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Abstract

The goal in efficiency analysis is not only to evaluate a Decision Making Unit (DMU)
performance, but also to find an efficient target which provides information on inputs
reduction and outputs increment values that are necessary to remove inefficiencies for
each inefficient DMU. In Data Envelopment Analysis (DEA) the target unit is located
on the efficient frontier and possibly far from the unit under assessment. Therefore,
in practice performance improvement seems to be disappointing or even impossible to
achieve in only one step for some inefficient DMUs. In this regard, finding intermediate
targets is of great importance in benchmarking literature. In this paper we find a
sequence of targets instead of a single target for each inefficient unit. In our method,
the intermediate target at each step has three properties:(I) the intermediate targets
and the unit under evaluation are all similar in size; (II) efficiency scores are ascending
through the sequence of targets; (III) the target unit at each step is close to the special
part of the efficient frontier as much as possible. These properties lead to finding a
target that is more achievable in real applications.
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1 Introduction

Proposed by Charnes et al. (1978), Data Envelopment Analysis (DEA) is a nonparametric
technique which is used for evaluating homogenous Decision Making Units (DMUs). The
foundation of DEA is based on estimating the so called utility function as the frontier of the
Production Possibility Set (PPS) and measuring the distance of each unit from the frontier
to define its efficiency score. Some DEA models consider the radial distance (Charnes et al.
1978; Banker et al. 1984) while others are non-radial (Russell 1985; Tone 2001). Different
norms can be used in measuring the above-mentioned distance but l1-norm is more common
since it results in a linear model (Brockett et al. 1997; Pastor et al. 1999). For a single unit,
if such distance is positive, it is inefficient. Otherwise, it is said to be a boundary point which
can be efficient or inefficient (for more details see Seiford and Thrall (1990)).

One of important problems in recent DEA is how to find a target unit for an inefficient
unit to improve its performance. In other words, the Decision Maker (DM) is interested
in a target point (efficient projection point on the frontier) that characterizes the input-
output changes needed for an inefficient unit to become efficient. Conventional DEA models
consider this problem, but they yield a target that is usually a far boundary projection
point. For instance, the RAM model, proposed by Cooper et al. (1999), determines the
furthest target for each inefficient unit. Therefore, several DEA methods are proposed to
not only remove this drawback, but also could add some other desirable properties to the
selected target. One of the first attempts to find the closest target was done by Frei and
Harker (1999). Although the closest target is the unit with the minimum distance from
the assessed inefficient unit, but it might be incompatible with facilities of the unit under
assessment and can not be achieved in one single step in short term, which is disappointing.
For example, in a production plan of factories with the number of employees as an input,
there are two ways to remove inefficiencies: increasing outputs or decreasing inputs. It is not
reasonable to fire a large number of employees or it is impossible to produce a large amount
of products immediately. Therefore, the target unit introduced by one-step benchmarking
approaches could be unrealistic and meaningless in practice and one would rather define an
admissible distance for variations of inputs and outputs based on the improvement ability of
the factory to make it efficient in several steps. Generally, the DM might be interested in using
the gradual improvement-based approaches which provide a path of intermediate targets
to remove the inefficiency towards reaching the final efficient target. There are different
criteria for this gradual improvement that lead to different target paths. For example, Coelli
(1998) decreased all inputs that can be improved with the same proportion at each step of
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his proposed method. Lozano and Villa (2005) improved an inefficient unit gradually in a
way that the final efficient target is closer to the unit under assessment than the one-step
projection point. Estrada et al. (2009) implemented the proximity-based target selection
strategy to reach the frontier. Also, intermediate targets proposed by Park et al. (2012)
were obtained along some directions based on a similarity criterion. Additionally, Lozano
and Calzada-Infante (2017) proposed a new method for gradually improvement of inefficient
units in a way that the potential field is ascending through their target path.

In this paper, we propose an algorithm to produce a new path of targets. In our algorithm,
we find the intermediate and final targets in a way that they have the same Returns To Scale
(RTS) property as the unit under evaluation and the efficiency score of the unit does not get
worse at each step of the algorithm. Also, according to the ability of the unit for varying its
inputs and outputs, we minimize the ditance of the unit under assessment at each step from
a special part of the frontier in order to achieve the final efficient target in fewer steps. In
summary, our aim is to construct a finite sequence of targets for each inefficient unit with
the following properties: (I) all targets in the sequence and the unit under evaluation belong
to the same RTS category; (II) the efficiency scores are ascending in this sequence; (III) the
distance between each target and the special part of the frontier is minimized based on the
capacity of the unit; (IV) the efficiency score of the final target is equal to one, i.e, the final
target is efficient.

The remaining of this paper is organized as follows: Section 2 provides necessary pre-
liminaries to our approach. In section 3 our target setting algorithm is presented. Section 4

illustrates our proposed algorithm with a numerical example and application. Conclusions
are finally provided in section 5.

2 Preliminaries

Consider n decision making units DMUj, with input vector xj = (x1j, ..., xmj)
t and output

vector yj = (y1j, ..., ysj)
t, for j = 1, . . . , n, where all xij’s and yrj’s are positive real numbers.

Definition 2.1. The Production Possibility Set (PPS) is defined as:

P = {(x, y)| x can produce y} . (1)

It is clear that P can possess different mathematical formulations based on the production
technology assumptions (see Cooper et al. 2006), for example P = {(x, y) ∈ Rm+s|x ≥
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Table 1: BCC model in envelopment and multiplier forms
Envelopment form: Multiplier form:

min θ (2)

s.t.

n∑
j=1

λjxj ≤ θxo, (2a)

n∑
j=1

λjyj ≥ yo, (2b)

n∑
j=1

λj = 1, (2c)

λj ≥ 0 j = 1, ..., n. (2d)

max uyo + u0 (3)
s.t. vxo = 1, (3a)

uyj − vxj + u0 ≤ 0, (3b)
j = 1, ..., n, (3c)
u ≥ 0, (3d)
v ≥ 0. (3e)

n∑
j=1

λjxj, y ≤
n∑

j=1

λjyj, λ ∈ Λ} where Λ = {λ|λ ≥ 0} and Λ = {λ|1λ = 1, λ ≥ 0} for Constant

RTS (CRS) and Variable RTS (VRS) technologies, respectively. The PPS frontier can be
considered as an estimation of the utility function. DEA models measure the distance of
units from the PPS frontier in order to determine their efficiency scores (For more details,
see Banker et al. 1984; Charnes et al. 1978; Färe and Grosskopf 1985; Seiford and Thrall
1990). In this study the VRS technology is considered and the conventional BCC model
is utilizied to measure the efficiency scores. Table 1 represents the BCC model in both
envelopment and multiplier forms.

Definition 2.2. DMUo is said to be BCC-efficient if the optimal value of model (2) (or
model (3)) is equal to one. Otherwise it is called inefficient.

Definition 2.3. The input-oriented radial projection point of DMUo is defined as (θ∗oxo, yo)

where θ∗o is the optimal value of model (2).

It is obvious that the radial projection point of a given unit lies on the frontier of the PPS.
Next theorem provides an important property of model (3) that is useful in what follows.

Theorem 2.1. Assume that (u∗, v∗, u∗
0) is the optimal solution of model (3) evaluating

DMUo. The hyperplane
Ho = {(x, y)|u∗y − v∗x+ u∗

0 = 0}

is a supporting hyperplane of the PPS at (xo, yo). Also, each point belonging to Ho ∩PPS is
BCC-efficient.
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Proof. See Cooper et al. (2006).

For inefficient DMUs, DEA models provide efficient targets to improve their performance.
Motivated by Lozano and Villa (2005), we are interested to improve the performance of an
inefficient DMU gradually instead of immediately. Lozano and Villa modified the Measure
of Inefficiency Proportions (MIP) model (proposed by Cooper et al. (1999)) and instead of
reaching the efficient frontier at only one step, they applied the modified MIP model at
each step of their algorithm to define intermediate targets. In other words, they presented a
sequence of targets to the DM instead of only one target. In continue of their work, we also
provide a sequence of targets to the DM. The differences between our proposed approach
and the method of Lozano and Villa (2005) are as follow: firstly, the returns to scale will
not change during our algorithm, secondly, our proposed target at each step is the closest
one to the frontier. Returns to Scale (RTS) is an important property of the production
points in economics. The RTS of a production point relates to the rate of changes in outputs
when the inputs are increased proportionally. In a production process, a DMU exhibits an
increasing (decreasing) RTS if the proportionate increase in outputs is larger (smaller) than
the proportionate increase in inputs and a constant RTS occurs for a unit if the proportionate
increase in outputs is equal to the proportionate increase in inputs. In this regard, DMUs
can be classified into three categories: IRS, DRS and CRS. We can address two more terms
which are well-known in DEA literature: Non-increasing RTS (NIRS) which includes both
decreasing and constant RTS cases and Non-decreasing RTS (NDRS) which includes both
increasing and constant RTS cases.

In what follows we present the mathematical formulation of a subset of the PPS with
the points belonging to the same RTS category.

2.1 A subset of the PPS consisting of production points with the
same RTS property

Suppose that DMUo is a unit under evaluation and (u∗, v∗, u∗
0) is an optimal solution for

model (3) and θ∗o is the optimal value of objective function of model (2) evaluating DMUo.
Let (X̂o, Ŷo) = (θ∗oxo, yo) be the radial projection point. Nasrabadi et al. (2014) specified a
subset of the PPS consisting of all units whose radial projection points belong to the same
supporting hyperplane. In other words, they characterized the mathematical formulation of
set

PHo =
{
(x̄, ȳ) ∈ PPS|(θ̄∗x̄, ȳ) ∈ Ho

}
, (4)
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in which, θ̄∗ is the optimal solution of model (2) evaluating (x̄, ȳ). The region PHo is shown
in Figure (1) for the single-input single-output case.

Figure 1: PHo in one-input and one-output case

Suppose that {i1, ..., iq} = {i|v∗i = 0} and {r1, ..., rp} = {r|u∗
r = 0}. Also, let

KHo = {(xj, yj)|j ∈ {1, ..., n} , (xj, yj) ∈ Ho} . (5)

For an arbitrary finite set A = {a1, ..., an}, the convex hull of A is defined as:

Conv(A) = {
n∑

j=1

λjaj|
n∑

j=1

λj = 1, λj ≥ 0, j = 1, ..., n}. (6)

With these notations, Nasrabadi et al. (2014) proved that

PHo = {(αx+
q∑

k=1

dkeik , y −
p∑

l=1

d′le
′
rl)|α ≥ 1, (x, y) ∈ Conv(KHo),

(d, d′) = (d1, ..., dq, d
′
1, ..., d

′
p) ≥ 0, (d′1, ..., d

′
p) ≤ (yr1o, ..., yrpo)},

(7)

where eik is the unit vector in Rm with the ikth component equal to 1 and e′rl is the unit vector
in Rs with the rl

th component equal to 1. They also proved the following basic theorem:

Theorem 2.2. Assuming (u∗, v∗, u∗
0) as an optimal solution of model (3) when assessing

DMUo, we have:

(i) If u∗
0 = 0, then Constant RTS prevails at any (X̄, Ȳ ) ∈ PHo .
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(ii) If u∗
0 > 0, then Non-Decreasing RTS prevails at any (X̄, Ȳ ) ∈ PHo .

(iii) If u∗
0 < 0, then Non-Increasing RTS prevails at any (X̄, Ȳ ) ∈ PHo .

Proof. See Nasrabadi et al. (2014).

From Theorem 2.2, we can conclude that if DMUo belongs to the Constant RTS (CRS)
category, then all point in PHo belong to the CRS category as well. Similar statements hold
true for NIRS and NDRS categories. Therefore, all points in region PHo are the most similar
units to DMUo in the PPS regarding the RTS property.

In step-wise benchmarking literature, a key point in target setting and performance
improvement for inefficient units is the similarity criterion. Different similarity criteria lead
to different selections of targets. Hence, the way the performance of a unit is improved
depends on the similarity criterion. In this paper, we define the similarity criterion based on
the RTS property and efficiency score. In other words, we move an inefficient unit towards
the efficient frontier through a sequence of targets all belonging to the same RTS category
as the unit under evaluation and their efficiency scores are ascending. Also, in order to reach
the frontier in fewer steps, we minimize the distance of the unit under assessment at each
step from the efficienct frontier. In this way, we project an inefficient unit on a production
point with a similar size gradually which is more meaningful in practice.

Hence, according to the similarity criterion and considering Theorem 2.2, we have to move
in a specific part of region PHo in order to find a sequence of targets with the same RTS.
Also, another criterion is to improve the efficiency score, i.e., to remain in the region with
better efficiency scores than the unit under assessment. Thus, in the next section, we firstly
characterize the mathematical formulation of this region and then we present an algorithm
to find the path of targets for each inefficient unit.

3 The Proposed Target Setting Algorithm

In this section we present our proposed method that its aim is improving an inefficient unit
gradually which is consistent with the capacity of the unit under assessment. Compared with
Lozano and Villa (2005), we also present a sequence of targets that their efficiency scores
are ascending in this sequence and it ends with an efficient target. Our proposed method has
two more benefits. Firstly, returns to scale does not change during the improvement path
and it is the same as the unit under assessment. Secondly, the proposed intermediate target
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at each step is the nearest one to the special part of the frontier with the same returns to
scale as the unit under assessment.

Let DMUo be an inefficient unit. We search in a specific part of region PHo to find the
most similar target. We build up an iterative procedure to find a path of targets converging
to an efficient projection point. All targets in this path belong to region PHo and they belong
to the same RTS category, consequently. In order to find the sequence of similar targets for
DMUo, we also need a subset of the PPS consisting of the units with the efficiency score
greater than or equal to the efficiency score of the unit under evaluation and we limit our
search to the intersection of this subset and PHo . In this way, we can guarantee that RTS
does not change during the algorithm and the efficiency scores of targets are ascending in
the sequence. Note that our algorithm terminates when an efficient target is obtained. The
next two theorems provide what we need.

Theorem 3.1. Let (x, y) ∈ H̄o = {(x, y) ∈ PPS |u∗y − θ∗ov
∗x+ u∗

0 ≥ 0} and θ̄ be the effi-
ciency score of (x, y). Then θ̄ ≥ θ∗o.

Proof. Suppose that (x, y) ∈ H̄o. Therefore, u∗y − θ∗ov
∗x + u∗

0 ≥ 0 and there exists s ≥ 0

such that
u∗y − θ∗ov

∗x+ u∗
0 − s = 0.

Since v∗x > 0, there exists η ≥ 0 such that s = ηv∗x. Now we rewrite the above equation as
follows:

u∗y − θ∗ov
∗x+ u∗

0 − ηv∗x = 0 ⇒ u∗y − (θ∗o + η)v∗x+ u∗
0 = 0,

implying that ((θ∗o + η)x, y) ∈ Ho. Since ((θ∗o + η)x, y) is either on the frontier of the PPS or
out of it, evaluating it by model (2) results in an optimal value greater than or equal to 1.
On the other hand, let θ̄ be the optimal value of model (2) evaluating (x, y). Then θ̄

θ∗o+η
is the

optimal value of model (2) evaluating ((θ∗o + η)x, y). Therefore, θ̄
θ∗o+η

≥ 1 and consequently
θ̄ ≥ θ∗o + η ≥ θ∗o.
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Figure 2: Illustration of Theorem 3.1 in a single-input single-output case

Consider a PPS in case of single-input single-output with the VRS assumption. An il-
lustration of Theorem 3.1 is provided in Figure 2. Here H̄o is the shaded region. As can be
seen, the subset of the PPS consisting of the points dominating DMUo is also a subset of
H̄o. This inclusion holds true in general.

Theorem 3.2. Let (x, y) ∈ PPS and y ≥ yo, x ≤ xo. Then (x, y) ∈ H̄o.

Proof. Since y ≥ yo, x ≤ xo and u∗, v∗ and θ∗o are nonnegative, we have u∗y − θ∗ov
∗x+ u∗

0 ≥
u∗yo − θ∗ov

∗xo + u∗
0. Also, according to the equation v∗xo = 1, we have u∗yo − θ∗ov

∗xo + u∗
0 =

u∗yo − θ∗o + u∗
0 = 0. The latter equality holds true because u∗yo + u∗

0 = θ∗o by the strong
duality theorem. Thus, u∗y − θ∗ov

∗x+ u∗
0 ≥ 0 and consequently (x, y) ∈ H̄o.

Based on what mentioned above, we solve model (3) to determine inefficient units and
their corresponding supporting hyperplanes. Then we solve the following model to find the
most similar target to DMUo .
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min dist ((x, y), (x̄, ȳ)) (8)
s.t. (x, y) ∈ PHo (8a)

(x, y) ∈ H̄o (8b)
u∗ȳ − v∗x̄+ u∗

0 = 0, (8c)

where (x, y) belongs to the admisible region for variation of inputs and outputs of DMUo

and (x̄, ȳ) is an arbitrary point on the corresponding supporting hyperplane. Let (x∗, y∗)

be the target point obtained from solving model (8). If (x∗, y∗) is efficient, we identify it as
the final projection point and stop our algorithm. Otherwise, we set (xo, yo) = (x∗, y∗) and
repeat the above procedure.

To illustrate the algorithm, consider a single-input single-output case depicted in Figure
3. The RTS category of all points in the shaded area is the same as DMUA category. Such
points have the efficiency scores greater than or equal to θ∗A as well. The rectangular area in
this figure depicts the admissible region for inputs and outputs changes of DMUA. Target
A1 is obtained after solving model (8) once. Since A1 is inefficient, we solve model (8) for A1

and find the next target A2. We repeat this procedure until we reach the efficient frontier
where the final projection point is located. One can find the sequence of obtained targets in
Figure 3.

Figure 3: Illustration of the target setting procedure
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Substituting the mathematical formulation of PHo in model (8) yields nonlinear con-
straints. Below, we present a lemma that is necessary to prove Theorem 3.3 in order to
provide an equivalent formula for PHo resulting in a linear target setting model.

Lemma 3.1. Region PHo is equal to

Ĥo = {(x, y)|x = x̄+
q∑

k=1

dkeik , y = ȳ −
p∑

l=1

dl
′e′rl),(

x̄

ȳ

)
=

∑
j∈KHo

λj

(
αjxj

yj

)
, αj ≥ 1,

∑
j∈KHo

λj = 1, λj ≥ 0,

(d, d′) = (d1, ..., dq, d1
′, ..., dp

′) ≥ 0, (d1
′, ..., dp

′) ≤ (yr1o, ..., yrpo)}.

Proof. If αj = α for all j, then PHo ⊂ Ĥo. Conversely, if we set α =

∑
j∈KHo

λjαjxj∑
j∈KHo

λjxj
, then we can

conclude that Ĥo ⊂ PHo . Thus Ĥo = PHo

Theorem 3.3. The two sets Ĥo and H̃o are equal where

H̃o = {(x, y)|x ≥
∑

j∈KHo

λjxj, y =
∑

j∈KHo

λjyj −
p∑

l=1

dl
′erl

′ ∑
j∈KHo

λj = 1, λj ≥ 0,

d′ = (d1
′, ..., dp

′) ≥ 0, (d1
′, ..., dp

′) ≤ (yr1o, ..., yrpo)}.

Proof. It is clear that Ĥo ⊂ H̃o. To prove H̃o ⊂ Ĥo, let (x, y) ∈ H̃o. Hence, x ≥
∑

j∈KHo

λjxj.

Therefore, there exists S ≥ 0 such that

x =
∑

j∈KHo

λjxj + S =
∑

j∈KHo

λjxj+
∑

j∈KHo

ηj(λjxj)

=
∑

j∈KHo

(1 + ηj)(λjxj) =
∑

j∈KHo

αjλjxj,

where ηj ≥ 0 and αj = 1 + ηj for j ∈ KHo . Hence, (x, y) ∈ Ĥo. Thus, H̃o = Ĥo.

We use the following notations for more simplification in what follows:
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o : index of the unit under evaluation.

Lt
I : lower bounds of admissible changes of inputs at step t.

U t
O : upper bounds of admissible changes of outputs at step t.

t : index of the target at step t.

xt, yt : input and output vectors of the intermediate target at step t
(x0 = xo, y

0 = yo)

θ∗t : the optimal value of model (2) evaluating (xt, yt).

(θ∗0 = θ∗o)

Based on the above theory, we can substitute PHo with H̃o and rewrite model (8) as
follows:

min 1
|x− x̄|
xo

+ 1
|y − ȳ|
yo

(9)

s.t.
∑
j∈kHo

λt
jxj ≤ x (9a)

∑
j∈kHo

λt
jyj −

p∑
l=1

dtlerl = y (9b)

∑
j∈kHo

λt
j = 1 (9c)

u∗
oy − θ∗

t−1

v∗ox+ u∗
0 ≥ 0 (9d)

u∗
oȳ − v∗o x̄+ u∗

0 = 0 (9e)

Lt
I ≤

x− xt−1

xt−1
≤ 0 (9f)

0 ≤ y − yt−1

yt−1
≤ U t

O (9g)

(dt1, ..., d
t
p) ≤ (yr1o, ..., yrpo), (9h)

in which all variables are positive and 1 is a vector with all components equal to 1. The
constraints (9a)-(9c) are corresponding to the constraint (8a) and the constraint (9d) is
obtained from the constraint (8b) of model (8). The constraint (9e) is the same with the
constraint (8c) and (9f) and (9g) characterize the admissible region for variation of inputs
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and outputs. Note that, lower and upper bounds are parameters that have to be determined
by the DM according to the ability of DMUo to change its inputs and outputs. These bounds
can be changed at each step or remain fixed during the algorithm.

Although the objective function of model (9) is nonlinear, it can be easily linearized
by the change of variables as x − x̄ = a − b, y − ȳ = c − d; a, b, c, d ≥ 0 and equalities
|x− x̄| = a+ b, |y − ȳ| = c+ d.

After solving model (9), the intermediate target at step t is as follows:

xt = x∗

yt = y∗
(10)

where subscript ” ∗ ” stands for the optimality in model (9). In what follows, we show that
model (9) is feasible and possesses a finite optimal solution.

Theorem 3.4. Model (9) is feasible and has a finite optimal solution.

Proof. Since (xo, yo) ∈ PHo and if (xt−, yt−1) ∈ PHo then (xt, yt) ∈ PHo , so PHo ̸= ∅ at each
step. As a result, there are cofficients λt

j and dtl that lead to the feasibility of model (9) for
the selection of other variables as follows:

(x, y) = (xt−1, yt−1), (x̄, ȳ) = (θ∗t−1xt−1, yt−1). (11)

Hence, model (9) is feasible. Also, the existence of a lower bound for the objective function
guarantees that the optimal value is finite.

Now, we present our algorithm to determine a sequence of targets for inefficient unit
DMUo.

TARGET SETTING ALGORITHM

Step1: Set t=0

Step2: Set x0 = xo, y0 = yo.

Step3: Evaluate (xo, yo) by model (3) and determine values u∗
o,v∗o ,u∗

0.

Step4: Evaluate (xt, yt) by model (2) and determine the value θt
∗.
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Step5: If θt∗ = 1, stop. If θt∗ < 1, Go to step 6.

Step6: Set t← t+ 1 and solve model (9).

Step7: Set (xt, yt) = (x∗, y∗) and go to step 4.

Since we move in region PHo and according to the theorem (2.2), it is easy to understand
that returns to scale does not change during our algorithm for DMUo. Also, since θt

∗ is
increasing and θt

∗ ≤ 1, the algorithm terminates after finite several steps. Note that the final
target is efficient according to the termination criterion. In the next section, we illustrate
our proposed target setting algorithm by a numerical example first, and then we present an
empirical example to show its performance.

4 Numerical results for the target setting algorithm

Consider 6 units with one input and one output. The data is taken from Lozano and Villa
(2005) and is reported in Table 2. The Production Possibility Set for this example is shown
in Figure 4.

Table 2: Data for the numerical example taken from Lozano and Villa (2005)
Results of the conventional BCC model

DMU x y θ∗ x∗ y∗

A 10 10 1.00 10 10
B 18 36 1.00 18 36
C 30 10 0.33 10 10
D 35 40 0.69 24.17 40
E 55 60 1.00 55 60
F 60 20 0.22 13.08 20

It can be seen that units A, B and E are efficient and are their own targets but units C,
D and F are inefficient. Assume that LI = −0.2 and UO = 0.3. If we apply the conventional
DEA models to improve the performance of inefficient units, then we have to reach the fron-
tier at only one step. The BCC-efficiency scores of these units and their targets are reported
in the last three column of Table 2. Consider DMUF , with the activity vector (60, 20) and
BCC-efficiency score equal to 0.22. The DM must reduce about 78% of the input of DMUF

at a single step to make it efficient, while the capacity for the input reduction is considered
at most 20%. Therefore, it is impossible for the DM to reach this target immediately. Hence,
it is reasonable to improve the unit gradually through a sequence of targets. In Continue,
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Figure 4: The sequence of targets for inefficient units for the numerical example

we illustrate how our target setting algorithm performs, applying it on unit F , which has a
non-decreasing returns to scale.

If we apply the proposed algorithm on unit F , then the first intermediate target activity
vector is equal to (48, 26). So, at the first step, it is sufficient to reduce the input by 12 units
and increase the output by 6 units, respectively. With this improvement, the efficiency score
will be 0.31 and the returns to scale remains non-decreasing. We repeat the target setting
algorithm six times to find the final efficient target (18, 36) with the same RTS as DMUF .
The results of this example and the path of intermediate targets for each inefficient unit
are shown in Table 3 and Figure 4, respectively. Note that, for each inefficient DMU, the
RTS category does not change during the algorithm and efficiency scores are ascending as
we expected.

4.1 Empirical example

Consider 26 geographical districts that constitute Rio de Janerio municipality in Brazil with
two inputs and one output where the number of dentists and potential target demands are
inputs and the total number of preventive plus conclusive dental procedures is the output
for each unit. The data extracted from Lins et al. (2004) and the BCC efficiency scores for
all units are reported in Table 4.
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Table 3: The target setting algorithm results for the numerical example
Step0 Step1 Step2 Step3 Step4 Step5 Step6

DMUA x 10
y 10
BCC Eff.score 1.00
u∗
0 0.69 (NDR)1

DMUB x 18
y 36
BCC Eff.score 1.00
u∗
0 0.38 (NDR)

DMUC x 30 24 19.20 15.36 13.68
y 10 13 16.90 21.97 21.97
BCC Eff.score 0.33 0.46 0.63 0.89 1.00
u∗
0 0.23 0.29 0.36 0.45 0.44 (NDR)

DMUD x 35 28
y 40 42.49
BCC Eff.score 0.69 1.00
u∗
0 -1.07 -1.34 (NIR)2

DMUE x 55
y 60
BCC eff.score 1.00
u∗
0 -0.68 (NIR)

DMUF x 60 48 38.4 30.72 24.58 19.66 18
y 20 26 33.80 36 36 36 36
BCC Eff.score 0.22 0.31 0.45 0.59 0.73 0.92 1.00
u∗
0 0.11 0.14 0.18 0.22 0.28 0.35 0.38 (NDR)

1 (u∗
0 > 0 means Non-Decreasing Returns to Scale)

2 (u∗
0 < 0 means Non-Increasing Returns to Scale)
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Table 4: Data for the empirical example taken from Lins et al. (2004)
DMUs: Inputs: Outputs:
Districts Number of dentists Target population Preventive plus BBC-efficiency

conclusive procedures score
1 Portuaria 6 5720 22105 0.99
2 Centro 21 2053 26884 0.88
3 Rio Comprido 17 7529 66836 1.00
4 Botafogo 25 5667 83629 1.00
5 Copacabana 7 2612 22477 1.00
6 Lagoa 31 8892 44985 0.43
7 Sao Cristovao 12 8604 42101 0.79
8 Tijuca 13 5705 35818 0.74
9 Vila Isabel 38 7023 91465 1.00
10 Ramos 22 50726 34340 0.33
11 Penha 19 34172 58424 0.57
12 Inhauma 21 13320 63294 0.69
13 Meier 50 25721 103245 0.50
14 Iraja 20 16652 71818 0.75
15 Madureira 25 35332 92136 0.68
16 Jacarepague 46 42185 101144 0.43
17 Bangu 44 81238 170336 0.70
18 Campo Grande 39 56396 146758 0.69
19 Santa Cruz 46 49542 253913 1.00
20 Ilha do Governador 32 13973 122375 1.00
21 Paqueta 5 205 3507 1.00
22 Anchieta 10 19521 47231 0.91
23 Santa Tereza 6 3493 23416 1.00
24 Barra da Tijuca 21 6293 30488 0.46
25 Pavuna 8 30258 42655 1.00
26 Guaratiba 11 15181 59033 1.00

We apply our proposed target setting algorithm to find intermediate targets for inefficient
units to improve them gradually. The number of intermediate targets is different for each
unit and not only depends on their inefficiency scores but also on lower and upper bounds
of admissible changes of inputs and outputs at each step. We assume that all inputs can
be decreased and all outputs can be increased by 10%. These ranges can be changed and
selected for each input and output, separately. It is obvious that the DM can reach the final
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projection point in fewer steps by increasing the lower and upper bounds if it is possible for
the organization. In this example, the number of intermediate targets varies between 1 and
8. For instance, the intermediate targets along with their u∗

0 values for DMU12 are reported
in Table 5. As can be seen from Table 5, all intermediate targets have the same returns
to scale as DMU12. For this unit to become efficient gradually, the DM can reallocate two
dentists in other districts and increase the production from 63294 to 69623.40 to reach the
first target with the efficiency score of 0.82. The second target is characterized by a reduction
in the number of dentists from 19 to 18 and an increase in the production. In this step, the
efficiency score increases to 0.92. The final efficient target is achieved with the reduction in
the number of dentists and no change in the target population and production. All targets
and the unit under evaluation belong to NDR category, as we expected.

Table 5: Intermediate targets for DMU12.
Variables Number of dentists Target population Output u∗

0

Observed DMU (12)Inhauma 21 13320 63294 0.034
Targets 1 18.90 13320 69623.40 0.036

2 17.01 13320 76585.74 0.039
3 15.82 13320 76585.74 0.041

Table 6 reports the number of intermediate targets and the final projection point for each
decision making unit along with the u∗

0 value for the final target. As we expected, the RTS
category does not change during the algorithm and our algorithm stops in finite steps with
a BCC-efficient unit as the final target. Note that, the target point for each efficient unit is
itself.
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Table 6: Results for the empirical example
DMUs Step Inputs Output u∗

0 No. of steps
Number of Target Preventive plus
dentists poulation conclusive procedure

1 Step0 6 5720 22105 0.804 1
Final Step 5.93 5720 22105 0.813

2 Step0 21 2053 26884 -0.017 2
Final Step 21 2053 30615.29 -0.017

6 Step0 31 8892 44985 0.060 8
Final Step 20.34 8892 80049.64 0.000

7 Step0 12 8604 42101 0.057 2
Final Step 10.44 8604 48998.97 0.0129

8 Step0 13 5705 35818 0.078 6
Final Step 11.05 5705 44397.74 0.069

10 Step0 22 50726 34340 0.108 7
Final Step 10.57 50726 59033 0.031

11 Step0 19 34172 58424 0.022 3
Final Step 14.31 34172 77762.34 0.023

12 Step0 21 13320 63294 0.034 3
Final Step 15.82 13320 76585.74 0.041

13 Step0 50 25721 103245 -0.007 5
Final Step 32.81 25721 156615.78 -0.009

14 Step0 20 16652 71818 0.032 3
Final Step 17.02 16652 87475.27 0.076

15 Step0 25 35332 92136 0.016 2
Final Step 20.25 35332 110737.24 0.020

16 Step0 46 42185 101144 0.014 5
Final Step 28.5 42185 162893.42 0.011

17 Step0 44 81238 170336 0.007 2
Final Step 35.64 81238 196317.40 0.009

18 Step0 39 56396 146758 0.011 2
Final Step 32.27 56396 177577.18 0.010

22 Step0 10 19521 47231 0.241 1
Final Step 9.78 19521 51954.10 0.246

24 Step0 21 6293 3048 0.111 6
Final Step 13.47 6293 54011.35 0.058

5 Conclusion

In this paper, we developed a target setting algorithm to produce a path of targets for
each inefficient unit. The RTS category of all targets in the sequence is the same as the
inefficient units. Also, the efficiency score of the targets in the path are ascending and the
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final target is efficient. In other words, we suggest a sequence of targets, all similar to the
unit under evaluation in size and we gradually improve the efficiency scores until we reach
the efficient frontier. Such improvement is meaningful and feasible in practice. At each step,
upper and lower bounds for the variation of each input and output of the inefficient unit are
parameters that can be characterized according to the DM’s opinion regarding the managerial
restrictions. Based on this step size, we can select the similar target close to the efficient
frontier as much as possible.

The number of steps to reach the final boundary point depends on the defined lower and
upper bounds. Also if the unit is closer to the intersection of two regions with different returns
to scale category, the number of steps are increased. This problem can not be prohibited
because it is caused due to the location of units in the production possibility set. Our
empirical example shows that the performance of the proposed target setting algorithm is
efficient. Finally, one idea for the furture research is how this algorithm can be extended to
other types of production possibility sets. Besides, the authors would like to consider the
case of multiple optimal solutions. Also, finding a way to determine upper and lower bounds
for each inefficient unit mathematically and according to the observed data can be one of
important and intersting issues to be considered in the future.

References
Banker, R. D., Charnes, A., Cooper, W. W. (1984). Some models for estimating technical and

scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.

Brockett, P. L., Rousseau, J. J., Wang, Y., Zhow, L. (1997). Implementation of DEA models
using GAMS. Research Report 765, University of Texas, Austin.

Charnes, A., Cooper, W. W., Rhodes, E. (1978). Measuring the efficiency of decision making
units. European journal of operational research, 2(6), 429-444.

Coelli, T. (1998). A multi-stage methodology for the solution of orientated DEA models.
Operations Research Letters, 23(3), 143-149.

Cooper, W. W., Park, K. S., Pastor, J. T. (1999). RAM: a range adjusted measure of ineffi-
ciency for use with additive models, and relations to other models and measures in DEA.
Journal of Productivity analysis, 11(1), 5-42.

Cooper, W. W., Seiford, L. M., Tone, K. (2006). Data envelopment analysis. a comprehensive
text with models, applications, references and dea-solver software. Springer, New York.

20



Estrada, S. A., Song, H. S., Kim, Y. A., Namn, S. H., Kang, S. C. (2009). A method of
stepwise benchmarking for inefficient DMUs based on the proximity-based target selection.
Expert Systems with Applications, 36(9), 11595-11604.

Färe, R., Grosskopf, S. (1985). A nonparametric cost approach to scale efficiency. The Scan-
dinavian Journal of Economics, 594-604.

Frei, F. X., Harker, P. T. (1999). Projections onto efficient frontiers: theoretical and compu-
tational extensions to DEA. Journal of Productivity analysis, 11(3), 275-300.

Lins, M. E., Angulo-Meza, L., Da Silva, A. M. (2004). A multi-objective approach to deter-
mine alternative targets in data envelopment analysis. Journal of the Operational Research
Society, 55(10), 1090-1101.

Lozano S, Calzada-Infante L. (2017). Computing gradient-based stepwise benchmarking
paths. Omega.

Lozano, S., Villa, G. (2005). Determining a sequence of targets in DEA. Journal of the
operational research society, 56(12), 1439-1447.

Nasrabadi, N., Dehnokhalaji, A., Soleimani-Damaneh, M. (2014). Characterizing a subset of
the PPS maintaining the reference hyperplane of the radial projection point. Journal of
the Operational Research Society, 65(12), 1876-1885.

Park, J., Bae, H., Lim, S. (2012). A DEA-based method of stepwise benchmark target selec-
tion with preference, direction and similarity criteria. International Journal of Innovative
Computing, Information and Control, 8(8), 5821-5834.

Pastor, J. T., Ruiz, J. L., Sirvent, I. (1999). An enhanced DEA Russell graph efficiency
measure. European Journal of Operational Research, 115(3), 596-607.

Russell, R. R. (1985). Measures of technical efficiency. Journal of Economic theory, 35(1),
109-126.

Seiford, L. M., Thrall, R. M. (1990). Recent developments in DEA: the mathematical pro-
gramming approach to frontier analysis. Journal of econometrics, 46(1-2), 7-38.

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European
journal of operational research, 130(3), 498-509.

21


