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Gaussian Regression and Optimal Finite Dimensional Linear Models

Abstract

The problem of regression under Gaussian assumptions is treated generallyelaFhe r
tionship between Bayesian prediction, regularization and smoothing is ekdidahe

ideal regression is the posterior mean and its computation scal&s:as wheren is the
sample size. We show that the optimaldimensional linear model under a given prior

is spanned by the first: eigenfunctions of a covariance operator, which is a trace-class
operator. This is an infinite dimensional analogue of principal component analysis. The
importance of Hilbert space methods to practical statistics is alsas$ied.

Keywords. regression, Gaussian measures, linear model, principal component, spline,
regularization, eigenfunctions.
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1 Introduction

Many problems in computation and statistics can be generally describéthasfi‘curve”

from a discrete set of data. Here we allow a liberal interpretation afecwhich could

be any mapping from a finite dimensional space to a finite dimensional space. Such prob-
lems are usually studied under the name “regression” in statistics or “ap@banhin
numerical analysis.

A general treatment of such problems is this: Suppose the input and output spa&es are
andY. We assume there is a pridt( f) which is a Gaussian measure of functighi

a function spacé{ from X to Y. Denote the data asc 2" whereZ = X x Y. Then
using a Gaussian noise model the posteFi0f |z) is also a Gaussian measure&nand

the posterior mear is the “ideal estimate”.

However,f usually lies in an infinite dimensional space and its computation involves
inverting ann-dimensional matrix, where is the sample size. Practical computation is
usually performed within a finite dimensional modél C #H of dimensionm. Here we
only consider linear models. Suppose we [ife- g|| to measure the discrepancy between
the true functionf and estimated functiog, where|| - || is a particular norm defined by
an inner product. The optimal estimatec M is the projection off onto M under this
norm.

Two questions arise naturally from the fact that the actual computation isrpeé
within M. The first question concerns how to compgt@pproximately) without com-
putingf. Becausg?is a sufficient statistic whil@ is not, computation involving only in-
evitably loses information. The regression filter developed in [Zhu and Rohwer (996]

ally provides reasonable solutions with little computational cost for prdgircdolems.
Work of a similar nature is reported in [Hastie 1996], where a computationtityeat
finite-dimensional approximation to spline smoothing is developed (spline smoothing de-
rives from a particular choice of Gaussian measure over functions). Thadecies-

tion relates to choosing a model which loses the least information. Theresaeak
different versions of this problem; here we concentrate on the choice of a fixed model
which is optimal under a given prior. Basically we will show that if the appr@tion

error is measured relative to a weight functigix) and [ p(z)dz < oo, then the opti-

mal m-dimensional linear model is spanned by the firseigenfunctions of a particular
covariance operator.

Intuitively the problem may be viewed like this: The distribution of the idstineate on

the function space looks like an ellipsoid under the inner product used for approximation.
The optimalm-dimensional linear space should then be spanned by the lomgasés

of the ellipsoid. This is an infinite dimensional principal component analysis, andthe s
lution is obtained by eigendecomposition of a trace-class operator. Although thiesolut

is straightforward once the problem is properly formulated, its specific fdumihates
interesting relations between estimation, approximation and smoothing.
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We have adopted a complete function-space approach which enables us to summarize
much of existing and new results in a notation almost as simple as that of fimendi

sional algebra. Results presented here are not necessarily new, but tgexeara more

unified and concise exposition thanks to the new notation. For motivation and intuitive
explanation of Hilbert space concepts see the appendix.

Our main contribution is not in generality or new technical results, but in tmergé
framework and notation which allows us to collect together many resuwttesed across
many fields, some quite abstract, with minimum complication of notations aadarm
directly applicable in data analysis. It is not possible to cite all relepeevious works,
but this work should make it easier to recognize related works which wouldvatesbe
regarded as unrelated to each other.

2 Regression, Approximation and Smoothing

Let X be ad-dimensional manifold, and” be an Euclidean space. Oftéhis simply

an Euclidean space. L&t, be a Hilbert space of functions frod to Y, with inner
productP. We shall consider functions as infinite dimensional vectors, and linear oper-
ators as infinite dimensional matrices, in the sense of Schwartz's theorstiobutions
[Schwartz 1966], also called generalized functions [Gel fand and Shilov 1984a6Gd

and Vilenkin 1964]. See [Zemanian 1965] for an introduction. See the appendix for a
discussion of the intuition behind considerations of infinite dimensional objects.

The framework adopted here is essentially the same but slightly more gémemahe
reproducing kernel Hilbert space (rkhs) approach [Parzen 1961; Kailath 1971; Wahba
1990]. It has the advantage that every generalized function can be differémi@éely

many times, and that there is a one-one correspondence between kernels armyperat
according to Schwartz's kernel theorem [Gel' fand and Vilenkin 1964, p.18]. Onttee ot
hand, the rkhs are spaces of functions for which pointwise values are defined, according
to the Aronsajn-Bergman theorem [Yosida 1965, p. 96]. The more general framework
avoids asking existence questions and enables us to use notations of ordinary finite di-
mensional linear algebra for infinite dimensional objects. Certain variabdedenoted in

bold face to emphasize finite-dimensional-only features. We shall always (8eY) as

the “pivotal space” for the definition of transpose and the correspondence betweels ker
and operators, that is,

Tgi= [def©79(e),  Af(e) = [dg AEE)F(E), ®
AT(E,€) = AE.OT,  fTAg= [ dedg F(&)TAE€)g(€). @

If Y is complex thed should be replaced by, the conjugate transpose. The appearance
of transpose inf(¢)T is due to the fact that” is itself an Euclidean space. To avoid
complications in the notation we shall assuine= R in the sequel, but all the results
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are applicable generally. If the kernélis symmetric (Hermitian) and positive definite it
defines an inner product. Note that not all operators can be represented by a proper kerne

Our statistical model is

y = f(x)+n(x), 3)

wheref € H, is the true functiong € X is the input pointy € Y is the output point,
andn is the noise. We assume that

e f andn are random fields, andis a random process [Gel' fand and Vilenkin 1964].
e f,x andn are independent of each othéx,f, z,n) = P(f)P(xz)P(n).

e f andn are Gaussian.

In this paper every random variable is a functionfof, n. The notationa) denotes the
mean ofa (averaged oveP(f, z,n)), while (a,b) := ((a — {(a))(b— (b))) denotes the
covariance of: andb. The notationga), and(a, b), denote corresponding conditional
mean and covariance (averaged o€y, x, n|c)). The distributions?(f) and P(n) are
uniquely specified by their mean functions and covariance kernels

=t (Lf)=V =7 (nn")=R (4)

For simplicity we assume that = 7j, = 0 and that the covariancé$ and R are finite.
For uncorrelated noisg is diagonal.

Given adataset = [z, ..., z,] € (X x Y)" of sizen, wherez; = [z;, y;], the posterior
P(f]|z) is a Gaussian with well-known mean and covariance (See, for exarhpidldy
and Smith 1972])

fn = <f>z = %XT(VO + R)ily: (5)
V= (. 1") = Vo= WX (Vo + R)T' XV, (6)
where
X (i,8) = 6(& — x3), Vij = Vo(zy, x;), R = R(x;, xj), (7)
Vii ... Vi
Vo=XVX" =] : L (8)
an . Vnn
Ry ... Ry, n
R=XRX"=| : . y= . 9)
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The posterior mean is also the ideal Bayesian estimate under the|pdfm= ¢” Py,

R , ,
n = argmin — ,
f g (I =al7),

(10)

but it is obviously independent @?. Furthermore, ifR = 0, thenf,(z) = XJ, = y

. In other words, the regression passes through the data points if we believe theedata
noise-free.

For any positive operatdr there is an operatoH as its inverse)yH = I. If V; is
integral operator (i.e. a proper kernel), thens a (pseudo)differential operator and cor-
responds to the inner product of the reproducing kernel Hilbert sgasgh reproducing
kernelV [Yosida 1965]. A pseudodifferential operator differs from a proper differential
operator in that its Fourier transform is not necessarily a polynomial [Hormdreds].
Conversely, given differential operatéf, the kernelV is called its Green's function. If
H is certain forms of pseudodifferential operators the sgacg usually called a (gener-
alized) Sobolev space [Adams 1975; Triebel 1978].

A different but entirely equivalent point of view from Bayesian estimatioregularized
approximation. LeD andH = D' D be pseudodifferential operators without null space,
andV; be its Green's function. The objective function

70) = 2l = 9l (Rl —atay) + [(Pa(©)) an

=(y—Xg)"R™'(y — Xg) + 4" Hy,
attains its minimum at [Poggio and Girosi 1990]
fa=VoX"(Vo+ R) ™y, (12)
which is the solution of the Euler equation of (11)
X"R 'y~ Xf.)=Hu (13)

This solution is identical to the Bayes posterior mean, given the assumedndlatween
the regularization operatdf and the covariance kerngj.

Yet another equivalent point of view is that of smoothing with smoothing opefdtes
VoXT(Vy+ R)'. Obviously the solution is in the spatgX *R” spanned by the basis
VoXT. If H is an iterated Laplacian operator, thefnis given explicitly in [Gel' fand
and Shilov 1964, p. 202] anidy X ” is known as the basis of “thin-plate splines” with

as nodes [Meinquet 1979; Wahba 1990].Hfis a proper differential operator, then its
Fourier transform is a polynomial aidX " is the basis of generalized splines (g-splines)
[Ahlberg, Nilson, and Walsh 1967, chap. 6]. Af is a pseudo-differential operator, then
V' is a quite arbitrary kernel which can be regard as the furthest genei@lizditsplines

in this direction. IfH = (—V?)* thenH = Hj,and if H = (I — V?)* thenH = H*, both
known as Sobolev spaces. It is rkhs (dnds a proper kernel) if and only § > d/2,
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by Sobolev embedding theorem. Another direction to generalize splines is toaéplac
by a general linear operatdr and the solutioi; L” is usually calledL-splines [Wahba
1990].

The relation between the inversion of a differential operator, mininu@ah a Hilbert
space, and smoothing with an integral operator is well known but much of thesresult
are scattered in the literature. See [Donsker and Lions 1962] for the s#atierren

a different context. One advantage of Bayesian approach is that it naturalhdsxte

the case that the random functigns also a process in time. The solution is given by

a Kalman filter [Kalman 1960]. We can also relax the assumptionithas finite, or
equivalently that? does not have a null space, but the exposition becomes complicated
[Wahba 1990, p.11-12]. See also [Kimeldorf and Wahba 1970; Thomas-Agnan 1991;
Meinquet 1979; Kent and Mardia 1994].

For later purposes we also need to stual()fn), the prior distribution of the posterior
meanf, over all samples. This should not be confused with the postediirf|z) itself,
which is the distribution of the true function conditional on a given sample. Sﬁgce
depends on, its distribution depends oR(z) = P(y|x)P(x). We have

(fa), = K (y), =0, (14)
(Furfi). = K (y,y") K" =V X"(Vo+R)™' XVy=Vy -V, (15)
V= (fu IT) = Vo (X" (Vo + B) X)) Vg = Vo — (V) < Wi, (16)

where we have used
(vy") =(Xf+Xn(Xf+Xn)") =Vi+R (17)

It is interesting to note that the shrinkage frdrp to V, instead of froml; to V,, as

often thought, was in fact the origin of the term “regression” introduced by Galtme m

than a century ago [Stigler 1986]. In general, if we have any way to divide a {@auss
into subgroups, then the mean of the subgroups cannot vary as much as individuals. In
fact, the variance of the whole population is the sum of the variance of the means of the
subgroups and the average variance within each subgroup.

For infinitely largen, generally we havé, ~ f so thatP(f,) ~ P(f) andV =~ Vj. If
the sample input: can be approximated by a continuous distributigx), thenX” can
be regarded as an invertible operator so that

VaV(Vo+R) W=V, (18)

becausdr is a finite kernel which is zero except on the diagonal (which has zero measure
according tgy(z)).

In reality, the sample input only defines a discrete distributioR annot be ignored this
way. It is difficult to obtain an explicit expression for for smalln, as it will necessarily
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depend on the actual distribution®f However, for large: we can obtain an asymptotic
expression more accurate than the above, assuming that formlahgedistribution ofx
approacheg, (), that the variability ofe has little effect on the estimate of covariances,
and thatR is diagonal. We have

V) = (V) = (T - XTROX) m (VR (19)

V=Vo— (Vi) = Vo= (Vo' +aR ) = T5(Vo + R/n) s, (20)
where

R(E€) = [ R(r.rpo(r)™'0(6 = 1)o(€ = 7). 21)

R7(6,€) = [ Rir) ™ m(m)d(E = 1)3(E = 7), (22)

(XTRX) (6.€) = (006~ a0 Rl )0 ) )
~ n/rpo(T)R(T, )7 (E—T)6(E — 1) =nR7EE). (23)

3 Finite Dimensional Models

We see that once the input pointsare fixed, the solution is confined to a finite di-
mensional linear spadg X’ R", which is the optimah-dimensional model. Our main
interest in this paper is to find a fixed optimaldimensional linear model independent
of the input datac, where the dimensiom is also independent of.

An m-dimensional linear model/ C H, may be represented d§ = PR™ where
® := [¢1,...,Pnm| is a basis of\1. It is well-known that under the inner prodult the
dual basisl, the projection operatdt?,, and the remainder operatRy, (the orthogonal
projections toM and M —, respectively), are given by

U= o(d"Pd)~!, Py = ®UTP, Ry :=1—Py, (24)
with the following properties,

RI;PPy» =0,  P},PPy =PPy=P},P, R},PRy=PRy=R}P
(25)
P3r = Par, Ri, = Rar, IPacfl[p + [[RacflI7 = [ 13- (26)
The optimal solutiorg,, € M which minimizes/(g) = ||y’ — ¢/|%),, wherey’' = f+n,is

Gn = Pan. It depends essentially on the nojim », because in general the ideal estimate
fn & M. The mean squared test error of an arbitrary estimatel/ is decomposed as

J(9) = (Inli3), + (Ilf = Fullp) + (Fa = Gallp) + (150 — al3),
= te(PR) + tx(PV,) + [|fo = Gall + 1 — 93 27)
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The four terms on the right hand side are, in the given order: the intrinsic noisstof te
data, the uncertainty of ideal regression, the approximation error due to modegwiafjci

and the computational error. It is not possible to do anything about the first two, and by
choosingg = g, the the last term can be made to vanish.

Our goal in this paper is to find an optimal modélindependent of the training data
This is achieved by minimizing the mean of the third term ab¢y&y, fu|3), or equiv-

alently, to maximize{ || P, £, |%.). This depends ol which in turn depends oa. Since

we want to obtain the optimal model independently:pft seems reasonable to make the
conservative assumptidn = Vj4; as we have shown i§2, this is approximately true for
largen. This has the advantage that the optimal model will also be optimal for the prior.
The disadvantage is that it does not utilize the fact thas shrunk fromV;. In other
words, the model wastes some capability to represent the variabilftywbiich could not

be detected by the regressifinfor smalln.

For any givenl/, we have

(IPsallt) = (PR PPufa) = tr ((fuf ) PL PP

(28)
=tr(VPL,P) = tr((®" P®)~'®" PV P®),

which further reduces tor(®7 PV P®), if we set®” P® = T using the Gram-Schmidt
procedure. Sincé® € SPD, the set of symmetric positive definite operators, it has a
uniquely defined square rodt'/? [Riesz and Nagy 1955]. Define

Vp:=P'?VPY2 &p.=P'0. (29)
Then our problem finally reduces to
Max tr(®LVp®p) < trVp. (30)

®Top=I

Since the spac#, is infinite dimensional we need an extra assumption to guarantee that
this trace above is finite. In other words, we waft € L,(#,), the trace-class [Kuo
1975]. A trace-class operator (also called a nuclear operator) has a speompuosed
entirely of a countable number of eigenvalues with a finite sum [Gel' fand aedRifi
1964]. In practice, the norh- || » is usually defined through test date= [+, y'] by

lgli3 = [ da’ p(a')g(a)?, (31)

with the interpretation thai(z') = p; (2')p2(2'), wherep, is the test data input distribu-
tion andp, is a weighting function. Because

trVp = tr(VP) = tr(<fnf:f> P) = <fnTan>

_ (32)
= /dxp(x) <fn(3:)2> < /d:vp(x) mng(x,x),
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we see that/s is a trace-class operator fifdz p(z) < co andmax, V' (z,z) < cc. In the
rest of the paper we shall assume that this is so, which does not impose muchioestri
in practice.

According to Rayleigh's principle [Nef 1967], which underlies principal component anal-
ysis, the optimal modeb ,R™ for (30) is spanned by the eigenfunctiohs = [u; : i =1...m]
corresponding to the: largest eigenvalues &f-. AsVp € Ly N SPD, its spectrum con-
sists of a countable set of positive eigenvaldgsvith }~, \x < oc. They can be ordered,
taking into account multiplicity, ag; > A, > --- > 0, with corresponding orthogonal
eigenfunctionsi;, us, . ... The optimal mode®bR™ for the original problem is therefore
spanned by the orthonormal (with respecPpbasisd = P~'/2®p, with

(BIE) =3 (Pufls)=3n  (Ruhlp) = 3

i=m-+1 (33)

After completing this work we became aware of the paper [Castro, Lawton,\dnesBe
1986], which treats the problem of optimal finite linear models in much the same way
although the problem is restricted to the third example towards the end of theengghs

Most of its results can be easily generalized to the situation asdrkate. The advantage

of our more general framework is that the meaguyrresponding to the weight function

w in their paper, is explicitly specified so that it will be invariant to tin@ining data
positions. This explains why the distinction between principal component analysis and
eigenexpansion as emphasized there disappears here.

4 Examples

Although the optimal model depends bnwhich in turn depends on, for large enough
n we can assum& = V4. All the examples given here rely on this assumption. As our
first example consider

p(€) =exp(—2a€%),  V(&.&)=V(&—&), V(€)= exp(-bg?),
(34)

Vp (&1, &) = exp (—aff —b(&1 — 52)2 - af;) : (35)

The eigenvalues,, eigenfunctions,, and basisg; (for convenience let =0,1,...) are
given by

= T8 ) = exp(—er?) Hyl Vo) (36)
br(x) = exp(—(c — a)xQ)Hk(\/%x), (37)
whereH,, is thekth order Hermite polynomial, and

c=Va?+ 2ab, A=a+b+c, B =b/A. (38)
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This can be proved by using equation 7.374.8 in [Gradshteyn and Ryzhik 1980],

oce_(gﬁ_y>2 ax) dez = /(1 — a?)"? S —
/- Hy(ax) dz = Va(1 - o?) Hn((l_a2)1/2>. (39)

The total prior variance and the residual ratio are

S\ =, [T 1
(Ili) =weve = S8 =\ [ (40)

(Ifall3)  Zee

That is, the optimain-dimensional model catches a portibn- B™ of the variance of
., while leaving portionB™ as the residual approximation error. kor= 1,b = 3,

we haveB = 0.4514. The first 15 eigenvalue§\;} are shown in Figure 1(a). The first
6 eigenfunctiongu,} are shown in Figure 1(b). The 15th basis function is shown in
Figure 1(c). The first 6 basis functiong = P~'/?v,, are shown in Figure 1(d). Note that
the high-eigenvalue components correspond to features typically of more intenesty

the low frequency features toward the centep(af). The infinite dimensional principal
component analysis is possible because there is an effective ordering of the “cortspone
determined by the forms gfandV'.

= B™. (41)

In fact, for this particular example, the first 6 dimensions ca@h5% of variance and
leave out only0.85%, while the 12 dimensional model would catg$.993% variance,
leaving out only0.007%. This is despite the fact that the distributi&f,) has power at

all frequencies (the power spectrumfois the Fourier transform df which extends to all
frequencies). and that the weighting is non-zero over an infinite intervas i lciearly
advantageous compared with the assumption of uniform prior on a finite dimensional
model over a finite interval. To illustrate the effectiveness of the agdtimdimensional
model even with a smath, we pick a typical true functiorf from the prior, and generate

a typical sample. In Figure 2 we plot the effect of sample sizeand model sizen on

the ideal regressiofi, and the optimal regressigk of the model.

Itis interesting to observe how the eigenvalues and eigenfunctions changkevpidram-
etersa andb. Asb/a increases toward infinity3 approaches unity. The eigenvalues be-
come more tightly clustered. To get a reasonable approximation a fangareeded, with
many basis functions looking essentially like sines and cosines within the vérgep

is not negligible. AsB approaches unity the spectrum essentially becomes continuous
and the principal component analysis becomes less useful, similarly to théidrafrem
Fourier series to Fourier transform. In the limit all the “components” guealy impor-

tant, and there are infinitely many of them, so that the PCA completely bdeaks. This

also reveals the important role played by the inner product even for finite dimehsiona
PCA.

Two drawbacks of the optimal linear model are that the basis functions are nonaledal,
each new dimension introduces an entirely different shape of eigenfunction. Isiblgos
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to overcome these two shortcomings by trading-off some optimality of approximation
with ease of computation. The classical method of obtaining local basis functions i
the finite element method [Ciarlet 1978]. A currently more fashionable methoaMslet
analysis which provides (almost) local basis functions spanning almost the opigea}
subspace, yet all the basis functions can be obtained from one “mother wave-shape”.
There is a large and rapidly expanding literature on wavelet analysis [Beamak3affard
1994]. A more recent reference is [Wang 1996].

The next example, which is perhaps more familiar, describes a prior more wefgton
non-smoothness. See [Zhu and Rohwer 1996] for more examples of other priors. Suppose
p is the “gate function”

p(r) = { (1),/2% iI ; . (42)

Let V' be the Green's function corresponding to the differential opefator f — — f”
with homogeneous Dirichlet boundary condition[er, ] [Yosida 1960]

V(e &) =~ 66 — 16— 6l (43)

This is the covariance kernel of the “Brownian bridge” [Grimmett andz8ker 1992].
Note that for our analysis the covariance kernel need not be in a translatasiaimyform
V(&1L &) = V(& — &). The reproducing kernel Hilbert space with reproducing kevnel
is the Sobolev space

H = {f ; aa da f'(2)? < o0, f(a) = f(—a) = o}. (44)

The ideal estimat§ for any given data setis a piecewise linear function. If we assume
the data to be error-fre&? = 0, thenf is simply the Lagrange interpolation with piece-
wise linear functions passing all the data points. Intuitively, given anygdeiats on a
sample path, the best bet for any point in between is on the straight line connbetseg t
two points.

The eigenfunctions and the eigenvalues are

k272

k
w(© =sin (e +a), w=ST

The optimalm-dimensional model is simply the truncated Fourier series. In this case,
sincep is uniform over the fixed finite rande-a, a|, further eigenfunctions are only con-
cerned with highly frequency features.

(45)

This can be regarded as a rigorous expression of the idea that Fourier serielsegive “
finite dimensional representation of an “arbitrary” function.

Let g(x) be the standard Brownian motion (Wiener process). Then

f(x) = g(x) —g(a) + (9(—a) —g(a)) (46)

T —a
2a
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is a typical sample from the prior. It is well known that the samples aré, pvidbability

one, continuous but nowhere differentiable. In fdéf,is very much like a space af/2-

order differentiable functions [Adams 1975]. Several samples are given ineR3gut is
important to note thaf ¢ H|} because|f||, = co. Given any orthonormal basis i,

the projection off on each component is distributed as a standard Gaussian so that the
total norm is infinite [Kuo 1975]. This is further explained in the appendix.

As a third example, suppoggzr) = >, 6(x — xx). That is, assume the test data may
only come from a finite number of specified points. Then the optimal model becomes
V XTR". Therefore splines with preselected nodes are optimal under the assumption that
the test data only come from these points. This example was studied in de@alstrqg,
Lawton, and Sylvestre 1986].

0.8
0.6
0.4
0.2
0 —
0 5 10 15 -2 -1 0 1 2
(a) First 15 eigenvalues dfp (b) First 6 eigenfunctions dfp
40
2
20 1
0 0
-1
-20
-2
-40 R R X _ R R R
-2 -1 0 1 2 —32 -1 0 1 2
(c) The 15th basis function (d) First 6 basis functions

Figure 1: Eigen-decompositiora(= 1, b = 2).
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2 ] 0 1 2 -2 1 0 1 2

(e)m =3,n =100 (f) m =6,n =100

Figure 2: The effect of data size. and model dimensiom:. Legend: f—dash-dot;

-~

f—dashedg—solid; z—circles.
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Figure 3: Three samples from the Brownian bridge

5 Summary

In most statistical problems the objects under consideration cannot be compégtely
resented by a finite dimensional model, yet most of their properties of intenedieca
adequately approximated using a finite dimensional model. One such problem particu-
larly important in practice is analyzed here, giving the conditions and optyradlitnite
dimensional approximation.

We have shown that the optimal finite dimensional model under a Gaussian prior may be
obtained by an infinite dimensional principal component analysis. The condition for its
applicability is given, which essentially requires the “length of axesSum to a finite
number, despite the fact there are infinitely many of them. When this conditioot is
satisfied, the corresponding operator usually has a continuous spectrum so that no finite
dimensional model could do a reasonable job. The relation between smoothing, approxi-
mation and estimation is also elucidated.

Essentially, to estimate an infinite dimensional object, such as a funéttn,a finite
amount of data, we must assume an infinite amount of prior information, leaving out only
a finite amount of uncertainty. Here the amount of data and information are measured
units of real numbers. The classical way to do this is to assume that wesaleiely cer-

tain in all but a finite number of directions; in other words, to assume a finitertsronal
model. The alternative given here is more general. We assume that we mayceotze

in any direction, but the uncertainty on these infinitely many directions asuned by
variance sums to a finite number. This cannot be achieved if we assume the prier dis
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bution is spherical relative to the inner product which measures the imporanassign
to each direction.
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A Motivation for Hilbert space methods

The general treatment of Gaussian measures on function spaces has been koewresi
work of Wiener and Kolmogorov, which usually involves consideration of sevenahs
or inner products. However, it appears not to have been intuitively introduceddtqad
statisticians, and therefore has been largely ignored by them. This is quitdwnate
since it is the direct cause of the well-known phenomenon of “over-fitting”.

For motivation let us first consider Gaussian measures on a finite dimengpacal(#nul-
tivariate Gaussians). Let be anm-dimensional Gaussian variable with zero mean and
covariance matrix” = (zz2”). Its mean squared length is

<xT:v> = <tr(:mT)> =trV. (47)

It is often convenient to linearly transformto Lz such thatP(Lzx) is of the standard
form (spherical and of unit variance). The inner productZaninduces an inner product
onz, H = V~!' = LTL, which is the Fisher information matrix far. Under H the
squared length of has ay? distribution ofm degrees of freedom with mean

<xTHx> = <tr(H3:xT)> =tr(HV) = tr(l,) = m. (48)

Now we see that this causes a problem for a GausBigh) on an infinite dimensional
space: If we use an inner produ@t by which P(f) looks spherical, the mean squared
length of the random elemeritwill be infinity, because it is the sum of variances in all
the (infinitely many) orthogonal directions, all of them equal to one another. In other
words, the collection of samples from a Gaussian with covariance Keérdees not form

a Hilbert space with inner produéf under which the covariance is spherical. Therefore
H is unsuitable as an objective for approximation. For under it we start from infinde e
and would retain infinite error given any finite amount of data.

Since it is desirable to be able both to represent Gaussians in a sphencalfoto use a
finite norm, Gaussian measurBsf) in a Hilbert spacé{, are generally defined by two
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inner products, necessarily not equivalent to each other [Kuo 1975]. One inner pfoduct
of Hilbert spaceH,, is used to measure distance pyP f. A stronger inner produdt of
Hilbert spaceH, := {f fTHf < oo} C Ho, makesP(f) “appear” spherical.

Let us analyze the spectrum Bfunder both inner products. The eigenvalue¥ ainder

H are unity for all eigenfunctions; The distribution is spherical but the mean sduar
length is infinity. The eigenvalues ®f underP form a decreasing sequentgsuch that
>k \x < 00; The mean squared length is finite but the distribution is not spherical.

Usually H is a pseudodifferential operator, of which the covariance kérnglits Green's
function. If V' is proper kernel, i.e., if Dirac's measures belong to the dual sHacee.,

they are bounded linear functionals), then the spgdcés called the reproducing kernel
Hilbert space (rkhs) with reproducing kerriél[Aronszajn 1950; Parzen 1963; Kailath
1971; Yosida 1965]. For further references see [Wegman 1988]. The reason to single out
rkhs from all function spaces is that they guarantee the regression based ananfioitnt

of data to be a proper function, as point values at finite many points form a multévaria
Gaussian with finite covariance. The appearancemkasures in these considerations is
due toX in our statistical modey = X f + Xn. If X is replaced by a linear operatbr

the solution will beL-splines not necessarily in a rkhs.

In fact, generalized functions can also be regarded as rkhydsfreplaced by smoother
test functions [Kailath 1971]. From this point of view, classical rkhs is suchpbrt
values of each member functions are well defined, while the general rkhs is stich tha
locally smoothed values are well defined.

So why is this important to practical statisticians? In practicetaldata are sampled
at finite number of points, and it is well known that all the finite dimensional nores ar
equivalent. It may appear that the idealized infinite dimensional objects wouddrta
practical consequence. However, it happens that although the norms are equikialent,
ratio between them generally depends on the discretization. It thereforbappgn that
as we increase the “precision” of data to get a better fit in one forfh it actually get
worse in another norr - ||;.

As a concrete example, consider the Sobolev spaces

= {2 177 = [ do fla)? < oo} (49)
= {2 M= [ e (F@) + @) < oo (50

It is well-known in the function approximation literature that if the functipns dis-
cretized in the usual ways thelrf|o < [|f]l1 < (C/h)||f|lo, whereh is the steplength
of the discretization. So if we do not guarantee the increase of precisipn|into be
faster than the decrease inwhich is generally impossible anyway, there is no way to
infer convergence ifj - ||; from that of|| - ||. In practice|| - ||, may be used to measure

the approximation while| - ||; may come from the covariance of our prior. A good fit
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according td| - ||o may be so wiggly that we do not believe it to be true. In fact, a typical
sample from a Gaussian which looks spherical uride};, is a sample from white noise!

In this case we say “over-fitting” occurs. Of course, the term “ovéngt is a misnomer:

If our goal is to fit, how could we over-do it? This only happens because our implicit goal
is different from the norm we tell the machine to minimize. The importance of maam
also emphasized in [Kailath 197§4]. The term corresponding tp- ||, is usually called

a regularizer.
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