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ABSTRACT 

We present results that compare the perfor- 
mance of neural networks trained with two 
Bayesian methods, (i) the Evidence Frame- 
work of MacKay (1992) and (ii) a Markov 
Chain Monte Carlo method due to  Neal 
(1996) on a task of classifying segmented 
outdoor images. We also investigate the 
use of the Automatic Relevance Determina- 
tion method for input feature selection. 

INTRODUCTION 

This work deals with the Bayesian train- 
ing of neural networks for classifying re- 
gions of outdoor scenes. Outdoor scene anal- 
ysis is usually carried out on images which 
have been segmented into regions. To carry 
out the task successfully it is important to  
classify each region not only using its own at- 
tributes (e.g. colour, shape, texture) but 
also to  take account of the context of the 
other regions. For example, this means that 
a region surrounded by sky should probably 
not be classified as a vehicle. Taking account 
of context can be handled in two ways; ei- 
ther by searching for a consistent interpreta- 
tion of the whole scene, or by taking account 
the local context in which a region finds it- 
self. Examples of the whole-scene method 
are [lo, 81. The second approach is found in 
[ la ,  13, 71, where segmented regions are clas- 
sified using neural networks. This work fol- 
lows the same approach as Wright [12], but 
it compares and contrasts two implemen- 
tations of Bayesian learning of neural net- 
works: the evidence framework approxima- 
tion (EF) and the Markov Chain Monte 
Carlo method (MCMC). 

The  layout of the paper is as follows: The  
next section introduces the image database 
used for the classification task and the ex- 
traction of features. The two implemen- 
tations of Bayesian learning of neural net- 
works are then introduced and applied to 
the training of a Multiple Logistic Regres- 
sion network (MLR) and a Multi Layer Per- 
ceptron (MLP). We then present the re- 
sults on the region classification task, the 
use of the Automatic Relevance Determina- 

tion technique of MacKay and Neal [9] to 
deal with the issue of feature selection and 
a comparison of the E F  and MCMC meth- 
ods on training sets of various size. 

THE DATABASE 

The database employed consists of 96 coloured 
images extracted from the Sowerby Image 
Database of British Aerospace. All the 
scenes have been photographed using small- 
grain 35" transparency film. Each im- 
age of the database has been digitised with a 
calibrated scanner, generating an high qual- 
ity 24bi t  colour representation of size 768 
by 512 pixels. 

The segmentation of the images into re- 
gions has been achieved by using an ideal 
segmentation. An ideally segmented image 
is composed by the set of regions which cor- 
respond to  a predefined set of labels. It is 
the segmentation that would be obtained 
from drawing by hand boundaries around 
each object appearing in the images. It was 
implemented by Mackeown [7] by running 
a segmentation algorithm (based on a re- 
gion growing method), merging the over- 
segmented adjacent regions which had re- 
ceived the same label, and splitting the 
under-segmented regions containing more 
than one object. Such an ideal segmenta- 
tion permits the investigation of classifica- 
tion performance without being affected by 
inaccuracies due to the segmentation. 

The numerical description of the database 
is realised by computing a feature vector 
which encodes the characteristics of each re- 
gion. The features chosen are divided in two 
parts, the internal and the contextual fea- 
tures. The internal features describe the in- 
terior characteristics of a given region such 
as colour, topology, size, position, shape and 
texture. The contextual features describe 
the relationships between region and the re- 
gions around it. Following [13], the contex- 
tual features are defined as the relative size, 
intensity and position of a region with re- 
spect to the four largest regions surround- 
ing it.  Because of the fixed length of the con- 
textual features, if the number of surround- 
ing regions is less than four there are some 
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Training set Testing set 
Number of regions 5832 1505 
Class Region Area Reeion Area 

(%) (%) (so) (%) 
1 Clouds 7.90 8.18 6.38 11.03 

Vegetation 
Road Marking 
Road Surface 
Road Border 
Building 
Bounding object 
Road sign 
TeleeraDh Pole 

27.35 35.37 26.25 33.19 
1.68 0.20 1.79 0.17 

15.29 39.30 13.02 40.40 
9.88 9.32 8.04 5.57 

20.82 4.20 24.98 5.19 
7.13 2.08 6.45 2.17 
0.77 0.05 0.93 0.15 
2.45 0.26 2.79 0.23 - .  

10 IlluminationShadow 2.52 0.40 2.13 0.34 
11 Mnhile Obiert 4 2 0  nfis 7 2 4  i.sfi 

Table 1: The table shows the labels used 
and the composition of the training and testing 
sets. For both data sets the first column gives 
the percentage of each class computed from 
the number of regions of the class in the data 
set against the total number of regions; the 
second column reports the percentage of each 
class computed from the total area of that class 
against the total area of all the regions in the 
data set. 

features which are not defined: in this case 
the undefined contextual features are set t o  
the average of the defined components. Fur- 
ther details of the features used can be found 
in [ll]. 

All of the features have been rescaled 
using a linear normalising transformation, 
obtaining rescaled features which have mean 
0 and variance 1. 

The 96 images have been divided ran- 
domly in two independent sets: a train- 
ing set and a testing set. Each region of 
the two sets has been hand labelled in one 
of the eleven categories. Table (1) shows a 
list of the 11 categories and the composi- 
tion of the two sets. 

BAYESIAN TRAINING OF NEU- 
RAL NETWORKS 

For the classification of segmented images, 
neural networks with one (MLR) or two 
layers (MLP) of adaptable weights have 
been used. The activation function of the 
kth output unit is the softmax function 
y r  = expa;/ E:=:=, expap, where c = 11 
is the total number of classes, and a; is 
the activation of the unit given the input 
vector xn. The activation function of the 
j t h  hidden unit of the MLP is the sigmoid 
function zy = tanha?.  

Y1 Y C  

p, . . . . . . . . . . . . . . . . n 

Figure 1: Graphical representation of the MLP 
with Automatic Relevance Determination. a0 
controls the biases of the hidden units; the 
hyperparameters ((~1,. . .ad) control the groups 
of synaptic weights connecting each input to 
the hidden layer; a d + l  controls the biases of 
the output layer and a d + 2  controls the weights 
connecting the hidden to the output units. 

of a neural network given the vector of hy- 
perparameters a. The second level of the hi- 
erarchical description is concerned with the 
probability distribution of the hyperparam- 
eters p (a). 

In order t o  detect the relevant compo- 
nents of the input vector one hyperparam- 
eter can be associated with each group of 
weights which connects one input unit to  all 
of the units in the next layer. This is the 
Automatic Relevance Determination (ARD) 
method of MacKay and Neal [9]. Two fur- 
ther hyperparameters control the distribu- 
tion of the hidden-to-output weights and 
the biases of the output units of the MLP. 
This is shown in Fig. 1. The hyperparam- 
eter as controls the size of the group of 
weights g through a Gaussian prior distri- 
bution with 0 mean and standard deviation 
gg = a. After the training phase, the 
knowledge about the distribution of the net- 
work parameters is given by the Bayes’ the- 
orem 

where 2, is the data of the training set, 
p(V1w) is the likelihood and the denomi- 
nator is the normalising factor p(D1a)  = 

Bayes’ theorem also expresses the prob- 
J P  (Vlw) P (Wb) dw- 
ability distribution of a given the data V: 

7 (2) 
For Bayesian training of neural networks P (Vb)  P (a) 

i t  is natural to  describe the prior specifica- p(a1V) = p ( V )  
tion of the networks in a two-level hierar- 
chy. The first level involves a probability dis- 
tribution over the synaptic weights p (w(a) 

where p (a) is the prior distribution. The 
factor p (Dla) is called the evidence for a. 
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Bayesian prediction for a new input x is 
given by the marginalisation of the classifi- 
cation performed by the model p (C, Ix, w, a)  
with respect to the posterior distribution of 
the parameters: 

(3) 
The second term of the integrand represents 
the degree of belief in the values of the 
parameters w and a given the data V and 
can be expressed as 

P (w, = P (wla,a)) P (42)). (4) 

There are two methods which are able to  
determine the posterior distribution (4) and 
they are based upon different approaches: 
the evidence framework and the Markov 
Chain Monte Carlo method. 

The evidence framework 

The EF (based on work by Gull) has been 
discussed by MacKay [5, 61 and is similar t o  
the type 11 max imum likelihood method. 

The EF computes an approximation to  
equation (4) by assuming that the posterior 
probability of the hyperparameters p ((.I?)) 
is sharply peaked around its maximum a m p .  

To reflect the lack of knowledge about the 
best value of a, the hyper-prior p (a) is cho- 
sen as a constant function on a logarith- 
mic scale. Thus the value of a maximis- 
ing the posterior p (ala)) can be found max- 
imising the evidence p (Dla) .  Integrating 
over the parameter w 

P = / P P l W )  P (wla) *w (5) 

and approximating the integrand as a Gaus- 
sian centred around wmP, it is possible to  
maximise p ( a ) l a )  with respect a. The 
mean of the Gaussian wmp is the point of 
the weight space maximising the posterior 

The components of the optimal values of 
P (4% D). 

a m p  are given by 

i € g  

with 7, = W, - a9Tr, (VVG + aI)-' and 
where W, is the total number of weights con- 
trolled by a y p ,  Tr, is the trace of the ma- 
trix computed with respect to  the compo- 
nents of w belonging to  the group g and G is 
the negative logarithm of the penalized like- 
lihood: G = - l n p  (Dlw) -1np (wla). Since 

the hyperparameters are scale factors for the 
weights, their uncertainty is usually repre- 
sented on a logarithmic scale. The stan- 
dard deviation of the distribution of the val- 
ues of loga, is qoga, lp  = fi (see [I]). 

The E F  proceeds by a two-step iterative 
procedure by computing the value wmp max- 
imising the penalised likelihood while pe- 
riodically re-estimating the hyperparameter 
a m p .  In our experiments the first step has 
been achieved by optimising the penalised 
likelihood with a scaled conjugate algorithm 
for 70 iterations (for the MLP) or 50 iter- 
ations (for the MLR). The re-estimation of 
the hyperparameters a m p  was carried out 10 
times. 

Some problems may arise during the im- 
plementation of EF. Since it is based on an 
approximation of the posterior around a lo- 
cal minimum, EF supposes that the Hessian 
matrix is positive definite at wmP. Some- 
times this is not the case because the opti- 
misation of the weights has not fully reached 
a local minimum. In this case some of the 
eigenvalues of can be negative, introduc- 
ing instability in the implementation. A use- 
ful trick is to set the negative eigenvalues 
in VVG to  0. Another problem is due to  
the fact that EF is based upon the computa- 
tion of a Hessian matrix; for large networks 
the amount of storage required for this ma- 
trix is considerable, as its size grows as the 
square of the number of weights. 

The Markov Chain Monte Carlo method 

The second method of implementing the 
Bayesian learning of neural networks is by 
Markov Chain Monte Carlo [9]. An MCMC 
algorithm constructs a Markov chain whose 
equilibrium distribution is the desired prob- 
ability density p (w, ala)). Although sam- 
ples from the chain are not independent, 
they can be used for computing the neces- 
sary integrals. 

The implementation of the algorithm' 
used in this work was written by R. Neal 
and is described in [9]. A brief outline is 
given below. 

The posterior distribution of the network 
parameters is sampled using the Hybrid 
Monte Carlo method [3]. This merges 
the Metropolis algorithm with a dynamical 
simulation. As it avoids random walks it 

'The source code of the implementa- 
tion of Bayesian learning of neural net- 
works is available at the ftp address: 
ftp://ftp,cs.utoronto.ca/pub/radford/. 
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performs better than a simple Metropolis 
algorithm. 

In the Hybrid Monte Carlo method each 
network variable has an associated fictitious 
momentum, thereby creating a dynamical 
system which is described in phase space by 
a set of coordinates (4,~); for neural net- 
works, the vector position g is interpreted 
as the network weights while p is the associ- 
ated momenta. This system is described by 
an Hamiltonian function H given by the sum 
of the kinetic and the potential energies (de- 
noted by K (p) and V (4) respectively). The 
kinetic energy is a function of the momen- 
tum vector K(p)  = pTp/2. The poten- 
tial energy is a function of the position q. 
The Hybrid Monte Carlo method samples 
from the canonical distribution for q and 

exp (- ( K  (p) + V (9))). Provided that 
V(q)  = V(w) = - Inp (wlD,a ) ,  a set 
of values of q (whose posterior probabil- 
ity distribution is p (9) = p (WID, a) is ob- 
tained by sampling from p (9, p) and ignor- 
ing p. 

is achieved by generating new points in the 
phase space with constant value of H and 
then by doing a Gibbs sampling of the mc- 
mentum p to change the value of H .  The 
leap-frog method is used t o  approximate 
the Hamilton’s first order differential equa- 
tions. At the end of a chain of L leapfrog 
steps the state of the system can be ac- 
cepted or rejected depending upon the av- 
erage value of the energy H over a win- 
dow of states. For all the MCMC simula- 
tions reported below, the number of leap- 
frog steps L is 100, the window size is com- 
posed by 10 states and the step size cor- 
rection factor (for the approximation of the 
Hamilton’s equations) is 0.3. 

The prior distributions for each group of 
weights is a 0 mean Gaussian whose pre- 
cision (a)  is specified by a vague Gamma 
prior. We also used scaling on the hidden- 
to-output weight as recommended in [9] SO 

that the prior variances of the activations of 
the softmax units do not grow with the num- 
ber of hidden units2. The sampling phase 
of the MCMC simulations has been run for 
200 iterations, and the first third of these 
have been discarded try to let the simula- 
tion reach the equilibrium distribution [4]. 
Note that in general it is very difficult to 
know when a MCMC simulation has reached 

P defined as P (9, P) = exp ( -H (q,p)) = 

Sampling from the joint distribution p (9, p) 

’The actual prior specification is net-spec 
mlp30-log 35 30 11 / - 0.05:0.5:0.5 0.05:0.5 
- x0.05:0.5 - 0.05:0.5. 

equilibrium, see [a].  
tions] the rejection rates were around 1%. 

During the simula- 

RESULTS 

MLR and MEP networks have been trained 
using the two Bayesian techniques. Two dif- 
ferent approaches have been followed: In the 
first one the distribution of the input weights 
is controlled by one hyperparameter, regard- 
less the input unit those weights are con- 
nected with. This leads to the specification 
2HYP and 4HYP in Table 2. The second ap- 
proach implements ARD and is achieved by 
associating one hyperparameter to the group 
of weights which connects one input unit to 
all of the units in the next layer. From the 
values of the hyperparameters which con- 
trol the groups of weights connecting the in- 
put units to the next layer, it is possible to 
determine the inputs which are more rele- 
vant than others. A set of weights associated 
with a very small cy will likely have a large 
norm, since the variance of their distribu- 
tion will be large; the weights controlled by 
such a Gaussian are quite spread out around 
0 and therefore the input unit connected to 
those weights is relevant for the classifica- 
tion of the pattern. Conversely weights as- 
sociated with a large hyperparameter value 
will likely have a small norm, since their 
distribution will be peaked around 0. In- 
puts that  have small weights associated with 
them are thus determined to be irrelevant. 

The simulations were done with a MLP 
network with 30 hidden units. This is a rel- 
atively large number of hidden units, and 
was chosen with a view to observing a dif- 
ference between the EF and MCMC runs. 
However, the results in Table 2 show that al- 
though the best results were obtained with 
a MLP trained with the MCMC method 
with ARD, the differences between the dif- 
ferent methods are not statistically signifi- 
cant when the full training set is used. 

To further investigate any differences be- 
tween the EF and MCMC methods we con- 
ducted experiments using smaller training 
sets. We successively subdivided the origi- 
nal training set to  obtain two data sets of 
half size (2916 examples), four of size 1458 
and eight of size 729. Below this ten data 
sets each for the sizes 365, 182, 91 and 46 
were used. For both the MCMC and EF 
methods all networks were initialized with 
the same randomly chosen weights. The test 
set performance of both methods is shown 
for each training set in Figure 2. As ex- 
pected an improvement in performance is 
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Specifications Region based Area based 
accuracy % accuracy % 

MLR, ARD, EF 65.2 & 2.4 88.2 f 14.8 
MLR, ARD, MCMC 67.6 + 2.4 91.4 f 12.9 
MLR, SHYP, EF 65.9 * 2.1 88.6 f 12.5 
MLR, 2HYP, MCMC 66.9Jt 2.4 88.4 Jt 14.7 
MLP, ARD, EF 67.2 f 2.4 90.2 f 13.6 
MLP, ARD, MCMC 69.0 f 2.3 90.3 f 13.6 
MLP, 4HYP, EF 67.2 f 2.4 88.5 f 14.7 
MLP, 4HYP, MCMC 68.9 f 2.3 89.1 f 14.3 

Table 2:  The Table shows the overall accuracies 
of classification achieved by the networks on 
the test set. The region based accuracy is 
computed by the ratio of the number of regions 
correctly classified and the total number of 
regions of the test set. Similarly the area based 
accuracy is defined as the ratio between the 
overall size of regions correctly classified and 
the total amount of area of the test set. The 
uncertainty associated with each accuracy is the 
95% confidence interval and it is computed from 
the overall standard error. 

O”’ 46 91 182 365 729 1458 2916 5832 
Size of the training set 

Figure 2:  Plot of the learning curves for the EF 
and MCMC methods obtained by reducing the 
number of data points in the training sets. 

observed as the size of the training set is 
increased. We have computed the differ- 
ences between the EF and MCMC test per- 
formances for each training set. Note that 
this is a paired comparison, i.e. the differ- 
ences bewteen the EF and MCMC meth- 
ods are computed on the same training set. 
Using a 2-sided t-test we find that the dif- 
ferences are statistically significant at the 
p 2 0.95 level for training set sizes 1458, 729, 
182, 91 and 46. As the number of examples 
in the smaller training sets is much smaller 
than the number of weights in the network 
it is unlikely that the Gaussian approxima- 
tion used in the EF is a good one, and 
hence the effect observed that the EF per- 
forms less well for small data sets is not un- 
expected. We also note another disadvan- 
tage of the EF for small data sets, namely 
that a large part of the computational ef- 

MLP with EF 
5 ,  

-1 I 
I 

5 10 15 20 25 30 35 
-2’ 

Input units 

MLP with MCMC 

I 
5 10 15 2.0 25 30 35 

-21 

Inuut units 

Figure 3: Plots of the hyperparameters de- 
termined by EF (top) and MCMC (bottom) 
for the MLP with ARD. The labels of the in- 
put units are displayed on the 2 axis. The fea- 
tures are the mean intensity (input l), hue an- 
gle (2, 3) ,  topological descriptors (4 - 6), size of 
the region (7 ) ,  coordinates of the centroid (8,9), 
shape (10 - 16) and texture (17 - 19) descrip- 
tors, and contextual features describing the in- 
tensity ratios (20-23),  size ratios (24-27), and 
the relative positions (28-35) of the four largest 
surronding regions. The logarithm (base 10) of 
a,, i = 1,. . .35 are reported on the y-axis. The 
dotted lines show the error bars. 

fort is taken up with the inversion of the Hes- 
sian; this means that the MCMC method 
we have used provides its results using less 
CPU time for small data sets. Further sim- 
ulations are required t o  check if similar re- 
sults are obtained from other starting points 
in weight-space. 

The values of the hyperparameters deter- 
mined by ARD for the MLP network using 
the full training set with both MCMC and 
EF approaches are shown in Figure 3. The 
ARD parameter values for the MLR mod- 
els trained with the EF and MCMC meth- 
ods were broadly similar to the MLP re- 
sults. 

The two training methods give quite sim- 
ilar results: almost all of the hyperparam- 
eters determined by MCMC and EF over- 
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lap within the 95% confidence intervals. The 
plots show that the features describing the 
colour, size and the y position of the regions 
in training the classifier (inputs 1 , 2 ,  3, 7 and 
9) are the most relevant; the hyperparame- 
ters corresponding to  those features have a 
small values for both the MCMC and the EF 
methods. The lesser relevance of the topo- 
logical features and the x position of the re- 
gions is also recognised by both of the meth- 
ods. 

There is some disagreement between the 
EF and MCMC methods over the relevance 
of the shape descriptors (inputs 10 - 16), 
although we note that the MCMC method 
in particular yields large error bars. Of 
the contextual features (inputs 20 - 35), 
features 24- 27 describing the intensity ratio 
between one region and the four surrounding 
it appear the most useful. 

All of the experiments have shown that  
the coordinates (x, y) of the centroids have 
a different weight in training the networks. 
Because images are taken with the y axis 
closely aligned to  the vertical, the classifica- 
tion of the regions is unlikely to  depend upon 
the x coordinate of the centroid: for exam- 
ple, regions representing cars appear in the 
data base in many positions along the x axis, 
whereas their y coordinates are ranged in 
a well defined interval. A similar consid- 
eration - applies for the contextual features 
28 - 35, where a different relevance is ac- 
corded to the x and the y offsets of the rel- 
ative position. 

We note that the determination of the 
irrelevance of some of the features does not 
mean that  those attributes are absolutely 
irrelevant. It may simply mean that the 
features chosen have not properly encoded 
the information about a region. 

DISCUSSION 

In this paper we have compared the Ev- 
idence Framework and a MCMC method 
for training neural networks on the task 
of classifying segmented outdoor images. 
This is the first paper we are aware of 
that has carried out such a comparison. 
Our results suggest that on this task using 
large amounts of traning data the EF and 
MCMC performance is similar, but that  the 
MCMC method seems superior on smaller- 
sized training sets. We have also used the 
ARD method to evaluate the relevance of 
different input variables. 
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