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On the truncation of the harmonic oscillator wavepacket
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Abstract

We present an interesting result regarding the implication of truncating the wavepacket
of the harmonic oscillator. We show that disregarding the non-significant tails of a function
which is the superposition of eigenfunctions of the harmonic oscillator has a remarkable
consequence. Namely, there exit infinitely many different superpositions giving rise to the
same function on the interval. Uniqueness, in the case of a wavepacket, is restored by a
postulate of quantum mechanics.

PACS: 03.65.-w, 03.65.Ca

1 Introduction

We analyse the effect of truncating the wavepacket of the harmonic oscillator in the light

of the frame theory. Such a theory, developed in 1952 by Duffin and Shaffer in the context of

harmonic analysis [1] has been applied, for over fifteen years, to construct coherent states. More

specifically, we should mention affine coherent states, also called wavelets, and Weyl-Heisenberg

coherent states, also known as Gabor frames [2–11]. We recall in the next paragraph the general

definition of frames and a few properties, which is all what we need for the purpose of the present

effort. For a complete treatment of frames we refer to [12–14].

Given a Hilbert space H, a family {φn}n∈N in H is called a frame for H if for every f ∈ H

there exists a pair of constants 0 < A ≤ B <∞ such that

A〈f, f〉 ≤
∑

n∈N

|〈φn, f〉|2 ≤ B〈f, f〉. (1)

The constants A and B are called the frame bounds and (1) the frame condition. From its

definition it is clear that a frame is a complete set, since the relations 〈φn, f〉 = 0, n ∈ N imply
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that f ≡ 0. The removal of an element from a frame leaves either a frame or an incomplete

set. A frame that ceases to be complete if an arbitrary element φn is removed, is called exact.

This last property implies that only exact frames are bases; in the general case the family

{φn}n∈N may be over complete. When the condition A = B holds, the frame is said to be a

tight frame. Assuming that all the elements φn, n ∈ N are normalised to unity, a tight frame is

an orthogonal basis if and only if A = B = 1. Notice that this implies that a tight frame with

frame bounds A = B = 1 is an orthogonal basis only if the elements are normalised to unity,

otherwise it is a redundant frame.

In this paper we introduce a class of redundant tight frames which are trivially obtained

by redefining the functions of an orthonormal basis to be zero outside an interval. Such a

restriction allows us to use the truncated functions to represent a given function vanishing

outside the identical interval. This has a remarkable consequence, namely, the coefficients of

the corresponding linear span are not unique. We discuss this important consequence in relation

to the truncation of the wavepacket of an harmonic oscillator. We show that, by disregarding

the non-significant tails of a function which is the superposition of the harmonic oscillator

eigenfunctions one creates a null space. As a consequence, the restriction of the wavepacket to

the reduced interval can be realized by infinitely many different coefficients giving rise to the

same function on the interval. This is, certainly, a striking result. Nevertheless, uniqueness can

be restored by means of one of the postulates of quantum mechanics.

The paper is organised as follows: In Section II we introduce the construction of tight

frames for the Hilbert space of functions vanishing outside an interval by simple truncation

of orthonormal basis functions. In Section III we apply these results to analyse the effect of

truncating the wavepacket of the harmonic oscillator. The conclusions are drawn in Section IV.
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2 Building tight frames from orthonormal bases

The next proposition shows that, for the space of square integrable functions vanishing outside

an interval, one can construct tight frames by simple restriction of orthonormal functions to

the corresponding interval.

Proposition 1. Let {ψn}n∈N be an orthonormal basis for L2[L1, L2], i.e.,

〈ψm, ψn〉 =
∫ L2

L1

ψ∗
m(x)ψn(x) dx = δm,n (2)

and χ[L
′

1
,L

′

2
] the characteristic function for the interval [L

′

1, L
′

2], i.e,

χ[L
′

1
,L

′

2
](x) =

{

1 if x ∈ [L
′

1, L
′

2]
0 otherwise.

Functions {ψ′
n}n∈N, obtained as ψ′

n(x) = χ[L
′

1
,L

′

2
](x)ψn(x), n ∈ N, with [L

′

1, L
′

2] ⊂ [L1, L2],

constitute a tight frame for the subspace W of square integrable functions vanishing outside

[L
′

1, L
′

2].

Proof. On the one hand, since {ψn}n∈N is an orthonormal basis of L2[L1, L2], for all f ∈

L2[L1, L2] we have

||f ||2 = 〈f, f〉 =
∑

n∈N

〈f, ψn〉〈ψn, f〉. (3)

On the other hand, for all f ∈ W it is true that χ[L
′

1
,L

′

2
]f = f and we further have:

∑

n∈N

〈f, ψ′
n〉〈ψ′

n, f〉 =
∑

n∈N

〈fχ[L
′

1
,L

′

2
], ψn〉〈ψn, χ[L

′

1
,L

′

2
]f〉 = ||f ||2,

which proves that {ψn}n∈N is a redundant tight frame for W, since the elements ψ′
n are not

normalised to unity.

We prove next that, through the finite subset of frames elements ψ′
1, . . . , ψ

′
N constructed

as indicated in Proposition 1 we can construct the orthogonal projection of f onto S =

span{ψ1, . . . , ψN}, restricted to [L
′

1, L
′

2].
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Proposition 2. Let ψ′
1, . . . , ψ

′
N be as defined in Proposition 1, and for each f ∈ W let us define

a function fN as:

fN =

N
∑

i=1

ψ′
i〈ψ′

i, f〉. (4)

The function given in (4) satisfies:

fN =

{

P̂Sf(x) if x ∈ [L
′

1, L
′

2]
0 otherwise,

where P̂S stands for the orthogonal projector operator onto S.

Proof. Since {ψ1, . . . , ψN} is an orthonormal set for L2[L1, L2], the orthogonal projection of

f ∈ L2[L1, L2] onto S is given as

P̂Sf =

N
∑

i=1

ψi〈ψi, f〉. (5)

For f ∈ W it holds that
N
∑

i=1

ψi〈ψi, f〉 =
N
∑

i=1

ψi〈ψ′
i, f〉.

Then

P̂Sf =
N
∑

i=1

ψi〈ψ′
i, f〉, (6)

and the proof follows by multiplication of both sides of the equation by χ[L
′

1
,L

′

2
].

A convenient property of tight frames is that the coefficients of a linear span in a tight

frame superposition are obtained by inner products with the frame functions. In our context

this implies that the coefficients of an orthonormal expansion and the ones to span a function

in W by means of the frame in Proposition 1 are computed in an equivalent manner. The

essential difference is that, as discussed below, the coefficients in the frame superposition are

not unique.

Let us consider the frame constructed in Proposition 1 and let us define S ′ = span{ψ′
1, . . . , ψ

′
N}.

For every f ∈ S ′ ⊂ W we have:

f =
N
∑

n=1

cnψ
′
n, with cn = 〈ψ′

n, f〉. (7)
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Since f ∈ W it is true that cn = 〈ψ′
n, f〉 = 〈ψn, f〉 and the equivalence with the orthonormal

case follows. However, the redundancy of the frame implies that the coefficients in (7) are

not unique. Indeed, since a redundant frame is linearly dependent, the following situation can

occur:

0 =

N
∑

n=1

c′nψ
′
n, for

N
∑

n=1

|c′n|2 6= 0. (8)

Taking inner product both sides of the equation on the left with each ψ′
m we have

0 =
N
∑

n=1

c′n〈ψ′
m, ψ

′
n〉, (9)

that we can recast as

0 = G~c′ (10)

where G is a matrix of elements gm,n = 〈ψ′
m, ψ

′
n〉 , n,m = 1, . . . , N and ~c′ a vector, the com-

ponent of which are the coefficients c′n, n = 1, . . . , N . Equations (8) and (10) imply that the

general form for (7) is

f =

N
∑

n=1

cnψ
′
n +

N
∑

n=1

c′nψ
′
n, (11)

with cn, n = 1, . . . , N given in (7) and c′n, n = 1, . . . , N the components of a vector ~c′ ∈ null(G).

It is appropriate to stress the significance of Proposition 1 when the interval [L1, L2] is

actually the whole real line. Then, for numerical calculations one is obliged to work on a finite

domain. An important consequence of this fact will be discussed in the next section.

3 On the truncation of the harmonic Oscillator wavepacket

We show here that the results of the previous section are relevant to the analysis of the trun-

cation of the wavepacket of the harmonic oscillator. To this end we simulate two different

situations, which are specially devised to illustrate the phenomenon we wish to discuss.

Let us consider that a normalised to unity function Ψ(x) ∈ H is generated as linear super-

position of the harmonic oscillator eigenfunctions, i.e.,

Ψ(x) =
N
∑

n=1

cn
e−0.5x2

Hn(x)
√

2n−1(n− 1)!
√
π
, n,m = 1, . . . , N, (12)
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where we have written ψn(x) =
e−0.5x

2

Hn(x)√
2n−1(n−1)!

√
π
in terms of the Hermite polynomial Hn(x) . The

coefficients cn, n = 1, . . . , N in (12) are simulated according to the equation:

cn =
e−0.0032(n−80)2

√

∑N

n=1 e
−0.0064(n−80)2

. (13)

We consider N = 160. The left graph of Figure 1 depicts the corresponding function for

x ∈ [−1, 30]. Since the values Ψ(x) are very small outside this interval (Ψ(−1) = 8.7 × 10−11

and Ψ(30) = 2.7 × 10−92) one does not commit a significant error by calculating expectation

values using this domain. In order to illustrate this fact let us calculate x and x2 as

x =

∫ 40

−40

|Ψ(x)|2x dx = 12.56967570231863

x =

∫ 30

−1

|Ψ(x)|2x dx = 12.56967570231863 (14)

x2 =

∫ 40

−40

|Ψ(x)|2x2 dx = 158.4912423027778

x2 =

∫ 30

−1

|Ψ(x)|2x2 dx = 158.4912423027777. (15)

The difference in the values of x cannot be observed in the given format and the values of

x2 differ only in the last of the 16 digits. Thus one could conclude that, for the purpose

of computing expectation values, neglecting the tails of the distribution outside the interval

x ∈ [−1, 30] is not harmful. However, the assumption that |Ψ(x)| = 0 for x /∈ [−1, 30] has a

tremendous consequence: the coefficients of the superposition (12) are thereby not unique. In

order to illustrate this we compute the vectors in the null space of matrix G of elements

gm,n =

∫ 30

−1

Hm(x)Hn(x)
e−x2

√

2m−1(m− 1)!2n−1(n− 1)!π
dx. (16)

We use just one of the eigenvectors spanning null(G), say the vector ~c′, to construct the coeffi-

cients c′′n = cn + c′n, n = 1, . . . , 160, with cn as in (13) and c′n, n = 1, . . . , 160 the components of

~c′ ∈ null(G). The right graph in Figure 1 plots the coefficients c′′n. We use now these coefficients

to construct the function Ψ′′(x). By calculating

||Ψ′′ −Ψ|| =
√

∫ 30

−1

|Ψ′′(x)−Ψ(x)|2 dx = 1.4198× 10−18 (17)
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we do not see any significant difference in the functions. However ||~c′′ − ~c|| = ||~c′|| = 1, which

clearly shows that the function are considering can be generated in many different ways on the

interval [−1, 30]. Even considering the interval [−10, 40] null(G) is still not empty. It would be

empty for [−15, 40], though, but only if the maximum number of states N = 160 is maintained

fixed.

It should be noted that, although the ‘critical’ interval depends on the number N and a

smaller value of N would decrease the length of the critical interval, there is room for ad-

justments. Indeed, by considering zero the coefficients which do not intervene in the original

superposition, but allowing the transformation to have larger dimension, the critical interval is

enlarged. Notice that this opens the possibility of producing the identical function by means

of states that were not present in the original superposition. The next example illustrates this

situation.

Consider that the coefficients of the superposition (12) are now simulated as

cn =
e−n

√

∑20
n=1 e

−2n

, n = 1, . . . , 20 (18)

The corresponding function Ψ(x) is plotted in the left graph of Figure 2. In this case the

critical interval yielding lack of uniqueness is included in the main support of Ψ(x). Hence, the

restriction to such an interval is not possible. Now, increasing the value of N to 130 for instance,

and considering cn = 0, n = 31, . . . , 130, the function Ψ(x) does not change. Nevertheless,

we have a 130 × 130 matrix G constructed by extending the interval to one containing the

most significant support of Ψ(x) (in this case [−7 , 10]). Taking one of the vectors in null(G)

we construct the coefficients ~c′′ by an equivalent process as in the previous example. With

this coefficients, plotted in the right graph of Figure 2, we construct the graph on the left of

Figure 2. Notice that, the fact that coefficients c′′n have significant values for n = 31, . . . , 130,

implies that Ψ(x) can be realized by states which were not present in the original superposition.
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Nevertheless, the average energy is the same. Indeed,

E = 〈ψ′′, Ĥψ′′〉 =
N
∑

n=1

N
∑

m=1

(c∗n + c′n
∗
)〈ψ′

n, Ĥ(cm + c′m)ψ
′
m〉 (19)

and, since by hypothesis
∑N

m=1 c
′
mψ

′
m,= 0, it follows that

E =
N
∑

n=1

N
∑

m=1

c∗n〈ψ′
n, Ĥcmψ

′
m〉 = 〈ψ′, Ĥψ′〉. (20)

This result stresses the point that was made initially. Namely, that without normalising the

coefficients, there could be infinitely many different ways of realizing the harmonic oscillator

wavepacket on a finite interval. However, according to quantum mechanics each |c′′n|2 represents

the probability of finding the harmonic oscillator in the state n. Hence, to be able to maintain

this interpretation we must impose the normalisation condition on the coefficients c′′n. As a

consequence, we cannot use a vector ~c′ of arbitrary norm. In fact, in order to construct a

normalised vector we need to consider ~c′′ = ~c +D~c′, with ~c′ ∈ null(G) and D a constant to be

determined by the condition ||~c′′||2 = 1. Writing this condition explicitly we have

||~c′′||2 = ||~c||2 +D〈~c, ~c′〉+D∗〈~c′,~c〉+ |D|2||~c′||2 = 1, (21)

and, since ~c′ and ~c are orthogonal to each other we further have

||~c′′||2 = ||~c||2 + |D|2||~c′||2 = 1. (22)

The value of ||~c||2 is fixed by the function Ψ(x), in our case ||~c||2 = 1. Thus, the only possible

solution to the above equation is D = 0. This leads to the conclusion that amongst all the

possible superposition giving rise to the same function Ψ(x) on the interval, there is only one

which is consistent with the physical significance of quantum mechanics.

4 Conclusions

An interesting result, arising by limiting the domain of a normalised function which is the

superposition of the harmonic oscillator eigenfunctions, has been discussed. It was shown that,
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when restricted to a finite interval, such a function can be realized in many different ways.

Although the mean values of the physical quantities are not affected in any significant manner,

they can be the result of infinitely many different combinations of eigenfunctions. Uniqueness

is restored by endowing the function with the significance of a wavepacket. It was proved that,

in that case, there is only one set of coefficients that can fulfil the normalisation condition.
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