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Abstract 

The Generative Topographic Mapping 
(GTM) algorithm of Bishop et al. 
(1996) has been introduced as a prin- 
cipled alternative to the Self-organizing 
Map (SOM). As well as avoiding a num- 
ber of deficiencies in the SOM, the GTM 
algorithm has the key property that the 
smoothness properties of the model are 
decoupled from the reference vectors, 
and are described by a continuous map- 
ping from a lower-dimensional latent 
space into the data space. Magnifica- 
tion factors, which are approximated by 
the difference between code-book vec- 
tors in SOMs, can therefore be evalu- 
ated for the GTM model as continuous 
functions of the latent variables using 
the techniques of differential geometry. 
They play an important role in data vi- 
sualization by highlighting the bound- 
aries between data clusters, and are il- 
lustrated here for both a toy data set, 
and a problem involving the identifica- 
tion of crab species from morphological 
data. 

1 The GTM Algorithm 

Many algorithms have been proposed 
which seek a representation of a multi- 
dimensional data set in terms of a re- 
duced number of dimensions. One of the 
best known is the Self-organizing Map 
(SOM) algorithm of Kohonen (1982). 
However, the SOM suffers from a num- 
ber of limitations including the absence 
of a well-defined cost function, the lack 
of any guarantee of ‘self-organisation’ or 

of convergence, and the absence of a 
probability density function. We have 
introduced the Generative Topographic 
Mapping algorithm (Bishop et al., 1996) 
as a principled alternative to the SOM 
which overcomes these limitations. For 
completeness, and to establish notation, 
we begin with a brief overview of the 
GTM algorithm. 

Our goal is to model a probability dis- 
tribution in a D-dimensional data space 
in terms of a smaller number, L, of la- 
tent, or ‘hidden’, variables. We denote 
the coordinates of the data space by 
t = ( t l ,  . . . , and the latent vari- 
ables by x = (21,. . . , x ~ ) ~ .  The model 
will be trained using a set of N data 
vectors t 1, . . . , t N .  We first define a non- 
linear mapping from latent space to data 
space of the form 

where 4 = (41,. . . , q 5 ~ ) ~  represents a 
set of M fixed non-linear basis func- 
tions, and W is a D x L matrix of pa- 
rameters. The mapping (1) defines an 
L-dimensional non-Euclidean manifold 
S embedded in the D-dimensional Eu- 
clidean data space, as illustrated in Fig- 
ure 1. A typical choice for the basis 
functions would be a set of Gaussians 
centred on a regular grid in latent space, 
with a common width parameter whose 
value controls the degree of smoothness 
of the manifold in data space. 

If we introduce a probability distri- 
bution p(x) over latent space, then (1) 
induces a corresponding distribution in 
data space which will be confined to the 
L-dimensional manifold. Since our data 

64 Artifical Neural Networks, 7-9 July 1997, Conference Publication No. 440, 0 IEE, 1997 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 18, 2009 at 06:28 from IEEE Xplore.  Restrictions apply. 



4 

U k- 

Figure 1: The non-linear mapping 
y(x; W) from the L-dimensional latent 
space x to the D-dimensional data space 
t defines an L-dimensional non-Euclidean 
manifold S. 

will not live exactly on such a manifold, 
we convolve this distribution with an 
isotropic Gaussian distribution in data 
space of the form 

The distribution in t-space, for given 
values of W and P, is then obtained by 
integration over the x-distribution 

The GTM algorithm corresponds to a 
particular form of this model in which 
we consider p(x) to be a sum. of delta 
functions centred on the nodes of a reg- 
ular lattice in latent space 

l K  
p(x) = - S(X - xz>. (4) 

1=1 K 

Note that this lattice is typically much 
finer than the grid of points usied to de- 
fine the centres of the basis functions. 
Each point xz is then mapped to a corre- 
sponding point y(xl; W) in daka space, 
which then forms the centre of a Gaus- 
sian density function. From (3) and (4) 
we see that the distribution fmction in 
data space then takes the form 

1 L  z=1 
( 5 )  

which represents a mixture of Gaus- 
sians in which the centres of the Gaus- 
sian functions are constrained to lie in 
the L-dimensional manifold S. The 
parameters W and P can be deter- 
mined by maximum likelihood using 
the EM (expectation-maximization) al- 
gorithm (Dempster et  al., 1977; Bishop, 
1995). Often the latent space is cho- 
sen to be two-dimensional so that the 
algorithm can be applied to the prob- 
lem of data visualization. The latent 
space density p(x) can be regarded as a 
prior distribution, with the correspond- 
ing posterior distribution p(xlt, W, P) ,  
for a given data point t, given by Bayes’ 
theorem. For a two-dimensional latent 
space this posterior distribution can be 
visualized using, for example, pseudo- 
colour. In order to visualize a set of 
data points, each of the corresponding 
posterior distributions can conveniently 
be summarized by its mean (or mode), 
which is easily evaluated. 

2 Magnification Factors 

The concept of a magnification factor 
arose originally in the context of to- 
pographic maps in the brain, such as 
those found in the visual and somatosen- 
sory areas of the cortex, where it re- 
lates the two-dimensional spatial den- 
sity of sensors to the two-dimensional 
spatial density of the corresponding cor- 
tical cells. In the context of data anal- 
ysis, the analogous concept plays an 
equally important role. When a small 
region of the latent space is mapped 
to data space it may be compressed or 
stretched as the mapping is optimized to 
fit the data. One consequence of this is 
that well-separated clusters of points in 
data space will appear to be more nearly 
uniform in latent space, and so inhomo- 
geneities in the data can be obscured. 

This problem has been addressed in 
the context of the SOM by Ultsch (1993) 
who uses a gray-scale scheme to display 
the Euclidean distances between code- 
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book vectors on the visualization plot. 
This necessarily gives a discrete repre- 
sentation of the local magnification since 
the effective surface in data space for the 
SOM is defined only in terms of the po- 
sitions of the code-book vectors. A key 
difference between GTM and the SOM 
is that in the GTM algorithm the lower- 
dimensional manifold S in data space 
is defined directly by the mapping (l), 
while in the SOM it is determined only 
indirectly by the locations of the finite 
number of code-book vectors. We now 
show how the, local magnification factor 
for GTM can be evaluated in terms of 
the mapping (1) using the techniques of 
differential geometry. 

Consider a standard set of Cartesian 
coordinates xi in the latent space. Since 
each point P in latent space is mapped 
by a continuous function to a corre- 
sponding point P' in data space, the 
mapping defines a set of curvilinear co- 
ordinates ti in the manifold in which 
each point P' is labelled with the co- 
ordinate values ti = xi of P ,  as illus- 
trated in Figure 2. Throughout this pa- 

Figure 2: This diagram shows the map- 
ping of the Cartesian coordinate system x' 
in latent space onto a curvilinear coordinate 
system ti in the L-dimensional manifold S.  

per we shall use the standard notation of 
differential geometry in which raised in- 
dices denote contravariant components 
and lowered indices denote covariant 
components, with an implicit summa- 
tion over pairs of repeated covariant- 
contr avariant indices. 

Our goal is to find an expression for 
the area' dA' of the region of S cor- 

'We shall talk about area since we are 
mainly interested in the case L = 2. In fact 
our derivation is equally applicable for L > 2.  

responding to an infinitesimal rectangle 
in latent space with area d A  = ni dz ' .  
We first discuss the metric properties of 
the manifold S. Consider a local trans- 
formation, at some point P' in S ,  to a 
set of rectangular Cartesian coordinates 
Ci = Ci(<). Then the squared length el- 
ement in these coordinates is given by 

ds2 = S,,dCpd(u 

where gij is the metric tensor, which is 
therefore given by 

and we are implicitly summing over re- 
peated indices. The area element in the 
manifold S can be related to the cor- 
responding area element in the latent 
space by the determinant of the Jaco- 
bian of the transformation -+ < 

P i 

= J n d x z  = J d A  ( 8 )  

where the determinant J of the Jacobian 
is given by 

i 

We now introduce the determinant g of 
the metric tensor which we can write in 
the form 

9 = det(gij) 

= J 2  

and so, using (8), we obtain 
sion for the area element in 
coordinates in the form 

d A' 
d A  

- J = f i .  -- 

(10) 

an expres- 
curvilinear 

(11) 
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We now seek an expression for g in 
terms of the non-linear ma,pping (1). 
Consider again the squared length ele- 
ment ds2 lying within the manifold S. 
Since S is embedded within the Eu- 
clidean data space, this also corresponds 
to the squared length element of the 
form 

. ,. . 
. - .  . .. 

and so we have 

Using (11) we then obtain 

dA’ 

Making use of the expression (1) we 
can write this explicitly in terms of the 
derivatives of the basis functions # j  (x) 
in the form 

__ dA’ = det (q3TWTW76) (15) 
dA 

where q3 has elements Gji = a4j//ax2. 

3 Results: Toy Data 

As a simple illustration of the evalua- 
tion of the local magnification factor for 
the GTM algorithm we consider a data 
set consisting of 400 data points drawn 
from a mixture of two Gaussians in two 
dimensions, shown in Figure 3. 

The corresponding visualization plot 
is shown in Figure 4 in which each data 
point is represented by the mean of the 
corresponding posterior probability dis- 
tribution. This figure also shows the 
corresponding magnification factor plot- 
ted as a function of the latent space co- 
ordinates. It can be seen that, while the 
data points form well separated clusters 
in the original data space, they appear 

Figure 3: The toy data set in two dimen- 
sions, consisting of 400 data points gener- 
ated from a mixture of two Gaussians. 

to be much more uniformly distributed 
when viewed in the latent space. This is 
a consequence of the model adapting to 
give a good representation of the distri- 
bution in data space, and tends to ob- 
scure the presence of distinct clusters. 
However, by superimposing the magni- 
fication factor dA’/dA, as a function of 
x, over the latent space, we can see that 
the central region of the map suffers a 
relatively large magnification on projec- 
tion to the data space (corresponding to 
the region between the clusters where 
the data are sparse) and SO appears as 
a darker band on the right-hand plot in 
Figure 3. Such darker regions thus serve 
to delineate the boundaries of clusters. 

4 Results: Crabs Data 

As a second illustration of magnification 
factors we consider a data set2 of mea- 
surements taken from the genus Lep- 
tograpsus of rock crabs. Measurements 
were taken from two species classified by 
their colour (orange or blue) with the 
aim of discovering morphological differ- 
ences which would allow preserved spec- 
imens (which have lost their colour) to 
be distinguished. The data set con- 

2Available from Brian Ripley at: 
http://markov.stats .ox.ac.uk/pub/PRNN. 
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Figure 4: This shows the toy data set 
visualized in the latent space of a trained 
GTM model, with the local magnification 
factor superimposed using a grey-scale rep- 
resentation. Darker shades correspond to 
high values of dA'/dA while lighter shades 
correspond to low values. 

tains 50 examples of each sex from 
each species, and the measurements cor- 
respond to length of frontal lip, rear 
width, length along mid-line, maximum 
width of carapace, and body length. 
Since all of the variables correspond to 
length measurements, the dominant fea- 
ture of the crabs data is an overall scal- 
ing of the data vector in relation to the 
size of the crab. To remove this effect 
each data vector t, = (tl,,. . . , t ~ , ) ~  is 
normalized to unit mean, so that 

I k'=1 

Results from the crabs data are shown 
in Figure 5. It can be seen that the two 
species form distinct clusters, with the 
manifold undergoing a relatively large 
szretching in the region between them. 
Within each cluster there is a partial 
separation of males from females. Rip- 
ley (1996) shows a visualization of the 
§OM code-book vectors for the crab 
data using the representation of Ultsch 
(1993), which corresponds to a rough 
discrete approximation to the magnifi- 
cation factors of the GTM model. 

Figure 5: Plot of the latent-space distri- 
bution of the crabs data, in which 4 de- 
notes blue males, + denotes blue females, V 
denotes orange males, and 4 denotes blue 
females. The grey-scale background shows 
the corresponding magnification factor as a 
function of the latent space coordinates. 

5 Discussion 

One of the key differences between GTM 
and §OM is that in the GTM algorithm 
the definition of the manifold is indepen- 
dent of the Gaussian centres, whereas in 
§OM a manifold is defined only by the 
discrete set of code-book vectors, and re- 
quires some arbitrary form of interpola- 
tion to specify the location of the man- 
ifold at other points. In this paper we 
have shown how the techniques of dif- 
ferential geometry allow the local mag- 
nification factor for the GTM algorithm 
to be computed as a continuous func- 
tion of the latent variables. We have 
also shown how this magnification fac- 
tor augments the posterior latent space 
plot by providing important information 
on the clustering properties of the data. 

We note that, although the magni- 
fication factor represents the extent to 
which areas are magnified on projec- 
tion to the data space, it gives no in- 
formation about which directions in la- 
tent space correspond to the stretching. 
Also, stretching in one direction may be 
compensated by compression in the or- 
thogonal direction, and such distortion 
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would therefore not be apparent from 
the magnification factor alone. We can 
recover this information by considering 
the decomposition of the metric tensor 
in terms of its eigenvectors and eigen- 
values. It is convenient to d:isplay the 
information by selecting a regular grid 
in latent space (which could correspond 
to the reference vector grid, but could 
also be much finer) and to plot at  each 
grid point an ellipse with principal axes 
oriented according to the eigenvectors, 
with principal radii given by the square 
roots of the eigenvalues. This is illus- 
trated for the crabs data in Figure 6. 
The standard area magnification factor 

t 

e * -  
0 

Figure 6: Plot of the local magnification 
factor for the crabs data, using the ellipse 
representation discussed in the text. 

is given from (11) by the square root of 
the product of the eigenvalues, and so 
corresponds to the area of the ellipse. 

It should also be noted that, for 
the batch version of the self-organizing 
map, it is possible to define an in- 
terpolating surface by interpreting the 
reference vector update equations of 
the SOM as a kernel smoother (Mulier 
and Cherkassky, 1995). For a differen- 
tiable neighbourhood function, it is then 
straightforward to apply the techniques 
developed in this paper. 
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