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AbstractThe Self-OrganizingMap (SOM) algorithm has been extensively studied and has been applied withconsiderable success to a wide variety of problems. However, the algorithm is derived from heuristicideas and this leads to a number of signi�cant limitations. In this paper, we consider the problemof modelling the probability density of data in a space of several dimensions in terms of a smallernumber of latent, or hidden, variables. We introduce a novel form of latent variable model, whichwe call the GTM algorithm (for Generative Topographic Map), which allows general non-lineartransformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducingno signi�cant disadvantages. We demonstrate the performance of the GTM algorithm on simulateddata from ow diagnostics for a multi-phase oil pipeline.
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GTM: A Principled Alternative to the Self-Organizing Map 21 IntroductionThe Self-Organizing Map (SOM) algorithm of Kohonen (1982) represents a form of unsupervisedlearning in which a set of unlabelled data vectors tn (n = 1; : : : ; N) in a D-dimensional data spaceis summarized in terms of a set of reference vectors having a spatial organization corresponding(generally) to a two-dimensional sheet. While this algorithm has achieved many successes inpractical applications, it also su�ers from some major de�ciencies, many of which are highlightedin Kohonen (1995) and reviewed in this paper1.From the perspective of statistical pattern recognition the fundamental goal of unsupervised learn-ing is to develop a representation of the distribution p(t) from which the data were generated. Inthis paper we consider the problem of modelling p(t) in terms of a number (usually two) of latentor hidden variables. By considering a particular class of such models we arrive at a formulationin terms of a constrained Gaussian mixture which can be trained using the EM (expectation-maximization) algorithm. The topographic nature of the representation is an intrinsic featureof the model and is not dependent on the details of the learning process. Our model de�nes agenerative distribution p(t) and will be referred to as the GTM (Generative Topographic Map)algorithm.2 Latent VariablesThe goal of a latent variable model is to �nd a representation for the distribution p(t) of data in aD-dimensional space t = (t1; : : : ; tD) in terms of a number L of latent variables x = (x1; : : : ; xL).This is achieved by �rst considering a non-linear function y(x;W), governed by a set of parametersW, which maps points x in the latent space into corresponding points y(x;W) in the data space.Typically we are interested in the situation in which the dimensionality L of the latent variablespace is less than the dimensionality D of the data space, since our premise is that the data itselfhas an intrinsic dimensionality which is less than D. The transformation y(x;W) then maps thehidden-variable space into an L-dimensional non-Euclidean manifold embedded within the dataspace.If we de�ne a probability distribution p(x) on the latent variable space, this will induce a corre-sponding distribution p(yjW) in the data space. We shall refer to p(x) as the prior distribution ofx for reasons which will become clear shortly. Since L < D, the distribution in t-space would becon�ned to a manifold of dimension L and hence would be singular. Since in reality the data willonly approximately live on a lower-dimensional manifold, it is appropriate to include a noise modelfor the t vector. We therefore de�ne the distribution of t, for given x and W, to be a sphericalGaussian centred on y(x;W) having variance ��1 so that p(tjx;W; �) � N (tjy(x;W); ��1I).The distribution in t-space, for a given value of W, is then obtained by integration over thex-distribution p(tjW; �) = Z p(tjx;W; �)p(x) dx: (1)For a given a data set D = (t1; : : : ; tN ) of N data points, we can determine the parameter matrixW, and the inverse variance �, using maximum likelihood, where the log likelihood function is1Biological metaphor is sometimes invoked when motivating the SOM procedure. It should be stressed that ourgoal here is not neuro-biological modelling, but rather the development of e�ective algorithms for data analysis, forwhich biological realism is irrelevant.
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t2Figure 1: We consider a prior distribution p(x) consisting of a superposition of delta functions,located at the nodes of a regular grid in latent space. Each node xi is mapped to apoint y(xi;W) in data space, which forms the centre of the corresponding Gaussiandistribution.given by L(W; �) = NXn=1 ln p(tnjW; �): (2)In principle we can now seek the maximum likelihood solution for the weight matrix, once wehave speci�ed the prior distribution p(x) and the functional form of the mapping y(x;W), bymaximizing L(W; �). The latent variable model can be related to the Kohonen SOM algorithm bychoosing p(x) to be a sum of delta functions centred on the nodes of a regular grid in latent spacep(x) = 1=KPKi=1 �(x�xi). This form of p(x) allows the integral in (1) to be performed analytically.Each point xi is then mapped to a corresponding point y(xi;W) in data space, which forms thecentre of a Gaussian density function, as illustrated in Figure 1. Thus the distribution function indata space takes the form of a Gaussian mixture model p(tjW; �) = 1=KPKi=1 p(tjxi;W; �) andthe log likelihood function (2) becomesL(W; �) = NXn=1 ln( 1K KXi=1 p(tnjxi;W; �)) : (3)This distribution is a constrained Gaussian mixture since the centres of the Gaussians cannot moveindependently but are related through the function y(x;W). Note that, provided the mappingfunction y(x;W) is smooth and continuous, the projected points y(xi;W) will necessarily have atopographic ordering.2.1 The EM AlgorithmIf we choose a particular parametrized form for y(x;W) which is a di�erentiable function of Wwe can use standard techniques for non-linear optimization, such as conjugate gradients or quasi-Newton methods, to �nd a weight matrixW?, and inverse variance �?, which maximize L(W; �).However, our model consists of a mixture distribution which suggests that we might seek an EMalgorithm (Dempster, Laird, and Rubin 1977; Bishop 1995). By making a careful choice of modely(x;W) we will see that the M-step can be solved exactly. In particular we shall choose y(x;W)to be given by a generalized linear network model of the formy(x;W) =W�(x) (4)where the elements of �(x) consist ofM �xed basis functions �j(x), andW is a D�M matrix withelements wkj . Generalized linear networks possess the same universal approximation capabilitiesas multi-layer adaptive networks, provided the basis functions �j(x) are chosen appropriately.



GTM: A Principled Alternative to the Self-Organizing Map 4By setting the derivatives of (3) with respect to wkj to zero, we obtain�TG�WT = �TRT (5)where � is a K �M matrix with elements �ij = �j(xi), T is a N �D matrix with elements tnk ,and R is a K �N matrix with elements Rin given byRin(W; �) = p(tnjxi;W; �)XKi0=1p(tnjxi0 ;W; �) (6)which represents the posterior probability, or responsibility, of the mixture components i for thedata point n. Finally, G is a K � K diagonal matrix, with elements Gii = PNn=1Rin(W; �).Equation (5) can be solved forW using standard matrix inversion techniques. Similarly, optimizingwith respect to � we obtain1� = 1ND KXi=1 NXn=1Rni(W; �) ky(xn;W)� tnk2 : (7)Here (6) corresponds to the E-step, while (5) and (7) correspond to the M-step. Typically theEM algorithm gives satisfactory convergence after a few tens of cycles. An on-line version of thisalgorithm can be obtained by using the Robbins-Monro procedure to �nd a zero of the objectivefunction.3 Relation to the Self-Organizing MapThe list below describes some of the problems with the SOM procedure and how the GTM algorithmsolves them.1. The SOM algorithm is not derived by optimizing an objective function, unlike GTM . Indeedit has been proven (Erwin, Obermayer, and Schulten 1992) that such an objective functioncannot exist for the SOM algorithm.2. In GTM the neighbourhood-preserving nature of the mapping is an automatic consequenceof the choice of a smooth, continuous function y(x;W). Neighbourhood-preservation is notguaranteed by the SOM procedure.3. There is no assurance that the code-book vectors will converge using SOM. Convergenceof the batch GTM algorithm is guaranteed by the EM algorithm, and the Robbins-Monrotheorem provides a convergence proof for the on-line version.4. GTM de�nes an explicit probability density function in data space. In contrast, SOM doesnot de�ne a density model. Attempts have been made to interpret the density of codebookvectors as a model of the data distribution but with limited success.5. For SOM the choice of how the neighbourhood function should shrink over time duringtraining is arbitrary, and so this must be optimized empirically. There is no neighbourhoodfunction to select for GTM .6. It is di�cult to know by what criteria to compare di�erent runs of the SOM procedure.For GTM one simply compares the likelihood of the data under the model, and standardstatistical tests can be used for model comparison.
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Figure 2: Examples of the posterior probabilities (responsibilities) of the latent space pointsat an early stage (left) and late stage (right) during the convergence of the GTMalgorithm, evaluated for a single data point from the training set in the oil-owproblem discussed in Section 4.Notwithstanding these key di�erences, there are very close similarities between the SOM and GTMtechniques. Figure 2 shows the posterior probabilities (responsibilities) corresponding to the oil owproblem considered in Section 4. At an early stage of training the responsibility for representinga particular data point is spread over a relatively large region of the map. As the EM algorithmproceeds so this responsibility `bubble' shrinks automatically. The responsibilities (computed inthe E-step) govern the updating ofW and � in the M-step and, together with the smoothing e�ectof the basis functions �j(x), play an analogous role to the neighbourhood function in the SOMprocedure.4 Experimental ResultsWe present results from the application of this algorithm to a problem involving 12-dimensionaldata arising from diagnostic measurements of oil ows along multi-phase pipelines (Bishop andJames 1993). The three phases in the pipe (oil, water and gas) can belong to one of three di�erentgeometrical con�gurations, corresponding to strati�ed, homogeneous, and annular ows, and thedata set consists of 1000 points drawn with equal probability from the 3 classes. We take thelatent variable space to be two-dimensional, since our goal in this application is data visualization.Each data point tn induces a posterior distribution p(xjtn;W; �) in x-space. However, it is oftenconvenient to project each data point down to a unique point in x-space, which can be done by�nding the mean of the posterior distribution.Figure 3 shows the oil data visualized with GTM and SOM. The CPU times taken for the GTM,SOM with a Gaussian neighbourhood, and SOM with a bubble neighbourhood were 644, 1116 and355 seconds respectively. In each case the algorithms were run for 25 complete passes through thedata set.In conclusion, we have provided an alternative algorithm to the SOM which overcomes its principalde�ciencies while retaining its general characteristics. We know of no signi�cant disadvantage inusing the GTM algorithm in place of the SOM. While we believe the SOM procedure is supersededby the GTM algorithm, is should be noted that the SOM has provided much of the inspiration fordeveloping GTM. The relationships between GTM and a number of other algorithms are discussedin a longer paper available from:http://www.ncrg.aston.ac.uk/Papers/postscript/NCRG 96 015.ps.Z
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Figure 3: The left plot shows the posterior-mean projection of the oil ow data in the latentspace of the non-linear model. The plot on the right shows the same data set vi-sualized using the batch SOM procedure, in which each data point is assigned tothe point on the feature map corresponding to the codebook vector to which it isnearest. In both plots, crosses, circles and plus-signs represent the three di�erentoil-ow con�gurations.AcknowledgementsThis work was supported by EPSRC grant GR/K51808: Neural Networks for Visualisation of High-Dimensional Data.ReferencesBishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.Bishop, C. M. and G. D. James (1993). Analysis of multiphase ows using dual-energy gamma densito-metry and neural networks. Nuclear Instruments and Methods in Physics Research A327, 580{593.Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data viathe EM algorithm. J. Roy. Stat. Soc B 39 (1), 1{38.Erwin, E., K. Obermayer, and K. Schulten (1992). Self-organizing maps: ordering, convergence proper-ties and energy functions. Biological Cybernetics 67, 47{55.Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cyber-netics 43, 59{69.Kohonen, T. (1995). Self-Organizing Maps. Berlin: Springer-Verlag.


