
FogFS: A Fog File System For
Hyper-Responsive Mobile Applications

Andreas Pamboris1, Panayiotis Andreou2, Irene Polycarpou3, George Samaras4

1University of Central Lancashire and JARVIC Ltd, apamboris@uclan.ac.uk
2University of Central Lancashire and JARVIC Ltd, pgandreou@uclan.ac.uk

3University of Central Lancashire, ipolycarpou@uclan.ac.uk
4University of Cyprus, cssamara@cs.ucy.ac.cy

Abstract—Hyper-responsive mobile applications, such as aug-
mented reality and online games, require ultra-low latency access
to back-end services and data at runtime. While fog computing
tries to meet such latency requirements by placing corresponding
back-end services and data closer to clients, for e.g., within an
access network, assuming a fixed back-end server throughout
execution is problematic due to user mobility. A more flexible
approach is thus required to allow for adapting to changes in
network conditions when users roam, by relocating back-end
services and data to closer available infrastructure. Support
for real-time migration of software services exists, however,
migrating associated disk state remains a bottleneck. This paper
presents FOGFS, a fog file system that employs intelligent snap-
shotting, migration and synchronization mechanisms to speed
up the migration of an application’s disk state between different
edge locations at runtime. The experimental evaluation of our
prototype implementation reveals that the attainable speed-up is
as much as 3.3× compared to conventional migration approaches.

Index Terms—fog file system, hyper-responsive mobile client
applications, disk state migration, fog computing, edge computing

I. INTRODUCTION

Smart-phones have become the predominant computing
devices of choice nowadays, however, mobile applications
are still constrained by their limited computational resources.
Code-offloading approaches have been proposed in the past to
leverage more powerful cloud-based resources for better per-
formance [1]–[3]. Nevertheless, they often require transferring
back and forth application data stored on mobile devices, which
comes at a cost that may mask any attainable performance
gains due to offloading. To address this problem, previous
work focuses on statically partitioning applications and their
state across a mobile device and a cloud-based server [4],
[5]. Alternatively, applications may (by design) adhere to the
client-server model, which ensures that back-end data and
computations are collocated in the cloud. What is common in
all such approaches is the fact that applications are ultimately
split into two parts: the client, hosted on mobile devices, and
the back-end, hosted on a particular cloud-based machine.

Hyper-responsive applications are a special category of
clients that are adversely affected by high network latencies.
For e.g., augmented-reality systems [6] require fast access to
powerful servers in order to achieve seamless interactivity
with the real world, while online gaming clients need to

communicate in real time through centralized game services [7].
To satisfy such stringent latency requirements, fog-computing
practices have emerged, which aim at placing back-end
application components closer to the end user, for e.g., at
the edge of an access network [8], [9]. Nevertheless, deciding
the placement of back-end components a priori is often not as
beneficial as one would expect due to user roaming. This has
led to approaches that support switching between a predefined
set of available edge servers based on the user’s location
during execution [10]. Nevertheless, while migrating back-end
software processes from one edge server to another can be
done efficiently, migrating an application’s (potentially large)
disk state in real time remains an open challenge.

This paper presents FOGFS, a fog file system that supports
fast migration of an application’s disk state between available
edge servers to reduce the total handover time between them.
A predefined set of edge servers is assumed, with each server
initially containing the same base application file system. At any
given point in time, only one server (active) is used. When users
roam, if a more suitable server (target) is available, FOGFS
caters to the migration of an application’s disk state from active
to target. To achieve this, it employs three main components:
(i) a checkpoint-based snapshotting mechanism used to
construct efficiently a minimal bundle of data for target,
allowing it to reconstruct the application’s disk state; (ii) a
migration mechanism that parallelizes different steps involved
with the migration process for better performance; and (iii) a
decentralized background synchronization mechanism that
tries to bring all available edge servers up to date with the
most recent snapshotted version of an application’s disk state,
before a new migration is requested.

In summary, the contributions of this paper are: (i) it
describes the design and implementation of FOGFS; and
(ii) it demonstrates experimentally the potential of FOGFS
to significantly speed up the migration of an application’s disk
state, compared to conventional approaches.

II. RELATED WORK

A. Edge/Fog Computing

The Mobile Edge (or Fog) Computing (MEC) paradigm [8]
stemmed from the early work by Satyanarayanan et al. [9],
who first envisioned a new system architecture for exploiting

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/188182217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processing and storage capabilities at the edge of access
networks. The idea of deploying micro data centers (referred
to as cloudlets) in close proximity to mobile users resonated
well with academic and industrial research communities, as it
promised low-latency interactions between mobile clients and
corresponding back-end services. As such, many have followed
up on this vision, effectively identifying and addressing several
challenges associated with MEC [11].

One such challenge relates to user mobility: mobile users
that distance themselves from specific edge servers cause
an increase in the network latency separating them from
edge services. The follow-me cloud concept [10] proposes an
architecture that allows edge services to migrate in unison with
the user’s movement patterns. To date, research has been done
on related challenges, for e.g., mobility-aware online service
placement frameworks [12], [13], hybrid edge deployment
models for sharing edge infrastructure at scale [14], and plat-
forms for migrating software services across edge servers [15].
However, the challenge of migrating an application’s disk state
fast enough remains open. Existing approaches either ignore the
problem altogether, or employ standard migration mechanisms
such as: (i) transferring the entire disk state at the destination
edge location; or (ii) migrating entire Virtual Machines (VMs),
with significant associated overheads involved. FOGFS tries to
address this challenge through a more efficient approach that
is tailored to the fog computing context.

B. VM Migration

The de facto standard for VM migration is live migra-
tion [16], which aims at minimizing service down time by
allowing a VM instance to continue executing while migration
is in progress. The process involves multiple iterations during
which updates made to the VM state (during the previous
iteration) are transmitted over to the destination host. Eventually,
the source VM instance is suspended and all remaining
modified state is sent to the destination host. As discussed
in [17], live migration is inappropriate in the context of fog
computing, since what matters the most is reducing total
handover time (as opposed to service down time), which
guarantees a faster switch to nearby edge infrastructure.

Existing VM migration approaches typically employ some
form of incremental file synchronization mechanism, such
as rsync [18], to encode and transmit only the difference
between files residing on different hosts. Such mechanisms
use a rolling hash function approach to compare different
versions of the same file across hosts. FOGFS also employs
a delta-encoding mechanism to infer the differences between
two versions of an application’s disk state. However, since, by
design, both versions are available on the source host (active),
it does so more efficiently, avoiding unnecessary network
communication.

III. FOGFS DESIGN AND IMPLEMENTATION

FOGFS operates across a predefined set of edge servers,
out of which only one is active at any given point in time.
Activation of a different server (target) happens in order to

adapt to changes in network conditions when corresponding
users change their location at runtime. FOGFS handles the
migration of the application’s disk state. It comprises three
main components that collectively aim at minimizing total
handover time between edge servers, which are described next.

A. Checkpoint-based Snapshotting Mechanism

The first component is a checkpoint-based snapshotting
mechanism used to create fast snapshots of an application’s disk
state (Fig. 1a). A snapshot is taken at well-defined checkpoints,
i.e., right before a new migration begins, and contains only the
differences between the up-to-date version of the application’s
disk state and the version at the previous checkpoint (i.e., when
active last commenced operation).

1) Tracking disk state changes at runtime: FOGFS leverages
OverlayFS [19], a layered union file system to distinguish
between modified and unmodified application data files. Over-
layFS supports overlaying the contents of one directory onto
another and uses Copy-on-Write semantics to keep track of
modifications at runtime. Behind the scenes, a file system is
split into two main directories, upper and lower. Initially, all
of an application’s files are included in lower, which is a read-
only directory. File access through OverlayFS first attempts
to retrieve data from upper, and only defaults to lower if
a file is not found. Any attempt to modify a file in lower
automatically creates a copy in upper, which is the one that is
actually modified. As a result, the base files remain unmodified
in lower. Deleted files are removed from upper, if present, and
their deletion is transparently logged.

FOGFS uses the above-mentioned mechanism as follows:
(i) when a new server is activated, an OverlayFS instance
is mounted, which contains all of an application’s (up-to-
date) files in lower; (ii) throughout execution, changes to
the application’s disk state are tracked (as described above);
(iii) once a new server activation is requested, a snapshot of
the application’s disk state is taken (see §III-A2); and finally
(iv) upon migrating to target, all of active’s upper files are
copied into lower (replacing previous versions accordingly),
deleted files are also deleted from lower, and the OverlayFS
instance is re-mounted.

2) Creating snapshots: To create a snapshot of an applica-
tion’s disk state, first all new files on active are bundled together
using the tape archiving (tar) utility [20], which also supports
compression of multiple files. Furthermore, FOGFS creates a
list of deleted files, which are referenced by their corresponding
full-path file names. Finally, it uses the diff utility [21], which
is a data comparison tool, to calculate the difference between
the two versions of modified files, included in lower and upper,
respectively. diff is line-oriented and attempts to determine the
smallest set of deletions and insertions for creating one file
from the other. Its output is called a patch and can be applied
to the previous version of a given file in target in order to
bring it up to date. FOGFS creates a mapping between patches
and unique file names, which is included in the snapshot along
with the corresponding set of patches.

active O
ve

rla
yF

S

upper

lower

Upon
server

activation
File BFile A

. . .

During
execution

upper

lower File BFile A
Modify

Delete File A

File C Log file
- Del B New

Snapshot
1. List of deleted files (in Log file)
2. Compressed archive of new files
 (upper - lower)
3. For each file F in upper
 patchF = Fupper diff Flower

Upon new
migration
request

(a) Checkpoint-based snapshotting mechanism

. . .

active

Snapshot version?

target

1

1n - 1

n

Snap 2Create
Snap n

Snap 3.
.
.

Snap n

Apply Snap n

Apply Snap 2

Apply Snap 3

Applying Snapshots

Copy
new

files in
lower

Delete
files
from
lower

Apply
patch

on file A
…

(b) Migration mechanism

active

target

1
n - 1

n

 (1) Migrate

 (2) Send Snapn

 (3) Send Snapn Send Snapn

prev_active

 . . .

(c) Background synchronization mechanism

Fig. 1: FOGFS Components

All aforementioned data and meta-data constitute a snapshot
of an application’s disk state, which is sent to target as part
of the migration process. Each snapshot is assigned a unique
identifier that denotes the chronological order of corresponding
checkpoints, i.e., the identifier of the most recent snapshot
taken is set to the identifier of the last snapshot received by
active incremented by one. Provided that target’s version of an
application’s disk state is the same as the one of the previous
checkpoint, reconstructing the most up-to-date version on target
is trivial: all new files are copied into target’s lower directory;
all deleted files are removed from lower; and all modified files
are updated in lower by applying all corresponding patches.

B. Migration Mechanism

FOGFS’s migration mechanism is described in Fig. 1b.
While active always has access to all preceding snapshots
of the application’s disk state, used to reconstruct it when last
activated, this may not be the case for target. Since server
activations are arbitrary, active may have been preceded by
a server other than target. For e.g., consider the following
sequence of server activations: servers S1, S2 and S3. When the
handover between corresponding pairs of the aforementioned
servers takes place, S1 contains snapshot Snap1, S2 contains
Snap1 and Snap2, while S3 contains Snap1, Snap2 and Snap3.
If a migration from S3 to S1 is next in line, the former would
have to provide the latter with Snap2 and Snap3, to be applied
(in order) to S1’s version of the disk state.

FOGFS’s migration mechanism involves a two-level con-
current operation of processes, which aim at reducing, to the
extent possible, the overall migration time. Before commencing
a migration, a first round of communication between active and
target informs the former of the latter’s most recent snapshot,
say X . Thereafter, active starts sending all snapshots whose
identifier is greater than X in ascending order. In parallel,
active starts preparing the last snapshot, which contains the
most recent changes made to the application’s disk state. target
on the other hand starts receiving consecutive snapshots, which

are immediately applied to its current version of the disk state,
in the order that they are received. For each snapshot received
by target, multiple independent operations happen in parallel:
(i) all new files are copied into lower; (ii) all deleted files are
removed from lower; and (iii) patches are applied concurrently
to all of lower’s affected files.

C. Background Synchronization Mechanism

FOGFS’s background synchronization mechanism tries to
bridge the gap between edge servers before the next migration
takes place, by bringing their copy of the application’s disk state
”closer” to the one last snapshotted. This improves migration
efficiency by removing the need for several rounds of snapshot
transmission/processing from the critical path of the migration
work-flow.

This mechanism is described in Fig. 1c. All edge servers
that were activated at some point maintain a reference to
their predecessor active server, coined prev_active. When a
migration from active to target completes, the former attempts
to send its most recent snapshot to prev_active. This carries
on recursively in an attempt to propagate the most recent disk
state changes to as many edge servers as possible. The process
terminates when either: (i) the edge server contacted already
has the corresponding snapshot (for e.g., when prev_active is
equal to target); or (ii) prev_active references no other server
(first server activated).

FOGFS’s background synchronization mechanism does not
guarantee that all available edge servers will eventually obtain
the most recent snapshot. Instead, it is a fully decentralized, best
effort approach, which avoids all associated challenges faced
by centralized alternatives, namely with regards to complex
management, fault-tolerance and scalability.

IV. EVALUATION

This section demonstrates experimentally the potential of
FOGFS to significantly speed up the migration of an applica-
tion’s disk state across different edge servers.

TABLE I: Disk state version difference per checkpoint

Checkpoint S1 S2 S3 S4 S5 Diff.

Initially base base base base base –
(S1, S2) Snap1 base base base base 1
(S2, S3) Snap1 Snap2 base base base 2
(S3, S4) Snap1 Snap2 Snap3 base base 3
(S4, S5) Snap1 Snap2 Snap3 Snap4 base 4
(S5, S1) Snap1 Snap2 Snap3 Snap4 Snap5 4

A. Experimental Methodology

1) Emulation Environment: Experiments were carried out
in an emulated network environment using the CORE network
emulator [22]. In particular, the topology used consists of
five edge servers (referred to as S1–S5), which are intercon-
nected through links that support data transfer rates of up
to 100 Mbps, which is what is supported by ethernet-speed
backhaul networks [23]. The hardware resources shared by
the server nodes are: 8192 MB of RAM; a quad-core Intel
i7-6700K (@4.00 GHz) CPU; and 500 Gb of SSD storage.

2) Workload Generator: A workload generator was im-
plemented using the Python scripting language to emulate
back-end services making changes to an application’s disk
state DS of size DSSize. The three types of changes possible
are: (i) addition of new files; (ii) deletion of existing files; and
(iii) modification of files, which entails adding and deleting data
within existing files. The workload generator accepts as input
the overall percentage of differences (DiffRate) between two
consecutive checkpoints. Assuming a total size of: (i) new files
(new); (ii) deleted files (deleted); (iii) additions within existing
files (f ile_additions); and (iv) deletions within existing files
(f ile_deletions), DiffRate is defined as follows:

Di f f Rate =
new+deleted + f ile_additions+ f ile_deletions

DSSize
Files in DS ranged in size between 50–100 MB. Changes to

DS were such that: (i) DSSize remained the same; and (ii) the
specified DiffRate was attained. Furthermore, the workload
generator ensured an even spread of the different types of
changes possible. It was found empirically that the actual num-
ber of new and deleted files had a negligible impact on overall
migration efficiency, as long as their contribution to DiffRate
remained the same. For e.g., adding one new file of size S, or
two new files of size S/2 does not affect FOGFS’s migration
performance. Given the above, the workload generator was
designed as follows:

i) Add a new file of size Di f f Rate
3 ×DSSize.

ii) Delete files until Di f f Rate
3 ×DSSize data are deleted.

iii) Delete Di f f Rate
6 ×DSSize data from files at random.

iv) Add Di f f Rate
6 ×DSSize data to files at random.

3) Experiments: We compare the performance of FOGFS
against two conventional alternatives: (i) BASELINE that
simply copies over the entire DS from active to target;
and (ii) DIFF&PATCH, a simple delta-encoding approach
that encodes and transmits only the changes made to DS.
DIFF&PATCH uses the same techniques with FOGFS for

tracking changes and producing corresponding patches, albeit
without FOGFS’s cleverness with regards to scheduling migra-
tion tasks and synchronizing DS snapshots in the background.

All three approaches are compared on the basis of end-to-end
migration time, which is measured as the time spent from when
a new migration initiates until the most updated version of DS
is ready for use on target. For each experiment, a total of five
migrations were triggered between all edge servers (S1–S5),
the sequence of which was chosen to cover a range of DS
version differences between active and target (not accounting
for FOGFS’s background synchronization mechanism). More
precisely, S1 was initially set to be active. Migrations from
active to target, which correspond to checkpoints denoted by
(active, target), happened in the following order: (S1, S2), (S2,
S3), (S3, S4), (S4, S5) and (S5, S1). All edge servers started
off with the same base DS. Thereafter, for each successive
checkpoint, the difference between the DS versions of active
and target is shown in Table I.

A variable-sized application disk state was considered. Since
for different values of DSSize, the difference in relative
performance gains achieved using FOGFS was negligible,
and in the interest of space, the remainder of this section
presents only the results obtained for small and medium-
sized DS (containing files totaling 500 MB and 2.5 GB worth
of data, respectively). Finally, the workload generator was
configured appropriately to produce a variable amount of
updates to active’s DS, which is specified through DiffRate.
More specifically, we varied DiffRate from 10–40%, which
empirically proved to be enough to stretch FOGFS to its limit,
as discussed in §IV-B4.

B. FogFS Migration Efficiency

FOGFS’s performance is compared against that of BASELINE
and DIFF&PATCH for disk state sizes of 500 MB (Fig. 2)
and 2.5 GB (Fig. 3). Each figure includes three graphs, each
corresponding to a different Di f f Rate (ranging from 10–30%).
The bottom x-axis shows the different checkpoints, while the
top x-axis shows the corresponding DS version difference
between active and target at each checkpoint. Since the relative
performance gains achieved by FOGFS follow similar trends
for both DSSizes considered, our analysis primarily references
the results for the 500 MB DS (Fig. 2).

1) BASELINE Vs. DIFF&PATCH: As expected, the perfor-
mance of BASELINE is roughly the same in all experiments,
since it simply copies active’s version of DS over to target—
DSSize does not change. The DIFF&PATCH approach, however,
manages to significantly reduce migration time by as much
as 4.2×—when the difference between active’s and target’s
DS versions is equal to one (Fig. 2a). The reason for this
is that DIFF&PATCH only transmits the changes between
the two versions. Nevertheless, as the version difference
increases from 1–4, the speed-up factor gradually decreases to
approximately 1.4× due to the fact that more changes between
the corresponding DS versions need to be transmitted/processed.
For e.g., while a version difference of one implies changes
of the amount of Di f f Rate×DSSize, a higher DS version

 0

 10

 20

 30

 40

 50

 60

 70

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S1)

1 2 3 4 4

M
ig

ra
ti
o

n
 t

im
e

 (
s
)

Checkpoint - (active, target)

Vers. Diff:

Baseline
Diff&Patch

FogFS

(a) Di f f Rate =10% changes

 0

 10

 20

 30

 40

 50

 60

 70

 80

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S1)

1 2 3 4 4

M
ig

ra
ti
o

n
 t

im
e

 (
s
)

Checkpoint - (active, target)

Vers. Diff:

Baseline
Diff&Patch

FogFS

(b) Di f f Rate =20% changes

 0

 20

 40

 60

 80

 100

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S1)

1 2 3 4 4

M
ig

ra
ti
o

n
 t

im
e

 (
s
)

Checkpoint - (active, target)

Vers. Diff:

Baseline
Diff&Patch

FogFS

(c) Di f f Rate =30% changes

Fig. 2: FOGFS vs. BASELINE and DIFF&PATCH (migration time for DSSize=500 MB)

 0

 50

 100

 150

 200

 250

 300

 350

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S1)

1 2 3 4 4

M
ig

ra
ti
o

n
 t

im
e

 (
s
)

Checkpoint - (active, target)

Vers. Diff:

Baseline
Diff&Patch

FogFS

(a) Di f f Rate =10% changes

 0

 50

 100

 150

 200

 250

 300

 350

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S1)

1 2 3 4 4

M
ig

ra
ti
o

n
 t

im
e

 (
s
)

Checkpoint - (active, target)

Vers. Diff:

Baseline
Diff&Patch

FogFS

(b) Di f f Rate =20% changes

 0

 100

 200

 300

 400

 500

(S1, S2) (S2, S3) (S3, S4) (S4, S5) (S5, S1)

1 2 3 4 4

M
ig

ra
ti
o

n
 t

im
e

 (
s
)

Checkpoint - (active, target)

Vers. Diff:

Baseline
Diff&Patch

FogFS

(c) Di f f Rate =30% changes

Fig. 3: FOGFS vs. BASELINE and DIFF&PATCH (migration time for DSSize =2.5 GB)

difference, of say X , roughly translates to changes of as much
as Di f f Rate×DSSize×X .

The same applies when the workload generator is configured
to make more changes to DS between two consecutive check-
points, which is controlled through the Di f f Rate parameter
(Fig. 2b and 2c). As Di f f Rate increases from 10–30%, more
changes to DS occur, which leads to a decrease in performance
gains. For e.g., for a DS version difference of one, the
corresponding speed-up factors when Di f f Rate increases to
20% and 30% are 2.2× and 1.8×, respectively.

Beyond a certain amount of changes between active’s and
target’s DS versions, DIFF&PATCH starts under-performing
compared to BASELINE. The reason is that any gains in data
transmission are no longer enough to mask the cost of additional
processing required by DIFF&PATCH (calculating and applying
patches to target’s DS). In particular, for Di f f Rate ≥ 20% and
DS version differences of three and above, BASELINE performs
better than DIFF&PATCH.

2) Effect of FOGFS migration mechanism: Without account-
ing for the background synchronization mechanism, FOGFS’s
performance follows similar patterns as those described for
DIFF&PATCH. The performance gains over BASELINE gradu-
ally decrease as the amount of changes between active’s and
target’s DS versions increases, either due to a larger difference
between the DS versions of the two, or due to an increased

Di f f Rate. Nevertheless, FOGFS consistently improves over
DIFF&PATCH due to its efficient migration mechanism, which
employs a two-level concurrent approach (see §III-B). When
the DS version difference between active and target is one,
the improvement is negligible since there is not enough
scope for parallelism—only the most recent snapshot needs
to be transmitted and processed. However, for larger version
differences, FOGFS significantly outperforms DIFF&PATCH by
approximately 1.8×. As a result, the conditions for which
BASELINE outperforms FOGFS are less conservative: for
Di f f Rate≥ 30% and DS version differences of four and above.

3) Effect of FOGFS background synchronization mechanism:
In the best case scenario, FOGFS’s background synchronization
mechanism manages to reduce the theoretical DS version
difference between active and target (captured by the top
x-axis) to one, which is the minimum possible value. This is
indeed the case for the migration that takes place at checkpoint
(S5, S1), since at the end of all preceding migrations, the most
recent snapshot was propagated to all other edge servers. When
this occurs, FOGFS essentially incurs the minimum possible
migration cost for a given Di f f Rate. For the configuration
used, FOGFS achieves a speed-up of approximately 3.3× over
DIFF&PATCH, which would increase with higher theoretical
version differences between active and target. In the general
case, assuming a theoretical version difference of four, FOGFS’s

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160

Speed-up

Slow-down

S
p
e
e
d
-u

p
 f
a
c
to

r
o
v
e
r

B
a
s
e
lin

e

DSDelta (%)

DSSize = 500MB; DiffRate = 30%
DSSize = 500MB; DiffRate = 40%
DSSize = 2.5GB; DiffRate = 30%
DSSize = 2.5GB; DiffRate = 40%

Fig. 4: FOGFS performance for increasing DSDeltas

migration time is expected to range between the corresponding
values reported for checkpoints (S4, S5) and (S5, S1).

4) Discussion: Overall, the relative amount of DS changes
required by target for a given migration, coined DSDelta,
determines whether FOGFS performs better than BASELINE.
Based on the configuration of the experiments ran, DSDelta
can be approximated by multiplying the DS version difference
between active and target by Di f f Rate. To identify the
threshold DSDelta beyond which BASELINE outperforms
FOGFS, we ran experiments that varied DSDelta and measured
FOGFS’s speed-up over BASELINE. We considered file systems
of sizes 500 MB and 2.5 GB, while DSDi f f was set to
relatively high values, namely, 30% and 40%. This yielded four
sets of results, which are shown in Fig. 4. While increasing
DSDelta, the speed-up achieved by FOGFS gradually decreases
in all cases, whereas beyond a certain point (around 100–120%),
BASELINE starts performing better than FOGFS.

This information can be used to devise a migration policy
that switches at runtime between FOGFS and BASELINE in
order to maximize performance. Knowing target’s most recent
DS version (say X), active can quickly calculate DSDelta by
summing the sizes of subsequent snapshots (> X) and dividing
the sum by DSSize. Based on the DSDelta threshold identified,
active could then decide dynamically whether to use BASELINE
instead of FOGFS. However, reverting to BASELINE at runtime
requires additional handling of snapshots, since for future
migrations, target will not have access to DS snapshots > X .
Realizing such a hybrid solution is left for future work.

V. CONCLUSIONS

FOGFS supports the fast migration of an application’s
disk state between available edge servers to facilitate hyper-
responsive mobile clients that require ultra-low latency access
to this data throughout execution. It comprises three main
components: (i) a checkpoint-based snapshotting mechanism
that creates fast snapshots of changes made to an application’s
disk state, which are required by newly activated edge servers;

(ii) a migration mechanism designed to speed up migrations by
taking advantage of opportunities for parallel processing; and
(iii) a decentralized background synchronization mechanism,
which further improves migration efficiency by bridging the
gap between edge servers containing different versions of the
application’s disk state, before a new migration is requested.
We experimentally evaluated our prototype implementation of
FOGFS and have shown its potential to reduce migration time
by as much as 3.3× compared to conventional approaches.

ACKNOWLEDGMENT

We thank Jiayi Fu and Michail Christou for contributing
significantly to the implementation of FOGFS. This paper is
dedicated to the memory of our loving colleague and friend,
Prof. George Samaras, who recently passed away.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in MobiSys, 2010.

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: Elastic
Execution between Mobile device and Cloud,” in EuroSys, 2011.

[3] A. Pamboris and P. Pietzuch, “EdgeReduce: Eliminating Mobile Network
Traffic Using Application-Specific Edge Proxies,” in MobileSoft, 2015.

[4] ——, “C-RAM: Breaking Mobile Device Memory Barriers Using the
Cloud,” in Transactions on Mobile Computing, 2015.

[5] A. Pamboris, “Mobile code offloading for multiple resources,” Ph.D.
dissertation, Imperial College London, UK, 2013.

[6] S. Alshaal, S. Michael, A. Pamboris, H. Herodotou, G. Samaras, and
P. Andreou, “Enhancing Virtual Reality Systems with Smart Wearable
Devices,” in MDM, 2016.

[7] M. Báguena, A. Pamboris, P. Pietzuch, M. Sichitiu, and P. Manzoni,
“Better Performance in LTE Networks with Edge Assistance: The World
of Warcraft Case,” in MOBIQUITOUS, 2015.

[8] ETSI ISG MEC., Mobile-Edge Computing - Introductory Technical White
Paper, 2014.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” in PerCom, 2009.

[10] T. Taleb, P. Hasselmeyer, and F. G. Mir, “Follow-Me Cloud: An
OpenFlow-Based Implementation,” in GREENCOM-ITHINGS-CPSCOM,
2013.

[11] U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet Deployment
in Local Wireless Networks: Motivation, Architectures, Applications,
and Open Challenges,” Journal of Network and Computer Applications,
2016.

[12] A. Ksentini, T. Taleb, and M. Chen, “A Markov Decision Process-based
Service Migration Procedure for Follow Me Cloud,” in ICC, 2014.

[13] T. Ouyang, Z. Zhou, and X. Chen, “Follow Me at the Edge: Mobility-
Aware Dynamic Service Placement for Mobile Edge Computing,” in
IWQoS, 2018.

[14] M. Baguena, A. Pamboris, P. Pietzuch, G. Samaras, M. Sichitiu, and
P. Manzoni, “Towards Enabling Hyper-Responsive Mobile Apps at Scale
Using Edge Assistance,” in CCNC, 2016.

[15] A. Pamboris, M. Báguena, A. L. Wolf, P. Manzoni, and P. Pietzuch,
“Demo:: NOMAD: An Edge Cloud Platform for Hyper-Responsive Mobile
Apps,” in MobiSys, 2015.

[16] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in NSDI, 2005.

[17] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive VM Handoff Across Cloudlets,” in Technical Report
CMU-CS-15-113, 2015.

[18] rsync, https://rsync.samba.org.
[19] N. Brown, Overlay Filesystem, https://goo.gl/D1mEQo.
[20] FreeBSD Manual Pages, https://goo.gl/QLeWP2.
[21] GNU Diffutils, https://www.gnu.org/software/diffutils/.
[22] Networks and Communications Systems Branch, CORE,

http://goo.gl/pXIZsV.
[23] HSI, What is a Backhaul?, https://www.highspeedinternet.com/resources/what-

is-a-backhaul/.

