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tWe present a theoreti
al method for a dire
t evaluation of the average error exponent in Gallager error-
orre
ting
odes using methods of statisti
al physi
s. Results for the binary symmetri
 
hannel (BSC) are presented for 
odesof both �nite and in�nite 
onne
tivity.1 Introdu
tionLow-density parity-
he
k 
odes (LDPC) have attra
ted signi�
ant interest in re
ent years due to their simpli
ity andex
eptionally high performan
e [1℄. Their simpli
ity and inherent randomness make them amenable to analysis usingestablished methods in the area of statisti
al physi
s. These have been employed in a number of papers [2℄-[8℄ to gaininsight into the properties of LDPC 
odes and to evaluate their performan
e.These studies in
lude the evaluation of 
riti
al noise levels for given 
odes [2℄, an exa
t 
al
ulation of weight andmagnetization enumerators [4℄, the performan
e of irregular 
odes [3℄, properties of 
odes in real-valued 
hannels [5℄,and the derivation of bounds for the reliability exponent [6℄, to name but a few. These studies also represent theinterdis
iplinary nature of this resear
h area and illustrate the su

essful intera
tion between resear
hers in the twodis
iplines.The evaluation of error exponents has been a long-standing problem in information theory [10, 11℄. E�orts to obtainexa
t expressions and/or bounds to the error exponent resulted in partial su

ess; although tight bounds have beenderived in the 
ase of random 
odes and LDPC with in�nite 
onne
tivity [10℄, only limited results have been obtainedfor sparsly 
onne
ted 
odes. Main stream te
hniques to ta
kle the problem in
lude sphere-pa
king and union-boundarguments [11, 10℄. Below a 
ertain 
ode-rate value, the estimated bounds also be
ome loose and require using the`expurgated exponent' te
hniques [10℄ for obtaining a tighter bound.In this paper, we employ methods of statisti
al physi
s to evaluate dire
tly the typi
al (average) error exponent inGallager LDPC 
odes. This 
an be 
arried out by averaging the error exponent over the ensemble of randomly generatedLDPC 
odes of given rate and 
onne
tivity; this results in the emergen
e of ma
ros
opi
 properties, representative ofthe ensemble properties, that 
an be obtained numeri
ally and used to 
al
ulate the average error exponent. Solutionshave been obtained for both �nite and in�nite 
onne
tivity ve
tor ensembles.As a referen
e point to test our theory, we use known results obtained in simple solvable limits (e.g. 
odes ofin�nite 
onne
tivity), and �nd that our method reprodu
es them exa
tly. Perhaps not surprisingly, we also �nd thatat �xed noise level and 
ode rate, the reliability exponent for 
odes of �nite 
onne
tivity is always upper-bounded bythat of the in�nite-
onne
tivity 
ase.Before we pro
eed, the distin
tion between the statisti
al physi
s based bounds [6℄ and the 
urrent 
al
ulationshould be 
lari�ed. In the former, one employs methods of statisti
al physi
s to 
al
ulate the typi
al value of a boundbased on inequalities introdu
ed by Gallager; while in the 
urrent 
al
ulation, a dire
t estimation of the average errorexponent, rather than a bound, is sought. An additional advantage of the 
urrent approa
h is that it 
an be extendedto provide reliability exponent values for LDPC 
odes by restri
ted averages over 
odes of high performan
e.1
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The paper is organized as follows: In se
tion 2, we introdu
e the general 
oding framework and the te
hniqueused. In se
tions 3 and 4 we present an outline of the derivation and the solutions obtained in both �nite and in�nite
onne
tivity 
ases respe
tively. Dis
ussion and 
on
lusions are presented in se
tion 5.2 De�nitionsA regular (k; j) Gallager error-
orre
ting 
ode is de�ned by the binary (N�K)�N (parity 
he
k) matrix A = [C1jC2℄,whi
h is known to both sender and re
eiver. The (N �K)� (N �K) matrix C2 is taken to be invertible. The numberof non-zero elements in ea
h row of A is given by k, while the number of non-zero elements per 
olumn is given byj � k(N �K)=N .Gallager's en
oding s
heme 
onsists of generating a 
odeword t 2 f0; 1gN from an information (message) ve
tors 2 f0; 1gK (with N > K) via the linear operation t = GTs (mod 2) where G is the generator matrix de�ned byG = [I jC�12 C1℄ (mod 2). The 
ode rate is then given by R � K=N = 1�j=k, and measures the information redundan
yof the transmitted ve
tor.Upon transmission of the 
odeword t via a noisy 
hannel (taken here be a BSC) the ve
tor r = t+ n0 (mod 2) isre
eived, where n0 2 f0; 1gN is the true 
hannel noise. The statisti
s of the BSC is fully determined by the 
ip ratep 2 [0; 1℄: P (n0i ) = (1� p) Æn0i ;0 + p Æn0i ;1 (1)De
oding is 
arried out by multiplying r by A to produ
e the syndrome ve
tor z = Ar = An0, sin
e AGT =0 by 
onstru
tion. In order to re
onstru
t the original message s, one has to obtain an estimate n for the truenoise n0. First we sele
t the parity 
he
k set of A and n0, i.e. all n that satisfy the parity 
he
k equations:Ip
(A;n0) � fn j An = An0g. Sin
e all operations are performed in modulo 2 arithmeti
, Ip
(A;n0) typi
ally
ontains exp[NR ln(2)℄ 
andidates for the true noise ve
tor n0.It was shown (see e.g. [2, 6, 8℄ for te
hni
al details) that this problem 
an be 
ast into a statisti
al me
hani
sformulation, by repla
ing the �eld (f0; 1g;+mod(2)) by (f1;�1g;�), and by adapting the parity 
he
ks 
orrespond-ingly. >From the parity 
he
k matrix A we 
onstru
t the binary tensor A = fAhi1���iki; 1 � i1 < i2 � � � < ik � Ng,where Ahi1���iki = 1 if A has a row in whi
h the elements fi
; 
 = 1 � � � kg are all 1 (i.e. when the bits hi1 � � � iki areinvolved in the same parity 
he
k), and 0 otherwise. The fa
t that ea
h bit i1 = 1 � � �N is involved in exa
tly jparity 
he
ks is then expressed by Pi2<���<ik Ahi1���iki = j; 8 i1 = 1; : : : ; N and the parity 
he
k equations be
omeQk
=1 ni
 =Qk
=1 n0i
 , 8Ahi1���iki = 1.De
oding now 
onsists in sele
ting an n from Ip
(A;n0), on the basis of its noise statisti
s, whi
h are fully des
ribedby its magnetization m(n) = 1=NPi ni (
orresponding to the weight in the information theory literature). Note thatthe number n�(n) of 
ipped bits in a 
andidate noise ve
tor n is given by n�(n) = N(1 �m(n))=2. Therefore, weintrodu
e a Hamiltonian or 
ost fun
tion for ea
h noise 
andidate that is negatively proportional to its magnetisation:H(n) = �FXi ni = �FNm(n) (2)where we take F = 12 log 1�pp , su
h that up to normalisation exp(�H(n)) yields the 
orre
t prior for 
andidate noiseve
tors generated by the BSC [12℄. Then, a ve
tor n from Ip
(A;n0) with the highest magnetization (lowest weight)is sele
ted as a solution; this 
orresponds to MPM de
oding.We are now interested in the probability that other 
andidate noise ve
tors are sele
ted from the parity 
he
k setIp
(A;n0), other than the 
orre
t (i.e. true) noise ve
tor n0, for any given 
ombination fn0;Ag; this is termed theblo
k error probability. In order to 
al
ulate this probability, we introdu
e an indi
ator fun
tion:�(n0;A) = lim�1;2!1 lim�1;2!�� hZ�11 (n0;A;�1) Z�22 (n0;A;�2)i����1=�2=� (3)where Z1(n0;A;�1) = Xn2Ip
(n0;A)nn0 e��1H(n) Z2(n0;A;�2) = Xn2Ip
(n0;A) e��2H(n) (4)The two partition fun
tions Z1(n0;A;�1) and Z2(n0;A;�2) di�er only in the ex
lusion of n0 from Z1. If the truenoise n0 has the highest magnetization of all 
andidates in the parity 
he
k set (de
oding su

ess), the Boltzmann2



fa
tor exp[��H(n0)℄ will dominate the sum over states in Z2 in the limit � ! 1, and �(n0;A) = 0. Alternatively,if some other ve
tor n 6= n0 has the highest magnetization of all 
andidates in the parity 
he
k set (de
oding failure),its Boltzmann fa
tor will dominate both Z1 and Z2 and �(n0;A) = 1. Note that the separate temperatures �1 and�2, whi
h are put to be equal to � in the end, and the powers �1;2 whi
h are taken to be �� in the end, have beenintrodu
ed in order to allow us to determine whether obtained solutions are physi
al or not.To derive the average error exponent, we take the logarithm of the indi
ator fun
tion average with respe
t to allpossible realisations of true noise ve
tors n0, and the ensemble of regular (k; j) 
odes A:Q = limN!1 1N log 

�(n0;A)�n0�A (5)where hf(n0)in0 = 1(2 
oshF )N Xn0 exp(FXi n0i ) f(n0) (6)and hf(A)iA = PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ f(A)PAQNi1=1 Æ[Pi2<���<ik Ahi1���iki � j℄ : (7)Sin
e there are only dis
rete degrees of freedom, physi
ally meaningful solutions must have a non-negative entropy,requiring the disorder-averaged entropies of the two partition fun
tions (4) to be non-negative. For general values of�1;2 and �1;2, it 
an be shown that these disorder-averaged entropies are given byhSxi = �Q��x � �x�x �Q��x � 0; x = 1; 2 (8)whi
h have to be positive.3 General solutionUsing standard statisti
al physi
s methods su
h as in [12℄, we perform the gauge transformation ni ! nin0i , and theaverages over true noise (6) and 
ode 
onstru
tions (7); we then assume the simplest repli
a symmetri
 s
heme [9℄ toarrive at the following expression for the average error exponent:Q(�1; �2; �1; �2) = Extr�;�̂ � jk log I1[�℄� j log I2[�; �̂℄ + log I3[�̂℄� (9)where I1 = Z ( kY
=1 d�(x
; y
)) 1 +Qk
=1 x
2 !�+  1 +Qk
=1 y
2 !�� (10)I2 = Z fd�(x; y) d�̂(x̂; ŷ)g�1 + xx̂2 ��+ �1 + yŷ2 ��� (11)I3 = Z ( jY
=1 d�̂(x̂
; ŷ
))*" Xu=�1 e�1Fn0u jY
=1�1 + ux̂
2 �#�+ " Xv=�1 e�2Fn0v jY
=1�1 + vŷ
2 �#��+n0 (12)where we have used the short-hand notation df(x; y)=dxdy f(x; y). Fun
tional extremisation of (9) with respe
t tothe densities �(x; y) and �̂(x̂; ŷ) results in a 
losed set of equations (reminis
ent of `density evolution' equations [1℄):�̂(x̂; ŷ) = Z "k�1Y
=1 d�(x
; y
)# Æ "x̂� k�1Y
=1 x
# Æ "ŷ � k�1Y
=1 y
# (13)�(x; y) = R nQj�1
=1 d�̂(x̂
; ŷ
)oDD�++ (x̂;�1) D��+ (ŷ;�2) Æ hx� D�(x̂;�1)D+(x̂;�1)i Æ hy � D�(ŷ;�2)D+(ŷ;�2)iEn0R nQj�1
=1 d�̂(x̂
; ŷ
)oDD�++ (x̂;�1)D��+ (ŷ;�2)En0 (14)3
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p pFigure 1: Average error exponent Q as fun
tion of the 
ip rate p for 
odes of (k; j) = (4; 3) (left pi
ture) and(k; j) = (6; 3) (right pi
ture). Dashed lines 
orrespond to the �nite (k; j) 
ases. Dots indi
ate 
riti
al 
ip rates whereQ be
omes zero. For 
omparison we also present (solid lines) the value of the average error exponent in the 
ase ofk; j !1 with R = 1=4 (left) and R = 1=2 (right). Note that the transition from type I to type II solution o

urs atsmall p values outside the range of this �gure.where D�(z;�) = [e�Fn0 j�1Y
=1(1 + z
)℄� [e��Fn0 j�1Y
=1(1� z
)℄ (15)For given (�1; �2; �1; �2) in general, solutions to (13) and (14) 
an only be obtained numeri
ally. Inserting thesesolutions into (9) we then obtain Q(�1; �2; �1; �2), whi
h be
omes the average error exponent for �1 = ��2 = � > 0,and for �1 = �2 = � !1.We must re
all, however, that physi
ally meaningful solutions must satisfy the 
onditions (8) stating that theentropies related to the full and the restri
ted partition sums are non-negative.We restri
t ourselves to regions below the thermodynami
 transition where the average 
ase is dominated by theferromagneti
 solution, su
h that we 
an safely �x the denominator to the ferromagneti
 solution. This dominan
e isguaranteed if the following 
onstraint is satis�ed �Q�� �����1=��2=� � 0 : (16)It turns out that for given � > 0, the largest value of � for whi
h (16) is satis�ed is given by � = 1=(1+�). Hen
e,in order to maximize �, we must look for the smallest value �� that satis�es the 
onditions on the non-negativity ofthe entropies (8). Unfortunately, in general this value �� 
an only be obtained numeri
ally. The value obtained forthe average error exponent by this analysis is then given by Q(1=(1+��); 1=(1+��); ��;���) from (9).In �gure 1 we present the obtained average error exponent as a fun
tion of the 
ip rate for (k; j) = (4; 3) and(k; j) = (6; 3) 
odes. We observe that the error exponent indeed 
onverges to zero, as it should, when the 
ip rateapproa
hes its 
riti
al value.Noti
e the similarity between the equations obtained here and in [6℄ in spite of the di�erent starting points. Ithas been shown in [6℄ that the analysis should be re�ned in low rate regions by applying a more 
omplex symmetryassumption in the derivation termed one step repli
a symmetry breaking (for more details see [12℄). The re�nedanalysis resulted in tight bounds of the error exponent even in the region of low 
ode-rates, similar to those obtainedusing expurgated exponent methods. One 
an exploit the similarity between the equations obtained in [6℄ and in the
urrent manus
ript to derive similar results in the low-rate region.4



4 An exa
tly solvable limit: k; j !1Whereas for �nite density 
odes we were depending on a numeri
al analysis, in the limit of k; j ! 1 (while keepingthe rate R = 1� j=k �nite) we obtain two types of analyti
 solutions to equations (13) and (14), whi
h 
an be veri�edby substitution:Type I: �(x; y) = 12 [Æ(x� 1) + Æ(x + 1)℄ Æ(y � 1)�̂(x̂; ŷ) = 12 [Æ(x̂� 1) + Æ(x̂ + 1)℄ Æ(ŷ � 1) (17)Type II: �(x; y) = h G+(F (1+�2�+)) Æ(x�tanh(�1F )) +G�(F (1+�2��)) Æ(x+tanh(�1F ))i Æ(ŷ � 1)�̂(x̂; ŷ) = Æ(x̂) Æ(ŷ � 1) (18)with G�(x) = 12 [1� tanh(x)℄.The average error exponent as obtained from the type I solution is given byQI(�; �; �;��) = � jk log 2� log 
oshF + log 
osh(�F�) + log 2 
osh(F � �F�) : (19)We �nd that the entropies (8) are always identi
ally zero, and that the 
onstraint (16) requires that � = 1=2, su
hthat � = 1 and QI = � jk log 2� log 
oshF + log[
oshF + 1℄ (20)whi
h is exa
tly the Bhatta
haryya limit [11℄.The average error exponent as obtained from the type II solution is given byQII(�; �; �;��) = � �� jk log 2 + log 2 
osh[�F ℄�+ log[2 
osh(F � �F�)℄ � log 2 
oshF (21)The 
ondition on the entropy hS2i � 0 is satis�ed for all � > 0 whereas the 
ondition hS1i � 0 is violated below the
riti
al (freezing) temperature 1=�� obtained from� jk log 2� ��F tanh[��F ℄ + log 2 
osh[��F ℄ = 0 (22)This negative entropy is an artifa
t of a simplisti
 assumption about the symmetry between repli
as, and 
an beremedied by 
onsidering a `frozen RSB' ansatz [4℄. In this ansatz, for all � � ��, the (frozen) average error exponentis given by QfrII (�; �; �;��) = ��� � �� jk log 2 + log 2 
osh[��F ℄�+ log 2 
osh[F � �F�℄� log 2 
oshF (23)However, 
ondition (16) is violated for � > 1� ��, su
h that the average error exponent is given byQfrII = F tanh[��F ℄ + jk log 2� log 2 
oshF (24)What remains is to determine whether the type I or the type II solution is physi
ally dominant, by using Q as agenerating fun
tion. Results for the 
ase of k; j !1 are presented in �gure 2 for p = 0:01 and p = 0:05.
5
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odes for whi
h analyti
alexpressions 
an be derived; see (20) and (24) (solid: p = 0:01 and dashed: p = 0:05).5 Dis
ussionIn this paper we suggest a method for dire
t evaluation of the average error exponent over the ensemble of LDPCerror-
orre
ting 
odes of given rate and 
onne
tivity. An analyti
al solution has been obtained using methods ofstatisti
al physi
s, whi
h is in perfe
t agreement with known results in the limit k; j ! 1 (with R �nite). Solutionsobtained for 
odes of �nite (k; j) values seem to be upper bounded by the k; j !1 results.An interesting feature of the present study is the similarity of our equations to those obtained in [6℄ in spite ofthe di�erent approa
hes used. An important advantage o�ered by the 
urrent approa
h is a potential extension torestri
t the averages to 
odes of high performan
e to obtain reliability exponent values for LDPC 
odes of both �niteand in�nite 
onne
tivity; this study is 
urrently underway.Referen
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