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Regression with Gaussian ProcessesChristopher K. I. WilliamsDepartment of Computer Science and Applied MathematicsAston University, Birmingham B4 7ET, UKc.k.i.williams@aston.ac.ukJuly 1995AbstractThe Bayesian analysis of neural networks is di�cult because the prior over functions hasa complex form, leading to implementations that either make approximations or use MonteCarlo integration techniques. In this paper I investigate the use of Gaussian process priorsover functions, which permit the predictive Bayesian analysis to be carried out exactly usingmatrix operations. The method has been tested on two challenging problems and has producedexcellent results.1 IntroductionIn the Bayesian approach to neural networks a prior distribution over the weights induces aprior distribution over functions. This prior is combined with a noise model, which speci�es theprobability of observing the targets t given function values y, to yield a posterior over functionswhich can then be used for predictions. For neural networks the prior over functions has a complexform which means that implementations must either make approximations [4] or use Monte Carloapproaches to evaluating integrals [6].As Neal [7] has argued, there is no reason to believe that, for real-world problems, neuralnetwork models should be limited to nets containing only a \small" number of hidden units.He has shown that it is sensible to consider a limit where the number of hidden units in a nettends to in�nity, and that good predictions can be obtained from such models using the Bayesianmachinery1. He has also shown that a large class of neural network models will converge to aGaussian process prior over functions in the limit of an in�nite number of hidden units.Although in�nite networks are one method of creating Gaussian processes, it is also possible(and computationally easier) to specify them directly using parametric forms for the mean andcovariance functions. In this paper I investigate using Gaussian processes speci�ed parametricallyfor regression problems2, and demonstrate very good performance on the two test problems I havetried. The advantage of the Gaussian process formulation is that the integrations, which have tobe approximated for neural nets, can be carried out exactly (using matrix operations) in this case.I also show that the parameters specifying the Gaussian process can be estimated from trainingdata, and that this leads naturally to a form of \Automatic Relevance Determination" [4], [7].1Large networks cannot be successfully used with maximum likelihood training because of the over�ttingproblem.2By regression problems I mean those concerned with the prediction of one or more real-valued outputs, ascompared to classi�cation problems. 1
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2 Prediction with Gaussian ProcessesA stochastic process is a collection of random variables fY (x)jx 2 Xg indexed by a set X .Often X will be a space such as R for some dimension d, although it could be more general.The stochastic process is speci�ed by giving the probability distribution for every �nite subset ofvariables Y (x1); : : : ; Y (xk) in a consistent manner. A Gaussian process is a stochastic processwhich can be fully speci�ed by its mean function �(x) = E[Y (x)] and its covariance functionC(x;x0) = E[(Y (x)��(x))(Y (x0)��(x0))]; any �nite set of points will have a joint multivariateGaussian distribution.Below I consider Gaussian processes which have �(x) � 0. This is the case for many neuralnetwork priors [7], and otherwise assumes that any known o�set or trend in the data has beenremoved. A non-zero �(x) can be incorporated into the framework, but leads to extra notationalcomplexity.Given a prior covariance function CP (x;x0), a noise process CN (x;x0) (with CN (x;x0) = 0for x 6= x0) and data D = ((x1; t1); (x2; t2); : : : ; (xn; tn)), the prediction for the distribution of Ycorresponding to a test point x is obtained simply by marginalizing the (n+1)-dimensional jointdistribution to obtain the mean and varianceŷ(x) = kTP (x)(KP +KN)�1t (1)�2̂y(x) = CP (x;x) + CN (x;x)� kTP (x)(KP +KN)�1kP (x) (2)where [K�]ij = C�(xi;xj) for � = P;N , kP (x) = (CP (x;x1); : : : ; CP (x;xn))T and t = (t1; : : : ; tn)T .�2̂y(x) gives the \error bars" of the prediction. In the work below the noise process is assumed tohave a variance �2� independent of x so that KN = �2�I .The Gaussian process view provides a unifying framework for many regressionmethods. ARMAmodels used in time series analysis and spline smoothing (e.g. [10]) correspond to Gaussian processprediction with a particular choice of covariance function3, as do generalized linear regressionmodels (y(x) =Pi wi�i(x), with f�ig a �xed set of basis functions) for a Gaussian prior on theweights fwig. Gaussian processes have also been used in the geostatistics �eld (e.g. [3], [1]), andare known there as \kriging", but this literature has concentrated on the case where x 2 R2 orR3 , rather than considering more general input spaces. Regularization networks (e.g. [8], [2])provide a complementary view of Gaussian process prediction in terms of a Fourier space view,which shows how high-frequency components are damped out to obtain a smooth approximator.2.1 Adapting covariance functions and ARDGiven a covariance function C = CP + CN , the log probability l of the training data is given byl = �12 log detK � 12tTK�1t� n2 log 2� (3)where K = KP +KN . If C has some adjustable parameters �, then we can carry out a searchin �-space to maximize l; this is simply maximum likelihood estimation of � 4. For example, in ad-dimensional input space we may chooseC(x;x0) = v0 exp � dXi=1 wi2 (xi � x0i)2!+ v1�(x;x0) (4)3Technically splines require generalized covariance functions.4See section 4 for a discussion of the hierarchical Bayesian approach.2



Method No. of inputs sum squared test errorGaussian process 2 1.126Gaussian process 6 1.138MacKay 2 1.146Neal 2 1.094Neal 6 1.098Table 1: Results on the robot arm task.where v0; v1 and the fwig are adjustable. In MacKay's terms [4] l is the log \evidence", with theparameter vector � roughly corresponding to his hyperparameters � and �; in e�ect the weightshave been exactly integrated out.One reason for constructing a model with variable w's is to express the prior belief that someinput variables might be irrelevant to the prediction task at hand, and we would expect that thew's corresponding to the irrelevant variables would tend to zero as the model is �tted to data.This is closely related to the Automatic Relevance Determination (ARD) idea of MacKay andNeal [5], [7].3 Experiments with Gaussian Process predictionPrediction with Gaussian processes and maximum likelihood training of the covariance functionhas been tested on two problems : (i) a modi�ed version of MacKay's robot arm problem and (ii)the Boston housing data set.For both datasets I used a covariance function of the form given in equation 4 and a gradient-based search algorithm for exploring �-space; the derivative vector @l=@� was fed to a conjugategradient routine with a line-search5.3.1 The robot arm problemI consider a version of MacKay's robot arm problem introduced by Neal (1995). The standardrobot arm problem is concerned with the mappingsy1 = r1 cosx1 + r2 cos(x1 + x2) y2 = r1 sinx1 + r2 sin(x1 + x2) (5)The data was generated by picking x1 uniformly from [-1.932, -0.453] and [0.453, 1.932] andpicking x2 uniformly from [0.534, 3.142]. Neal added four further inputs, two of which werecopies of x1 and x2 corrupted by additive Gaussian noise of standard deviation 0.02, and twofurther irrelevant Gaussian-noise inputs with zero mean and unit variance. Independent zero-mean Gaussian noise of variance 0.0025 was then added to the outputs y1 and y2. I used the samedatasets as Neal and MacKay, with 200 examples in the training set and 200 in the test set.The theory described in section 2 deals only with the prediction of a scalar quantity Y , soI constructed predictors for the two outputs separately, although a joint prediction is possiblewithin the Gaussian process framework (see co-kriging, x3.2.3 in [1]). Two experiments wereconducted, the �rst using only the two \true" inputs, and the second one using all six inputs.5In fact the parameterization log � was used in the search to ensure that the v's and w's stayed positive.3



Procedure used ave. squared test errorGuessing overall mean 84.4Best result in Quinlan (1993) 10.9Gaussian process 8.6Neal (Bayesian network with 2 hidden layers) 6.5Table 2: Results on the Boston housing data task.For each experiment ten random starting positions were tried. The log(v)'s and log(w)'s wereall chosen uniformly from [-3.0, 0.0], and were adapted separately for the prediction of y1 andy2. The conjugate gradient search algorithm was allowed to run for 100 iterations, by which timethe likelihood was changing very slowly. Results are reported for the run which gave the highestprobability of the training data, although in fact all runs performed very similarly. The resultsare shown in Table 16 and are encouraging, as they indicate that the Gaussian process approachis giving very similar performance to two well-respected techniques. All of the methods obtaina level of performance which is quite close to the theoretical minimum error level of 1.0. It isinteresting to look at the values of the w's obtained after the optimization; for the y2 task thevalues were 0:243; 0:237; 0:0650; 1:7�10�4; 2:6�10�6; 9:2�10�7, and v0 and v1 were 7:920 and0:0022 respectively. The w values show nicely that the �rst two inputs are the most important,followed by the corrupted inputs and then the irrelevant inputs.3.2 Boston housing dataThe Boston Housing data has been used by several authors as a real-world regression problem (thedata is available from ftp://lib.stat.cmu.edu/datasets). For each of the 506 census tractswithin the Boston metropolitan area (in 1970) the data gives 13 input variables, including percapita crime rate and nitric oxides concentration, and one output, the median housing price forthat tract.A ten-fold cross-validation method was used to evaluate the performance, as detailed in [9]).The dataset was divided into ten blocks of near-equal size and distribution of class values (I usedthe same partitions as in [9]). For each block in turn the parameters of the Gaussian process weretrained on the remaining blocks and then used to make predictions for the hold-out block. Foreach of the ten experiments the input variables and targets were linearly transformed to have zeromean and unit variance, and �ve random start positions used, choosing the log(v)'s and log(w)'suniformly from [-3.0,0.0]. In each case the search algorithm was run for 100 iterations. In eachexperiment the run with the highest evidence was used for prediction, and the test results werethen averaged to give the entry in Table 2.The fact that the Gaussian process result beats the best result obtained by Quinlan (who madea reasonably sophisticated application of existing techniques) is very encouraging. It was observedthat di�erent solutions were obtained from the random starting points, and this suggests thatan hierarchical Bayesian approach, as used in Neal's neural net implementation and described insection 4, may be useful in further increasing performance.6The bottom three lines of the table were obtained from [7]. The MacKay result is the test error for the netwith highest \evidence". 4



4 DiscussionI have presented a Gaussian process framework for regression problems and have shown that itproduces excellent results on the two test problems tried.In section 2 I have described maximum likelihood training of the parameter vector �. Obviouslya hierarchical Bayesian analysis could be carried out for a modelM using a prior P (�jM) to obtaina posterior P (�jD;M). The predictive distribution for a test point and the \model evidence"P (DjM) are then obtained by averaging the conditional quantities over the posterior. Althoughthese integrals would have to be performed numerically, there are typically far fewer parametersin � than weights and hyperparameters in a neural net, so that these integrations should be easierto carry out. Preliminary experiments in this direction with the Hybrid Monte Carlo method [7]are promising.I have also conducted some experiments on the approximation of neural nets (with a �nitenumber of hidden units) by Gaussian processes, although space limitations do not allow me todescribe these here. Other directions currently under investigation include (i) the use of Gaussianprocesses for classi�cation problems by softmaxing the outputs of k regression surfaces (for a k-class classi�cation problem), and (ii) using non-stationary covariance functions, so that C(x;x0) 6=C(jx� x0j).AcknowledgementsI thank Radford Neal and David MacKay for many useful discussions and for generously proving dataused in this paper, Chris Bishop, Peter Dayan, Radford Neal and Huaiyu Zhu for comments on earlierdrafts, George Lind�eld for making his implementation of the scaled conjugate gradient search routineavailable and Carl Rasmussen for his C implementation which runs considerably faster than my MATLABversion. This work was supported by EPSRC grant GR/J75425.References[1] N. A. C. Cressie. Statistics for Spatial Data. Wiley, 1993.[2] F. Girosi, M. Jones, and T. Poggio. Regularization Theory and Neural Networks Architectures.Neural Computation, 7(2):219{269, 1995.[3] A. G. Journel and Ch. J. Huijbregts. Mining Geostatistics. Academic Press, 1978.[4] D. J. C. MacKay. A Practical Bayesian Framework for Backpropagation Networks. Neural Compu-tation, 4(3):448{472, 1992.[5] D. J. C. MacKay. Bayesian Methods for Backpropagation Networks. In J. L. van Hemmen, E. Domany,and K. Schulten, editors, Models of Neural Networks II. Springer, 1993.[6] R. M. Neal. Bayesian Learning via Stochastic Dynamics. In S. J. Hanson, J. D. Cowan, and C. L.Giles, editors, Neural Information Processing Systems, Vol. 5, pages 475{482. Morgan Kaufmann,San Mateo, CA, 1993.[7] R. M. Neal. Bayesian Learning for Neural Networks. PhD thesis, Dept. of Computer Science,University of Toronto, 1995.[8] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of IEEE, 78:1481{1497, 1990.[9] J. R. Quinlan. Combining Instance-Based and Model-Based Learning. In P. E. Utgo�, editor, Proc.ML'93. Morgan Kaufmann, San Mateo, CA, 1993.[10] G. Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathematics,1990. CBMS-NSF Regional Conference series in applied mathematics.5


