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Abstract

We present a theoretical method for a direct evaluation of the average error exponent in Gallager error-correcting
codes using methods of statistical physics. Results for the binary symmetric channel (BSC) are presented for codes
of both finite and infinite connectivity.

1 Introduction

Low-density parity-check codes (LDPC) have attracted significant interest in recent years due to their simplicity and
exceptionally high performance [1]. Their simplicity and inherent randomness make them amenable to analysis using
established methods in the area of statistical physics. These have been employed in a number of papers [2]-[8] to gain
insight into the properties of LDPC codes and to evaluate their performance.

These studies include the evaluation of critical noise levels for given codes [2], an exact calculation of weight and
magnetization enumerators [4], the performance of irregular codes [3], properties of codes in real-valued channels [5],
and the derivation of bounds for the reliability exponent [6], to name but a few. These studies also represent the
interdisciplinary nature of this research area and illustrate the successful interaction between researchers in the two
disciplines.

The evaluation of error exponents has been a long-standing problem in information theory [10, 11]. Efforts to obtain
exact expressions and/or bounds to the error exponent resulted in partial success; although tight bounds have been
derived in the case of random codes and LDPC with infinite connectivity [10], only limited results have been obtained
for sparsly connected codes. Main stream techniques to tackle the problem include sphere-packing and union-bound
arguments [11, 10]. Below a certain code-rate value, the estimated bounds also become loose and require using the
‘expurgated exponent’ techniques [10] for obtaining a tighter bound.

In this paper, we employ methods of statistical physics to evaluate directly the typical (average) error exponent in
Gallager LDPC codes. This can be carried out by averaging the error exponent over the ensemble of randomly generated
LDPC codes of given rate and connectivity; this results in the emergence of macroscopic properties, representative of
the ensemble properties, that can be obtained numerically and used to calculate the average error exponent. Solutions
have been obtained for both finite and infinite connectivity vector ensembles.

As a reference point to test our theory, we use known results obtained in simple solvable limits (e.g. codes of
infinite connectivity), and find that our method reproduces them exactly. Perhaps not surprisingly, we also find that
at fixed noise level and code rate, the reliability exponent for codes of finite connectivity is always upper-bounded by
that of the infinite-connectivity case.

Before we proceed, the distinction between the statistical physics based bounds [6] and the current calculation
should be clarified. In the former, one employs methods of statistical physics to calculate the typical value of a bound
based on inequalities introduced by Gallager; while in the current calculation, a direct estimation of the average error
exponent, rather than a bound, is sought. An additional advantage of the current approach is that it can be extended
to provide reliability exponent values for LDPC codes by restricted averages over codes of high performance.
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The paper is organized as follows: In section 2, we introduce the general coding framework and the technique
used. In sections 3 and 4 we present an outline of the derivation and the solutions obtained in both finite and infinite
connectivity cases respectively. Discussion and conclusions are presented in section 5.

2 Definitions

A regular (k, j) Gallager error-correcting code is defined by the binary (N — K) x N (parity check) matrix A = [C}|C3],
which is known to both sender and receiver. The (N — K) x (N — K) matrix Cs is taken to be invertible. The number
of non-zero elements in each row of A is given by k, while the number of non-zero elements per column is given by
j=k(N - K)/N.

Gallager’s encoding scheme consists of generating a codeword ¢ € {0,1}" from an information (message) vector
s € {0,1}¥ (with N > K) via the linear operation ¢ = GTs (mod 2) where G is the generator matrix defined by
G = [I|C5'Cy] (mod 2). The code rate is then given by R = K/N = 1—j/k, and measures the information redundancy
of the transmitted vector.

Upon transmission of the codeword t via a noisy channel (taken here be a BSC) the vector r = ¢ + n° (mod 2) is
received, where n® € {0,1}% is the true channel noise. The statistics of the BSC is fully determined by the flip rate
p € [0,1]:

P(n9) = (1= p) 600+ pono. (1)

Decoding is carried out by multiplying r by A to produce the syndrome vector z = Ar = An®, since AGT =
0 by construction. In order to reconstruct the original message s, one has to obtain an estimate m for the true
noise nY. First we select the parity check set of A and n°, i.e. all n that satisfy the parity check equations:
Zp.(A,n% = {n | An = An®}. Since all operations are performed in modulo 2 arithmetic, Z,.(A,n°) typically
contains exp[N R In(2)] candidates for the true noise vector n°.

It was shown (see e.g. [2, 6, 8] for technical details) that this problem can be cast into a statistical mechanics
formulation, by replacing the field ({0,1}, +mod(2)) by ({1,—1}, x), and by adapting the parity checks correspond-
ingly. ;From the parity check matrix A we construct the binary tensor A = {Ay, .5y, 1 <idy <ig--- <ip < N},
where A, ..,y = 1if A has a row in which the elements {i.,c = 1---k} are all 1 (i.e. when the bits (i, ---iz) are
involved in the same parity check), and 0 otherwise. The fact that each bit iy = 1--- N is involved in exactly j

parity checks is then expressed by 3 Agiyiy = J» Yi1 =1,..., N and the parity check equations become

Hf:l n'e = Hf:l n?a VA iy = 1.

Decoding now consists in selecting an n from Z,.(A, n?), on the basis of its noise statistics, which are fully described
by its magnetization m(n) = 1/N ). n; (corresponding to the weight in the information theory literature). Note that
the number n_(n) of flipped bits in a candidate noise vector n is given by n_(n) = N(1 — m(n))/2. Therefore, we
introduce a Hamiltonian or cost function for each noise candidate that is negatively proportional to its magnetisation:

fo < <

H(n)=-F Z n; = —FNm(n) (2)

where we take F' = %log 11.%”, such that up to normalisation exp(—H (n)) yields the correct prior for candidate noise
vectors generated by the BSC [12]. Then, a vector n from Z,.(A, n°) with the highest magnetization (lowest weight)
is selected as a solution; this corresponds to MPM decoding.

We are now interested in the probability that other candidate noise vectors are selected from the parity check set
Tpe(A,m%), other than the correct (i.e. true) noise vector n°, for any given combination {n°, A}; this is termed the
block error probability. In order to calculate this probability, we introduce an indicator function:

A@°,A) = lim  lim [zﬁl(nO,A;ﬂl) z;2(n°,,4;62)] (3)

B1,2—00 A1,2—=EA B1=B2=p
where
Lm0 A= Y e HHM 0 Apy) = Y e (4)
NEL, (N0, A)\NO NEL, (N0, A)

The two partition functions Z;(n°, A;3;) and Z5(n°, A;32) differ only in the exclusion of n° from Z;. If the true
noise n° has the highest magnetization of all candidates in the parity check set (decoding success), the Boltzmann
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factor exp[—BH (n°)] will dominate the sum over states in Z, in the limit 8 — oo, and A(n°, A) = 0. Alternatively,
if some other vector n # n® has the highest magnetization of all candidates in the parity check set (decoding failure),
its Boltzmann factor will dominate both Z; and Z, and A(n°, A) = 1. Note that the separate temperatures $; and
B2, which are put to be equal to 3 in the end, and the powers A; » which are taken to be £\ in the end, have been
introduced in order to allow us to determine whether obtained solutions are physical or not.

To derive the average error exponent, we take the logarithm of the indicator function average with respect to all
possible realisations of true noise vectors m°, and the ensemble of regular (k,j) codes A:

Q= Jim < log((Am® A))yy0) )
where
(D = e v L en(F 3 J ©
and

ZA Hll 1 [Zi2<---<ik A<112k> - .]] f(A)
ZA Hn:l 6[Zi2<'“<ik A(““c) - -7]
Since there are only discrete degrees of freedom, physically meaningful solutions must have a non-negative entropy,

requiring the disorder-averaged entropies of the two partition functions (4) to be non-negative. For general values of
Bi,2 and Ay 2, it can be shown that these disorder-averaged entropies are given by

9Q _ B. 0Q
MNe Ao OB,

(f(A)a = (7)

(S2) =

>0, r=1,2 (8)
which have to be positive.

3 General solution

Using standard statistical physics methods such as in [12], we perform the gauge transformation n; — n;n?, and the
averages over true noise (6) and code constructions (7); we then assume the simplest replica symmetric scheme [9] to
arrive at the following expression for the average error exponent:

Q(B1, B2, A1, A2) = Extry » {%108; Ii[n] — jlog Ix[m, @]+ log 13[7?]} 9)

d E AN s .
L :/{Hdﬁ(‘rc:yc)}< 2621 C) ( 2621 yC) (10)

I = /{dw(m,y) (2, 9)) <1+2m>A+ (14_2yg>k— (11)

L= {1_1 dfr(azc,gc)} <[Z st ] (H;‘je)r [Z e ] (1+2y)]> (12

u==+1 c=1 v==41 c=1

where

where we have used the short-hand notation df (z,y)=dzdy f(z,y). Functional extremisation of (9) with respect to
the densities 7(z,y) and 7 (&, §) results in a closed set of equations (reminiscent of ‘density evolution’ equations [1]):

/ lH dr(z., yc] [:c— chl [g_iliycl (13)
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Figure 1: Average error exponent () as function of the flip rate p for codes of (k,j) = (4,3) (left picture) and
(k,j) = (6,3) (right picture). Dashed lines correspond to the finite (k,j) cases. Dots indicate critical flip rates where
@) becomes zero. For comparison we also present (solid lines) the value of the average error exponent in the case of
k,j — oo with R =1/4 (left) and R = 1/2 (right). Note that the transition from type I to type II solution occurs at
small p values outside the range of this figure.

where . i
Dy(2:8) = [P (1 + 2] £ [e PP T] (1 - 2] (15)

For given (B1,f2,A1,A2) in general, solutions to (13) and (14) can only be obtained numerically. Inserting these
solutions into (9) we then obtain Q(81, 2, A1, A2), which becomes the average error exponent for Ay = —Xo = A > 0,
and for g1 = 3y = f — .

We must recall, however, that physically meaningful solutions must satisfy the conditions (8) stating that the
entropies related to the full and the restricted partition sums are non-negative.

We restrict ourselves to regions below the thermodynamic transition where the average case is dominated by the
ferromagnetic solution, such that we can safely fix the denominator to the ferromagnetic solution. This dominance is
guaranteed if the following constraint is satisfied

0Q
— <0. 16
OB |ny=—ramr (16)

It turns out that for given A > 0, the largest value of 8 for which (16) is satisfied is given by 8 = 1/(1+X). Hence,
in order to maximize 3, we must look for the smallest value A, that satisfies the conditions on the non-negativity of
the entropies (8). Unfortunately, in general this value A\, can only be obtained numerically. The value obtained for
the average error exponent by this analysis is then given by Q(1/(1+X\,),1/(14+A), Ax,—\s) from (9).

In figure 1 we present the obtained average error exponent as a function of the flip rate for (k,j) = (4,3) and
(k,j) = (6,3) codes. We observe that the error exponent indeed converges to zero, as it should, when the flip rate
approaches its critical value.

Notice the similarity between the equations obtained here and in [6] in spite of the different starting points. It
has been shown in [6] that the analysis should be refined in low rate regions by applying a more complex symmetry
assumption in the derivation termed one step replica symmetry breaking (for more details see [12]). The refined
analysis resulted in tight bounds of the error exponent even in the region of low code-rates, similar to those obtained
using expurgated exponent methods. One can exploit the similarity between the equations obtained in [6] and in the
current manuscript to derive similar results in the low-rate region.



4 An exactly solvable limit: &, — oo

Whereas for finite density codes we were depending on a numerical analysis, in the limit of k,j — oo (while keeping
the rate R =1 — j/k finite) we obtain two types of analytic solutions to equations (13) and (14), which can be verified
by substitution:

Type I:
wry) = 56— 1)+ + D)6 - 1)
#Eg) = 5[0~ 1)+ 86+ ]G~ 1) (1)
Type II:
w(@y) = | Go(F(1+B:Ay)) 6(z—tanh(8i F)) + G_(F(14+B2r_)) 8(z+tanh(8 F))| 65 — 1)
W) = 6@) 66— 1) (18)

with G4 (z) = $[1 £ tanh(z)].
The average error exponent as obtained from the type I solution is given by

Qr(B,8,\, =) = —% log2 — log cosh F' + log cosh(BF'A) + log 2 cosh(F — SF)) . (19)

We find that the entropies (8) are always identically zero, and that the constraint (16) requires that 8 = 1/2, such
that A = 1 and

Qr = —% log 2 — log cosh F' + log[cosh F' + 1] (20)

which is exactly the Bhattacharyya limit [11].
The average error exponent as obtained from the type II solution is given by

Qri(B,B,\, =) = A —% log 2 4 log 2 cosh[BF]| + log[2 cosh(F' — BF)\)] — log2 cosh F (21)

The condition on the entropy (S>) > 0 is satisfied for all 8 > 0 whereas the condition (S;) > 0 is violated below the
critical (freezing) temperature 1/4* obtained from

—% log2 — f* F tanh[* F| 4+ log2 cosh[8*F] = 0 (22)

This negative entropy is an artifact of a simplistic assumption about the symmetry between replicas, and can be
remedied by considering a ‘frozen RSB’ ansatz [4]. In this ansatz, for all § > 8*, the (frozen) average error exponent
is given by

ﬁ(ﬁ, B, A =N\ = ﬁ)\ —% log2 + log 2 cosh[3* F]| + log2 cosh[F — BF)] — log2 cosh F (23)

=g
However, condition (16) is violated for 8 > 1 — 8*, such that the average error exponent is given by
QI" = Ftanh[8*F] + % log2 — log 2 cosh F' (24)

What remains is to determine whether the type I or the type II solution is physically dominant, by using @ as a
generating function. Results for the case of k, j — 0o are presented in figure 2 for p = 0.01 and p = 0.05.
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Figure 2: Reliability exponent @) as function of the code rate R for regular k, j — oo Gallager codes for which analytical
expressions can be derived; see (20) and (24) (solid: p = 0.01 and dashed: p = 0.05).

5 Discussion

In this paper we suggest a method for direct evaluation of the average error exponent over the ensemble of LDPC
error-correcting codes of given rate and connectivity. An analytical solution has been obtained using methods of
statistical physics, which is in perfect agreement with known results in the limit &, — oo (with R finite). Solutions
obtained for codes of finite (k, j) values seem to be upper bounded by the &, j — oc results.

An interesting feature of the present study is the similarity of our equations to those obtained in [6] in spite of
the different approaches used. An important advantage offered by the current approach is a potential extension to
restrict the averages to codes of high performance to obtain reliability exponent values for LDPC codes of both finite
and infinite connectivity; this study is currently underway.
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