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Abstract

A Maximum Entropy statistical treatment of an inverse problem concerning frame

theory is presented. The problem arises from the fact that a frame is an overcomplete

set of vectors that de�nes a mapping with no unique inverse. Although any vector in

the concomitant space can be expressed as linear combination of frame elements, the

coe�cients of the expansion are not unique. Frame theory guarantees the existence of a

set of coe�cients which is \optimal" in a Minimum Norm sense. We show here that these

coe�cients are also \optimal" from a Maximum Entropy viewpoint.

1 Introduction

Frames were introduced by Du�n and Shae�er within the context of non-harmonic Fourier se-

ries [1], where most of the theory was developed (a complete review is given in [2]). The interest

in frame theory has received great impetus since that mathematical structure was adopted to

study coherent states, among which one may cite Weyl-Heisenberg coherent states [3, 4, 5, 6],

that are the result of translations and modulations of a single function, and a�ne coherent

states, called wavelets, that arise as translations and dilations of a single function [4, 5, 6, 7, 8].

Typically, a frame is an over-complete set of vectors that, in spite of not being linearly in-

dependent, can nonetheless be used to express any vector as a linear combination of them.
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The frame condition ensures that the inverse mapping does exist and that an appropriate set

of coe�cients can be obtained by means of the reciprocal frame. However, due to the lack of

linear independence of the frame elements such a set of coe�cients is not unique. The lack

of uniqueness poses a problem that has to be surmounted if one expects the coe�cients to be

endowed with some relevant physical information. Now, if one wishes to recognize a particular

set of coe�cients as \optimal", an appropriate decision criterion has to be adopted. It is well

known that the reciprocal frame provides a set of coe�cients which is \optimal" in a Minimum

Norm (MN) sense [2, 4]. The MN requirement may be a reasonable criterion to be adopted in

the case of some applications, but, a priori, certainly not in all of them. In this paper we tackle

the inverse problem from a statistical point of view and show that the reciprocal frame provides

one with a set of coe�cients that is also \optimal" in a Maximum Entropy (ME) sense.

The early frame theory was devised with the discrete case in mind, but an interesting genera-

lization, recently proposed [8, 9, 10, 11], allows for the inclusion of continuous cases as part

of the same general structure. This generalization includes continuous transforms, such as the

Windowed Fourier Transform (WFT) or the Continuous Wavelet Transform (CWT), as special

instances of a more general framework. Here we adopt the generalized structure and develop

our statistical description of the inverse problem within the generalized frame de�nition.

We shall i) regard each admissible solution of the inverse problem as a stochastic process (ran-

dom function) distributed according to a suitable probability density (to be determined) and

ii) estimate the desired solution as the mean value of such a random function. Then, among

all the probability densities capable of yielding admissible solutions we shall single out one,

adopting the Maximum Entropy Postulate (MEP). Finally, we will show that, from the ME

probability density, a mean value function is inferred that is provided by the reciprocal frame,

being therefore identical with the MN solution.
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The paper is organized as follows: In Section 2 the generalized frame de�nition is given and

some properties to be used are summarized. In Section 3 the proposed Maximum Entropy

statistical treatment of the inverse problem is developed. The WFT and the CWT are given

as examples of the general formalism. Some conclusions are drawn in Section 4.

2 Background on Frames

Let H be the Hilbert space of possible functions (on the real line R) to be analyzed and M a

set of labels M = fm 2 Mg. Adopting Dirac's notation [12], we represent a vector f 2 H as

jfi and its dual as hf j. The identity operator in H is then expressed in the fashion

ÎH =

Z
R
jtihtj dt: (1)

Let � be a measure on M and let us denote as L2(�) the Hilbert space in which the identity

operator reads

ÎL2(�) =

Z
M
jmihmj d�(m): (2)

For all jf1i and jf2i 2 H the functional representation of H can be introduced by inserting (1)

in hf1jf2i, i.e.,

hf1jf2i =

Z
R
hf1jtihtjf2i dt (3)

with f2(t) = htjf2i and f
�
1 (t) = hf1jti = htjf1i

�, where f �(t) indicates the complex conjugate of

f(t). In the same way, for jg1i and jg2i 2 L
2(�), the functional representation of L2(�) is given

by operator (2)

hg1jg2i =

Z
M
hg1jmihmjg2i d�(m): (4)

Now we are in a position to give the de�nition of generalized frame [10]:

De�nition: A family of vectors jhmi 2 H ; m 2 M is called a generalized frame (henceforth

to be referred as simply a frame) if, for every jfi 2 H,
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a) The function ~f(m) = hmj ~fi = hhmjfi is measurable.

b) There exists a pair of constants 0 < A � B <1 such that

Ahf jfiH � h ~f j ~fiL2(�) � Bhf jfiH: (5)

The constants A and B are called the frame bounds and (5) the frame condition. The latter

implies that j ~fi 2 L2(�) whenever jfi 2 H, then the mapping T̂ : H 7! L2(�) de�nes an

operator, called the frame operator,

T̂ =

Z
M
jmihhmj d�(m): (6)

The adjoint operator T̂ y : L2(�) 7! H is

T̂ y =

Z
M
jhmihmj d�(m): (7)

The frame condition can be expressed in terms of the operator Ĝ = T̂ yT̂ : H 7! H as

AÎH � Ĝ � BÎH: (8)

From (6) and (7) Ĝ is explicitly given by

Ĝ =

Z
M
jhmihhmj d�(m): (9)

The inequality (8) entails that Ĝ has a bounded inverse Ĝ�1. In fact, Ĝ�1 satis�es [2, 4, 10]

B�1ÎH � Ĝ�1 � A�1ÎH: (10)

Assuming that Ĝ�1 is known explicitly, the reciprocal frame fjhmi ; m 2 Mg, is calculated

as jhmi = Ĝ�1jhmi ; m 2 M . Thus, from (9) we obtain the following resolution of the unity

operator in H

Î =

Z
M
jhmihhmj d�(m) =

Z
M
jhmihh

mj d�(m): (11)
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The family fjhmi;m 2 Mg turns out to be a frame as well, with frame bounds B�1 and A�1

[2, 4, 10]. The associated frame operator Ŝ : H 7! L2(�) is here

Ŝ =

Z
M
jmihhmjd�(m) = T̂ Ĝ�1 (12)

and its adjoint Ŝy : L2(�) 7! H

Ŝy =

Z
M
jhmihmj d�(m) = Ĝ�1T̂ y: (13)

The reciprocal frame of fjhmi;m 2 Mg happens to be, again, the original frame [2, 4, 10].

When the frame bounds are equal the frame is called a tight one and the reciprocal frame

satis�es jhmi =
jhmi

A
. For the case A = 1 the frame is self-reciprocal.

Let F be the range of the operator T̂ : H 7! L2(�), i.e., the subspace

F = Ran(T̂ ) = fj ~fi ; T̂ jfi = j ~fi ; jfi 2 Hg: (14)

One also has Ran(Ŝ) = Ran(T̂ ). The operator Ŝy = Ĝ�1T̂ y : L2(�) 7! H provides the

reconstruction of jfi 2 H from j ~fi 2 F as jfi = Ŝyj ~fi. In fact, for j ~fi 2 F , j ~fi = T̂ jfi and we

have

Ŝyj ~fi =

Z
M
jhmihmjT̂ jfi d�(m) =

Z
M
jhmihhmjfi d�(m) =

Z
M
jhmihh

mjfi d�(m) = jfi: (15)

Notice that F is just a closed subspace, not all of L2(�) (not every jgi 2 L2(�) can be expressed

as jgi = T̂ jfi). The orthogonal projection operator P̂ from L2(�) onto F is P̂ = T̂ Ŝy = ŜT̂ y

[4, 10], which, explicitly, adopts the appearance

P̂ =

Z
M
jm0ihhm0 jhmihmj d�(m)d�(m0) =

Z
M
jm0ihhm

0

jhmihmj d�(m)d�(m0): (16)

Since j~gi 2 F if and only if j~gi = P̂ j~gi, it follows that, j~gi 2 F if and only if:

j~gi =

Z
M
jm0ihhm0 jhmihmj~gi d�(m)d�(m0) =

Z
M
jm0ihhm

0

jhmihmj~gi d�(m)d�(m0): (17)
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or

~g(m0) = hm0j~gi =

Z
M
hhm0 jhmihmj~gi d�(m) =

Z
M
hhm

0

jhmihmj~gi d�(m): (18)

The above reproducing kernel equation provides the necessary and su�cient condition for a

vector j~gi 2 L2(�) to belong to F .

Although jfi 2 H can be reconstructed as in (15), the corresponding expansion is not unique.

Indeed, all jgi 2 L2(�) can be written as jgi = j~gi + j~gi?, with j~gi 2 F and j~gi? 2 F?, the

orthogonal complement of F in L2(�), and since Ŝyj~gi? = 0 we have : Ŝyjgi = Ŝy(j~gi+ j~gi?) =

Ŝyj~gi = jfi. This implies that the inversion problem for determining hmjgi from the equation

jfi =

Z
M
jhmihmjgi d�(m) (19)

has no unique solution. The most general solution is of the form hmjgi = hhmjfi+hmj~gi
?, with

j~gi? 2 F?. Therefore, by setting j~gi? = 0 one obtains the MN solution. Equivalently, changing

jhmi to jhmi in (19), the MN solution for the corresponding inverse problem is hmjgi = hhmjfi.

In what follows we show that hmjgi = hhmjfi is also an \optimal" solution in a ME sense.

3 ME statistical estimate of the inverse problem

The problem we address now is that of inverting the equation

htjfi =

Z
M
htjhmihmjgi d�(m): (20)

We begin by splitting the above complex equation into real and imaginary parts so that it

becomes

fu(t) =

Z
M
(hum(t)g

u(m)� hvm(t)g
v(m)) d�(m) (21)

f v(t) =

Z
M
(hvm(t)g

u(m) + hum(t)g
v(m)) d�(m); (22)

where fu(t); f v(t) are the real and imaginary parts of htjfi while hum(t); h
v
m(t) are the real and

imaginary parts of htjhmi and gu(m); gv(m) are the real and imaginary parts of hmjgi. As
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discussed in the previous section, there exist several functions hmjgi capable of satisfying (21)

and (22). Our aim is that of selecting ONE of those solutions as \optimal" in a ME sense.

The inversion problem is then transformed into one of statistical inference. The essential step

in this respect is to regard each admissible solution hmjgi as a random function, distributed

according to a (to be determined) probability density . This probability density represents

our ignorance vis-a-vis the fact that there is not a unique solution. Within this statistical

framework, we estimate the desired solution as the mean value of the random function hmjgi

and denote it as hmjgi = gu(m) + igv(m). Let fAjg be the measurable set that allows one to

calculate (21) and (22) as:

fu(t) = lim
K!1

KX
j=1

(humj (t)g
u(mj)� hvmj (t)g

v(mj))�(Aj) (23)

f v(t) = lim
K!1

KX
j=1

(hvmj (t)g
u(mj) + humj (t)g

v(mj))�(Aj): (24)

At the �xed points mj ; j = 1; : : : ; K, both gu(mj) and gv(mj) are random variables. To

simplify the notation let us introduce gu = gu(m1); : : : ; g
u(mK) and g

v = gv(m1); : : : ; g
v(mK).

Assuming that these 2K random variables are distributed according to a probability density

P (gu; gv), the mean values gu(mj); gv(mj) involved in (23) and (24) are calculated as:

gu(mj) =

Z 1

�1
P (gu; gv)gu(mj) dg

udgv ; j = 1; : : : ; K (25)

gv(mj) =

Z 1

�1
P (gu; gv)gv(mj) dg

udgv ; j = 1; : : : ; K; (26)

where dgu = dgu(m1); : : : ; dg
u(mK) and dgv = dgv(m1); : : : ; dg

v(mK). We shall make sure

hmjgi 2 L2(�) through the more stringent requirement that jjgjj2 be �nite. This also ensures

the �nitude of the variance of the probability density. Consequently, we have to deal with the

constraint

jjgjj2 =

Z 1

�1
lim
K!1

KX
j=1

Z 1

�1
P (gu; gv)(gu(mj)

2 + gv(mj)
2)�(Aj) dg

udgv = C (27)
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where C is an unknown constant. As P (gu; gv) is normalized to unity, it satis�es

Z 1

�1
P (gu; gv) dgudgv = 1: (28)

We face now the problem of determining P (gu; gv) satisfying (23), (24), (27) and (28). Among

all the probability densities capable of ful�lling these constraints, we select one adopting the

MEP. This criterion yields the probability density that, being consistent with the available

data, is maximally noncommittal with respect to our lack of information [13, 14].

The entropy, or uncertainty, associated with P (gu; gv) is given by Shannon's measure

H(gu; gv) = �

Z 1

�1
P (gu; gv) lnP (gu; gv) dgudgv: (29)

In order to proceed take limK !1, which entails that, here, the appropriate measure is the

entropy rate H (entropy per degree of freedom), de�ned as [15]

H = lim
K!1

1

2K
H(gu; gv): (30)

We look then for the probability density that maximizes H with constraints (23), (24), (27),

(28). In order to introduce the constraints (23) and (24) into the variational process, we divide

the axis R into intervals of length �t = 1
N

centered at the points ti and take limN ! 1

at the end of the calculation. We incorporate each constraint (23) evaluated at t = ti via a

Lagrange multiplier that we write �uti�t and each constraint (24) through a Lagrange multiplier

�vti�t. Constraints (27) and (28) are introduced through the Lagrange multipliers � and �0

respectively. Thus the functional, S, to be maximized adopts the appearance

S = �

Z 1

�1
P (gu; gv)(

lnP (gu; gv)

2K
+ �

KX
j=1

(gu(mj)
2
+ gv(mj)

2
)�(Aj))dg

udgv

� �0

Z 1

�1
P (gu; gv)dgudgv �

1

N

NX
i=1

�uti

KX
j=1

(humj (ti)g
u(mj)� hvmj (ti)g

v(mj))�(Aj)

�
1

N

NX
i=1

�vti

KX
j=1

(hvmj (ti)g
u(mj) + humj (ti)g

v(mj))�(Aj); (31)
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and, from the condition �S
�P

= 0, we obtain

P (gu; gv) = exp�(2K�0+1) exp(�2K
KX
j=1

(gu(mj)1(mj)+g
v(mj)2(mj)+�g

u(mj)
2
+�gv(mj)

2
)�(Aj))

(32)

where

1(mj) =
1

N

NX
i=1

�utih
u
mj

+ �vtih
v
mj

(33)

2(mj) =
1

N

NX
i=1

�vtih
u
mj
� �utih

v
mj
; (34)

while the normalization constraint (28) entails

exp(2K�0+1) =

Z 1

�1
exp(�2K

KX
j=1

(gu(mj)1(mj)+g
v(mj)2(mj)+�g

u(mj)
2
+�gv(mj)

2
)�(Aj))dg

udgv:

(35)

Obviously, we are led to

exp(2K�0 + 1) =
KY
j=1

�

2K��(Aj)
exp(

K1(mj)
2�(Aj)

2�
) exp(

K2(mj)
2�(Aj)

2�
); (36)

so that, by replacing (32) into (25) and (26) and calculating the pertinent integrals we have

gu(mj) = �
1(mj)

2�
= �

1

2�N

NX
i=1

�utih
u
mj
(ti) + �vtih

v
mj
(ti) (37)

gv(mj) = �
2(mj)

2�
= �

1

2�N

NX
i=1

�vtih
u
mj
(ti)� �utih

v
mj
(ti): (38)

Passing now to the limit limN !1, the above equations yield

gu(mj) = �
1

2�

Z
R
(�ut h

u
mj
(t) + �vth

v
mj
(t)) dt; (39)

gv(mj) = �
1

2�

Z
R
(�vth

u
mj
(t)� �ut h

v
mj
(t)) dt; (40)

or

hmjjgi = gu(mj) + igv(mj) =

Z
R
�(t)h�mj (t) dt = hhmj j�i; (41)
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with �(t) = � 1
2�
(�ut + i�vt ).

From equation (41) we gather that hmjjgi 2 F . Using hmjgi in (20) and performing the inner

product operation on both sides with hhm
0

j we have

hhm
0

jfi =

Z
M
hhm

0

jhmihmjgi d�(m); (42)

and, since hmjgi 2 F , the reproducing kernel equation (18) is veri�ed. Hence, hmjgi = hhmjfi

and we conclude that the statistical estimate hmjgi = hhmjfi is an \optimal" solution in a ME

sense.

3.1 Some special cases: The WFT, the CWT and discrete frames

The frame formulation proposed in [8, 9, 10, 11], and adopted here in order to develop the

present statistical treatment of the inverse problem, allows one to derive the WFT and CWT

as special cases of the same structure. In addition, the classical discrete frame formulation

[1, 2, 4] also appears as a particular case of the generalized theory.

For the WFT,M = R2 is the set of all the continuous parametersm = (!; b) and d�(m) = d!db.

In this case, the frame elements are jhmi =
jw!;bi

jjwjj
with

htjw!;bi = w(t� b) exp(i!t); (43)

with w(t) any function in H. The inverse problem for the WFT involves then the inversion of

the equation

htjfi =
1

jjwjj

Z
R2

w(t� b) exp(i!t)h!; bjgid!db: (44)

As the frame is self-reciprocal: jw!;bi =
jw!;bi

jjwjj
and the ME estimate for h!; bjgi gives the WFT

of jfi, i.e.,

h!; bjgi =
1

jjwjj
hw!;bjfi =

1

jjwjj

Z
R
w(t� b)� exp(�i!t)f(t)dt: (45)
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For the CWT, M = R2; m = (a; b) and d�(m) = dadb
C a

2 . The frame elements are the wavelets

htj a;bi = a�1=2 a;b(
t� b

a
); (46)

with  (t) a mother wavelet satisfying the admissibility condition

C =

Z
R

j ̂(!)j2

j!j
d! <1; (47)

where  ̂(!) is the Fourier Transform of  (t).

The equation to be inverted in this case is

htjfi =
1

C 

Z
R2

a�1=2 a;b(
t� b

a
)ha; bjgi

dadb

a2
: (48)

The reciprocal frame is also trivial, as j a;bi = j a;bi, and the ME estimate of the inverse

problem is the CWT of jfi, i.e.,

ha; bjgi = h a;bjfi =

Z
R
a�1=2 �(

t� b

a
)f(t)dt: (49)

WhenM = Zn and � is the counting measure (�(A) = number of elements in A), L2(�) = l2(Zn)

and the generalized theory reduces to the classical discrete one. The discrete version of both

the WFT and CWT, for the sampling density required to give rise to a frame [4, 5, 6], involves

reciprocal frames which are of no trivial character and have to be calculated by recourse to

iterative algorithms [4, 16].

4 Conclusions

A statistical treatment of the frame inverse problem has been presented. The problem has

been transformed into a problem of statistical inference by considering the set of admissible

solutions as a random function and adopting the MEP as a decision criterion to select the

probability density that, being consistent with the data, is less committal with respect to our
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lack of information. The statistical treatment presented here leads one to conclude that the

reciprocal frame gives rise to a solution that, in addition to being \optimal" in a MN sense is

also \optimal" from a ME viewpoint.

As special cases, the WFT and CWT have been obtained from the concomitant inverse problems

as \optimal conjectures", derived according to MEP strictures.
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