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Abstract

The problem of regression under Gaussian assumptions is treated generally. The rela-
tionship between Bayesian prediction, regularization and smoothing is elucidated. The
ideal regression is the posterior mean and its computation scales asO(n3), wheren is the
sample size. We show that the optimalm-dimensional linear model under a given prior
is spanned by the firstm eigenfunctions of a covariance operator, which is a trace-class
operator. This is an infinite dimensional analogue of principal component analysis. The
importance of Hilbert space methods to practical statistics is also discussed.

Keywords: regression, Gaussian measures, linear model, principal component, spline,
regularization, eigenfunctions.
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1 Introduction

Many problems in computation and statistics can be generally described as fitting a “curve”
from a discrete set of data. Here we allow a liberal interpretation of curve which could
be any mapping from a finite dimensional space to a finite dimensional space. Such prob-
lems are usually studied under the name “regression” in statistics or “approximation” in
numerical analysis.

A general treatment of such problems is this: Suppose the input and output spaces areX
andY . We assume there is a priorP (f) which is a Gaussian measure of functionsf in
a function spaceH from X to Y . Denote the data asz 2 Zn whereZ = X � Y . Then
using a Gaussian noise model the posteriorP (f jz) is also a Gaussian measure onH, and
the posterior meanbf is the “ideal estimate”.

However, bf usually lies in an infinite dimensional space and its computation involves
inverting ann-dimensional matrix, wheren is the sample size. Practical computation is
usually performed within a finite dimensional modelM � H of dimensionm. Here we
only consider linear models. Suppose we usekf�gk to measure the discrepancy between
the true functionf and estimated functiong, wherek � k is a particular norm defined by
an inner product. The optimal estimatebg 2 M is the projection ofbf ontoM under this
norm.

Two questions arise naturally from the fact that the actual computation is performed
within M . The first question concerns how to computebg (approximately) without com-
puting bf . Becausebf is a sufficient statistic whilebg is not, computation involving onlybg in-
evitably loses information. The regression filter developed in [Zhu and Rohwer 1996]usu-
ally provides reasonable solutions with little computational cost for practical problems.
Work of a similar nature is reported in [Hastie 1996], where a computationally-efficient
finite-dimensional approximation to spline smoothing is developed (spline smoothing de-
rives from a particular choice of Gaussian measure over functions). The second ques-
tion relates to choosing a model which loses the least information. There are several
different versions of this problem; here we concentrate on the choice of a fixed model
which is optimal under a given prior. Basically we will show that if the approximation
error is measured relative to a weight functionp(x) and

R p(x)dx < 1, then the opti-
malm-dimensional linear model is spanned by the firstm eigenfunctions of a particular
covariance operator.

Intuitively the problem may be viewed like this: The distribution of the ideal estimate on
the function space looks like an ellipsoid under the inner product used for approximation.
The optimalm-dimensional linear space should then be spanned by the longestm axes
of the ellipsoid. This is an infinite dimensional principal component analysis, and the so-
lution is obtained by eigendecomposition of a trace-class operator. Although the solution
is straightforward once the problem is properly formulated, its specific form illuminates
interesting relations between estimation, approximation and smoothing.
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We have adopted a complete function-space approach which enables us to summarize
much of existing and new results in a notation almost as simple as that of finite dimen-
sional algebra. Results presented here are not necessarily new, but they aregiven a more
unified and concise exposition thanks to the new notation. For motivation and intuitive
explanation of Hilbert space concepts see the appendix.

Our main contribution is not in generality or new technical results, but in the general
framework and notation which allows us to collect together many results scattered across
many fields, some quite abstract, with minimum complication of notations and ina form
directly applicable in data analysis. It is not possible to cite all relevant previous works,
but this work should make it easier to recognize related works which would otherwise be
regarded as unrelated to each other.

2 Regression, Approximation and Smoothing

Let X be ad-dimensional manifold, andY be an Euclidean space. OftenX is simply
an Euclidean space. LetH0 be a Hilbert space of functions fromX to Y , with inner
productP . We shall consider functions as infinite dimensional vectors, and linear oper-
ators as infinite dimensional matrices, in the sense of Schwartz's theory of distributions
[Schwartz 1966], also called generalized functions [Gel' fand and Shilov 1964; Gel' fand
and Vilenkin 1964]. See [Zemanian 1965] for an introduction. See the appendix for a
discussion of the intuition behind considerations of infinite dimensional objects.

The framework adopted here is essentially the same but slightly more generalthan the
reproducing kernel Hilbert space (rkhs) approach [Parzen 1961; Kailath 1971; Wahba
1990]. It has the advantage that every generalized function can be differentiated infinitely
many times, and that there is a one-one correspondence between kernels and operators,
according to Schwartz's kernel theorem [Gel' fand and Vilenkin 1964, p.18]. On the other
hand, the rkhs are spaces of functions for which pointwise values are defined, according
to the Aronsajn-Bergman theorem [Yosida 1965, p. 96]. The more general framework
avoids asking existence questions and enables us to use notations of ordinary finite di-
mensional linear algebra for infinite dimensional objects. Certain variablesare denoted in
bold face to emphasize finite-dimensional-only features. We shall always useL2(X; Y ) as
the “pivotal space” for the definition of transpose and the correspondence between kernels
and operators, that is,fTg := Z d� f(�)Tg(�); Af(�) := Z d�0A(�; �0)f(�0); (1)AT (�; �0) = A(�0; �)T ; fTAg = Z d� d�0 f(�)TA(�; �0)g(�0): (2)

If Y is complex thenT should be replaced byH , the conjugate transpose. The appearance
of transpose inf(�)T is due to the fact thatY is itself an Euclidean space. To avoid
complications in the notation we shall assumeY = R in the sequel, but all the results
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are applicable generally. If the kernelA is symmetric (Hermitian) and positive definite it
defines an inner product. Note that not all operators can be represented by a proper kernel.

Our statistical model isy = f(x) + �(x); (3)

wheref 2 H0 is the true function,x 2 X is the input point,y 2 Y is the output point,
and� is the noise. We assume that� f and� are random fields, andx is a random process [Gel' fand and Vilenkin 1964].� f , x and� are independent of each other,P (f; x; �) = P (f)P (x)P (�).� f and� are Gaussian.

In this paper every random variable is a function off; x; �. The notationhai denotes the
mean ofa (averaged overP (f; x; �)), while ha; bi := h(a� hai)(b� hbi)i denotes the
covariance ofa andb. The notationshaic andha; bic denote corresponding conditional
mean and covariance (averaged overP (f; x; �jc)). The distributionsP (f) andP (�) are
uniquely specified by their mean functions and covariance kernelshfi = bf0; Df; fTE = V0; h�i = b�0; D�; �TE = R: (4)

For simplicity we assume thatbf0 = b�0 = 0 and that the covariancesV0 andR are finite.
For uncorrelated noiseR is diagonal.

Given a data setz = [z1; : : : ; zn] 2 (X � Y )n of sizen, wherezi = [xi; yi], the posteriorP (f jz) is a Gaussian with well-known mean and covariance (See, for example, [Lindley
and Smith 1972])bfn := hfiz = V0XT (V 0 +R)�1y; (5)Vn := Df; fTEz = V0 � V0XT (V 0 +R)�1XV0; (6)

whereX(i; �) := �(� � xi); Vij := V0(xi; xj); Rij := R(xi; xj); (7)V 0 =XV0XT = 2664V11 : : : V1n
...

...Vn1 : : : Vnn3775 ; (8)R =XRXT = 2664R11 : : : R1n
...

...Rn1 : : : Rnn3775 ; y = 2664y1...yn3775 : (9)
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The posterior mean is also the ideal Bayesian estimate under the normkgk2P := gTPg,bfn = argming2H0 Dkf � gk2PEz ; (10)

but it is obviously independent ofP . Furthermore, ifR = 0, then bfn(x) = X bfn = y
. In other words, the regression passes through the data points if we believe the dataare
noise-free.

For any positive operatorV0 there is an operatorH as its inverse,V0H = I. If V0 is
integral operator (i.e. a proper kernel), thenH is a (pseudo)differential operator and cor-
responds to the inner product of the reproducing kernel Hilbert spaceH with reproducing
kernelV [Yosida 1965]. A pseudodifferential operator differs from a proper differential
operator in that its Fourier transform is not necessarily a polynomial [Hörmander 1983].
Conversely, given differential operatorH, the kernelV is called its Green's function. IfH is certain forms of pseudodifferential operators the spaceH is usually called a (gener-
alized) Sobolev space [Adams 1975; Triebel 1978].

A different but entirely equivalent point of view from Bayesian estimation isregularized
approximation. LetD andH = DTD be pseudodifferential operators without null space,
andV0 be its Green's function. The objective functionJ(g) :=Xij (yi � g(xi))(R�1)ij(yj � g(xj)) + Z�(Dg(�))2= (y �Xg)TR�1(y �Xg) + gTHg; (11)

attains its minimum at [Poggio and Girosi 1990]bfn = V0XT (V 0 +R)�1y; (12)

which is the solution of the Euler equation of (11)XTR�1(y �X bfn) = H bfn: (13)

This solution is identical to the Bayes posterior mean, given the assumed relation between
the regularization operatorH and the covariance kernelV0.
Yet another equivalent point of view is that of smoothing with smoothing operatorK =V0XT (V 0 +R)�1. Obviously the solution is in the spaceV0XTRn spanned by the basisV0XT . If H is an iterated Laplacian operator, thenV0 is given explicitly in [Gel' fand
and Shilov 1964, p. 202] andV0XT is known as the basis of “thin-plate splines” withx
as nodes [Meinquet 1979; Wahba 1990]. IfH is a proper differential operator, then its
Fourier transform is a polynomial andVXT is the basis of generalized splines (g-splines)
[Ahlberg, Nilson, and Walsh 1967, chap. 6]. IfH is a pseudo-differential operator, thenV is a quite arbitrary kernel which can be regard as the furthest generalization of splines
in this direction. IfH = (�r2)s thenH = Hs0 , and ifH = (I�r2)s thenH = Hs, both
known as Sobolev spaces. It is rkhs (andV0 is a proper kernel) if and only ifs > d=2,
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by Sobolev embedding theorem. Another direction to generalize splines is to replaceX
by a general linear operatorL and the solutionV0LT is usually calledL-splines [Wahba
1990].

The relation between the inversion of a differential operator, minimization in a Hilbert
space, and smoothing with an integral operator is well known but much of the results
are scattered in the literature. See [Donsker and Lions 1962] for the same relation in
a different context. One advantage of Bayesian approach is that it naturally extends to
the case that the random functionf is also a process in time. The solution is given by
a Kalman filter [Kalman 1960]. We can also relax the assumption thatV0 is finite, or
equivalently thatH does not have a null space, but the exposition becomes complicated
[Wahba 1990, p.11–12]. See also [Kimeldorf and Wahba 1970; Thomas-Agnan 1991;
Meinquet 1979; Kent and Mardia 1994].

For later purposes we also need to studyP ( bfn), the prior distribution of the posterior
meanbfn over all samplesz. This should not be confused with the posteriorP (f jz) itself,
which is the distribution of the true function conditional on a given sample. Sincebfn
depends onz, its distribution depends onP (z) = P (yjx)P (x). We haveD bfnEx =K hyix = 0; (14)D bfn; bfTn Ex =K Dy;yTExKT = V0XT (V 0 +R)�1XV0 = V0 � Vn; (15)V := D bfn; bfTn E = V0 DXT (V 0 +R)�1XEV0 = V0 � hVni � V0; (16)

where we have usedDy;yTEx = DXf +X�; (Xf +X�)TEx = V 0 +R: (17)

It is interesting to note that the shrinkage fromV0 to V , instead of fromV0 to Vn as
often thought, was in fact the origin of the term “regression” introduced by Galton more
than a century ago [Stigler 1986]. In general, if we have any way to divide a Gaussian
into subgroups, then the mean of the subgroups cannot vary as much as individuals. In
fact, the variance of the whole population is the sum of the variance of the means of the
subgroups and the average variance within each subgroup.

For infinitely largen, generally we havebfn � f so thatP ( bfn) � P (f) andV � V0. If
the sample inputx can be approximated by a continuous distributionp0(x), thenXT can
be regarded as an invertible operator so thatV � V0(V0 +R)�1V0 = V0; (18)

becauseR is a finite kernel which is zero except on the diagonal (which has zero measure
according top0(x)).
In reality, the sample input only defines a discrete distribution soR cannot be ignored this
way. It is difficult to obtain an explicit expression forV for smalln, as it will necessarily
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depend on the actual distribution ofx. However, for largen we can obtain an asymptotic
expression more accurate than the above, assuming that for largen the distribution ofx
approachesp0(x), that the variability ofx has little effect on the estimate of covariances,
and thatR is diagonal. We havehVni � DV �1n E�1 = DV �10 +XTR�1XE�1 � (V �10 + nR�1)�1; (19)V = V0 � hVni � V0 � (V �10 + nR�1)�1 = V0(V0 +R=n)�1V0; (20)

whereR(�; �0) := Z� R(�; �)p0(�)�1�(� � �)�(�0 � �); (21)R�1(�; �0) = Z� R(�; �)�1p0(�)�(� � �)�(�0 � �); (22)DXTR�1XE (�; �0) = *Xi �(� � xi)R(xi; xi)�1�(�0 � xi)+� n Z� p0(�)R(�; �)�1�(� � �)�(�0 � �) = nR�1(�; �0): (23)

3 Finite Dimensional Models

We see that once the input pointsx are fixed, the solution is confined to a finite di-
mensional linear spaceV0XTRn , which is the optimaln-dimensional model. Our main
interest in this paper is to find a fixed optimalm-dimensional linear model independent
of the input datax, where the dimensionm is also independent ofn.

An m-dimensional linear modelM � H0 may be represented asM = �Rm where� := [�1; : : : ; �m] is a basis ofM . It is well-known that under the inner productP , the
dual basis	, the projection operatorPM and the remainder operatorRM (the orthogonal
projections toM andM?, respectively), are given by	 := �(�TP�)�1; PM := �	TP; RM := I � PM ; (24)

with the following properties,RTMPPM = 0; PTMPPM = PPM = PTMP; RTMPRM = PRM = RTMP;
(25)P2M = PM ; R2M = RM ; kPMfk2P + kRMfk2P = kfk2P : (26)

The optimal solutionbgn 2M which minimizesJ(g) = hky0 � gk2P iz, wherey0 = f+�, isbgn = PM bfn. It depends essentially on the normk�kP , because in general the ideal estimatebfn 62 M . The mean squared test error of an arbitrary estimateg 2M is decomposed asJ(g) = Dk�k2PEz + Dkf � bfnk2PEz + Dk bfn � bgnk2PEz + Dkbgn � gk2PEz= tr(PR) + tr(PVn) + k bfn � bgnk2P + kbgn � gk2P : (27)
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The four terms on the right hand side are, in the given order: the intrinsic noise of test
data, the uncertainty of ideal regression, the approximation error due to model deficiency,
and the computational error. It is not possible to do anything about the first two, and by
choosingg = bgn the the last term can be made to vanish.

Our goal in this paper is to find an optimal modelM independent of the training dataz.
This is achieved by minimizing the mean of the third term above,

DkRM bfnk2PE, or equiv-

alently, to maximize
DkPM bfnk2PE. This depends onV which in turn depends onx. Since

we want to obtain the optimal model independently ofx, it seems reasonable to make the
conservative assumptionV = V0; as we have shown inx2, this is approximately true for
largen. This has the advantage that the optimal model will also be optimal for the prior.
The disadvantage is that it does not utilize the fact thatV is shrunk fromV0. In other
words, the model wastes some capability to represent the variability off which could not
be detected by the regressionbfn for smalln.

For any givenV , we haveDkPM bfnk2PE = D bfTn PTMPPM bfnE = tr �D bfn bfTn EPTMPPM�=tr(V PTMP ) = tr((�TP�)�1�TPV P�); (28)

which further reduces totr(�TPV P�), if we set�TP� = I using the Gram-Schmidt
procedure. SinceP 2 SPD, the set of symmetric positive definite operators, it has a
uniquely defined square rootP 1=2 [Riesz and Nagy 1955]. DefineVP := P 1=2V P 1=2; �P := P 1=2�: (29)

Then our problem finally reduces toMax�TP�P=I tr(�TPVP�P ) � trVP : (30)

Since the spaceH0 is infinite dimensional we need an extra assumption to guarantee that
this trace above is finite. In other words, we wantVP 2 L1(H0), the trace-class [Kuo
1975]. A trace-class operator (also called a nuclear operator) has a spectrumcomposed
entirely of a countable number of eigenvalues with a finite sum [Gel' fand and Vilenkin
1964]. In practice, the normk � kP is usually defined through test dataz0 = [x0; y0] bykgk2P := Z dx0 p(x0)g(x0)2; (31)

with the interpretation thatp(x0) = p1(x0)p2(x0), wherep1 is the test data input distribu-
tion andp2 is a weighting function. BecausetrVP = tr(V P ) = tr(D bfn bfTn EP ) = D bfTn P bfnE= Z dx p(x) D bfn(x)2E � Z dx p(x)maxx V (x; x); (32)
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we see thatVP is a trace-class operator if
R dx p(x) <1 andmaxx V (x; x) <1. In the

rest of the paper we shall assume that this is so, which does not impose much restriction
in practice.

According to Rayleigh's principle [Nef 1967], which underlies principal component anal-
ysis, the optimal model�PRm for (30) is spanned by the eigenfunctions�P = [ui : i = 1 : : :m]
corresponding to them largest eigenvalues ofVP . AsVP 2 L1 \ SPD, its spectrum con-
sists of a countable set of positive eigenvalues�k with

Pk �k <1. They can be ordered,
taking into account multiplicity, as�1 � �2 � � � � � 0, with corresponding orthogonal
eigenfunctionsu1; u2; : : : . The optimal model�Rm for the original problem is therefore
spanned by the orthonormal (with respect toP ) basis� = P�1=2�P , withDk bfnk2PE = 1Xi=1 �i; DkPM bfnk2PE = mXi=1 �i; DkRM bfnk2PE = 1Xi=m+1�i: (33)

After completing this work we became aware of the paper [Castro, Lawton, and Sylvestre
1986], which treats the problem of optimal finite linear models in much the same way,
although the problem is restricted to the third example towards the end of the next section.
Most of its results can be easily generalized to the situation as treated here. The advantage
of our more general framework is that the measurep, corresponding to the weight functionw in their paper, is explicitly specified so that it will be invariant to thetraining data
positions. This explains why the distinction between principal component analysis and
eigenexpansion as emphasized there disappears here.

4 Examples

Although the optimal model depends onV which in turn depends onn, for large enoughn we can assumeV � V0. All the examples given here rely on this assumption. As our
first example considerp(�) = exp(�2a�2); V (�1; �2) = V (�1 � �2); V (�) = exp(�b�2);

(34)VP (�1; �2) = exp ��a�21 � b(�1 � �2)2 � a�22� : (35)

The eigenvalues�k, eigenfunctionsuk and basis�k (for convenience letk = 0; 1; : : : ) are
given by�k = r �ABk; uk(x) = exp(�cx2)Hk(p2cx); (36)�k(x) = exp(�(c� a)x2)Hk(p2cx); (37)

whereHk is thekth order Hermite polynomial, andc = pa2 + 2ab; A = a + b+ c; B = b=A: (38)
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This can be proved by using equation 7.374.8 in [Gradshteyn and Ryzhik 1980],Z 1�1 e�(x�y)2Hn(�x) dx = p�(1� �2)n=2Hn  �y(1� �2)1=2! : (39)

The total prior variance and the residual ratio areDk bfnk2PE = trVP = 1Xk=0�k = r �A 11� B; (40)DkRM bfnk2PEDk bfnk2PE = P1k=m �kPk �k = Bm: (41)

That is, the optimalm-dimensional model catches a portion1 � Bm of the variance ofbfn, while leaving portionBm as the residual approximation error. Fora = 1; b = 3,
we haveB = 0:4514. The first 15 eigenvaluesf�kg are shown in Figure 1(a). The first
6 eigenfunctionsfukg are shown in Figure 1(b). The 15th basis function is shown in
Figure 1(c). The first 6 basis functions�k = P�1=2uk are shown in Figure 1(d). Note that
the high-eigenvalue components correspond to features typically of more interest,namely
the low frequency features toward the center ofp(x). The infinite dimensional principal
component analysis is possible because there is an effective ordering of the “components”
determined by the forms ofp andV .

In fact, for this particular example, the first 6 dimensions catch99:15% of variance and
leave out only0:85%, while the 12 dimensional model would catch99:993% variance,
leaving out only0:007%. This is despite the fact that the distributionP ( bfn) has power at
all frequencies (the power spectrum off is the Fourier transform ofV which extends to all
frequencies). and that the weighting is non-zero over an infinite interval. This is clearly
advantageous compared with the assumption of uniform prior on a finite dimensional
model over a finite interval. To illustrate the effectiveness of the optimalm-dimensional
model even with a smallm, we pick a typical true functionf from the prior, and generate
a typical samplez. In Figure 2 we plot the effect of sample sizen and model sizem on
the ideal regressionbfn and the optimal regressionbgn of the model.

It is interesting to observe how the eigenvalues and eigenfunctions change with the param-
etersa andb. As b=a increases toward infinity,B approaches unity. The eigenvalues be-
come more tightly clustered. To get a reasonable approximation a largerm is needed, with
many basis functions looking essentially like sines and cosines within the rangewherep
is not negligible. AsB approaches unity the spectrum essentially becomes continuous
and the principal component analysis becomes less useful, similarly to the transition from
Fourier series to Fourier transform. In the limit all the “components” are equally impor-
tant, and there are infinitely many of them, so that the PCA completely breaksdown. This
also reveals the important role played by the inner product even for finite dimensional
PCA.

Two drawbacks of the optimal linear model are that the basis functions are non-local,and
each new dimension introduces an entirely different shape of eigenfunction. It is possible
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to overcome these two shortcomings by trading-off some optimality of approximation
with ease of computation. The classical method of obtaining local basis functions is
the finite element method [Ciarlet 1978]. A currently more fashionable method is wavelet
analysis which provides (almost) local basis functions spanning almost the optimaleigen-
subspace, yet all the basis functions can be obtained from one “mother wave-shape”.
There is a large and rapidly expanding literature on wavelet analysis [Benassi and Jaffard
1994]. A more recent reference is [Wang 1996].

The next example, which is perhaps more familiar, describes a prior more welcoming to
non-smoothness. See [Zhu and Rohwer 1996] for more examples of other priors. Supposep is the “gate function”p(x) = ( 1=2a; jxj < a;0; jxj � a: (42)

Let V be the Green's function corresponding to the differential operatorH : f ! �f 00
with homogeneous Dirichlet boundary condition on[�a; a] [Yosida 1960]V (�1; �2) = a2 � �1�2 � 12 j�1 � �2j: (43)

This is the covariance kernel of the “Brownian bridge” [Grimmett and Stirzaker 1992].
Note that for our analysis the covariance kernel need not be in a translation invariant formV (�1; �2) = V (�1� �2). The reproducing kernel Hilbert space with reproducing kernelV
is the Sobolev spaceH10 := �f : Z a�a dx f 0(x)2 <1; f(a) = f(�a) = 0� : (44)

The ideal estimatebf for any given data setz is a piecewise linear function. If we assume
the data to be error-free,R = 0, then bf is simply the Lagrange interpolation with piece-
wise linear functions passing all the data points. Intuitively, given any twopoints on a
sample path, the best bet for any point in between is on the straight line connecting these
two points.

The eigenfunctions and the eigenvalues areuk(�) = sin k�2a (� + a)! ; �k = k2�24a2 : (45)

The optimalm-dimensional model is simply the truncated Fourier series. In this case,
sincep is uniform over the fixed finite range[�a; a], further eigenfunctions are only con-
cerned with highly frequency features.

This can be regarded as a rigorous expression of the idea that Fourier series give “best”
finite dimensional representation of an “arbitrary” function.

Let g(x) be the standard Brownian motion (Wiener process). Thenf(x) = g(x)� g(a) + x� a2a (g(�a)� g(a)) (46)
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is a typical sample from the prior. It is well known that the samples are, with probability
one, continuous but nowhere differentiable. In fact,H10 is very much like a space of1=2-
order differentiable functions [Adams 1975]. Several samples are given in Figure 3. It is
important to note thatf 62 H10 becausekfk1 = 1. Given any orthonormal basis inH10 ,
the projection off on each component is distributed as a standard Gaussian so that the
total norm is infinite [Kuo 1975]. This is further explained in the appendix.

As a third example, supposep(x) = Pk �(x � xk). That is, assume the test data may
only come from a finite number of specified points. Then the optimal model becomesVXTRn . Therefore splines with preselected nodes are optimal under the assumption that
the test data only come from these points. This example was studied in detail in [Castro,
Lawton, and Sylvestre 1986].
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Figure 1: Eigen-decomposition (a = 1, b = 2).
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(f) m = 6, n = 100
Figure 2: The effect of data sizen and model dimensionm. Legend: f—dash-dot;bf—dashed;bg—solid; z—circles.
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Figure 3: Three samples from the Brownian bridge

5 Summary

In most statistical problems the objects under consideration cannot be completelyrep-
resented by a finite dimensional model, yet most of their properties of interest can be
adequately approximated using a finite dimensional model. One such problem particu-
larly important in practice is analyzed here, giving the conditions and optimality of finite
dimensional approximation.

We have shown that the optimal finite dimensional model under a Gaussian prior may be
obtained by an infinite dimensional principal component analysis. The condition for its
applicability is given, which essentially requires the “length of axes” tosum to a finite
number, despite the fact there are infinitely many of them. When this condition isnot
satisfied, the corresponding operator usually has a continuous spectrum so that no finite
dimensional model could do a reasonable job. The relation between smoothing, approxi-
mation and estimation is also elucidated.

Essentially, to estimate an infinite dimensional object, such as a function,from a finite
amount of data, we must assume an infinite amount of prior information, leaving out only
a finite amount of uncertainty. Here the amount of data and information are measuredin
units of real numbers. The classical way to do this is to assume that we are absolutely cer-
tain in all but a finite number of directions; in other words, to assume a finite dimensional
model. The alternative given here is more general. We assume that we may not becertain
in any direction, but the uncertainty on these infinitely many directions as measured by
variance sums to a finite number. This cannot be achieved if we assume the prior distri-



Gaussian Regression and Optimal Finite Dimensional Linear Models 16

bution is spherical relative to the inner product which measures the importancewe assign
to each direction.
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A Motivation for Hilbert space methods

The general treatment of Gaussian measures on function spaces has been known since the
work of Wiener and Kolmogorov, which usually involves consideration of severalnorms
or inner products. However, it appears not to have been intuitively introduced to practical
statisticians, and therefore has been largely ignored by them. This is quite unfortunate
since it is the direct cause of the well-known phenomenon of “over-fitting”.

For motivation let us first consider Gaussian measures on a finite dimensional space (mul-
tivariate Gaussians). Letx be anm-dimensional Gaussian variable with zero mean and
covariance matrixV = DxxTE. Its mean squared length isDxTxE = Dtr(xxT )E = trV: (47)

It is often convenient to linearly transformx to Lx such thatP (Lx) is of the standard
form (spherical and of unit variance). The inner product onLx induces an inner product
on x, H = V �1 = LTL, which is the Fisher information matrix forx. UnderH the
squared length ofx has a�2 distribution ofm degrees of freedom with meanDxTHxE = Dtr(HxxT )E = tr(HV ) = tr(Im) = m: (48)

Now we see that this causes a problem for a GaussianP (f) on an infinite dimensional
space: If we use an inner productH by whichP (f) looks spherical, the mean squared
length of the random elementf will be infinity, because it is the sum of variances in all
the (infinitely many) orthogonal directions, all of them equal to one another. In other
words, the collection of samples from a Gaussian with covariance kernelV does not form
a Hilbert space with inner productH under which the covariance is spherical. ThereforeH is unsuitable as an objective for approximation. For under it we start from infinite error
and would retain infinite error given any finite amount of data.

Since it is desirable to be able both to represent Gaussians in a spherical form and to use a
finite norm, Gaussian measuresP (f) in a Hilbert spaceH0 are generally defined by two
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inner products, necessarily not equivalent to each other [Kuo 1975]. One inner productP
of Hilbert spaceH0 is used to measure distance byfTPf . A stronger inner productH of
Hilbert spaceH1 := nf : fTHf <1o � H0 makesP (f) “appear” spherical.

Let us analyze the spectrum ofV under both inner products. The eigenvalues ofV underH are unity for all eigenfunctions; The distribution is spherical but the mean squared
length is infinity. The eigenvalues ofV underP form a decreasing sequence�k such thatPk �k <1; The mean squared length is finite but the distribution is not spherical.

UsuallyH is a pseudodifferential operator, of which the covariance kernelV is its Green's
function. IfV is proper kernel, i.e., if Dirac's measures belong to the dual spaceH01 (i.e.,
they are bounded linear functionals), then the spaceH1 is called the reproducing kernel
Hilbert space (rkhs) with reproducing kernelV [Aronszajn 1950; Parzen 1963; Kailath
1971; Yosida 1965]. For further references see [Wegman 1988]. The reason to single out
rkhs from all function spaces is that they guarantee the regression based on a finite amount
of data to be a proper function, as point values at finite many points form a multivariate
Gaussian with finite covariance. The appearance of�-measures in these considerations is
due toX in our statistical modely =Xf +X�. If X is replaced by a linear operatorL
the solution will beL-splines not necessarily in a rkhs.

In fact, generalized functions can also be regarded as rkhs if�a is replaced by smoother
test functions [Kailath 1971]. From this point of view, classical rkhs is such thatpoint
values of each member functions are well defined, while the general rkhs is such that
locally smoothed values are well defined.

So why is this important to practical statisticians? In practice all the data are sampled
at finite number of points, and it is well known that all the finite dimensional norms are
equivalent. It may appear that the idealized infinite dimensional objects would have no
practical consequence. However, it happens that although the norms are equivalent,the
ratio between them generally depends on the discretization. It therefore mayhappen that
as we increase the “precision” of data to get a better fit in one normk � k0 it actually get
worse in another normk � k1.
As a concrete example, consider the Sobolev spacesH0 := �f : kfk20 := Z dx f(x)2 <1� ; (49)H1 := �f : kfk21 := Z dx (f(x)2 + f 0(x)2) <1� : (50)

It is well-known in the function approximation literature that if the functionf is dis-
cretized in the usual ways thenkfk0 � kfk1 � (C=h)kfk0, whereh is the steplength
of the discretization. So if we do not guarantee the increase of precision ink � k0 to be
faster than the decrease inh, which is generally impossible anyway, there is no way to
infer convergence ink � k1 from that ofk � k0. In practice,k � k0 may be used to measure
the approximation whilek � k1 may come from the covariance of our prior. A good fit
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according tok � k0 may be so wiggly that we do not believe it to be true. In fact, a typical
sample from a Gaussian which looks spherical underk � k0 is a sample from white noise!
In this case we say “over-fitting” occurs. Of course, the term “over-fitting” is a misnomer:
If our goal is to fit, how could we over-do it? This only happens because our implicit goal
is different from the norm we tell the machine to minimize. The importance of normwas
also emphasized in [Kailath 1971,x4]. The term corresponding tok � k1 is usually called
a regularizer.
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