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Summary. The automatic interpolation of environmental monitoring network data
such as air quality or radiation levels in real-time setting poses a number of practical
and theoretical questions. Among the problems found are (i) dealing and communi-
cating uncertainty of predictions, (ii) automatic (hyper)parameter estimation, (iii)
monitoring network heterogeneity, (iv) dealing with outlying extremes, and (v) qual-
ity control. In this paper we discuss these issues, in light of the spatial interpolation
comparison exercise held in 2004.

1.1 Introduction

Many environmental variables are monitored in a (semi-)continuous way; ex-
amples include air quality and background radiation levels. In order to utilize
the network, maps of observed values are usually instantly available to network
operators, but maps with interpolated values often need lengthy intervention
by (spatial) statisticians before they become available. We believe that spa-
tial interpolation can, and should, be automated to the extent that both in
routine and emergency situations interpolated maps can become available in
near real-time (i.e., within seconds up to tens of minutes) without such inter-
vention. Of course there will always be a role for the spatial statistician in
providing in depth analysis of a given data; our focus is on situations where
decisions must be made quickly.

In a decision theoretic setting, a map with interpolated (predicted) values,
is not sufficient information; knowledge of prediction errors and their prob-
ability distributions is necessary for optimal results. We explore some of the
issues that the requirement for automatic, probabilistic, real-time, prediction
raises.

This paper discusses issues in both algorithm development and their prac-
tical implementation in the form of a web service for operational monitoring
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network management. It will review some of the submissions of the Spatial
Interpolation Comparison (SIC) 2004 (Dubois and Galmarini, 2005; EUR,
2005). The issues we will address comprise

(i) quantifying and communicating exceedance probabilities for given thresh-
old levels, in order to estimate risk of exposure.

(ii) the automated estimation of parameters describing the spatial variability
in presence of extremes

(iii) dealing with heterogeneity of monitoring networks, e.g. across EU mem-
ber state boundaries

(iv) detection of outliers in space and time
(v) quality control.

1.2 Communicating prediction error distributions

Interpolating in two dimensions can be relatively simple. In cases where the
variogram is close to an exponential or spherical model, and the nugget vari-
ance is small, the inverse distance interpolation algorithm is hard to beat
significantly with highly advanced geostatistical models, when the implemen-
tation is tuned to have a varying power in the distance weights, or a varying
neighbourhood selection. One of the disadvantages of inverse distance methods
is that they do not yield interpolation, or prediction errors when no variogram
model is assumed. Interpolation errors can be large, and are of importance, if
for example someone is faced with the decision whether an area, or how large
an area should be evacuated based on the interpolation of measured radiation
levels after a radioactive outbreak.

Ideally, an automatic prediction algorithm should provide a user with the
full conditional cumulative distribution function (ccdf), which is for a random
variable Z at arbitrarily chosen unobserved location s0 the probability

F (Z(s0), c) = Pr(Z(s0) < c | z(si), i = 1, ..., n) (1.1)

with Z(si), i ≥ 1 the observed data. Usually s0 is chosen to be a large number
of points (or square blocks) over a regular grid, and F (Z(s0), c), for a given
level c, can be shown as a map. In risk studies, it may be more intuitive to map
1−F (Z(s0), c), which is the probability of exceeding c, but for the discussion
here this is irrelevant. An alternative visualisation is that of the quantile
function, obtained by inverting (1.1), which gives the Z values corresponding
to a spatially constant given quantile value q ∈ [0, 1]:

F−1(Z(s0), q) = c (1.2)

such as the median, or the 2.5 and 97.5 percentiles4.
4 Although not necessary for the discussion here, we want to note that in a consid-

erable part of the geostatistical literature ccdf’s are associated with, or discussed
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For fixed, chosen values of c, the value of F (Z(s), c), or alternatively one
minus this value (the probability of exceeding c) may be shown as a static
map. Usually but not necessarily, s is a collection of points on a regular grid
covering the area studied. Accordingly, for fixed values of q a quantile map
for F−1(Z(s), q) can be shown. Choosing these values ahead of time may be
guided by regulatory guidelines, e.g. from maximum tolerated or established
zero-risk concentrations, but threshold values found there often contain a cer-
tain or even considerable amount of arbitrariness in them, and a user may
want to change them. An important issue to find out is how much a slight
change in c results in a different assessment of the exceedence probability map.

Visual communication of the full functions F (Z(s), c) and F−1(Z(s), q) is
area of research. Pebesma et al. (accepted) describe a tool for the dynamic
analysis of maps of (1.1) and (1.2) under different modelling or interpolation
scenarios. In case of the ccdf (Figure 1.1) the value of c can be dynamically
changed by dragging and dropping the vertical line in the ccdf widget, which
is followed by immediate update of the corresponding maps of F (Z(s), c). In
case of the quantiles plot (Figure 1.2), the value of q (horizontal line in the
ccdf widget) can be dynamically changed, to be followed by an update of the
maps of F−1(Z(s), q).

1.3 An interpolate button, or web service?

Ideally, we would like to have a routine (let us say a button in a computer
program or web client) which, given a set of measurements, provides near
real-time maps of interpolated values, and / or their associated distribution
or quantile views. This means that data have to be submitted, interpolated
values computed, and ccdf’s are returned (Figure 1.3).

While the implementation of the interpolation algorithm is clearly very
important in determining the accuracy of the predictions, the usefulness of
the system also depends on the ease of integration into the overall network
management system. An exciting opportunity is presented by the adoption of a
service oriented architecture (often called ’web services’) with carefully defined
interfaces offers an exciting prospect of developing an automatic interpolation
service which any user capable of employing web services can utilise. This will
necessitate the definition of standards for communicating uncertainty.

in the context of certain specific forms of kriging, notably indicator kriging and
its descendents or generalisations. This is not necessary as ordinary, simple or
universal kriging can provide ccdf’s whenever a parametric distribution function
(e.g. normal, lognormal, normal after Box-Cox transformation) is assumed. Such
assumptions may be strong, but so are the assumptions about the identification
of tail distributions and their spatial correlation in the indicator and related ap-
proaches.
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Fig. 1.1. Screen shot of a tool to visualize the distribution function F (Z(s), c) for
PCB-138 concentrations in North Sea floor sediment data, analyzed in Pebesma and
Duin (2005). The maps show probabilities for the interpolated values of being below
the PCB138 threshold value of 1 ppm (the legend caption misses this point). The
scenarios refer to block size: (0) refers to point kriging, (5000) to kriging at 5 km ×
5 km block, (10000) to kriging at 10 km × 10 km blocks.

1.4 Monitoring network heterogeneity

The idealized situation of Figure 1.3 discards much of the information that
is usually available for monitoring networks. Besides the measurements them-
selves, the following, non-exhaustive list may be relevant for the interpolation
routine:

• what do the measurements usually look like?
• are these measurements taken from a variable that can only take positive

values (e.g. a concentration variable), and does it have an upper boundary?
• are the measurements obtained under identical conditions, or are there dif-

ferences in measurement device, monitoring network design (e.g. between
states or countries), standardization issues, or rules regarding the classifi-
cation of a monitoring station? (e.g. is an air quality monitoring station
classified as rural comparable to a likewise classified station in another
country?)
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Fig. 1.2. Screen shot of a tool to visualize the quantile function F−1(Z(s), q) for
PCB-138 concentrations in North Sea floor sediment data, analyzed in Pebesma and
Duin (2005). The maps show quantiles for the interpolated values for the probability
value 0.5 (i.e., the median).

Monitoring network data

Interpolated maps

Interpolation routine

Fig. 1.3. Idealised data flow for an automatic mapping procedure. Implemented as
a web service, the arrows may represent data flow over http connections

• are there variables available to which the monitored variable bears a rela-
tionship, that are useful for interpolation? (e.g. ozone may be related to
altitude when looking a large region)

• is there any other prior knowledge available that needs to be taken into
account in interpolation? (e.g. previous measurements, spatial correlation
characteristics, prior beliefs)

• is there historic information that certain measurement stations behave
anomalous, more often than others?
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A naive interpolation procedure that does not take any of these issues into
account may seem fairly easy to implement. When looking at interpolation
as a stage in exploratory analysis of monitoring network data, such a naive
interpolation procedure should be useful to detect some of the issues men-
tioned. As a dedicated system for decision support in emergency conditions,
the requirements are different. Communicating any (or all) of the information
to an interpolation procedure poses another interesting technical problem.

However, even if none of the above information is provided, an automatic
interpolation should still be possible. The main issue is then (i) the modelling
of the variogram (or covariance function), and (ii) the possible uncertainty
about variogram model and/or model parameters. Given measurements and
their locations, several issues require careful consideration. If we want to fit
models to sample variograms, for example

1 how should we compute the sample variogram (maximum distance, lag
interval width, directional or isotropic)?

2 which particular variogram model or group of models do we want to fit?
3 which criteria do we use for the actual fit?
4 which initial values do we provide for the fit, in case it involves non-linear

parameters (such as range)?
5 how do we deal with the problem of an ill-fitting model or non-convergence

in the fit?

Some of the above questions were discussed, but not typically “solved” by
Pebesma (2005). When fitting by ML/REML, questions 2, 4 and 5 are relevant
as well. In case of a Bayesian, so-called model-based approach (Diggle et al.,
1998), two further questions are

6 which prior distributions should be chosen, automatically, for the vari-
ogram fitting procedure, and

7 how do we verify automatically that the Markov chain Monte Carlo algo-
rithm has converged?

In the context of SIC2004, Palaseanu-Lovejoy (2005) has shown that this
Bayesian procedure worked when the algorithm was applied to data that
matched the prior assumptions, but failed in case of extreme, unexpected
outlying data. Clearly further research is required to address these issues in
the context of an automatic interpolation method.

1.5 Outliers in space and time

Outliers are of utmost importance, as they either need to be discarded as
invalid measurements (monitoring network failure) or indicate extreme con-
ditions, possibly notifying us of an emergency condition. An automatic in-
terpolation routine should never automatically remove outliers in order to
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remain useful for the second type of situation, but it is useful for network
management, to provide a mechanism for deciding which case is true.

Interpolation in the presence of outliers (one or very few highly extreme
values) is a major source of trouble for any interpolation procedure (e.g.,
EUR, 2005). One wonders whether single stationary random fields of what-
ever kind are useful as models for fields which really include outliers. We
might also consider how one field (say, background concentrations) should be
distinguished from the second (with outlying measurements) and in addition
how the spatial correlation of the outlier field should be characterized on the
basis of maybe one or two observations. Cornford (2005) suggested that in
case of outliers that arise from real physical processes, we should work to
probabilistic models that incorporate the physics of the phenomena modelled,
using a data assimilation framework. This is a complex task and it remains to
be seen whether one or two outlying observations are sufficient for successful
assimilation of the outlying phenomena in absence other information on the
magnitude and location of a source, but an integrated space-time analysis
does seem indispensable for these cases.

1.6 Space-time approaches

One important issue for (near) real-time interpolation is whether past obser-
vations should be taken into account for the interpolation based on current
observations. If measurements are taken with high frequency, this seems at-
tractive because they may carry additional information when the process is
temporally correlated. On the other hand, for certain processes sudden jumps
in time (e.g. a radioactive outbreak) may not show up well in interpolated
maps if these rely on the regular behaviour that nuclear radiation shows when
there is no outbreak. For such emergency cases a space-time model should al-
low for sudden jumps in time. In any case, when interpolations are needed
in near real-time, computation speed is an issue and this may currently be a
challenge for space-time approaches, more than for spatial approaches alone.

1.7 Quality control and implementation issues

As in many other fields, software architectures in Geographic Information
Systems are shifting from application oriented to service oriented paradigms.
This means that algorithms are not implemented as a button in a stand-alone
application, but rather operate as a web service facilitating their use from a
client anywhere in the world. We envisage that interpolation is a service that
can, and should be served this way. Among the motivations for this are (i)
monitoring data are collected in real-time, but are not present in real-time
on the client computer, but typically available after a service request, (ii)
the network data may not be publicly available, but views on the data or
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other derivative products may or may not be, or may be available for specific
purposes, and (iii) the monitoring data may be served by a varying data base
infrastructures and computer architectures.

How can we ensure that the code, or web service, does what it is supposed
to do? At the base of software development, one should always build regression
tests. Such tests provide input and verified output, such that in an automatic
setting the code can be run to verify that it produces output identical to the
verified output. As an example, package development in R (R development
core team, 2006) stimulates package writers to supply their own tests, which
are automatically run when porting packages to a new computing platform,
or when R itself is upgraded. Developing regression tests for a wide variety of
situations (not only success, but also failure situations) does harden the code,
but is no guarantee for quality.

Another aspect is the use of legacy code. Software contains errors, or has
undocumented features. Using code leads to errors being found and software
that has been maintained for a long time may therefore be expected to con-
tain fewer (unknown) bugs than freshly written code. Use of legacy code may
also reflect the environment in which the code is written, e.g. low-level pro-
gramming languages as C or Fortran, object-oriented languages such as C++
or java, or high-level environments such as R or Matlab. Code written in the
latter environments may be easier to verify (by those who can read it), as it
is 5-10 times as compact. The underlying numerical algebra is, at least for R,
dealt with by legacy linear algebra libraries (lapack/linpack/blas). In addition,
every aspect of R is open source, and as such fully verifiable by anyone.

The implementation as a web service facilitates the creation of a web
testing client, which can subsequently be used to (automatically) test the
performance of any other web service that implements the automatic mapping
interface. This can give us more confidence in a new implementation since the
automated regression tests will be extensive.

1.8 Lessons learnt from SIC2004

SIC2004 (Dubois and Galmarini, 2005; EUR 2005) was a spatial interpolation
comparison, especially set up to test automated mapping routines, and to see
how they performed in case of unexpected, rare extremes (a simulated local
radioactive outbreak). Some lessons learned from this exercise are:

• SIC2004 used overall, average performance criteria. It did not take the
probabilistic aspect of prediction (predictive distributions) into account,
and did not evaluate as a performance criteria of the area above a certain
cut-off value.

• In a comparison of automated mapping routines, one should never reach
final conclusions based on comparison experience using a single data set
only, and one should use criteria related to the emergency mapping context
(Boogaart, 2004).
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• All but one of the participants truly applied an automatic interpolation
algorithm, meaning that manual intervention took place after discovery of
the outliers and before submitting results (Myers, 2004).

Overall, the results of SIC2004 highlighted the need for further research be-
fore a truly automatic algorithm can be robustly deployed. The research is-
sues include spatial statistics, algorithmic developments and software imple-
mentations, with their practical deployment requiring development of soft-
ware architecture and standards for interoperability making this a truly inter-
disciplinary problem.

1.9 Discussion

Insurance companies know that knowledge about uncertainties pays off when
taking decisions (setting insurance rates). However, they can spread risk be-
cause failure happens with some frequency. When taking decisions in envi-
ronmental emergency conditions (such as treatment or evacuation of popula-
tions), the situation is totally different, because taking a wrong decision may
worsen (or even cause) a disaster. This does not mean that we do not need
the uncertainties, but rather that we (and the decision makers) have to learn
how to use probabilistic information optimally.

When there is no direct emergency, the information about the distribution
of prediction errors may also be of use for exposure assessment. As an example,
it seems that black smoke has health effects for a considerable fraction of the
population in parts of Europe and Northern America. Distribution functions
obtained from spatial interpolation should be handled with care though; if a
spatial interpolation algorithm suggests that in some region the probability
of exceeding a critical level is 10%, this does not mean that 10% of the time
the level is exceeded, nor that 10% of the population living there is affected.
Despite that, interpolation, and analysing error distribution functions may
help evaluating monitoring network management (e.g. monitoring network
optimization), assess risk of exposure for populations and be instrumental to
policy evaluation and development.

Automatic interpolation procedures seem to be far away now, but we ex-
pect them to become available, and envisage their use will be adopted by
monitoring network management, risk assessments, and policy evaluation in-
struments.
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