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Abstract

In this paper we examine the equilibrium states of periodic finite amplitude flow in a hori-
zontal channel with differential heating between the two rigid boundaries. The solutions to
the Navier-Stokes equations are obtained by means of a perturbation method for evaluating
the Landau coefficients and through a Newton-Raphson iterative method that results from the
Fourier expansion of the solutions that bifurcate above the linear stability threshold of infini-
tesimal disturbances. The results obtained from these two different methods of evaluating the
convective flow are compared in the neighbourhood of the critical Rayleigh number. We find
that for small Prandtl numbers the discrepancy of the two methods is noticeable.

1 Weakly Non-Linear Theory and Amplitude Equations

Weakly non-linear theory for fluid motions was established by Stuart (1960) and Watson (1960)
and has been applied to many fundamental basic flows, successfully, during last a half century.
The resultant ODE is sometimes referred to as ‘Stuart-Landau equation’, or simply ‘amplitude
equation’. For steady onset, Malkus and Veronis (1958) derived a branching equation instead
of the amplitude equation. In the development of the theory, the most important contribution
was due to Newell and Whitehead (1969), Stewartson and Stuart (1971), and DiPrima, Eckhaus
and Segel (1971); they extended the theory to take account of the effect of spatial modulation.
Those classical theories are known to give amplitude equations equivalent with those based
on the method of centre manifold (See Carr 1981, Cheng and Chang 1990, Fujimura 1991
and 1997, for example), implying that the classical theories are mathematically justified. In
practical applications of the weakly non-linear theory, we need to keep in mind that the range
of validity of amplitude equations is not always wide enough. Kuo (1961) carried out weakly-
non-linear expansion to seventh order and examined the range of validity of the expansion for
Rayleigh-Bénard problem under free-free boundary conditions. He showed that a parameter
expansion based on (R − Rc)/Rc yields an alternating series which causes a narrow range of
validity whereas an expansion in (R−Rc)/R resolves the alternating feature and yields a much
wider range of validity. Instead, Herbert (1980) numerically showed that the range of validity is
unexpectedly very narrow for plane Poiseuille flow. Recall that the bifurcation of the non-linear
state at the linear critical point is subcritical for plane Poiseuille flow. Herbert (1983) showed
that the zeroth harmonic resonance arises in the subcritical region. The onset of the resonance
corresponds to the fact that the centre manifold has zero divisors in subcritical region (Roberts
1989). In the present paper, we revisit this classical, but practically important, problem on the
range of validity of the weakly nonlinear theory for Rayleigh-Bénard convection with perfectly
conducting rigid boundaries.

Consider a horizontal layer of Boussinesq fluid with infinite extent. The fluid is confined
between boundaries located at z = 0 and d and is uniformly heated from below. After an
appropriate non-dimensionalization, PDEs governing the disturbance have the form

Pr−1Dv

Dt
= −∇π + Rθez + ∆v, ∇ · v = 0,

Dθ

Dt
+ (−1)w = ∆θ, (1)
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Figure 1: Results of the calculations for the non-linear flow for Pr = 0.001. The streamwise
harmonics use kc = 3.11632355, and Rc is the critical Rayleigh number for Rayleigh-Bnard
convection: Rc = 1707.76178. In order to measure the agreement between the two methods
studied in this work we use the amplitude of the z-component of the velocity field evaluated at
midplane: |w(1/2)|. The truncation levels of the Stuart-Landau equation (2) are also provided.

5th European Thermal-Sciences Conference, The Netherlands, 2008



where Pr =
ν0

κ0

, R =
α0gδTd3

ν0κ0

, d being the depth of the fluid layer, and δT being a temperature

difference between the top and bottom boundaries.
Under the assumption that the solution of (1) is 2π/kc-periodic, (1) is invariant under

x → x+ l(mod 2π/kc) and x → −x together with u → −u, where kc is the critical wavenumber.
Let the solution of (1) be written as (v, π, θ)T = A(t)(Ψ(z), Π(z), Θ(z))T eikcx + c.c. + · · · .
Orthogonal group O(2) acts on A ∈ R2 as A → A eiϕ for 0 ≤ ϕ < 2π and A → A. The equation
for A(t) generated by O(2)-equivariant vector field is written as Ȧ = Af(|A|2; µ), where µ =
(R − Rc)/Rc ∈ R and f : R× R→ R. Taylor expansion of the invariant function f about the
origin yields the Stuart-Landau equation

Ȧ = A (fµ(0)µ + f|A|2(0)|A|2 + · · · ) = σA +
∑
n=1

λ2n+1|A|2nA. (2)

To derive equation (2) from (1), we apply the refined version of the amplitude expansion
scheme (See Herbert 1983 or Fujimura 1989, for example). We first rewrite (1) into a simplified
form [

∂

∂t
S + L(R)

]
ψ = N (ψ,ψ) for ψ = (v, π, θ)T . (3)

The ψ is subject to homogeneous boundary conditions

Hψ = 0 at z = 0, 1, i.e., v = 0 and θ = 0 at z = 0, 1. (4)

Let us assume the solution ψ to be two-dimensional and seek ψ in the form of Fourier series

ψ(x, t) =
∞∑

j=−∞
Ψj(z, t) eijkcx where Ψ−j = Ψj. (5)

Each Fourier component Ψj is governed by

[
∂

∂t
Sj + Lj(R)

]
Ψj =

∞∑
m=−∞

N(Ψj−m, Ψm), Sj = S|∂x→ijkc,∂z→d/dz, Lj = L|∂x→ijkc,∂z→d/dz. (6)

Following (2), we expand Ψj in |A|2 such that

Ψj(z, t) =
∑
n=1

Φj,j+2(n−1)(z)|A|2(n−1)Aj and Ψ0(z, t) =
∑
n=1

Φ0,2n(z)|A|2n. (7)

At O(|A|), we have

[σS1 + L1(R)] Φ11 = 0 subject to H1Φ11 = 0 at z = 0, 1 (8)

where Hj = H|∂x→ijkc,∂z→d/dz.
1 At O(|A|2), the mean-flow-distortion and the second harmonic

are governed by

[(σ + σ̄)S0 + L0(R)] Φ02 = N02 and [2σS2 + L2(R)] Φ22 = N22, (9)

where N02 = N(Φ11, Φ11) + N(Φ11, Φ11) and N22 = N(Φ11, Φ11). At O(|A|3), the deformation of
the fundamental is governed by

[(2σ + σ̄)S1 + L1(R)] Φ13 = N13 − λ3S1Φ11, (10)

where N13 = N(Φ11, Φ22) + N(Φ22, Φ11) + N(Φ11, Φ02) + N(Φ02, Φ11).

1We formally retained the general form of homogeneous boundary conditions although the conditions here
are very simple. In what follows, Φjn is subject to the boundary conditions HjΦjn = 0 at z = 0, 1.

5th European Thermal-Sciences Conference, The Netherlands, 2008



(R − R
c
)/R

c

|w(1/2)|

0.0 0.2 0.4 0.6

1

2

3

4

5

3
5
7
9
11
13
15
17
19
21
23
25
27
29

Figure 2: Results of the calculations for the non-linear flow for Pr = 7.0. The streamwise
harmonics use kc = 3.11632355, and Rc is the critical Rayleigh number for Rayleigh-Bnard
convection: Rc = 1707.76178. In order to measure the agreement between the two methods
studied in this work we use the amplitude of the z-component of the velocity field evaluated at
midplane: |w(1/2)|. The truncation levels of the Stuart-Landau equation (2) are also provided.
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For Reσ = 0, the first Landau constant λ3 is determined from the solvability condition
for (10). For non-vanishing Re σ, on the other hand, we follow Watson (1960) and set Φ13 =

χ
(1)
13 − λ3χ

(2)
13 . Equation (10) is then divided into

[(2σ + σ̄)S1 + L1(R)] χ
(1)
13 = N13 and [(2σ + σ̄)S1 + L1(R)] χ

(2)
13 = S1Φ11. (11)

Since Re σ 6= 0, the first equation of (11) is solvable whereas the second equation has a solution

of the form of χ
(2)
13 = Φ11/(σ + σ̄) so that Φ13 = χ

(1)
13 − λ3Φ11/(σ + σ̄). At this stage, following

Herbert (1983), we define the amplitude of the fundamental mode at a reference point z0 ∈ (0, 1)
by requiring that

Φ11(z0) = 1, Φ1n(z0) = 0 for n ≥ 3. (12)

Equation (12) then yields

λ3 = (σ + σ̄)χ
(1)
13 (z0). (13)

Formal analysis to the higher-order approximation is straightforward. The n-th Landau
constant λ2n+1 is given by

λ2n+1 = n(σ + σ̄)χ
(1)
1,2n+1(z0) (14)

where χ
(1)
1,2n+1 is a solution of

[
{(n + 1)σ + nσ̄}S1 + L1(R)

]
χ

(1)
1,2n+1 = N1,2n+1 −

n∑
j=2

{jλ2(n−j)+3 + (j − 1)λ2(n−j)+3}S1Φ1,2j−1

and N1,2n+1 is a summation of nonlinear terms arising at O(|A|2n+1).

2 Fully Non-Linear Solution of the PDEs

Since there is no preferred direction in the horizontal plane, the most dangerous modes have
wavevectors on the critical circle with radius kc. Let us restrict ourselves on the situation similar
to that in section 1 and consider the roll-structure which is 2π/kc-periodic in the x-direction and
uniform in the y-direction. Two-dimensional equilibrium solutions were obtained numerically
by using the collocation method combined with the Newton-Raphson iterative method for some
high enough truncation numbers M, N . Details of the numerical method to obtain non-linear
solutions were presented recently in Nagata & Generalis (2002) and Generalis & Nagata (2003,
2004). Although the non-linear solutions bifurcate from the conduction state along the neutral
curve of the linearized theory it is important to obtain converged solutions that represent the
flow globally. The latter is important as the series

w =
N∑

n=0

M∑
m=−M

anm(1− ζ2)2Tn(ζ)e
imkcx, (15)

θ =
N∑

n=0

M∑
m=−M

bnm(1− ζ2)Tn(ζ)e
imkcx

(16)

must be truncated at a certain level of the harmonics that are taken into account. Here
ζ = 2z−1. This pre-determined truncation level is also present in the weakly non-linear theory
of the previous section and in the case of Poiseuille flow Herbert (1980) showed the deviation
from agreement between the two methods for small amplitudes, i.e. in the vicinity of the neu-
tral curve. This was attributed by Herbert (1980) to the limited scope of the weakly non-linear
theory as the latter approximates the mean flow rather poorly already at small amplitudes and
therefore the use of the weakly non-linear theory should only be employed at regions that are
very close to the neutral curve.
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Figure 3: Results of the calculations for the non-linear flow for Pr = 1000. The streamwise
harmonics use kc = 3.11632355, and Rc is the critical Rayleigh number for Rayleigh-Bnard
convection: Rc = 1707.76178. In order to measure the agreement between the two methods
studied in this work we use the amplitude of the z-component of the velocity field evaluated at
midplane: |w(1/2)|. The truncation levels of the Stuart-Landau equation (2) are also provided.
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3 Numerical Results and Concluding Remarks

In order to examine the convergence of the results between the two methods, we evaluated non-
linear solutions for various values of the Prandtl number. Non-linear amplitudes were derived
from equations of the form (Nagata & Generalis 2002, Generalis & Nagata 2003)

Ax + xT Bx = 0, (17)

where by xi we denote collectively the unknown two-dimensional amplitudes that we evaluate
at the collocation points zi = cos((i + 1)π/(N + 2)), i = 0, · · · , N . The rank of the square
matrices A,B is (N +1)(2M +1). The Newton-Raphson iterative method is employed in order
to obtain solutions to the resulting finite system of equations.
As can be seen from Figures 1-3 the agreement between the two methods in the vicinity of
the critical Rayleigh number is very good provided that Pr ≥ O(1). If the latter condition
is not satisfied then even a large number of non-linear terms in the amplitude expansion or a
large number of harmonics in the Newton-Raphson iterative method2 does not make the two
methods converge to the same values of the quantity used here (|w(1/2)|). For Pr < 0.25,
λ5, λ9, λ11, and λ15 are positive whereas λ3, λ7, λ13, λ17, and λ19 are negative. Therefore the
RHS of (2) is almost alternating. This situation is similar to the one in plane Poiseuille flow. All
the positive λ′s for small Pr change their sign and become negative almost simultaneously at
around Pr = 0.25. For Pr > 0.25, the λ2n+1 on the RHS of (2) are all negative. The agreement
between the two methods for moderate and large values of the Prandtl number testifies to the
fact that the range of validity of weakly non-linear expansion is fairly extensive. For Pr > 0.25
the range of validity of the Stuart-Landau equation (2) is 0 < (R−Rc)/Rc < 1 or even wider,
whereas it is within 0 < (R − Rc)/Rc < 0.02 for Pr < 0.25. The apparent narrow range
of agreement for small values of Pr even when higher order non-linear terms are taken into
account in the amplitude equation and a large number of harmonics is taken into account in
the Newton-Raphson iterative method is a matter of on-going investigation.
Finally we note that Kuo (1961) reported that, other than (R − Rc)/Rc, the (R − Rc)/R
drastically improves the range of validity of the parameter expansion. As Pr decreases, however,
the alternating feature recovers and the convergence of the expansion gets worse. For Pr =
0.001, the range of validity is almost comparable with our result. Therefore, an introduction
of the parameter expansion in terms of (R − Rc)/R is not expected to improve the range of
validity for small Pr fluids under rigid-rigid boundary conditions.
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