfor �nite K (B26c). For large T , the di�erence is a factor of 1=p2 for in�nite K whereasthey are identical for �nite K.The kink in the curves around T � 1 can be explained by the fact, that the conditionthat de�nes �opt for GD changes at that point (see above). The corresponding critical teachervalue T critc (K) is shown in Fig. 8c.The optimized convergence eigenvalue, which largely determines the training time spentachieving an acceptable generalization error, is shown for GD in Fig. 8d, where we havemultiplied �opt by K for convenience. For small T , one �nds that �opt collapses on a univeralcurve (�opt / T 2=K), similar to its symmetric phase behaviour. For large T , the behaviourfor �opt depends signi�cantly on the order of K as that of the learning rate. Analytically,one �nds for K �nite and TK � 1, that �opt is actually independent of K and decreasesproportional to T 32 . For large T and T=K = O(1) on the other hand, the scaling is � /1=(TK).To highlight the possible gains from using ABP, �opt(�opt)=�opt(1) is plotted as a functionof T in Fig. 8e. For small T , one �nds as in the symmetric phase that ABP gains a factor1=T , with only a very weak K dependence due to corrections in the 1=K dependence forABP. For large T , one �nds only a constant gain for ABP, which ranges between 1:299 and2:828 depending on the values of T and K, although �opt deviates signi�cantly from 1 for�nite K.A question one could ask, is, which teacher length T opt maximized �opt for given K. Thisturns out to be identical for both algorithms [�opt(T opt) = 1] and its dependence on K isshown in Fig. 8c. Although only of academic interest as T is given by the rule to be learned,it nevertheless presents some interesting insights. ABP e�ectively deforms the search spacevia the single parameter � to compensate for the anisotropy of the generalization errorsurface. At T opt no useful deformation can be obtained by using � 6= 1, leaving room forspeculation whether isotropy is recovered. Other methods for deforming the search spacebased on information geometry have been recently introduced and involve more complicatedlearning rules, which may not always be tractable [5].In Fig. 8f, the normalized separation between the maximal and optimal learning rateshows for both algorithms only a very weak dependence on K in comparison to T . Thegap is largest for T = O(1), the region of most likely T values, with a maximal separationaround 30% for both algorithms, which is signi�cantly smaller than the separation in thesymmetric phase. For both large and small T , we �nd decays of the normalized gap in T .For large T , the decay is proportional to 1=T for both algorithm, with slight di�erences in13



the constant prefactor. For small T , however, the behaviour is algorithm dependent, with adecay proportional to T for GD proportional to pT for ABP.As in the symmetric phase, the extension of the analysis to the full R-Q-S-C spaceand arbitrary T values has revealed several new insights. The normalization for the soft-committee machine chosen here, leads to the optimal learning rate for both algorithms(and the optimal inverse temperature for ABP) being only weakly dependent on K in mostpractical learning scenarios, suggesting a similar scaling for applied networks. For large Kone �nds furthermore that the training time scales with K in almost all cases, in contrastto the symmetric phase, reecting the fact that the student hidden units have alreadyspecialized on a particular teacher hidden unit.For extreme values of T , one �nds further interesting e�ects. For small T , GD trainingis slowed down by a further factor of 1=T 2, which can be reduced to a factor of 1=T by theoptimal choice of �opt / 1=T , similar to the symmetric phase.For large T , one has to distinguish between two regimes. For �nite K, both the mappingof the network and the error signal become increasingly discrete in this limit, leading to anarchitecture similar to a committee machine. In this case, the error signal is of O(1=K) lead-ing to a rescaling of the learning rate with K, in order to keep the weight update constant forall network sizes, making the convergence rate independent of K. The increasingly discretenature of the error signal, however, seems responsible for the decrease in the convergencerate by T� 32 for both algorithms. The possible gain of ABP stays constant in this limit, inspite of the signi�cant scaling of �opt / T� 13 .In the limit where K grows simultaneously with T , one �nds a qualitative di�erentbehaviour. This can be explained by the smoothness of the network output and the errorsignal in this case, due to the fact, that hidden units outputs are discrete but uncorrelated,giving rise to a Gaussian output distribution (central limit theorem).V. SUMMARY AND DISCUSSIONThis research has been initially motivated by the dominance of the suboptimal symmetricphase in on-line learning of two-layer feedforward networks trained by gradient descent(GD) [2]. We proposed an adaptive back-propagation (ABP) training algorithm [Eq. (7)]parameterized by an inverse temperature �. For � = 1 standard back-propagation or GD isrecovered, whereas � = 0 corresponds to a generalized Hebb rule.ABP is designed to deform search space using the single parameter �. For � > 1, thespecialization of the student nodes is improved by enhancing di�erences in the activationbetween hidden units. In this region, the achievable learning rate is usually higher thanfor GD, leading e�ectively to favouring rotational changes of the weight vector over lengthchanges. For 0 < � < 1, we �nd the opposite e�ect, as the activation region of the studentrelevant for training is increased and the learning rate decreased, causing an enhancementof length changes.Its performance has been compared to GD for a normalized soft-committee studentnetwork with K hidden units learning a rule de�ned by an isotropic teacher (Tnm = T�nm)of the same architecture.Furthermore, the introduction of a natural normalization of the committee-machine,leads to more elegant results as it eliminates the unnatural scaling of the learning rate with14



the input dimension N and, in many cases, with the number of hidden units K, which is afeature of the unnormalized model, and suggests a similar approach for real world networks.For both relevant phases of learning, the symmetric and convergence phase, this workextends previous results [2,14] substantially by addressing the inuence of �nite learningrates in the symmetric phase and the inuence of the teacher length T on the dynamics.The analysis identi�es three interesting regimes: Large K, small T and large T .A. Large KFor large K, the linear analysis of the equations of motion around the symmetric �xedpoint for small learning rates, suggest that the trapping time is inversely proportional to thelearning rate and grows � / K2 for GD [17] and � / K for optimized ABP with �opt / K.This suggests that for increasing network size it seems to become harder for a studentnode to distinguish between the many teacher nodes and to specialize on one of them. Thisis reected by the decrease in the squared student length Q� / 1=K at the symmetric �xedpoint, pushing the student hidden nodes into the linear region of the sigmoidal activationfunction, where di�erentiation is more di�cult.This picture is altered signi�cantly when accounting for �nite learning rate e�ects, dueto the decrease in the optimal learning rate �opt with K, beyond the rescaling implicit in thenetwork normalization. This rescaling assumes an unnormalized network output of O(pK)and a typical squared error of O(K), which is appropriate in the case when the hidden unitsof both the student and the teacher network are uncorrelated. However, in the symmetricphase this is not the case for the student network leading to errors that grow faster thanO(K) and making a decrease in the learning rate necessary. The signi�cant reduction of thelearning rate may also be associated with the need to limit the proportion of the studentlength outside the space spanned by the teacher for large K.The actual training time spent in the symmetric phase therefore scales � / K 83 for GDand � / K 52 for ABP, reducing the bene�t of an adjustable temperature to K 16 . One also�nds that the scaling for the optimal temperature changes to �opt / pK in this limit.For the convergence phase one �nds that the training time scales with K in almost allcases, reecting the fact that the learning rate must (implicitely) be rescaled by 1=K as thetypical quadratic deviation between teacher and student output increases proportionally toK. The optimal inverse temperature and the optimal gain of using ABP in this regime aredependent on T but remain constant for large K, due to the fact that each student hiddenunit is already specialized on one teacher unit and the e�ect of other units in inhibitingfurther specialization is negligible.These result mean that most of the training time is spent in the symmetric phase (orsearch regime) for large networks, at least in learning scenarios with a certain amount ofsymmetry. This suggest that considerable more e�ort should be directed towards developingalgorithms, which can signi�cantly reduce the training time in this phase, than towards �netuning of the asymptotic convergence.
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B. Small TIn the small T limit, one �nds very similar results for both the symmetric and theconvergence phases, e.g., the optimal learning rate is universally � for GD, the optimalinverse temperature has the same scaling behaviour (�opt / 1=T ), and the optimal escapeand the optimal convergence eigenvalue scale with T 2 for GD and with T for ABP in bothlearning phases. This results in a gain of order 1=T , in using ABP, for the whole trainingprocess.The universal slow-down of learning in the small T limit may be explained by the factthat the learning rule becomes increasingly linear, resulting in a very at (generalization)error surface between the symmetric and the zero-generalization error �xed point. Themajor di�erence is the scaling of the relevant eigenvalue with the number of hidden unitsK, reecting the lesser degree of confusion once the hidden unit symmetry is broken.C. Large TFor large T the picture is not as coherent, which can be explained by the increasinglybinary nature of the hidden unit outputs. In the symmetric phase, the outputs of thestudent hidden units are highly correlated, whereas the outputs of the teacher hidden unitsare uncorrelated, leading to large errors between the student and teacher network outputthat scale with K but saturate for large T , explaining the large changes in the optimallearning parameters for medium T but also their indi�erence to further increases in T onceT is su�ciently large.In the convergence phase, a signi�cantly di�erent behaviour is observed for the two casesof �nite K and in�nite K, where the network output is discrete and continuous respectively.For in�nite K, the error remains smooth and actually decreases for large T due to theincreasingly binary hidden unit output, giving rise to an increase of �opt / T 12 .For �nite K, one typically �nds that at most one student hidden unit \misclassi�es" theoutput of the corresponding hidden unit of the teacher, causing a discrete error of either 0or 1=K and leading to a rescaling of the learning rate proportional to K.It would be quite interesting to study this limit more closely, due to its similarity to thecommittee machine. The possibility of tuning the weight function with � between a Hebb-like form for � = 0 and a Gaussian form for �nite � may give some idea about successfultraining algorithms for binary networks.However, throughout our analyses we have implicitely assumed that the decay/increase inthe exponential terms outstrips any algebraic variation in the prefactors and all optimizationswere carried out under this assumption. This is reasonable at least for medium values of T ,which are most likely to be encountered practically, but probably also for any �nite values ofT . For in�nite T , i.e., networks with discrete hidden units, this ansatz is however insu�cientas the exponential term vanishes and the dynamics become algebraic in �.In principle, one could encompass these limiting cases by incorporating second orderterms of the Taylor series around the �xed points and solving the resulting set of non-lineardi�erential equations by transforming them into matrix Riccati equations. Although this isin principle feasible, it goes beyond the scope of this paper.16



D. ConclusionsThis paper has shown the learning performance limitations of gradient descent (GD) inthe on-line learning paradigm. Within the model studied one �nds severe drawbacks of GD,especially in the symmetric phase, which dominates the learning process for large networks.The suggested adaptive back-propagation algorithm generally speeds up the training processconsiderably if its extra parameter, the inverse temperature �, is chosen optimally. It hasprovides us also with some insight into the shortcomings of GD and has outlined possiblefurther research directions.The relaxation of the constraint T = 1 has shown that the optimal learning parametervalues change signi�cantly in the region of usually relevant teacher lengths and between thesymmetric and the convergence phase, making it di�cult to choose good learning parameters,i.e., the learning rate � and the inverse temperature �, in practice without prior knowledge orestimation of the teacher lengths and the progress made in learning. This should encouragemore research into reliable on-line estimation of optimal learning parameters. It furthersuggests that the selection of individual learning parameters for each hidden node of thenetwork could potentially be hugely bene�cial [10]. We therefore hope that this work willmotivate further research into the e�ciency of on-line learning training algorithms and theirsystematic improvement. ACKNOWLEDGMENTSAHLW would like to acknowledge gratefully �nancial support by the EPSRC, a researchscholarship of the Department of Physics of the University of Edinburgh, and the �nancialsupport and hospitality of the Neural Computing Research Group at Aston University, wherepart of this research was carried out. This research was further supported by EPSRC grantGR/L19232. APPENDIX A: DYNAMICAL EQUATIONSThe generalization error is calculated by averaging the quadratic loss function (1) ex-plicitely over the activations fx;yg (and implicitely over all inputs) which are multivariateGaussian distributed with zero mean and covariance matrix C given byC = " Q RRT T # : (A1)In the following all averages are taken with respect to this distribution and making use ofthe convention that indices i; j; k; l and n;m label student and teacher nodes respectively.The generalization error then takes the form�g = 22K 8<:KM MXn;m=1 J2(n;m)� 2sKM K;MXi;n=1J2(i; n)+ KXi;j=1J2(i; j)9=; ; (A2)17



with the integral J2(1; 2) = hg(u1)g(u2)i, where ui represent members of fx;yg and wedenote with Id, Jd averages over d variables with one respectively two g terms. This integralcan be calculated analytically for the generalized error function g�(u) = erf(�u=p2) givingJ2(1; 2) = 2� arcsin �2C12p1 + �2C11p1 + �2C22! ; (A3)The dependence of the integral on the sigmoidal gain � can be absorbed by rede�ning~Cij = �2Cij;a rescaling which also holds for the other integrals below. To evaluate an integral explicitely,the full covariance matrix C is projected into the relevant subspace. For example, the relevantelements for J2(i; n) are C11 = Qii, C12 = Rin, and C22 = Tnn. It is a property of multivariateGaussian distributions [2] that integrals of reduced dimensionality like J2(1; 1) are generatedfrom the general form J2(1; 2) by the appropriate constraints (in this case C11 = C12 = C22).The di�erential equations for R and Q are calculated similarly and take the formdRind� = �2K 8<:sKM MXm=1 I3(i; n;m)� KXk=1 I3(i; n; k)9=; ; (A4a)dQijd� = �2K 8<:sKM MXm=1 I3(i; j;m) + I3(j; i;m)� KXk=1 I3(i; j; k) + I3(j; i; k)9=;+  �2K !28<:KM MXn;m=1J4(i; j; n;m)� 2sKM K;MXk;n=1J4(i; j; k; n) + KXk;l=1J4(i; j; k; l)9=; ; (A4b)with the integrals I3(1; 2; 3) = hg0(u1)u2g(u3)i and J4(1; 2; 3; 4) = hg0(u1)g0(u2)g(u3)g(u4)i.Again for the above choice of sigmoidal transfer function, these integrals can be calculatedanalytically. We �nd I3(1; 2; 3) = 2� 	12(�)q	13(1) �3 1(�) ; (A5a)J4(1; 2; 3; 4) = � 2��2 �2q	12(�) (A5b)� arcsin0@ ~C 034q1 + ~C 033q1 + ~C 044 ;1A ;where we have conveniently de�ned i(�) = 1 + � ~Cii;  ij(�) = � ~Cij	ij(�) =  i(�) j(�)�  ij(�) ij(�)�i =  2(�) ~C1i �  12(�) ~C2i	12(�) ;�i =  1(�) ~C2i �  12(�) ~C1i	12(�) ;~C 0ij = ~Cij � � h ~C1i�j + ~C2i�ji ;18



with (�) representing either � or 1. Again, one infers the elements of the reduced covariancematrix using the unit labelling convention and the appropriate dimensionality reduction.One can see that the only rôle of the gain � is an explicit rescaling of all order parametersby a factor �2 and an implicit rescaling of the learning rate � by �2 in the di�erential equations(A4). The learning rate is further rescaled by the linear output gain by 2. In combinationwith the input variance �2, the overall rescaling for any order parameter P and the learningrate � becomes ~P = �2�2P and ~� = �22�2K �: (A6)In the remainder of the paper we will therefore set � =  = � = 1 without loss of generality.APPENDIX B: THE REDUCED EQUATIONSReducing the free parameters for K =M and Tnm = T�nm with the ansatz (10) to justR, S, Q, and C simpli�es the generalization error (A2) to�g = 1� (arcsin� T1 + T �� 2 arcsin Rp1 +Qp1 + T !� 2(K � 1) arcsin Sp1 +Qp1 + T !+ (K � 1) arcsin C1 +Q!+ arcsin Q1 +Q!) : (B1)The di�erential equations for R, S, Q and C are determined from (A4) similarly and takethe formdRd� = 2� �K 11 (R0 � 1pR0 � RpQ0 � (K � 1) "�RSpS0 + S1 � �RCpC0 #) (B2a)dSd� = 2� �K 11 (S0 � 1pS0 � R1 � �SCpC0 � �RSpR0 � SpQ0 � (K � 2) " �S2pS0 + S1pC0 #) (B2b)dQd� = 4� �K 11 ( RpR0 � QpQ0 + (K � 1) " SpS0 � CpC0 #) (B2c)+ 4�2 �2K2 12 (arcsin�R1 � 2R1 �� 2 arcsin RpQ1R1!+ arcsin� QQ1�+ (K � 1) "2 arcsin CpQ1C1!� 2 arcsin SpQ1S1!� 2 arcsin S2 � 2�RCpR1C1 !� 2 arcsin R2 � 2�SCpS1C1 !� 2 arcsin 2�RSpR1S1!+ arcsin�C1 � 2C1 � + arcsin�S1 � 2S1 �#+ (K � 1)(K � 2) "arcsin C(2 � 2�C)C1 !� 2 arcsin S(2 � 2�C)pS1C1 !� arcsin 2�S2)S1 !#)dCd� = 4� �K 11 (R1 � �SCpS0 � Q1 � �C2pC0 + S1 � �RCpR0 � CpQ0 + (K � 2) " S3pS0 + C3pC0 #) (B2d)+ 4�2 �2K2 1p34 (2 arcsin�Q2 � 34Q2 �� 4 arcsin R1 � �SCpQ2R2 !+ 2 arcsin�R2 � 34R2 �19



+ 2 arcsin� CQ2�� 4 arcsin S1 � �RCpQ2R2 !+ 2 arcsin �2(R2 + S2)� 21�RSR2 !+ (K � 2) "4 arcsin Cp3pQ2C2!� 4 arcsin (S1 � �RC)p3pR2C2 !� 4 arcsin �S(S +R)p3pR2S2 !� 4 arcsin Sp3pQ2S2!+ arcsin�C2 � 4C2 �� 2 arcsin R4 � 2�SCpS2C2 !+ arcsin�S2 � 4S2 �#+ (K � 2)(K � 3) "arcsin�C3C2 �� 2 arcsin S3pS2C2!� arcsin 2�S2S2 !#) ;where we have for convenience de�ned1 = 1 + �Q 2 = 1 + 2�Q3 = 1 + �(Q� C) 4 = 1 + �(Q+ C)Q0 = 1 +Q Q1 = 2 +Q Q2 = 34 +Q1 � �C2C0 = (1 +Q)1 � �C2 C1 = (1 +Q)2 � 2�C2 C2 = (1 +Q)4 � 2�C2S0 = (1 + T )1 � �S2 S1 = (1 + T )2 � 2�S2 S2 = (1 + T )4 � 2�S2R0 = (1 + T )1 � �R2 R1 = (1 + T )2 � 2�R2R2 = (1 + T )34 � �1(R2 + S2) + 2�2RSC:1. Symmetric �xed point dynamicsFor a linear theory of the dynamics around their �xed point, we need to expand thedi�erential equations (B2) in a Taylor series to �rst orderdpid� = mi0 + 4Xj=1mijpj;where pi = Pi � P �i and Pi are generic order parameters. For a �xed point the zeroth-order terms vanish and the eigenvalues and eigenvectors of the Jacobian matrix M of �rstderivatives determine the solution of the linearized di�erential equation.Under the constraints Q = C and R = S, which are characteristic for the symmetric�xed points studied analytically, one �nds that the zeroth-order terms and the entries of theJacobian matrix M obey the relations (here, P1 = R, P2 = S, P3 = Q, and P4 = C)m10 = m20 m30 = m40m12 = (K � 1)m21 m24 = m14m22 = m11 + (K � 2)m21 m23 = m13m42 = (K � 1)m31 m32 = (K � 1)m31m44 = m33 +m34 �m43 m41 = m31: (B3)
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We omit the exact form of the remaining free parameters of the matrix as they are extremelytedious but easily derivable from (B2). The eigenvalues of such a Jacobian matrix are givenby �1 = m11 �m21 �2 = m33 �m43�3;4 = 12 �A0 +B0 �q(A0 � B0)2 + 4Km31C0� ; (B4)with A0 = m11 + (K � 1)m21, B0 = m33 +m34, and C0 = m13 +m14. The corresponding(unnormalized) eigenvectors vi are given byv1 = � (K � 1) �1 0 0 �v2 = � 1 1 v23 v24 � (B5a)v3;4 = � v(3;4);(1=2) v(3;4);(1=2) 1 1 �with v23 = m34(m33 �m43 � A0) +Km14m31m13m34 �m14m43v24 = m43(A0 +m43 �m33)�Km13m31m13m34 �m14m43 (B5b)v(3;4);(1=2) = �3;4 � B0Km31 ;where the �rst digit indicates the eigenvalue number and the second indicates the componentindex. a. Truncated equationsFor the truncated di�erential equations, where �2 are neglected, the onset of specializa-tion is characterized by the eigenvalues�01 = 2� ��T 2qK(1 + T )� T [K(1 + T ) + �T ] 32 (B6a)�02 = 0 (B6b)�03 = � 2�� " K(1 + T )� TK(1 + T ) + �T # 32 (B6c)�04 = � 4��vuut K(1 + T )� TK(1 + T ) + �T ; (B6d)i.e., one �nds only one relevant eigenvalue �01 (and one marginal eigenvalue �02). If one takesa closer look at the eigenvectors, whose non-constant terms take the form21



v023 = 2K 32 (1 + T )TqK(1 + T )� T (B7a)v024 = � 2K 32(K � 1)TqK(1 + T )� T (B7b)v03;(1=2) = 2pKqK(1 + T )� T (B7c)v04;(1=2) = � 2K 32 (1 + T )T (1 + 2�)qK(1 + T )� T ; (B7d)one can see that the positive eigenvalue �01 solely acts in the student-teacher overlap space.This eigenvalue is associated with a pure rotation of the weight vectors towards the teacherunit they will specialize on. The marginal eigenvalue �02 (which will be important in the casewhere �2 terms are not neglected) shows an increase in the squared norm Q of the studentweight vectors of O(K), but a decrease in their correlations C of O(1), which correspondsprimarily to a growth of the student weight vectors outside the subspace spanned by theteacher weight vectors. b. Small � �xed pointTo calculate the �rst order correction in � to the �xed point of the truncated equations(11), we expand the full di�erential equations (B2) to �rst order around (11), and �nd thezeros of the resulting set of linear equations in (r; s; q; c).Examining the relations (B3) more closely, one can see that the solution is characterizedby r = s and q = c, and we �nd for the new symmetric �xed point Q� = C� = Q�0 +Q�1 andR� = S� = R�0 +R�1 ignoring terms of O(�2)Q�1 = 1� [K(1 + T ) + 2�T ][K(1 + T )� T ] GF �K (B8a)R�1 = 12� T (1 + 2�)qK(1 + T )� T GF �K 32 ; (B8b)with G = qK(1 + T ) + �TqK(1 + T ) + (2� � 1)T (B8c)F = arcsin TfK[K(1 + T )� T ] + (K � 1)2�Tg[K(1 + T )� T ][K(1 + T ) + 2�T ] !� K arcsin TK(1 + T )K + 2�T ! (B8d)� (K � 1) arcsin 2�T 2[K(1 + T )� T ][K(1 + T ) + 2�T ]! :22



For the expansion to be valid, � has to be chosen to ensure Q�1 � Q�0 and R�1 � R�0. Forlarge K, this implies � � O(K�1). We further note that the new �xed point is not anylonger con�ned to the subspace spanned by the teacher weight vectors as R� < qQ�T=K.However, the symmetries Q = C and R = S are not broken to �rst order. This is in contrastto the numerical results from integrating the full dynamics (A4), where we observe, that thesymmetric phase for �nite learning rates is characterized by Q > C (and R = S).c. Small � dynamicsTo study the onset of specialization, we expand the di�erential equations (B2) aroundthe new �xed point, which is again characterized by Q = C and R = S and the matrixrelations (B3) hold. Ignoring terms of O(�3), we �nd that the eigenvalues (eigenvectors) ofthe Jacobian have acquired O(�2) [O(�)] corrections to their values in Eq. (B6) [Eq. (B7)].In particular �02 = 4�2 qK(1 + T )� TK(1 + T ) + (2� � 1)T ��2�8<: K(1 + T ) + (3� � 1)TKqK(1 + T ) + (2� � 1)T F (B9)� 2�T 2pK[K(1 + T ) + 2�T ] 24 pKqK(1 + T ) + (2� + 1)T� 1qK2(1 + T )(1 + 2T ) +K(1 + 2T )T (2� � 1)� 4�T 2� (K � 1)p1 + TqK2(1 + T )2 +K(1 + T )T (2� � 1)� 4�T 2359=; ;which is in general positive and dominated by the F term, i.e., the marginal eigenvaluenow becomes relevant to the dynamics. As mentioned in Appendix B 1, the associatedeigenvector (whose � dependence can be ignored as it constitutes only a minor correction)shows an increase in Q of O(K) and a decrease in C of O(1). As the increases in R andS are equal, this mode does not contribute to the specialization process but correspondsprimarily to a growth of the student weight vectors outside the subspace spanned by theteacher weight vectors. Since the initial di�erences between Q and C are typically large, thiseigenvalue will actually dominate the dynamics and quickly drive the student away from thisparticular �xed point. We therefore conclude that the �xed point associated with Q = Cis only relevant for � = 0, and that a �xed point characterized by Q > C leads to the longsymmetric phase for � > 0, which is not accessible by �rst order correction to the �xed pointstudied in Appendix B 1b. An analytic study of that �xed point necessitates an expansionto second order and the subsequent solution of a set of quadratic equations, which we havefound to be infeasible. 23



2. Convergence �xed point dynamicsAs for the symmetric �xed point, we expand the di�erential equations (B2) to �rst orderaround the zero generalization error �xed point, Q� = R� = T and C� = S� = 0, where weuse the ordering P1 = R, P2 = Q, P3 = S, and P4 = C for the convergence phase (againfollowing the convention of earlier work [2]). Similarly, we also expand the generalizationerror (B1) two second order. Explicitly, one �nds for the generalization error.�g = 1� ( 2r � qp1 + 2T � 14 T (2r � q)2(1 + 2T ) 32 + q(r � q)(1 + 2T ) 32� K � 11 + T "(2s� c) + q(s� c)1 + T #) : (B10)The elements of the Jacobian matrix are given byc11 = � 2� �K 1 + (1 + 2�)T[1 + (1 + �)T ] 32 (B11a)c12 = 1� �K T (1 + 2�)[1 + (1 + �)T ] 32 (B11b)c13 = 2� �K (K � 1)(1 + 2�T )p1 + T (1 + �T ) 32 (B11c)c14 = � 2� �K (K � 1)�Tp1 + T (1 + �T ) 32 (B11d)c21 = 4� �K 8<: 1 + T[1 + (1 + �)T ] 32 � 2� �K� (B11e)24 1q1 + 2(1 + �)T + (K � 1)q(1 + 2�T )(1 + 2T )359=;c23 = � 4� �K (K � 1)p1 + T 8<: 1(1 + �T ) 32 � 2� �K� (B11f)24 2q1 + (1 + 2�)T + (K � 2)q(1 + 2�T )(1 + T )359=;c31 = 2� �K 1q(1 + �T )(1 + T ) (B11g)c32 = � 1� �K Tp1 + �T (1 + T ) 32 (B11h)c33 = � 2� �K 24 1q1 + (1 + �)T+ (K � 2)q(1 + �T )(1 + T )35 (B11i)24



c34 = 0 (B11j)c41 = � 4� �K 1p1 + �T 8<: 1p1 + T � 2� �K� (B11k)24 2q1 + (2 + �)T + (K � 2)q(1 + �T )(1 + 2T )359=;c43 = 4� �K 8<: 1q1 + (1 + �)T + (K � 2)q(1 + �T )(1 + T )� 2� �K 24 21 + (1 + �)T + (K � 2)(1 + �T )(1 + T )�0@4q(1 + �T )(1 + T )q1 + (1 + �)T + (K � 3)1A359=; : (B11l)The remaining elements can be deduced by the matrix relations [18]c11 � 12c21 = c22 � 2c12c33 � 12c43 = c44 � 2c34c13 � 12c23 = c24 � 2c14c31 � 12c41 = c42 � 2c32: (B12)The eigenvalues of such a Jacobian matrix are given by the solutions to two quadraticequations �1;2 = 12 �A1 +B1 �q(A1 �B1)2 + 4C1D1� (B13a)�3;4 = 12 �A2 +B2 �q(A2 �B2)2 + 4C2D2� ; (B13b)with A1 = c11 � 12c21 B1 = c44 � 2c34C1 = c31 � 12c41 D1 = c24 � 2c14A2 = c11 + 2c12 B2 = c44 + 12c43C2 = c31 + 2c32 D2 = c24 + 12c23: (B13c)The corresponding (unnormalized) eigenvectors vi are given byv1;2 = � v(1;2);1 v(1;2);2 v(1;2);3 v(1;2);4 � (B14a)v3;4 = � 1 2 v(3;4);(3=4) 2v(3;4);(3=4) � ; (B14b)with (using c34 = 0) 25



v(3;4);(3=4) = �3;4 � A2D2 (B14c)v(1;2);1 = �f2D1 [c14C1 + c12 (B2 � �1;2) + c32D2]+ c43c14 (A1 � �1;2)g (B14d)v(1;2);2 = c21D1(�1;2 � c44) + c43c24(�1;2 � c11)+D1(c31c23 + c41c24) + c43c21c14 (B14e)v(1;2);3 = 2c31c14(A2 � �1;2) + 2c32c24(c11 � �1;2)� c14c21C2 � 2c24c12c31 (B14f)v(1;2);4 = 1C1 (�1;2 � A1) f2 (c21c32 � c12c41) (�1;2 � c44)+ C1 [c21(�1;2 � c44) + c43(�1;2 � A2)+ c41D1 + c23C2]g : (B14g)Comparing the eigenvectors (B14) with the expansion of the generalization error (B10), one�nds that the modes v3;4 are orthogonal to the �rst order terms in the generalization errorand therefore cannot contribute to their decay. These modes are therefore only relevant forsecond order terms in the generalization error with a decay rate of 2�3;4. As discussed inSection IVB, the fastest convergence is given by Eq. (15). This is achieved either for �optr ,where 2�3 = �1, or for �optm , which is de�ned by the minimum of �1.The critical (maximal) learning rates are de�ned by the zeros of the determinant in �A1B1 = C1D1 (B15a)A2B2 = C2D2; (B15b)where only one non-zero learning rate solution exist in Eq. (B15a), coinciding with �1 = 0.Unfortunately, it is in general infeasible to optimize the eigenvalues with respect to thelearning parameters � and � analytically for arbitrary K and T . However, one can makesome progress in certain limits of K and T , which we will investigate below.a. Large K limitThe dominant terms for large number of hidden units for all relevant quantities can beextracted by an asymptotic series expansion under the self-consistent ansatz � = O(1) and� = O(1). For the two relevant eigenvalues one makes the ansatz �i = O(K�1) and �nds toleading order �1(�) = � 4� �K ��1 � ��2E1E2E3(�E1 � �) (B16a)�3(�) = � 2� �K �E�33 � E�31 � ; (B16b)with the auxiliary variables:�1 = E1E2 (E1 � E3) (B16c)�2 = E1E2 � E3 �q1 + 2�T (1 + T ) (B16d)26



+p1 + 2T (1 + �T )� E21 iE1 = q(1 + T )(1 + �T ) (B16e)E2 = q(1 + 2T )(1 + 2�T ) (B16f)E3 = q1 + (1 + �)T : (B16g)These de�ne two critical learning rates�0crit(�) = ��1�2 (B17a)�1crit(�) = �E1 > �0crit; (B17b)where �1 is identical to zero (�0crit) and diverges (�1crit) respectively. Solving Eq. (B15a),one �nds �max = �0crit as expected. It is important to realize, that Eq. (B16a) is only avalid expansion for �1 for � < �1crit, beyond which the ansatz �1 = O(K�1) breaks down as�1 = O(1). In fact, the order of the two eigenvalues �1 and �2 change at �1crit and Eq. (B16a)is the correct asymptotic expansion of �2 for � > �1crit. This change in the order of eigenvaluescan be seen quite well in Fig. 6a, as the natural continuiation for �1 for large � follows thecurve representing �2 and vice versa.As mentioned above, one has in general to calculate both �optr and �optm by solving 2�3 = �1and d�1=d� = 0 respectively. Due to the breakdown of the ansatz for �1 above �1crit, solutionswith � > �1crit are spurious.For GD the eigenvalues and the critical learning rates simplify to�1(1) = � 4� �K [(1 + T )�p1 + 2T ]� �p1 + 2T � �(1 + 2T ) [�(1 + T )� �] (B18a)�3(1) = � 2� �K h(1 + 2T )� 32 � (1 + T )�3i (B18b)�0crit(1) = �p1 + 2T (B18c)�1crit(1) = �(1 + T ); (B18d)resulting in the two candidates for the optimal learning rate taking the form�optr (1) = �1critT h2(1 + T )3 � (2 + T )(1 + 2T ) 32 i(1 + T )4(p1 + 2T � 2) + (1 + 2T ) 32 ; (B19a)�optm (1) = �1crit � �p1 + T h(1 + T )�p1 + 2T i 12 : (B19b)To decide on the correct learning rate for given T , one has to evaluate whether�optr (1) < �1crit(1) and then calculate the convergence rates for the two learning rates. We �ndthat �opt(1) = �optr (1) for T > T crit and �opt(1) = �optm (1) for T < T crit, where T crit = 1:2780 isde�ned by �optr (1) = �optm (1).When optimizing �, one always �nds that the fastest convergence is achieved for 2�3 = �1and the optimal learning rate is determined by27



�opt(�) = �E2T nE41 (1 + �) + E1E33 [1 + �(1 + T )]o��E31E2(1 + �)T � E33 �p1 + 2T (1 + �T )E21+ q1 + 2�T (1 + T )E21 � E41 � E2���1 : (B20)The optimal convergence rate, which is just given as 2�3 at �opt, can however not be furtheroptimized analytically with respect to � and this optimization has to be done numerically.The results for �opt and all other interesting quantities in this limit can be seen in Figs. 7and 8.To make further progress in the K ! 1 limit, one can look at the limits T ! 1 andT ! 0. These results turn out to be equivalent, to leading order inK and T , to results whereboth T and K go to their limits simultaneously, i.e., taking the limitK !1 with T = T1Kand T = T0=K respectively. T0 and T1 are prefactors controlling the signi�cance betweenT and K. Below, we have therefore used the more general expansion in both variables forhigher order terms. Unfortunately, this was infeasible for higher order terms for optimizedback-propagation in the small T limit, where we present the results obtained by taking thelarge K limit �rst.a. Small T limit (T = T0=K): For GD the leading terms of the relevant quantities inthis limit are �max = � "1 + T � 12T 2 + 12 T 2K (TK � 4)# (B21a)�opt = � "1 + 12 �2�p2�T � p24 TK # (B21b)�opt = �2T 2K 241� �2 +p2�T+ 19 + 12p24 T 2 + p22 TK # ; (B21c)with TK = T0 = O(1). The optimization for ABP yields for K !1 preceding T ! 0�opt = 2T + 310 5 34p6(p5� 1)pT (B22a)�max = �p3241 + 5 34p6(p5� 1)20 pT35 (B22b)�opt = �p3 "1� 1519p5� 3315300(3�p5) T# (B22c)�opt = �43 TK 241� 5 34p6(3�p5)5(p5� 1) pT35 : (B22d)In this limit ABP yields in leading order a factor of 23T�1 in reduction of training time dueto the increase of �opt / T�1. Furthermore, the decrease in the normalized gap between �maxand �opt is slowed down proportional to 1=pT .28



b. Large T limit (T = T1K): For GD the leading terms of the relevant quantities inthis limit are �max = �p2pT "1� pTK + (1 + 2T1)24T # (B23a)�opt = �max � �p22pT (B23b)�opt = � 2KT "1� pTK + T 21 + T1 � 1T # ; (B23c)whereas the optimization for ABP gives�opt = 13 � 118 3p2T1 + 8p6� 12� 2p3pT (B24a)�max = �pT � �16 h11p2T1 + 20 + 14p3� 8p2 �2 +p3�i (B24b)�opt = �max � 34 �pT (B24c)�opt = �32 p3KT "1� T1 � (2�p2)(p3�p2)p2pT # : (B24d)In this limit ABP only yields a constant factor of 3p3=4 � 1:2990 in reduction of trainingtime and an increase in the learning rate gap by a factor 3=2. This should be contrastedto the increase in training time for both algorithms by a factor T and a decrease in thenormalized learning rate gap of T�1.Two logical further extensions are to look at the limits T ! 0 and T !1 for K �nite,especially as the numerical solutions indicate [see Fig. 7b], that there are qualitative changesin the learning behaviour at least for T !1.b. Small T limitFor small T , where the network becomes nearly linear, one should only expect minorchanges to the limits studied previously, since the network behaves smoothly. In particularwe �nd for GD �max = � �1 + T � K + 42K T 2� (B25a)�opt = � 241 + 0@1�sK � 12K 1AT (1 + T )35 (B25b)�opt = �2T 2K 241� 20@1 +sK � 12K 1AT35 : (B25c)For ABP only the leading term is feasible to calculate, resulting in29



�opt = 2T (B26a)�max = �p3 5K5(K � 1) + 3p5 (B26b)�opt = �max (B26c)�opt = �43 5T5(K � 1) + 3p5 ; (B26d)which explains the very weak inuence of K on the previous results (besides the naturalrescaling of �opt with K�1). c. Large T limitUnlike for small T , we �nd signi�cant changes in the learning behaviour of both algo-rithms in the large T limit. For GD one �nds for the leading orders�max = �p2K "1� K � 1pT # (B27a)�opt = �max � �p2K2T (B27b)�opt = � 2T 32 "1� K � 1pT # : (B27c)For ABP the numerical solutions suggest the self-consistent ansatz �opt / T� 13 and theleading terms are �opt = 16 "12(K � 1)2T # 13� 5K + 1954 "18(K � 1)T 2 # 13 (B28a)�max = �K 8<:p2� "3p2(K � 1)2T # 13� 3K + 118 "36p2(K � 1)T 2 # 139=; (B28b)�opt = �max � �p2KT (B28c)�opt = � 1T 32 8<:4p2� 6 "3p2(K � 1)2T # 13+ 37K + 1112 "36p2(K � 1)T 2 # 139=; : (B28d)30



In this limit ABP yields a larger constant factor of 2p2 � 2:828 in reduction of trainingtime and an increase in the learning rate gap by a factor 2, which is somewhat better thanfor the in�nite K case.
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���R12,R23,R31BBNRin, as in (b)FIG. 1. Dynamical evolution of the student-student overlaps Qij (a,c), the student-teacheroverlaps Rin (b,d), and the generalization error (e) as a function of the normalized example num-ber � for a student with three hidden nodes learning an isotropic three-node teacher (Tnm=�nm).The learning rate �=0.03 is �xed but the value of the inverse temperature varies (a,b): �=12 and(c,d): �=1 (gradient descent).
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FIG. 2. (a) The symmetric �xed point values R�, Q�, and C� of the order parameters areshown as a function of the learning rate � at K = 5 and T = 1 for � = 1. The values of the orderparameters diverge for � ! �D (see text). (b) For the same parameters, the relevant eigenvalues�1; �2 (see text) of the linearized dynamics around the (learning rate dependent) symmetric �xedpoint explain the divergent behaviour as �2(�D) ! 0. The maximum in �1, the eigenvalue thatdrives the specialization process, de�nes the optimal learning rate.
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FIG. 3. (a) The optimal inverse temperature �opt is shown for various T values (see legend) asa function of K. For su�ciently large values of TK, �opt grows with pK. (b) Here, �opt is shownas a function of T for various K values (see legend). For small T , we �nd a powerlaw increase of� with 1=T with an exponent that approaches 1 for TK small enough.
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FIG. 4. (a) The optimal learning rate �opt for gradient descent as a function of T for variousK values shows the most volatile behaviour for 0:1 � T � 10. (b) �opt(K) for several T valuesshows a powerlaw decay with exponent �2=3 in the large K limit for TK � 1. (c) The quotientof the optimal learning rates of adaptive back-propagation and gradient descent as a functionof K for various T values, shows that �opt(�opt) decays even faster with exponent �1 for largeK. (d) The optimal escape eigenvalue for gradient descent multiplied by K2 as a function of Tcollapses on a universal (K independent) curve for small T , and decays rapidly with exponent 2.For large T , the escape eigenvalue becomes independent of T , but acquires a further K dependence(�K2 / K� 23 ). (e) The possible gain by using adaptive back-propagation is shown by plottingthe quotient of the optimal escape eigenvalue for the two training algorithm. The advantage ofadaptive back-propagation is most impressive for small T , where one can gain at least a factor1=T in comparison to gradient descent, depending on the K value (see legend). (f) The samequotient as a function of K for several T values also shows a powerlaw gain by using adaptiveback-propagation but with a small exponent of 1=6.
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BBN�opt � �optFIG. 6. (a) The four eigenvalues �i for gradient descent (� = 1) as a function of the learningrate � at K = 3 and T = 1. (b) The two relevant eigenvalues (see text) �1 and �3 in the samescenario are shown for two values of �: � = 1, and � = �opt = 1:8314. For comparison we plot 2�3and �nd that the optimal learning rate �opt is given by the condition �1 = 2�3 for �opt, but by theminimum of �1 for � = 1.
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(b)�opt
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FIG. 7. (a) The optimal inverse temperature �opt is shown for various T values (see legend)as a function of K. It exhibits only a signi�cant K dependence for large T . (b) �opt is shown asa function of T for various K values (see legend), including the dominant term for K ! 1. Forsmall T , we �nd a powerlaw increase of � with 1=T independent of K. For large T , the behaviourof � strongly depends on K.
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(f)��optmax
TAabp:51 Agd:51FIG. 8. (a) The optimal learning rate �opt for gradient descent as a function of T for variousK values shows a signi�cant increase for large T and K. (b) The quotient of the optimal learningrates of adaptive back-propagation and gradient descent as a function of T for various K, shows nosigni�cant di�erence in the learning rates of the two algorithms. (c) The teacher length T critc (K),where the optimal learning rate changes from the minimum of �1 to the root of �1 � 2�3, andthe teacher length T opt(K), where the convergence rate � takes its global minimum. The lattercoincides with �opt = 1 for all K. (d) The optimal convergence rate for gradient descent multipliedby K as a function of T collapse on a universal (K independent) curve for small T , and decaysrapidly with exponent 2 as in the symmetric phase. For large T , the convergence rate also decaysin T , but with an exponent that seems to be K dependent. (e) The possible gain by using adaptiveback-propagation is shown by plotting the quotient of the optimal convergence eigenvalue for thetwo training algorithm. The advantage of adaptive back-propagation is most impressive for smallT , where one can gain a K independent factor 1=T in comparison to gradient descent. For largeT the gain is K dependent but constant in T . (f) The normalized di�erence between the maximaland optimal learning rate ��optmax is shown for both adaptive back-propagation Aabp and gradientdescent Agd for K = 5;1 as a function of T . For both small and large T one �nds powerlawbehaviour.
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TABLESTABLE I. The symmetric �xed points of the optimized dynamics for both the gradient descentAgd and adaptive back-propagation Aabp are compared in the limits T ! 0 and K ! 1 to thetheoretical values for � = 0 by calculating their normalized di�erence P̂ � = (P � � P �0 )=P �0 . Thesedi�erences exhibit either powerlaw behaviour, with algorithm dependent exponents or saturate atconstant limits, whose absolute value may be parameter dependent and referred to by c(�). In thelimit T !1 all parameters exhibit �nite limits and are therefore omitted. T crits (K) is de�ned byC� = C�0 . T ! 0 (TK � 1) K !1 (TK � 1)Agd Aabp Agd AabpQ̂� c(K) T 0:33�3 K0:64�2 K0:48�2Ĉ� �c(K) �T 0:33�3 K�0:33�2 K�0:50�1R̂� T 1:00�1 T 1:33�1 K�0:35�2 K�0:50�1T crits K0:31�2 K0:50�1TABLE II. For T ! 0 and K ! 1 the optimized dynamics in the symmetric phase showpowerlaw behaviour for both the gradient descent Agd and adaptive back-propagation Aabp. Thetable shows the optimal learning parameters �opt and �, the optimal escape eigenvalue �opt and thenormalized di�erence between maximal and optimal learning rate ��optmax = (�max � �opt)=�opt. Theerrors in the exponent are given for the last signi�cant digit only and c(�) refers to constant limits,whose value is dependent on a parameter.T ! 0 (TK � 1) K !1 (TK � 1)Agd Aabp Agd Aabp�opt 1 T�1:00�1 1 K0:50�2�opt � c(K) K�0:67�3 K�1:00�1��optmax T 0:68�3 c(K) c(T ) c(T )�opt T 2:00�1K�2 T 1:00�1K�2 K�2:66�4 K�2:50�1
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TABLE III. For T ! 0 and T ! 1 the optimized dynamics in the convergence phase showpowerlaw behaviour for both gradient descent Agd and adaptive back-propagation Aabp. The tableshows the optimal learning parameters �opt and �, the optimal convergence eigenvalue �opt and thenormalized di�erence between maximal and optimal learning rate ��optmax = (�max � �opt)=�opt. c(�)refers to constant limits, whose value is dependent on a parameter.T ! 0 T !1 (K �nite) T !1 [TK�1 = O(1)]Agd Aabp Agd Aabp Agd Aabp�opt 1 T�1 1 T� 13 1 13�opt � c(K) K1 K1 T 12 T 12��optmax T 1 T 12 T�1 T�1 T�1 T�1�opt T 2K�1 T 1K�1 T� 32 T� 32 T�1K�1 T�1K�1

40


