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Recursive approach for constructing theqÄ1Õ2 maximum entropy distribution
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A recursive approach for computing theq51/2 nonextensive maximum entropy distribution of the previ-
ously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative
biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine
the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique
circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the
Lagrange multipliers so as to account for each new constraint.
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I. INTRODUCTION

In a recent publication@1# we have introduced a metho
for data subset selection, which is based on the nonexten
maximum entropy formalism@2–9# by considering the cas
q51/2 previously discussed in other contexts@10–13#. The
method evolves iteratively by selecting, at each iteration,
measure yielding aq51/2 distribution capable of making
predictions minimizing the Euclidean distance to the av
able piece of data. During the selection process, howe
such a distribution is not actually computed, as doing
would involve computing an inverse operator at each ite
tion. Instead, we use a convenient orthogonalization wh
avoids operator inversion at each step of the iterative p
cess. The inversion is performed at the end of the selec
process, so as to obtain the Lagrange multipliers which ev
tually determine theq51/2 distribution.

In this Brief Report we show that, by means of an a
equate biorthogonalization technique, one can include
computation of theq51/2 distribution, at every step of th
selection process, without the need of inverting operators
recourse to the present approach, theq51/2 distribution is
recursively ‘‘adapted’’ at each iteration, at low computation
cost. This new algorithm is based on the use of biorthogo
vectors for representing orthogonal projections~rather than
using orthogonal vectors as proposed in@1#!. The possibility
of implementing this proposal at low computational cost l
in the existence of a recursive approach, to be discussed
for computing biorthogonal vectors yielding the abov
mentioned orthogonal projectors.

The paper is organized as follows: Section II summari
the formalism for data subset selection proposed in@1#. In
Sec. III, a new approach for computing the correspond
Lagrange multipliers is introduced, based on a biorthogo
technique for constructing orthogonal projectors. The c
clusions are drawn in Sec. IV.

II. SETTING UP THE PROBLEM

Along the lines of@1#, let us considerM pieces of data
f 1

o , f 2
o ,...,f i

o ,...,f M
o , each of which is the expectation valu
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of a random variable. This variable adopts the possible v
ues f i ,n ; n51,...,N. The expectation values are comput
using a~generalized, see@1#! probability distributionpn

1/2;
n51,...,N. Thus, the data model is expressed in terms ofM
equations of the form

f i
o5 (

n51

N

pn
1/2f i ,n , i 51....,M ~1!

that, adopting a Dirac’s vectorial notation, are recast as

u f o&5Âup1/2&, ~2!

whereup1/2& is represented in terms of thestandard basisun&,
n51,...,N of RN,

up1/2&5 (
n51

N

un&^nup1/2&5 (
n51

N

pn
1/2un&, ~3!

while the data vectoru f o& is represented in terms of the sta
dard basisui&, i 51,...,M of RM,

u f o&5(
i 51

M

u i &^ i u f o&5(
i 51

M

f i
ou i &. ~4!

The operatorÂ:RN→RM in Eq. ~2! is given by the matrix
elementŝ i uÂun&5 f i ,n ; i 51,...,M ; n51,...,N. Thus, by de-
fining vectorsu f n&PRM in such a way that̂i u f n&5 f i ,n , the
operatorÂ is expressed as

Â5 (
n51

N

u f n&^nu. ~5!

By considering as constraints a subset ofk Eq. ~1! labeled by
indexesl j , j 51,...,k, the resultant maximum entropyup1/2&
distribution adopts the form@1#
©2002 The American Physical Society02-1
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up1/2~k!&5S 1

N
2

1

N (
j 51

k

^gu l j&^ l j ul~k!& D (
n51

N

un&

1(
j 51

k

Â†u l j&^ l j ul~k!& ~6!

with

ug&5 (
n51

N

u f n&[ (
n51

N

Âun&. ~7!

We have introduced here the superscriptk to explicitly indi-
cate that theup1/2(k)& distribution is built out of an optimizing
process involvingk constraints. The Lagrange multiplier ve
tor ul (k)& is determined in such a way that, using the asso
ated probability distribution, one may be in a position
make ‘‘sensible’’ predictions. By this we mean thatup1/2(k)&
enables one to predict a complete data vectoru f p&
5Âup1/2(k)&PRM thatminimizes the distance to the observ
vector u f o&. Such a requirement entails

ul~k!&5~ F̂k
†F̂k!

21F̂k
†u f̃ o&, ~8!

whereu f̃ o&5u f o&2ug&/N and

F̂k5(
j 51

k

ua l j
&^ l j u, ~9!

with

ua l j
&5 (

n51

N

u f n&^ f nu l j&2
1

N
ug&^gu l j&. ~10!

The subindicesl j , j 51,...,k are iteratively selected as fo
lows: given k subindexesl j , j 51,...,k, the corresponding
l k11 is obtained by the requirement that the predicted vec
u f p& minimizes the distance to the observed vectoru f o&. This
is equivalent to selecting the vectorua l k11

& minimizing

iu f̃ o&2F̂k11~ F̂k11
† F̂k11!21F̂k11

† u f̃ o&i2. ~11!

The observation thatF̂k11(F̂k11
† F̂k11)21F̂k11

† is the or-
thogonal projector operator onto the subspaceVk115Vk
% ua l k11

&, whereVk is spanned byua l j
&, j 51,...,k, has led in

@1# to conclude that minimization of~11! is tantamount to
maximization of functionalsei , i 51,...,M given by

ei5
bi

di

5
z^a i uD f & z2

^a i ua i&2( l 51
k z^c̃ l ua i& z2

, bi.0, ~12!

whereuc̃k11&5uck11&/iuck11&i and uck11& are orthogonal
vectors arising, fromuc1&5ua l 1

&, as

uck11&5ua l k11
&2 P̂Vk

ua l k11
&. ~13!
03210
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Maximization of Eq. ~12! yields an effective strategy fo
minimization of ~11!, with much lower computational effor
than that involved in tackling directly the latter. Such a pr
cedure, however, does not provide a direct way of compu
the distributionup1/2(k)&. Indeed, givenk subindexesl j , j
51,...,k, the corresponding distribution is to be obtain
from Eq. ~6! and, since the vectorul (k)& is given by Eq.~8!,
we need to compute the inverse operator (F̂k

†F̂k)
21 in order

to determineup1/2(k)&.
The goal of this effort is to avoid the need for such

inversion so as to be able to introduce the calculation
up1/2(k)& into the iterative process that selects the subindi
l j ; j 51,...,k. We tackle the issue in the forthcoming sectio

A recursive approach for constructing zp1Õ2„k…
‹

We introduce here an iterative procedure which allows
to quickly modify theup1/2(k)& distribution each time a new
subindex, sayl k11 , is selected.

The key idea for achieving such a goal is to make use
the fact that the orthogonal projecto
F̂k11(F̂k11

† F̂k11)21F̂k11
† admits a representation in terms

biorthogonal vectors which are computed in an iterat
fashion. Indeed, given a set of vectorsua l n

&, n51,...,k11,

let us define vectorsuc5 k11& as uc5 k11&5uc̄k11&/iuck11&i
5uck11&/iuck11&i2, with uck11& as given in Eq.~13!. Then,
the dual vectorŝã l n

k11u, n51,...,k11 which are obtained by

recourse to the recursive relations

^ã l n
k11u5^ã l n

k u2^ã l n
k ua l k11

&^c5 k11u, n51,...,k,

^ã l k11

k11u5
^ck11u

^ck11ua l k11
&

5
^ck11u

^ck11uck11&
5^c5 k11u, ~14!

with ^c l 1
u5^a l 1

u/^a l 1
ua l 1

&, satisfy the following properties
@14#.

~a! Biorthogonality with respect to vectorsua l n
&, n

51,...,k11, i.e.,

^ã l n
k11ua l m

&5d l n ,l m
,

n51,...,k11; m51,...,k11. ~15!

~b! They provide a representation of the orthogonal p
jection operator ontoVk11 as given by

P̂Vk11
5 (

n51

k11

ua l n
&^ã l n

k11u5 P̂Vk11

† 5 (
n51

k11

uã l n
k11&^a l n

u.

~16!

From properties~a! and ~b! it immediately follows that the
vectors ^ã l n

k11u given in Eqs.~14! give rise to a recursive

formula that yields the Lagrange multipliers involved
minimizing the distance to the observed data vectoru f o&.
2-2
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Proposition 1. The Lagrange multipliers that minimize th
distance to the observed datau f o& are amenable to be recu
sively adapted, when a new constraint is introduced, acc
ing to the recursive relation

^ l nul~k11!&5^ l nul~k!&2^ã l n
k ua l k11

&^c5 k11u f̃ o&,

n51,...,k,

^ l k11ul~k11!&5^c5 k11u f̃ o&, ~17!

with ^ l 1ul (1)&5^a l 1
u f̃ o&/iua l 1

&i2.

Proof. As discussed above@cf. Eq. ~8!#, given k11 con-
straints the Lagrange multiplier vector minimizing the d
tance to the observed datau f o& is a solution to the equation

ul~k11!&5~ F̂k11
† F̂k11!21F̂k11

† u f̃ o&. ~18!

Multiplying both sides of Eq.~18! by F̂k11 , we obtain

F̂k11ul~k11!&5F̂k11~ F̂k11
† F̂k11!21F̂k11

† u f̃ o& ~19!

and, since operatorF̂k11(F̂k11
† F̂k11)21F̂k11

† is the orthogo-
nal projector ontoVk11 , by using Eqs.~16! in ~19! and
expressingF̂k11 as given in Eq.~9! we have

(
n51

k11

ua l n
&^ l nul~k11!&5 (

n51

k11

ua l n
&^ã l n

k11u f̃ o&. ~20!

We proceed now to performing the inner product of the t
sides with each of the vectorŝã l n

k11u, n51,...,k11. The

biorthogonality property~15! then gives rise to the set o
equations
a

e
th

e

t

a

03210
d-

^ l nul~k11!&5^ã l n
k11u f̃ o&, n51,...,k11 ~21!

so that, after using Eq.~14! in these equations, the recursiv
formula ~17! follows. j

In order to write in a convenient form the correspondi
formula yielding up1/2(k11)&, let us first define an operato

F̂̃k11 in the fashion

F̂̃k115 (
n51

k11

uã l n
k11&^ l nu, ~22!

which, by means of Eq.~14!, can be recursively computed a

F̂̃k115 F̂̃k1uc5 k11&^ l k11u2uc5 k11&^a l k11
u F̂̃k , ~23!

with F̃̂15ua l 1
&^ l 1u/iua l 1

&i2. The recursive formula~17! for
the Lagrange multipliers adopts, thereby, the form

^ l nul~k11!&5^ l nul~k!&2^ l nu F̂̃k
†ua l k11

&^c5 k11u f̃ o&,

n51,...,k,

^ l k11ul~k11!&5^c5 k11u f̃ o&, ~24!

with ^ l 1ul (1)&5^a l 1
u f̄ o&/iua l 1

&i2.
Now, from Eqs.~6! and~24!, we finally obtain the recur-

sive formula forup1/2(k11)& as given by
^nup1/2~k11!&5^nup1/2~k!&2
1

N
^gu l k11&^c5 k11u f̃ o&1

1

N (
j 51

k

^gu l j&^ l j u F̂̃k
†ua l k11

&^c5 k11u f̃ o&1^nuÂ†u l k11&^c5 k11u f̃ o&

2(
j 51

k

^nuÂ†u l j&^ l j u F̂̃k
†ua l k11

&^c5 k11u f̃ o&, n51,...,N. ~25!
for
t in
ted

ons

h-
ose
Let us recall that the method for selecting the relevant d
~indexesl j ) advanced in@1# is also able to yield both the
vectorsuck11& and the vectorsua l k11

& ~see@1# for a sketch

of the pertinent algorithm!. Here we simply make use of th
availability of these vectors so as to iteratively construct

operatorF̂̃k @given in Eq.~23!# in order to recursively~that
is, at each and every stage of the iterative algorithm! com-
pute the all-important Lagrange multipliers. As a final r
mark, we would like to stress that the recursive formula~24!
for the Lagrange multipliers yields an iterative procedure

encode the data vectoru f̃ o&PRM into a vector of lower di-
mensionul (k)&PRk, wherek is the number of relevant dat
ta

e

-

o

~usually, we havek!M ). The up1/2(k)& distribution provides
us then with the corresponding decoding tool, via Eq.~2!.

III. CONCLUSIONS

We have introduced a maximum entropy procedure
data selection that represents a significant improvemen
reducing the computational cost for evaluating the associa
maximum entropy Lagrange multipliers.

We build up the present approach upon the foundati
developed in@1#. The data selection criterion of@1# is not
affected in any way. Accordingly, when applying this met
odology one must expect the results to be identical to th
2-3
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produced by the algorithm developed in@1#.
However, we are now in a position to avoid, at each

eration stage, the need of inverting an operator so as to
tain the Lagrange multipliers. This makes the technique
pecially appropriate when dealing with a large number
data. Additionally, we are now in a position to tackle a ve
important question: as a matter of fact, extremizing a non
tensive entropy does not guarantee the positiveness o
ensuing probability distribution. In particular, we cann
guarantee the positiveness of theup1/2& distribution given in
Eq. ~6!. Actually, even if, using Eq.~6!, one does obtain a
non-negative distributionfrom noiseless data, the introduc-
tion of noise may certainly affect the positiveness prope
The importance of the present approach for computingup1/2&
.

03210
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lies in the fact that it allows one to remedy such a situati
Indeed, since we cannow recursively modify the distribution
when a new datum~constraint! is selected, we are in a pos
tion to disregard, at each iteration, constrains yielding
up1/2(k)& distribution which is not endowed with the proper
of positiveness.

From the above remarks we conclude that the new
proach considerably widens the possible range of appl
tions of theq51/2 distributions for data selection and da
compression.

ACKNOWLEDGMENT

Support from EPSRC~GR/R86355/01! is acknowledged.
//

io,

o,
@1# L. Rebollo-Neira and A. Plastino, Phys. Rev. E65, 011113
~2002!.

@2# C. Tsallis, J. Stat. Phys.52, 479 ~1988!.
@3# C. Tsallis, Fractals6, 539 ~1995!, and references therein.
@4# E. M. F. Curado and C. Tsallis, J. Phys. A24, L69 ~1991!; 24,

3187 ~1991!; 25, 1019~1992!.
@5# A. R. Plastino and A. Plastino, Phys. Lett. A177, 177 ~1993!.
@6# A. R. Plastino and A. Plastino, Phys. Lett. A174, 384 ~1993!.
@7# A. R. Plastino and A. Plastino, Phys. Lett. A193, 140 ~1994!.
@8# A. Plastino and A. R. Plastino, Braz. J. Phys.29, 50 ~1999!.
@9# C. Tsallis, Braz. J. Phys.29, 1 ~1999!, and references therein
An updated bibliography can be found in http:
tsallis.cat.cbpf.br/biblio.htm

@10# B. M. R. Boghosian, Phys. Rev. E53, 4754~1996!.
@11# L. Rebollo-Neira, A. Plastino, and J. Fernandez-Rub

Physica A258, 458 ~1998!.
@12# L. Rebollo-Neira, J. Fernandez-Rubio, and A. Plastin

Physica A261, 555 ~1998!.
@13# B. R. La Cour and W. C. Schieve, Phys. Rev. E62, 7494

~2000!.
@14# L. Rebollo-Neira, e-print math-ph/0209026.
2-4


