-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Aston Publications Explorer
Paper presented at the Mathematics of Neural Networks and Applications conference,

Oxford, UK, July 1995. To appear in Mathematics of Neural Networks: Models, Algorithms
and Applications. Eds. S W Ellacott, J C Mason and I J Anderson, Kluwer, 19977

Regression with Gaussian Processes

Christopher K. I. Williams
Department of Computer Science and Applied Mathematics
Aston University, Birmingham B4 7ET, UK
c.k.i.williams@aston.ac.uk

July 1995

Abstract

The Bayesian analysis of neural networks is difficult because the prior over functions has
a complex form, leading to implementations that either make approximations or use Monte
Carlo integration techniques. In this paper I investigate the use of Gaussian process priors
over functions, which permit the predictive Bayesian analysis to be carried out exactly using
matrix operations. The method has been tested on two challenging problems and has produced
excellent results.

1 Introduction

In the Bayesian approach to neural networks a prior distribution over the weights induces a
prior distribution over functions. This prior is combined with a noise model, which specifies the
probability of observing the targets ¢ given function values y, to yield a posterior over functions
which can then be used for predictions. For neural networks the prior over functions has a complex
form which means that implementations must either make approximations [4] or use Monte Carlo
approaches to evaluating integrals [6].

As Neal [7] has argued, there is no reason to believe that, for real-world problems, neural
network models should be limited to nets containing only a “small” number of hidden units.
He has shown that it is sensible to consider a limit where the number of hidden units in a net
tends to infinity, and that good predictions can be obtained from such models using the Bayesian
machinery!. He has also shown that a large class of neural network models will converge to a
Gaussian process prior over functions in the limit of an infinite number of hidden units.

Although infinite networks are one method of creating Gaussian processes, it is also possible
(and computationally easier) to specify them directly using parametric forms for the mean and
covariance functions. In this paper I investigate using Gaussian processes specified parametrically
for regression problems?, and demonstrate very good performance on the two test problems I have
tried. The advantage of the Gaussian process formulation is that the integrations, which have to
be approximated for neural nets, can be carried out exactly (using matrix operations) in this case.
I also show that the parameters specifying the Gaussian process can be estimated from training
data, and that this leads naturally to a form of “Automatic Relevance Determination” [4], [7].

!Large networks cannot be successfully used with maximum likelihood training because of the overfitting
problem.

2By regression problems I mean those concerned with the prediction of one or more real-valued outputs, as
compared to classification problems.

https://core.ac.uk/display/188183261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Prediction with Gaussian Processes

A stochastic process is a collection of random variables {Y(x)|x € X} indexed by a set X.
Often X will be a space such as R for some dimension d, although it could be more general.
The stochastic process is specified by giving the probability distribution for every finite subset of
variables Y (x1),...,Y (xx) in a consistent manner. A Gaussian process is a stochastic process
which can be fully specified by its mean function u(x) = E[Y (x)] and its covariance function
C(z,z') = E[(Y(x) — u(z)) (Y (2') — u(2"))]; any finite set of points will have a joint multivariate
Gaussian distribution.

Below I consider Gaussian processes which have p(z) = 0. This is the case for many neural
network priors [7], and otherwise assumes that any known offset or trend in the data has been
removed. A non-zero u(x) can be incorporated into the framework, but leads to extra notational
complexity.

Given a prior covariance function Cp(x, '), a noise process Cn(x,z') (with Cny(z,z') = 0
for & # x') and data D = ((z1,t1), (®2,t2),... , (®n,t,)), the prediction for the distribution of Y
corresponding to a test point @ is obtained simply by marginalizing the (n + 1)-dimensional joint
distribution to obtain the mean and variance

() = kp(@)(Kp+Kn)"'t (1)
(@) = Cp(z,2)+Cn(z,2) — kp(e)(Kp + Kn) 'kp(2) (2)

where [K,]ij = Co(zi,x;) fora = PN, kp(z) = (Cp(z,z1),... ,Cp(z,z,))T and t = (t1,...,t,)7T.
az(m) gives the “error bars” of the prediction. In the work below the noise process is assumed to
have a variance o2 independent of = so that Ky = o21.

The Gaussian process view provides a unifying framework for many regression methods. ARMA
models used in time series analysis and spline smoothing (e.g. [10]) correspond to Gaussian process
prediction with a particular choice of covariance function®, as do generalized linear regression
models (y(x) = >, wi¢;(x), with {¢;} a fixed set of basis functions) for a Gaussian prior on the
weights {w;}. Gaussian processes have also been used in the geostatistics field (e.g. [3], [1]), and
are known there as “kriging”, but this literature has concentrated on the case where & € R? or
R?, rather than considering more general input spaces. Regularization networks (e.g. [8], [2])
provide a complementary view of Gaussian process prediction in terms of a Fourier space view,
which shows how high-frequency components are damped out to obtain a smooth approximator.

2.1 Adapting covariance functions and ARD

Given a covariance function C = Cp + Cy, the log probability [of the training data is given by
1 1
l= ~3 logdet K — itTK_lt - %logQW (3)

where K = Kp + K. If C has some adjustable parameters 8, then we can carry out a search
in @-space to maximize [; this is simply maximum likelihood estimation of 8 *. For example, in a
d-dimensional input space we may choose

d

0(2137 ;1:’) = Vg exp (— Z %(ml — $;)2> + ’015(2137 agl) (4)

3Technically splines require generalized covariance functions.
4See section 4 for a discussion of the hierarchical Bayesian approach.

Method No. of inputs | sum squared test error
Gaussian process 2 1.126
Gaussian process 6 1.138

MacKay 2 1.146

Neal 2 1.094
Neal 6 1.098

Table 1: Results on the robot arm task.

where vy, v, and the {w;} are adjustable. In MacKay’s terms [4] [is the log “evidence”, with the
parameter vector 8 roughly corresponding to his hyperparameters a and (3; in effect the weights
have been exactly integrated out.

One reason for constructing a model with variable w’s is to express the prior belief that some
input variables might be irrelevant to the prediction task at hand, and we would expect that the
w’s corresponding to the irrelevant variables would tend to zero as the model is fitted to data.
This is closely related to the Automatic Relevance Determination (ARD) idea of MacKay and
Neal [5], [7].

3 Experiments with Gaussian Process prediction

Prediction with Gaussian processes and maximum likelihood training of the covariance function
has been tested on two problems : (i) a modified version of MacKay’s robot arm problem and (ii)
the Boston housing data set.

For both datasets I used a covariance function of the form given in equation 4 and a gradient-
based search algorithm for exploring 8-space; the derivative vector 91/06 was fed to a conjugate
gradient routine with a line-search®.

3.1 The robot arm problem

I consider a version of MacKay’s robot arm problem introduced by Neal (1995). The standard
robot arm problem is concerned with the mappings

Y1 = r1coszy + rocos(zy + 2) y2 = rysinzy + rosin(z; + x2) (5)

The data was generated by picking z; uniformly from [-1.932, -0.453] and [0.453, 1.932] and
picking z uniformly from [0.534, 3.142]. Neal added four further inputs, two of which were
copies of z; and z5 corrupted by additive Gaussian noise of standard deviation 0.02, and two
further irrelevant Gaussian-noise inputs with zero mean and unit variance. Independent zero-
mean Gaussian noise of variance 0.0025 was then added to the outputs y; and y>. I used the same
datasets as Neal and MacKay, with 200 examples in the training set and 200 in the test set.

The theory described in section 2 deals only with the prediction of a scalar quantity Y, so
I constructed predictors for the two outputs separately, although a joint prediction is possible
within the Gaussian process framework (see co-kriging, §3.2.3 in [1]). Two experiments were
conducted, the first using only the two “true” inputs, and the second one using all six inputs.

5Tn fact the parameterization log @ was used in the search to ensure that the v’s and w’s stayed positive.

Procedure used ave. squared test error

Guessing overall mean 84.4

Best result in Quinlan (1993) 10.9
Gaussian process 8.6

Neal (Bayesian network with 2 hidden layers) 6.5

Table 2: Results on the Boston housing data task.

For each experiment ten random starting positions were tried. The log(v)’s and log(w)’s were
all chosen uniformly from [-3.0, 0.0], and were adapted separately for the prediction of y; and
y2. The conjugate gradient search algorithm was allowed to run for 100 iterations, by which time
the likelihood was changing very slowly. Results are reported for the run which gave the highest
probability of the training data, although in fact all runs performed very similarly. The results
are shown in Table 1° and are encouraging, as they indicate that the Gaussian process approach
is giving very similar performance to two well-respected techniques. All of the methods obtain
a level of performance which is quite close to the theoretical minimum error level of 1.0. It is
interesting to look at the values of the w’s obtained after the optimization; for the ys task the
values were 0.243, 0.237, 0.0650, 1.7 x 1074, 2.6 x 107%, 9.2x 1077, and vy and v; were 7.920 and
0.0022 respectively. The w values show nicely that the first two inputs are the most important,
followed by the corrupted inputs and then the irrelevant inputs.

3.2 Boston housing data

The Boston Housing data has been used by several authors as a real-world regression problem (the
data is available from ftp://1ib.stat.cmu.edu/datasets). For each of the 506 census tracts
within the Boston metropolitan area (in 1970) the data gives 13 input variables, including per
capita crime rate and nitric oxides concentration, and one output, the median housing price for
that tract.

A ten-fold cross-validation method was used to evaluate the performance, as detailed in [9]).
The dataset was divided into ten blocks of near-equal size and distribution of class values (I used
the same partitions as in [9]). For each block in turn the parameters of the Gaussian process were
trained on the remaining blocks and then used to make predictions for the hold-out block. For
each of the ten experiments the input variables and targets were linearly transformed to have zero
mean and unit variance, and five random start positions used, choosing the log(v)’s and log(w)’s
uniformly from [-3.0,0.0]. In each case the search algorithm was run for 100 iterations. In each
experiment the run with the highest evidence was used for prediction, and the test results were
then averaged to give the entry in Table 2.

The fact that the Gaussian process result beats the best result obtained by Quinlan (who made
a reasonably sophisticated application of existing techniques) is very encouraging. It was observed
that different solutions were obtained from the random starting points, and this suggests that
an hierarchical Bayesian approach, as used in Neal’s neural net implementation and described in
section 4, may be useful in further increasing performance.

6The bottom three lines of the table were obtained from [7]. The MacKay result is the test error for the net
with highest “evidence”.

4 Discussion

I have presented a Gaussian process framework for regression problems and have shown that it
produces excellent results on the two test problems tried.

In section 2 I have described maximum likelihood training of the parameter vector 8. Obviously
a hierarchical Bayesian analysis could be carried out for a model M using a prior P(8|M) to obtain
a posterior P(0|D, M). The predictive distribution for a test point and the “model evidence”
P(D|M) are then obtained by averaging the conditional quantities over the posterior. Although
these integrals would have to be performed numerically, there are typically far fewer parameters
in @ than weights and hyperparameters in a neural net, so that these integrations should be easier
to carry out. Preliminary experiments in this direction with the Hybrid Monte Carlo method [7]
are promising.

I have also conducted some experiments on the approximation of neural nets (with a finite
number of hidden units) by Gaussian processes, although space limitations do not allow me to
describe these here. Other directions currently under investigation include (i) the use of Gaussian
processes for classification problems by softmaxing the outputs of k regression surfaces (for a k-

class classification problem), and (ii) using non-stationary covariance functions, so that C(z, z') #
C(lxe —2').

Acknowledgements

I thank Radford Neal and David MacKay for many useful discussions and for generously proving data
used in this paper, Chris Bishop, Peter Dayan, Radford Neal and Huaiyu Zhu for comments on earlier
drafts, George Lindfield for making his implementation of the scaled conjugate gradient search routine
available and Carl Rasmussen for his C implementation which runs considerably faster than my MATLAB
version. This work was supported by EPSRC grant GR/J75425.

References

[1] N. A. C. Cressie. Statistics for Spatial Data. Wiley, 1993.

[2] F. Girosi, M. Jones, and T. Poggio. Regularization Theory and Neural Networks Architectures.
Neural Computation, 7(2):219-269, 1995.

[3] A. G. Journel and Ch. J. Huijbregts. Mining Geostatistics. Academic Press, 1978.

[4] D.J. C. MacKay. A Practical Bayesian Framework for Backpropagation Networks. Neural Compu-
tation, 4(3):448-472, 1992.

[6] D.J. C. MacKay. Bayesian Methods for Backpropagation Networks. In J. L. van Hemmen, E. Domany,
and K. Schulten, editors, Models of Neural Networks II. Springer, 1993.

[6] R. M. Neal. Bayesian Learning via Stochastic Dynamics. In S. J. Hanson, J. D. Cowan, and C. L.
Giles, editors, Neural Information Processing Systems, Vol. 5, pages 475-482. Morgan Kaufmann,
San Mateo, CA, 1993.

[7] R. M. Neal. Bayesian Learning for Neural Networks. PhD thesis, Dept. of Computer Science,
University of Toronto, 1995.

[8] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of IEEE, 78:1481—
1497, 1990.

[9] J. R. Quinlan. Combining Instance-Based and Model-Based Learning. In P. E. Utgoff, editor, Proc.
ML’93. Morgan Kaufmann, San Mateo, CA, 1993.

[10] G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics,
1990. CBMS-NSF Regional Conference series in applied mathematics.

