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Abstract 

Body shape cues inferences regarding personality and health, but the neural processes 

underpinning such inferences remain poorly understood. Across two fMRI experiments, we 

test the extent to which neural networks associated with body perception and theory-of-mind 

(ToM) support social inferences based on body shape. Participants observed obese, muscular, 

and slim bodies that cued distinct social inferences as pilot experiments revealed. To 

investigate judgment intentionality, the first fMRI experiment required participants to detect 

repeat presentations of bodies, whereas in fMRI Experiment 2 participants intentionally 

formed an impression. Body and ToM networks were localized using independent functional 

localisers. Experiment 1 revealed no differential network engagement for muscular or obese 

compared to slim bodies. By contrast, in Experiment 2, compared to slim bodies, forming 

impressions of muscular bodies engaged the body-network more, whereas the ToM-network 

was engaged more when forming impressions of obese bodies. These results demonstrate that 

social judgments based on body shape do not rely on a single neural mechanism, but rather on 

multiple mechanisms that are separately sensitive to body fat and muscularity. Moreover, 

dissociable responses are only apparent when intentionally forming an impression. Thus, 

these experiments show how segregated networks operate to extract socially-relevant 

information cued by body shape. 

 

Keywords: functional MRI, body perception, theory-of-mind, body shape	  
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Introduction 

Social inferences are readily made based on body shape and posture. For instance, emotional 

states are perceived from body posture (de Gelder, 2006; de Gelder et al., 2010), while health 

and personality judgments are made based on body size and shape (Borkenau and Liebler, 

1992; Musher-Eizenman and Carels, 2009; Naumann et al., 2009; Puhl and Heuer, 2009; Sell 

et al., 2009; Stulp et al., 2015). Although bodily features cue social inferences, the underlying 

neural architecture that underpins such social evaluations is far from clear. Indeed, the 

majority of prior research has focussed on how traits and other social signals are extracted 

from faces (Todorov et al., 2013). Across two functional magnetic resonance imaging (fMRI) 

experiments, the current study reveals how distinct brain circuits function in isolation as well 

as how they interact when socially-relevant cues are available in body shape. 

Separate lines of research suggest that at least two distinct brain circuits may 

contribute to the extraction of social signals from bodies. First, patches of cortex along the 

ventral visual stream show selective responses for images of bodies compared to faces and to 

non-social stimuli such as houses and cars (Downing and Peelen, 2011). By extracting body 

shape and posture cues, signals from the fusiform body area (FBA; Peelen and Downing, 

2005; Schwarzlose et al., 2005) and extrastriate body area (EBA; Downing et al., 2001) have 

been suggested to contribute to social perception (Downing and Peelen, 2011; Quadflieg and 

Rossion, 2011; Ramsey et al., 2011). 

Second, the theory-of-mind network, which encompasses an anterior portion of medial 

prefrontal cortex, temporoparietal junction and temporal poles, is engaged when reasoning 

about others’ beliefs, desires and attitudes (Frith and Frith, 1999; van Overwalle, 2009) and is 

anatomically distinct from the body perception network (e.g., Saxe and Kanwisher, 2003). 

Importantly, the theory-of-mind network is also engaged when making trait inferences about 

other people, such as whether they are kind, helpful or generous (Mitchell et al., 2005; 



 
 

4 

Mitchell, 2009; Ma et al., 2011). Together, these prior studies show that body and theory-of-

mind networks have the necessary properties to make complementary contributions to the 

formation of social inferences based on body shape. 

As these prior studies demonstrate, there is compelling evidence for functional 

segregation in the neural architecture supporting body perception and ToM. Yet if social 

inferences require integration of perceptual with theory-of-mind representations, this implies 

that there should be functional integration between these anatomically distinct brain circuits. 

Indeed, many proposals have suggested that detecting social information from bodies 

involves a distributed neural network (de Gelder et al., 2010; Quadflieg and Rossion, 2011; 

Ramsey et al., 2011). Such proposals are consistent with research on face perception, where 

connectivity studies have revealed that regions along the ventral visual stream form part of a 

distributed neural network that exchange signals as a function of facial information content 

(Mechelli et al. 2004; Fairhall and Ishai 2007; He et al. 2015; Hermann et al. 2015; Ishai 

2008). 

To date, however, research that investigates how the body network exchanges signals 

with the ToM-network during body perception is limited to two studies (Figure 1). Brain 

regions associated with theory-of-mind show stronger functional coupling with body-selective 

patches when observing a body and making a trait-based inference about the person compared 

to a trait-neutral inference (Greven et al., 2016; Greven and Ramsey, 2017a). These studies 

suggest that body and ToM networks may exchange signals to form impressions (Greven et 

al., 2016) and recall previously stored social knowledge (Greven and Ramsey, 2017a). 

These prior studies leave several questions unanswered regarding the functional 

organisation of neural networks that extract social information from body shape. For instance, 

Greven and colleagues (2016) showed that when seeing an image of a body and reading 

statements that are trait-diagnostic, such as “She gave money to charity”, functional links are 
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formed between the ToM-network and body patches. But, social inferences regarding a 

person’s character are not only cued through explicit statements or from prior exposure to an 

individual; they can also be drawn from body shape alone (Borkenau and Liebler, 1992; 

Naumann et al., 2009; Puhl and Heuer, 2009). 

In addition, not only can trait judgments be based on different inputs such as written 

statements or body shape, they can also be made with and without an intention to form an 

impression. Even without an explicit intention to do so, we extract and process social 

information regarding other people in a spontaneous manner (Uleman et al., 2008). Moreover, 

prior neuroimaging research has shown that both intentional and spontaneous judgments 

engage core parts of the theory-of-mind network, but the response for intentional trait 

judgments engages a more widespread neural network (Ma et al., 2011). 

Across two fMRI experiments, therefore, we investigated the extent to which body 

perception and theory-of-mind networks support social inferences that are based on physical 

features alone (body shape). Based on two pilot experiments, we selected body images that 

give rise to distinct social inferences. These included images of muscular and obese 

individuals, which elicited salient and distinct social judgments, as well as images of slim 

individuals that were judged in a relatively neutral manner. By comparing images of muscular 

and obese bodies to slim bodies, we were able to investigate the neural circuits that support 

different forms of judgment content. Then by manipulating the experimental task across 

experiments, we investigated inferences that are spontaneously cued by body shape 

(Experiment 1), as well as inferences that are formed intentionally based on evaluating body 

shape (Experiment 2). 

The overarching hypothesis was that a multi-circuit neural system that spans body 

perception and theory-of-mind networks would support trait inferences from body shape. We 

measured neural network engagement in two ways. First, by measuring regional responses in 



 
 

6 

body and theory-of-mind networks, we investigated the independent contribution made from 

within each network. Second, using functional connectivity analyses, we estimated the 

contribution of functional integration between the two networks (Greven et al., 2016; Greven 

and Ramsey, 2017a, 2017b). Finding such distributed neural network engagement would 

reveal a multi-system mechanism by which social inferences about people are extracted from 

body shape. More generally, as integration between discrete brain circuits is a growing 

consideration for understanding brain function (Friston and Price, 2001; Sporns et al., 2005; 

Sporns, 2013) understanding social inference from body shape can be seen as a model 

problem that speaks to a fundamental question in human neuroscience. 

 

Materials and Methods 

Participants 

Twenty-six participants (13 females; mean ± SD age: 23.1 ± 5 years) completed the 

first fMRI experiment and twenty-five participants (17 female; mean ± SD age: 21.1 ± 4.8 

years) completed the second fMRI experiment. No participants completed both fMRI 

experiments. All participants were recruited from the Bangor community and received a 

monetary reimbursement of £15 for completing the experiment. All participants had normal 

or corrected-to-normal vision, reported no history of neurological damage and gave informed 

consent according to the local ethics guidelines. Stimuli were selected and validated for the 

fMRI experiments in two behavioural pilot experiments, each with a different set of 

participants. Pilot Experiment 1 involved 14 participants (8 females; mean ± SD age: 19.2 ± 

0.8 years) and pilot Experiment 2 involved 23 participants (17 females; mean ± SD age: 18.8 

± 0.7 years). None of the individuals in the pilot experiments participated in either of the 

fMRI experiments.  
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Stimuli and experimental procedure 

Overview: Both fMRI experiments involved identical stimuli and a similar block-

design. The main difference between Experiments 1 and 2 was task instructions. In both 

experiments, participants completed three tasks during scanning: the main experimental task, 

a body-localiser and a Theory-of-Mind (ToM) localiser (details of each task are provided 

below). Each participant’s scanning session started with a run of the body-localiser, followed 

by two runs of the main task. A further body-localiser run and two runs of the main task then 

followed. Interspersing the body-localiser between runs of the main task was done to vary the 

experience for participants and offset boredom. Participants then completed two runs of the 

ToM-localiser. The ToM-localiser was always presented after participants had completed the 

main task, to ensure that participants were not primed towards making trait inferences during 

the main task. Stimuli were presented using a desktop PC and Matlab software with 

Psychtoolbox 3 (www.psychtoolbox.org). 

Selection and validation of stimuli: To select and validate stimuli, we ran two 

behavioural pilot experiments (for full details, see Supplementary Methods). Participants 

were required to make socially-relevant judgments about silhouettes either presented under 

unlimited viewing conditions (Pilot 1) or presented briefly and backward masked (Pilot 2). 

The second pilot experiment was designed to make sure that any differences in ratings were 

present when participants had minimal exposure to the image and could not rely on a visual 

after-effect to make a judgment. Participants rated each body on how well a statement 

matched the body (with 1 being ‘not at all’ and 9 being ‘very much’; Figure 2). Like prior 

work investigating the evaluation of faces (e.g., Kramer and Ward 2010), statements were 

taken from measures of Big-5 personality dimensions (Extraversion, Conscientiousness, 

Agreeableness; Donnellan et al. 2006), as well as physical health (Ware et al., 1996). These 

four dimensions were chosen to evaluate bodies on because they had been used before to 
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assess social judgments of faces (Kramer and Ward 2010) and each dimension related to the 

kind of trait judgements based on body shape that we aimed to investigate (Puhl and Heuer, 

2009). In addition, the agreeableness dimension matched prior work on trait inferences, which 

typically showed that pro-social and anti-social statements elicit trait inferences and the 

engagement of the ToM-network more than neutral statements (Greven et al., 2016; Ma et al., 

2011; Mitchell et al., 2005). 

A series of body images were made that represented three different body shapes: 

muscular, obese, and slim (40 for Slim, 25 for Muscular and 20 for Obese). Because the focus 

of our research question was on body shape only, and to stay consistent with the stimuli used 

in the localiser, we used body silhouettes with heads removed and neutral postures (e.g., no 

crossed-arms or slouching postures; see Figure 3). Based on prior work, we were confident 

that stimuli designed in this manner would engage EBA and FBA (Downing et al., 2001; 

Greven et al., 2016; Urgesi et al., 2007). Slim bodies were selected from Greven et al. (2016), 

and images of clothed muscular and obese bodies were gathered from various websites and 

converted into silhouettes and cropped using GIMP 2.8 (www.gimp.org). Stimuli were 

presented using an iMac computer and Matlab software using Psychtoolbox. 

Ratings for each condition were compared using a one-way Analysis of Variance and 

planned comparisons (slim vs. muscular and slim vs. obese). Therefore, for each judgment 

type (e.g., Extraversion, Conscientiousness, Agreeableness, Physical Health), a one-way 

ANOVA was computed to estimate the effect of body type on ratings. Partial eta squared ("#$) 

was calculated as a measure of effect size for ANOVA. Planned contrasts were performed 

using paired t-tests. For paired contrasts, 95% confidence intervals (95% CI) are reported on 

the mean difference (Cumming, 2012) and Cohen’s dz was calculated as a measure of effect 

size by dividing the mean difference between conditions by the standard deviation of the 

difference (Cohen, 1992; Lakens, 2013). 
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Results from the ANOVA in the first pilot experiment show that judgments differed 

among the three body types (all F≥5.11, p≤.031, "#$  ≥.28). Paired contrasts showed that in 

comparison to slim bodies, muscular bodies were rated as more extraverted and healthy, but 

less agreeable (all Cohen’s dz≥0.92, Figure 3A; Supplementary Table 1). In addition, in 

comparison to slim bodies, obese bodies were rated as less extraverted, conscientious, and 

healthy (all Cohen’s dz≥0.71; Figure 3A; Supplementary Table 1). As expected, these results 

reveal clear differences in social judgements associated with each body category. 

To further improve how effective our stimuli are at triggering social inferences, we 

performed an item-analysis before completing the second pilot experiment. Based on 

judgments of physical health, we removed 4 slim bodies that were rated outside a middle 

(“neutral”) range (rating <3 and >7), as well as muscular and obese bodies (7 and 2, 

respectively) that were rated within a middle range (rating >3 and <7). By doing so, we 

reduced the body database to 72 bodies. In the second pilot experiment, which showed images 

for a shorter period of time (330 ms) and backward masked them in order to minimise visual 

after-effects, we found the identical pattern of results. For each rating scale, ANOVA showed 

differences among groups (all F≥12.60, p<.001, "#$≥.36). Subsequently, paired contrasts 

showed that relative to slim bodies, muscular bodies were rated as more extraverted and 

healthy, but less agreeable (all Cohen’s dz≥0.86, Figure 3B; Supplementary Table 1), while 

obese bodies were rated as less extraverted, conscientious, and healthy (all Cohen’s dz≥0.99, 

Figure 3B; Supplementary Table 1). The second pilot experiment demonstrates that even after 

a time-limited presentation, the body stimuli cue social inferences in a manner that we expect. 

Although slim bodies were rated within the “neutral” middle range, we do not suggest that 

social inferences are not made about slim bodies. We expect social inferences, to some extent, 

to be made about all social agents and our data only show that muscular and obese bodies are 

rated to a higher or lower degree than the comparatively neutral slim bodies. 
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From the 72 bodies rated in the second pilot experiment, a further 18 images were 

removed from the Slim condition in order have an equal number of bodies in each condition, 

resulting in a total of 54 unique bodies. To create more variety of stimuli, mirror-images of all 

54 bodies were created by flipping each image along the y-axis. The mirror-reversed and 

original images were never shown together in the same functional run. Thus, 108 body 

images were used in the main task of the fMRI experiment. 

Main experimental task: For both experiments, the main task used a block-design with 

blocks of bodies, or a fixation cross. Three different body types were presented, one body-

type per block (Muscular, Obese and Slim). In order to help effectively model the influence of 

different events on BOLD signal, block order was counterbalanced so that within each run, 

each condition was preceded equally often by all conditions (Josephs and Henson, 1999; 

Wager and Nichols, 2003; Aguirre, 2007). To provide a completely balanced block “history” 

across conditions, each run began with a “starter block”, which was not included in further 

data analysis, as it was not preceded by anything. Subsequently, four further blocks from each 

condition were presented in a counterbalanced manner (Slim, Muscular, Obese and Fixation). 

Thus, there were 17 blocks per functional run. Each participant completed 4 runs of this task, 

with 16 Slim blocks, 16 Muscular blocks, 16 Obese blocks and 16 Fixation blocks across the 

experiment. 

For each image (300 x 650 pixels) the location of presentation was slightly jittered (4 

different locations that varied by 10 pixels around a central fixation dot) to make it more 

difficult for participants in Experiment 1 from performing the 1-back task based on low-level 

after-effects from the previous image. From the four options, the location of the image on 

each trial was randomly selected. 

fMRI experiment 1: Once during each body-block, the same image was presented 

twice in a row and participants were instructed to press a button whenever they detected a 
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repetition (1-back recognition task, Downing et al. 2007; Figure 2). Each body image was 

presented for 500 ms, followed by a blank screen for 1500 ms, resulting in a total of 9 

different bodies and 1 repeat per block. Each body-block was 20 seconds in duration, with 

rest blocks 14 seconds in duration. 

fMRI experiment 2: Participants were instructed to form an impression of every body 

that appeared. To encourage participants to form impressions, at two points throughout a 

block they would be explicitly asked to rate the last body they had seen. The content of the 

statement, which could be within the categories of Extraversion, Conscientiousness, 

Agreeableness, or Physical Health, could not be predicted. The first statement could appear 

after the 2nd until the 8th image, while the second statement could appear after the 10th until the 

17th image. This was randomly decided. Ratings were provided with a button box containing 

four buttons (1 = not at all, 2 = not that much, 3 = a little bit, 4 = very much). Within each 

block, 18 images were presented for 500 ms each. On trials that did not involve rating a body, 

each image was followed by a blank screen for 1000 ms. On trials with a rating, each image 

was followed with a blank screen for 500 ms, after which a statement with a rating scale 

appeared on the screen until a response was made or for a maximum of 3000 ms (Figure 2). If 

the participant either answered within the time limit or did not respond at all, the experiment 

would automatically progress. This yielded blocks of varying duration, between 26 and 32 

seconds. 

Functional localisers: To localise body-selective brain regions we used an established 

paradigm (Downing et al., 2007; http://pages.bangor.ac.uk/~pss811/page7/page7.html). We 

presented 12-sec blocks of cars and of whole bodies (without heads). A run started with a 

blank screen for 14 seconds, followed by two alternations of each condition. This was 

repeated a second time, and followed by a final rest period of 14 seconds. Each image was 

presented for 600 ms, followed by a blank screen for 100 ms. Twice during each block, the 
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same image was presented twice in a row. Participants had to perform the same task as in the 

main task for fMRI experiment 1 (1-back task). The image location was slightly jittered in the 

same way as in the main task. Each participant completed two runs of this task, 

counterbalancing the order of the stimulus presentation (Bodies or Cars). 

To localise brain regions that respond to mental state reasoning, we used an 

established ToM-localiser (Dodell-Feder et al., 2011; http://saxelab.mit.edu/superloc.php). 

Participants read 10 short false belief stories, in which the belief characters have about the 

state of the world is false. Participants also read 10 false photograph stories, where a 

photograph, map, or sign has out-dated or misleading information. After reading each story, 

participants had to answer whether the subsequently presented statement is true or false. Each 

run started with a 12 second rest period, after which the stories and questions were presented 

for 14 seconds combined (stories: 10 seconds; questions: 4 seconds), and were separated by a 

12 second rest period. The order of items and conditions was identical for each subject. In the 

first run, stimuli 1 – 5 from each condition were presented, and the remaining stimuli were 

presented during the second block. 

 

Data Acquisition 

Both experiments were conducted on a 3 Tesla scanner (Philips Achieva), equipped 

with a 32-channel SENSE-head coil. Stimuli were displayed on a MR safe BOLD screen 

(Cambridge Research Systems: http://www.crsltd.com/) behind the scanner, which 

participants viewed via a mirror mounted on the head-coil. T2*-weighted functional images 

were acquired using a gradient echo echo-planar imaging (EPI) sequence. An acquisition time 

of 2000 ms was used (image resolution: 3.03 x 3.03 x 4 mm3, TE = 30, flip angle = 90°). 

After the functional runs were completed, a high-resolution T1-weighted structural image was 

acquired for each participant (voxel size = 1 mm3, TE = 3.8 ms, flip angle = 8°, FoV = 288 × 
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232 × 175 mm3). Four dummy scans (4 * 2000 ms) were routinely acquired at the start of each 

functional run and were excluded from analysis, before a further 160 volumes were collected 

in Experiment 1 and 223 volumes in Experiment 2. 

 

Behavioural analysis 

In the first fMRI experiment, performance on the 1-back task in the main experimental 

task was measured by calculating the d’, i.e., the difference between the z-scores (raw data 

standardised to normal distribution) for hits and false alarms (Stanislaw and Todorov, 1999). 

This was compared against 0 for all body type conditions using a one-sample t-test, to see 

whether the targets (repetitions) could reliably be detected from the noise. To assess whether 

repetition-detection differed between body types, a comparison across conditions was done 

using a one-way ANOVA. If the ANOVA revealed a significance difference, paired contrasts 

were performed. 

In the second fMRI experiment, ratings were taken both during and after scanning. 

During scanning, ratings were recorded on a 4-point scale due to the in-scanner button-box 

configuration. After scanning, ratings were taken in the same manner as the second pilot 

experiment. Data were analysed in the same manner as the pilot experiments. 

 

Preprocessing  

Data were preprocessed and analysed using SPM8 (Wellcome Trust Department of 

Cognitive Neurology, London, UK: www.fil.ion.ucl.ac.uk/spm/). Functional images were 

realigned, unwarped, corrected for slice timing, and normalized to the MNI template with a 

resolution of 3x3x3 mm and spatially smoothed using an 8 mm smoothing kernel. Head 

motion was examined for each functional run and a run was not analysed further if 

displacement across the scan exceeded 3 millimetres. In Experiment 1, for the main task data, 
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three sessions of 1 participant and one session of 2 participants were removed due to head 

motion. In Experiment 2, for the main task, one session of 1 participant was removed due to a 

technical error. In addition, three sessions of 1 participant, two sessions of 2 participants, and 

one session for 4 participants were removed due to head motion. For the ToM-localiser, data 

for one participant was corrupted and could not be used. 

 

Overview of analysis strategy 

In both experiments, we used the same three-part strategy. First, independently from 

the main task, we identified body and theory-of-mind networks using independent functional 

localisers. Second, we used a univariate model to identify if regional responses in the body 

and theory-of-mind networks showed a greater response for bodies that cue social inferences 

compared to neutral inferences (Muscular > Slim and Obese > Slim). Third, we used a 

measure of functional connectivity (psychophysiological interactions, PPI), to estimate if the 

coupling between body and theory-of-mind networks was greater for bodies that cue social 

inferences compared to slim bodies (Muscular > Slim and Obese > Slim). 

We calculated the two contrasts separately (Muscular > Slim and Obese > Slim), as 

our pilot work showed that muscular and obese bodies are perceived differently in terms of 

trait judgments and physical health and thus they may rely on partially distinct recruitment of 

body and ToM networks. Given that judgments of obese and muscular bodies related to the 

same dimensions of personality and health, it is also possible that a common neural network 

is engaged when making social judgments of obese and muscular bodies compared to slim 

bodies. To test this latter hypothesis, we also performed a conjunction analysis that tested 

whether the two contrasts engaged the same neural networks in a similar manner above a set 

significance threshold (p<.001, k=5). 
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Based on our hypotheses regarding body and theory-of-mind networks, we inclusively 

masked the contrasts from the main task by body and theory-of-mind localisers (Bodies>Cars 

and False Beliefs>False Photographs at p<.001, k=5). Inclusive masking in this manner 

makes sure that results from the main analyses are within the body or theory-of-mind 

networks. 

Univariate model and analysis: For the body and ToM localisers, a design matrix was 

fit for each participant with 2 regressors, one for each experimental condition (bodies and 

cars; false beliefs and false photographs). Body-selective regions were revealed by contrasting 

bodies and cars (Bodies > Cars). The ToM-network was revealed by contrasting false beliefs 

with false photographs (False Beliefs > False Photographs). 

For the main task, each condition was modelled from the onset of the first body for a 

duration of 20 seconds for the first fMRI Experiment and for a variable duration (between 26 

and 32 seconds) for the second fMRI Experiment. A design matrix was fit for each participant 

with 5 regressors in total; one for each body-type (3 in total), one for rest blocks, and one for 

the starter blocks. 

Psychophysiological Interaction analysis: Our hypothesis was that the social 

evaluation of bodies based on body shape would involve functional coupling between 

distributed neural circuits. Specifically, coupling was predicted between body-selective 

patches in the ventral visual stream and the ToM-network. To test this hypothesis, we used 

psychophysiological interaction (PPI) analysis (Friston et al., 1997). PPI enables the 

identification of brain regions whose activity correlates with the activity of a seed region as a 

function of a task. Here we used a generalized form of PPI, which allows for comparisons 

across the complete design space (McLaren et al., 2012). By doing so, it is possible to see 

whether any voxels across the brain show a correlation with activity in the seed region (the 
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“physiological” element) as a function of the two conditions within the main task (the 

“psychological” element). 

The functional localisers were used to define seed regions for the PPI analysis within 

the body and ToM networks. For the body-localiser, seed regions included right EBA and 

FBA. We focused on right-sided seed regions because of the greater functional understanding 

of responses in the right than left hemisphere during body perception (Downing and Peelen, 

2011, 2015). For the ToM-localiser, seed regions included bilateral TPJ, bilateral temporal 

poles (TP), mPFC, and Precuneus. Volumes were generated using a 6 mm sphere, which was 

positioned on each individual’s seed-region peak. 

PPI models for each participant included the 5 regressors from the univariate analyses, 

as well as 5 PPI regressors. PPI regressors included one for each of the three conditions of the 

design (Slim, Muscular, Obese), one for the starter block, and one that modelled seed region 

activity. 

To create the PPI regressors, the time series in the seed region was specified as the 

first eigenvariate, and was consequently deconvolved to estimate the underlying neural 

activity (Gitelman et al., 2003). Then, the deconvolved time series was multiplied by the 

predicted, pre-convolved time series of each of the five regressors (4 for the conditions, and 1 

for the starter). The resulting PPI for each condition in terms of predicted “neural” activity 

was then convolved with the canonical haemodynamic response function (HRF) with the time 

series of the seed region included as a covariate of no interest (McLaren et al., 2012; Spunt 

and Lieberman, 2012; Klapper et al., 2014). At the second-level analysis, we examined the 

same contrasts as performed in the univariate analyses (Muscular > Slim; Obese > Slim), as 

well as the same conjunction analysis of these two contrasts. 

For all group-level analyses (univariate and connectivity-based), images were 

thresholded using a voxel-level threshold of p<.001 and a voxel-extent of 5 voxels. Any 
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results that survived correction for multiple comparisons at the cluster level (Friston et al., 

1994) using a family-wise error (FWE) correction (p<.05) were identified. To localise 

functional responses we used the anatomy toolbox (Eickhoff et al., 2005). 

 

Results 

fMRI experiment 1: 

Behavioural data 

D’ differed significantly from zero for all body types (Slim: M=2.68, CI.95 [2.33, 

3.02], Cohen’s dz=3.15; Muscular: M=2.81, CI.95 [2.44, 3.17], Cohen’s dz=3.08; Obese: 

M=2.50, CI.95 [1.94, 3.06], Cohen’s dz=1.81), revealing that participants could reliably detect 

the task-relevant repetitions of all body types. Additionally, there was no significant 

difference in performance across different body types (F(2,50)=1.33, p=.27, "#$=.051). 

Neuroimaging data 

Functional localiser analyses: For the analysis of both localiser tasks, we report the 

number of participants that show a response in regions of interest at two different thresholds: 

p<.001, k=5 and p<.01, k=5 (Supplementary Table 2). The more liberal threshold of p<0.01 

was used in these localiser analyses to include data from as many participants as possible in 

subsequent PPI analyses. For the body localiser, the Bodies > Cars contrast revealed clusters 

in right FBA in 23/26 participants and right EBA in 26/26 participants (Supplementary Table 

2). For the ToM localiser, the False Belief > False Photograph contrast revealed clusters in 

right TPJ in 24/26 participants, left TPJ 25/26 participants, right temporal poles in 26/26 

participants, left temporal poles in 25/26 participants, in mPFC in 26/26 participants and in 

Precuneus in 23/26 participants (Supplementary Table 2). 

Main task univariate analyses: We predicted that bodies that cue salient social 

inferences would engage body and ToM networks more than neutral bodies. However, the 
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Muscular > Slim and Obese > Slim contrasts revealed no suprathreshold clusters within the 

body or ToM networks at the uncorrected threshold (p<.001, k=5). 

Main task Psychophysiological Interaction analyses: We predicted that bodies that 

cue salient social inferences would engage increased functional coupling between the body 

and ToM networks more than neutral bodies. For all seed regions tested, the Muscular > Slim 

and Obese > Slim contrasts revealed no suprathreshold clusters within the body or ToM 

networks at the uncorrected threshold (p<.001, k=5). 

 

fMRI experiment 2: 

Behavioural data 

During scanning, due to a technical error, body ratings were not recorded correctly 

and could not be recovered. After completing the fMRI experiment, participants took part in a 

further ratings task. Participants rated each body that they had seen previously on a scale from 

1 (“not at all”) to 9 (“very much”) on Extraversion, Conscientiousness, Agreeableness, and 

Physical Health. For one participant, the post-scanning data did not save and could not be 

analysed further. The ANOVA showed differences between body types for all rating scales 

(all F≥15.84, p<.001, "#$≥.41). Paired comparisons showed that in comparison to slim bodies, 

muscular bodies were rated as more extraverted and healthy, but less agreeable (all t≥3.73, 

p≤.001, Cohen’d≥0.91, Figure 3C; Supplementary Table 1). In addition, obese bodies were 

rated as less extraverted, conscientious, and healthy (all t≥5.44, p<.001, Cohen’d≥1.90, Figure 

3C; Supplementary Table 1). This pattern of results mirrors the results found in both pilot 

experiments (Figure 3A&B). 

Neuroimaging data 

Functional localiser analyses: For the functional localiser data, we use the same 

analytical approach as Experiment 1 and report the results in Supplementary Table 3. For the 
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body localiser, the Bodies > Cars contrast revealed clusters in right FBA in 20/25 participants 

and right EBA in 25/25 participants (Supplementary Table 3). For the ToM localiser, the 

False Belief > False Photograph contrast revealed clusters in right TPJ in 23/24 participants, 

left TPJ in 22/24 participants, right temporal poles in 23/24 participants, left temporal poles in 

23/24 participants, in mPFC in 24/24 participants and in Precuneus in 24/24 participants 

(Supplementary Table 3). 

Main task univariate analyses: When forming impressions of Muscular compared to 

Slim bodies (Muscular > Slim), two clusters emerged in the body network: Left EBA and 

right EBA extending into right FBA (Table 1 and Figure 5). Both clusters survived correction 

for multiple comparisons (FWE-correction p<.05). No suprathreshold clusters were revealed 

within the ToM-network. 

Conversely, when forming impressions of Obese compared to Slim bodies (Obese > 

Slim), no suprathreshold clusters emerged within the body-network. However, four clusters 

did emerge in the ToM-network: bilateral temporal pole and two further clusters in anterior 

medial prefrontal cortex (Table 1 and Figure 5). As illustrated in Table 1, these clusters in the 

ToM-network did not remain significant (p<.05) following FWE correction for multiple 

comparisons. The conjunction of [Muscular > Slim] and [Obese > Slim] showed no common 

regions of activity. 

Main task Psychophysiological Interaction analyses: For all seed regions, when 

forming impressions of Muscular compared to Slim bodies (Muscular > Slim), there was no 

increased functional coupling between the body network and ToM-network. 

In contrast, when forming impressions of Obese compared to Slim bodies (Obese > 

Slim), there was increased coupling between the body and ToM networks. Specifically, with 

right EBA as a seed region, there was increased coupling with right temporal pole (Table 2, 
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Figure 6). As illustrated in Table 2, the right temporal pole cluster did not survive FWE 

correction for multiple comparisons (p=.32). 

Open science: Data for all experiments in the current study are available online 

including behavioural (osf.io/p4sbr) and neuroimaging data 

(https://neurovault.org/collections/3191/). In addition, to complement the planned analyses 

that are reported above, we also report percent signal change data using a functional region of 

interest approach (Supplementary Methods). In order to aid the design of future experiments, 

these functional region of interest data are also available online (https://osf.io/p4sbr/). 

 

Discussion 

While behavioural research has investigated social inferences based on body size (Musher-

Eizenman and Carels, 2009; Puhl and Heuer, 2009; Sell et al., 2009; Stulp et al., 2015), the 

neural underpinnings of such inferences are unclear. Across two fMRI experiments, we show 

that neural networks associated with body perception and ToM make distinct contributions to 

social perception that depend on the target of a social inference (muscular or obese individual) 

and the intentionality of the judgment (spontaneous or intentional). These results show a 

division of labour between body and ToM networks when making social evaluations of 

bodies based solely on body shape. 

 

Implications for neural circuits subserving person perception 

Prior neuroimaging research has shown that anatomically distinct neural networks show 

sensitivity to body perception (Downing et al., 2001; Downing and Peelen, 2011) and ToM 

(Frith and Frith, 1999; Saxe and Kanwisher, 2003; van Overwalle, 2009). More recently, 

functional interactions between the body perception and ToM networks have been shown 

when forming links between trait-knowledge and body shape (Greven et al., 2016) and when 
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recalling trait knowledge that has previously been associated with specific bodies (Greven and 

Ramsey, 2017a, 2017b). Here we extend these lines of research to situations where inferences 

about an individual’s character are drawn based solely on body shape in the absence of any 

other social cue or knowledge. 

In the current study, person judgements based on character and health were different 

(in distinct ways) for obese and for muscular bodies, as compared to slim bodies (Musher-

Eizenman and Carels, 2009; Puhl and Heuer, 2009; Sell et al., 2009; Stulp et al., 2015). In 

addition, these distinct social appraisals were supported by a division of labour between body 

perception and ToM networks. Parts of the ToM-network (mPFC and temporal poles) were 

engaged more when forming an impression of an obese than slim figure, whereas parts of the 

body network (EBA and right FBA) were engaged more when forming an impression of a 

muscular than slim figure. In addition, when forming impressions of obese individuals, right 

EBA showed greater functional coupling with right temporal pole. These results demonstrate 

dissociable contributions of body perception and ToM networks to social judgments that are 

cued by different body shapes. Recent behavioural research supports the view that dissociable 

neural pathways may be responsible for perception of fat and muscle during body perception 

(Sturman et al., 2017). Sturman and colleagues (2017) showed that visual adaptation towards 

high body fat biased perception of body fat, but not muscle mass. Likewise, adaptation 

towards high muscle mass biased perception of muscle mass, but not body fat. The findings 

from Experiment 2 along with those by Sturman and colleagues (2017), suggest that the 

perception body of size does not rely on a single neural mechanism, but rather it relies on 

multiple mechanisms that are separately sensitive to body fat and muscularity (see also 

Johnstone and Downing, 2017). 

The response profile of the body perception network informs understanding of 

category-selectivity in ventral temporal cortex. The response in EBA and FBA was elevated 
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when the task required an explicit social inference of muscular compared to slim bodies, but 

not when the same bodies were viewed under different conditions (identity recognition – 

Experiment 1). Furthermore, even though obese bodies were physically different in size and 

shape to slim bodies, there was no additional recruitment of body perception network under 

any task conditions. These results support the view that category-selectivity in ventral 

temporal cortex cannot be reduced to task-invariant processing of visual features (Harel et al., 

2014; Bi et al., 2016; Peelen and Downing, 2017). Instead, category-selective responses 

reflect knowledge of what the object means to the observer, as well as how they interact with 

it (Peelen and Downing, 2017). In the current study, for example, when the goal was to form 

an impression rather than detect identity, visual processing of body shapes differed. It may be 

that impressions formed by evaluating cues to physical strength, which have been suggested 

to be of key evolutionary significance during social interactions (Sell et al., 2009), place 

greater visual processing demands on accurately distinguishing fine-grained body features. 

Alternatively, EBA has been shown to be engaged during the aesthetic evaluations of body 

shape (Calvo-Merino et al., 2010; Cross et al., 2011; Cazzato et al., 2014, 2016), which 

muscular bodies may trigger more than slim. In contrast, when forming impressions of obese 

individuals, identification of an obese body based on global shape may be relatively easy and 

thus reduce the demands on visual processing systems to process fine-grained body features 

before impressions can be formed. 

A different set of results emerged in the ToM-network, which should be treated more 

cautiously than results in the body network as they did not survive statistical correction for 

multiple comparisons (Eklund et al., 2016). Even though distinct social inferences were made 

for obese and muscular bodies, only forming impressions of obese bodies engaged the ToM-

network. Obese individuals were rated as less extraverted, conscientious and healthy than slim 

individuals. These judgments are consistent with obesity stigma, which characterises obese 
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individuals as lazy, unmotivated, as well as lacking in self-discipline and competence (Puhl 

and Brownell, 2001; Puhl and Heuer, 2009). By contrast, muscular individuals were rated as 

more extraverted and healthy, but less agreeable, than slim individuals. Hence, social 

inferences formed by appraising obese individuals may be associated with a richer store of 

social knowledge than muscular individuals and thus demand more cognitive processes 

associated with ToM. Prior neuroscience research has associated the temporal poles with 

representing and retrieving person knowledge (Olson et al., 2013; Wang et al., 2017) and 

functional connectivity studies have shown links between the temporal poles and the body 

perception network when perceptual and inferential information about individuals are 

integrated (Greven et al., 2016; Greven and Ramsey, 2017a). In addition, mPFC has been 

associated with making trait inferences (Mitchell et al., 2002, 2005, 2006, Ma et al., 2011, 

2014). Therefore, strong and negative person inferences that are commonly associated with 

obesity, which are not apparent for muscular individuals, may place increasing demands on 

multiple person knowledge processes such as trait-inference, person memory and/or the 

integration of multiple person features. At present, however, we are unable to distinguish 

between these proposals and future research would be required to test them directly. 

In contrast to the results when participants intentionally formed an impression of the 

target person, when the task only required the detection of repeatedly presented bodies, there 

was no evidence for differential engagement of body and ToM networks. First, these results 

demonstrate that the intrinsic physical properties of the stimuli cannot account for the results 

observed in Experiment 2. In addition, the lack of evidence for sensitivity in or between body 

and ToM networks when the task requires detection of physical features can be interpreted in 

at least two further ways. One option is that for spontaneous judgments, processes within 

body and ToM networks are indifferent to body types and operate the same when observing 

socially salient (obese, muscular) or less salient bodies (slim). Under this view, spontaneous 
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judgments require a less elaborate set of cognitive processes, which would apply equally to all 

body types. Consistent with this interpretation, prior studies that have shown functional 

interplay between body-selective and extended neural networks have used tasks that focus on 

social dimensions of bodies (Quadflieg et al., 2011; Greven et al., 2016; Greven and Ramsey, 

2017a, 2017b). A second option is that Experiment 1 represents a type-II error. Indeed, it may 

be that Experiment 1 was not sensitive enough to detect the effects under investigation. Future 

neuroimaging studies that use more sensitive measures such as multi voxel pattern analysis 

(Norman et al., 2006; Kriegeskorte et al., 2008), may be able to further probe the functional 

organisation of body and ToM networks during person perception (Wang et al., 2017). What 

seems clear based on the current study, however, is that the effect sizes associated with 

univariate and functional connectivity measures are larger when intentionally forming 

impressions of other people than when detecting repeat presentations of the same body. 

Findings from the current study suggest that intentionally making social inferences 

from bodies recruits a multi-circuit neural architecture that depends on social content. When 

task instructions do not require a social judgment, other bodily features may dominate (such 

as sex and physical identity), which are not as relevant for personality and health judgments 

and do not engage body or ToM networks. However, when the task changes, the status of 

personality and health judgments may be elevated in priority compared to other factors (such 

as sex and physical identity), which recruits body and ToM networks as well as integration 

between them. Currently this proposal remains speculative, however, and needs to be directly 

tested by future research. 

 

Limitations and movement towards a more reproducible Social Neuroscience 

Some results in the current study such as those based on functional connectivity do not 

survive correction for multiple comparisons, which renders them more likely to reflect false 
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positives (Eklund et al., 2016). Consequently, we recommend that such findings are treated 

cautiously as they require replication and confirmation. In addition, anterior temporal and 

ventral frontal regions suffer from signal dropout during fMRI, which harms the chances of 

detecting effects in these areas. We do, however, find results in these regions, which may 

suggest that our data underestimate the size of effects in these regions. To investigate the role 

of the ToM network in body perception further, future studies may choose to adopt scanning 

protocols that aim to reduce signal dropout in these areas via the use of shorter echo times, for 

example (Visser et al., 2009). It is worth noting that we did take several steps to improve 

rigour in the current study with the aim of building a cumulative platform for studying social 

neuroscience. After validating stimuli in two behavioural experiments, we conducted two 

separate fMRI experiments each with 25 or more participants (albeit different sets of 

participants, since the two studies were not performed immediately after each other). We also 

retested the stimuli in a post-fMRI behavioural experiment. In addition, by using functional 

localisers to independently identify separate functional networks, we could directly target 

neural networks in individual participants, as well as demonstrate clear a priori predictions. 

Finally, to aid meta-analyses and future experimental design, the data for both experiments 

are freely available online. 
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Table 1. Results from the univariate analysis of the second fMRI experiment for 1) the 
Muscular > Slim and 2) the Obese > Slim contrasts are presented a) masked by the body-
localiser (focussing on EBA and FBA), and b) masked by the ToM-localiser. 

Region Number 

of voxels 

Cluster P 

FWE 

Peak 

T 

Montreal 

Neurological 

Institute coordinates 

x y z 

1) Muscular > Slim 

1.a) Masked by body-localiser (EBA and FBA) 

Left inferior occipital gyrus (EBA) 46 .022 4.79 -42 -79 -2  

4.00 -45 -82 7  

Right inferior occipital gyrus (EBA) 

extending into fusiform gyrus (FBA) 

95 .006 4.47 42 -76 -8  
 

1.b) Masked by ToM-localiser 

No suprathreshold clusters 

2) Obese > Slim 

2.a) Masked by body-localiser (EBA and FBA) 

No suprathreshold clusters 

2.b) Masked by ToM-localiser 

Right temporal pole 13 .20 4.64 42 2 -38  

Left temporal pole 6 .29 4.06 -45 2 -38  

Medial prefrontal cortex 6 .29 3.79 -9 53 10  

Medial prefrontal cortex 8 .26 3.79 -6 44 28  

Note: Regions surviving a voxel-level threshold of p<.001 and 5 voxels are reported. Areas in 

bold survive FWE cluster correction for multiple comparisons. Subclusters at least 4 mm 

from the main peak are listed.	  
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Table 2. Results from the PPI analysis of the second fMRI experiment for the Obese > Slim 

contrast are presented a) masked by the body-localiser (focussing on EBA and FBA), and b) 

masked by the ToM-localiser. 

Region Number 

of voxels 

Cluster 

P FWE 

Peak 

T 

Montreal Neurological 

Institute coordinates 

 

x y z  

a) Masked by body-localiser (EBA and FBA) 

Seed regions: anterior mPFC, bilateral temporal poles, bilateral TPJ, and Precuneus 

No suprathreshold clusters 

b) Masked by ToM-localiser 

Seed regions: right EBA 

Right temporal pole 5 .32 3.88 54 8 -23  

Seed region: right FBA 

No suprathreshold clusters 

 



 

Figure 1. Neural networks supporting A) body perception, and B) Theory-of-Mind (ToM). C) 

Recent studies using functional connectivity analyses have shown that body and ToM 

networks also interact during social perception tasks that require integration of perceptual and 

inferential information about other people. 
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Figure 2. Methods for both pilot experiments and the fMRI experiment. Pilot experiment 1: 

Each body remained on screen until the participant had rated it on the statement displayed 

above the body. Pilot experiment 2: each body was displayed for 330 ms after which it was 

backward masked for 300 ms. After this the rating statement would appear on screen and 



 35 

remain there until the participant had provided the rating. fMRI experiment: to allow for 

spontaneous trait inferences, participants were not explicitly told to form an opinion of the 

bodies they saw, but instead performed a 1-back task where they had to detect a repeat. 
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Figure 3. Ratings from pilot experiment 1 and 2 and post-scanning fMRI 2. Participants rated 

muscular bodies as more extraverted and healthy, but less agreeable in comparison to slim 

bodies. Obese bodies were rated as less extraverted, conscientious, and healthy in comparison 

to slim bodies. *: p<.05, **: p<.01, ***: p<.001. Error bars show 95% confidence intervals 
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Figure 4. PsychoPhysiological Interactions (PPI) matrix and results. A) An illustration of the 

design matrix (this was the same for each run), that was created for each participant. B) The 

“psychological” (task) and “physiological” (time course from seed region) inputs for the PPI 

analysis. 
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Figure 5. Results from the univariate analyses from Experiment 2 (shown in red). The 

contrast Muscular > Slim revealed clusters of activity within bilateral extrastriate body area 

(EBA) and right fusiform body area (FBA) as identified with the body-localiser (Bodies > 

Cars: green, overlap in yellow). The contrast Obese > Slim revealed clusters of activity within 

bilateral temporal poles (TP) and medial prefrontal cortex (mPFC) as identified by the ToM-

localiser (False Beliefs > False Photographs: blue, overlap in pink). 
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Figure 6. Results from the PsychoPhysiological Interaction (PPI) analyses from Experiment 

2. Seed regions were identified using the independent localisers. PPI analyses were performed 

using each region (2 body-selective and 6 ToM regions) as a separate seed region. Clusters 

emerging from these analyses reveal the strength of correlation over time between activity in 

that cluster and that in the seed region as a function of the task. Here, when using right 

extrastriate body area (EBA) as a seed region, the contrast Obese > Slim revealed stronger 

functional coupling with right temporal pole (TP). This area overlapped with the ToM-

localiser (shown in blue; overlap shown in pink). 

 



Supplementary Table 1. Behavioural results from pilot experiments and from the post-scanning behavioural data in the second fMRI 

experiment. 

Measure  ANOVA 

Pairwise comparisons 

Slim – muscular Slim – obese 

Mean 95% CI dz Mean 95% CI dz 

Extraversion 

Pilot 1: 
F(2,26)=35.03,  

p<.001, !"#=0.73 
-1.65 [-2.27, -1.04] 1.55 2.07 [1.09, 3.04] 1.22 

Pilot 2: 
F(2,44)=34.35, 

p<.001, !"#=0.61 
-1.04 [-1.47, -0.61] 1.04 1.73 [1.11, 2.35] 1.21 

Post 

fMRI2: 

F(2,46)=61.53, 

p<.001, !"#=0.73 
-1.53 [-2.03, -1.04] 1.30 2.04 [1.26, 2.82] 1.10 

Agreeableness 

Pilot 1: 
F(2,26)=10.37, 

p=.002, !"#= .44 
1.55 [0.59, 2.52] 0.93 -0.23 [-0.79, 0.33] 0.24 

Pilot 2: 
F(2,44)=15.62, 

p<.001, !"#=0.42 
1.28 [0.73, 1.84] 1.01 -0.41 [-0.97, 0.15] 0.32 
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Post 

fMRI2: 

F(2,46)=15.84, 

p<.001, !"#=0.41 
1.44 [0.85, 2.03] 1.03 -0.20 [-0.79, 0.40] 0.14 

Conscientious

ness 

Pilot 1: 
F(2,26)=5.11, 

p=.031, !"#=.28 
-0.48 [-1.32, 0.36] 0.33 1.16 [0.21, 2.11] 0.70 

Pilot 2: 
F(2,44)=12.60, 

p<.001, !"#=0.36 
0.30 [-0.05, 0.64] 0.37 1.22 [0.69, 1.75] 0.99 

Post 

fMRI2: 

F(2,46)=44.23, 

p<.001, !"#=0.66 
-0.33 [-0.86, 0.19] 0.27 2.30 [1.78, 2.82] 1.86 

Physical 

Health 

Pilot 1: 
F(2,26)=40.13, 

p<.001, !"#=0.76 
-1.50 [-2.18, -0.82] 1.27 2.60 [1.72, 3.49] 1.70 

Pilot 2: 
F(2,44)=36.10, 

p<.001, !"#=0.62 
-0.83 [-1.24, -0.41] 0.86 2.34 [1.54, 3.14] 1.27 

Post 

fMRI2: 

F(2,46)=99.93, 

p<.001, !"#=0.81 
-0.91 [-1.42, -0.41] 0.76 3.34 [2.73, 3.95] 2.30 

 



Supplementary Table 2. Details for PPI analyses with seed regions taken from the body- and Theory-of-Mind (ToM) localisers for fMRI 

experiment 1. 

	   Body-localiser ToM-localiser 

EBA FBA TPJ TP Precuneus mPFC 

Number of 

subjects 

(total 26) 

Left - - 21 (25) 15 (25) 

22 (23) 22 (26) 
Right 26 (26) 23 (23) 22 (24) 20 (26) 

Mean MNI 

coordinate 

Left - - -54,-58,16 -51,5,-35 
0,-64,28 -15,47,34 

Right 51,-76,-5 48,-40,-23 54,-67,22 57,2,-32 

SD coordinate 

X R=4.13 R=4.01 
L=6.56; 

R=6.53 

L=5.63; 

R=4.20 
7.38 9.31 

Y R=4.49 R=9.12 
L=6.42; 

R=6.50 

L=5.98; 

R=7.43 
6.22 6.84 

Z R=4.24 R=5.70 
L=5.58; 

R=6.06 

L=8.32; 

R=6.09 
7.98 15.32 

Note: Number of subjects are reported at two thresholds: p<.001 and (p<.01). 

MNI = Montreal Neurological Institute. 
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Supplementary Table 3. Details for PPI analyses with seed regions taken from the body- and Theory-of-Mind (ToM) localisers for fMRI 

experiment 2. 

 Body-localiser ToM-localiser 

EBA FBA TPJ TP Precuneus mPFC 

Number of 

subjects 

(total: Body = 

25; ToM = 24) 

Left - - 21 (22) 15 (23) 

16 (24) 18 (24) 
Right 25 (25) 18 (20) 22 (23) 18 (23) 

Mean 

coordinate 

Left - - -54,-58,16 -51,2,-35 
0,-58,28 15,56,16 

Right 48,-76,1 45,-43,-23 54,-67,22 51,5,-29 

SD coordinate 

X R=3.64 R=3.83 
L=6.56; 

R=6.53 

L=5.60; 

R=5.66 
6.41 10.98 

Y R=4.41 R=5.63 
L=6.42; 

R=6.50 

L=4.61; 

R=4.50 
5.11 6.86 

Z R=7.32 R=4.91 
L=5.58; 

R=6.06 

L=6.67; 

R=6.17 
7.51 9.45 

Note: Number of subjects are reported at two thresholds: p<.001 and (p<.01). 

MNI = Montreal Neurological Institute. 

 



Supplementary Table 4. Functional region of interest data for Experiment 1. 
 
Region ROI size 

(voxels) 
Average 
localiser 

mask size 
(voxels) 

Inter-
subject 
overlap 

(%) 

Percent 
signal 
change 
(SEM) 

t p(fdr) 

Slim > Fixation       
Body localiser       
Right EBA  151 98 100 3.15(0.4) 7.87 <0.001 
Right FBA 159 26 88 1.7(0.22) 7.87 <0.001 
       
ToM localiser       
Right TPJ 993 265 88 -0.67(0.24) -2.86 0.999 
Left TPJ 985 166 85 -0.89(0.24) -3.64 0.999 
Right TP 169 27 62 -0.51(0.18) -2.89 0.999 
Left TP 160 21 46 -0.16(0.26) -0.6 0.999 
precuneus 1159 189 81 -1.38(0.44) -3.12 0.999 
Dorsal mPFC 609 48 58 -0.48(0.37) -1.32 0.999 
Middle mPFC 493 31 54 -0.63(0.44) -1.45 0.999 
Ventral mPFC - - - - - - 
       
Muscular > Fixation       
Body localiser       
Right EBA  151 98 100 3.42(0.4) 8.48 <0.001 
Right FBA 159 26 88 2.15(0.25) 8.73 <0.001 
       
ToM localiser       
Right TPJ 993 265 88 -0.99(0.17) -5.75 1 
Left TPJ 985 166 85 -1.1(0.25) -4.48 1 
Right TP 169 27 62 -0.81(0.18) -4.55 1 
Left TP 160 21 46 -0.15(0.24) -0.65 1 
precuneus 1159 189 81 -1.91(0.35) -5.43 1 
Dorsal mPFC 609 48 58 -0.53(0.29) -1.84 1 
Middle mPFC 493 31 54 -0.78(0.36) -2.18 1 
Ventral mPFC - - - - - - 
       
Obese > Fixation       
Body localiser       
Right EBA  151 98 100 2.91(0.37) 7.83 <0.001 
Right FBA 159 26 88 1.71(0.21) 8.26 <0.001 
       
ToM localiser       
Right TPJ 993 265 88 -1.33(0.22) -5.97 1 
Left TPJ 985 166 85 -1.42(0.23) -6.05 1 
Right TP 169 27 62 -0.96(0.15) -6.52 1 
Left TP 160 21 46 -0.42(0.24) -1.78 1 
precuneus 1159 189 81 -2.25(0.41) -5.53 1 
Dorsal mPFC 609 48 58 -0.81(0.37) -2.21 1 
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Abbreviations: ROI = Region of interest; fdr = false discovery rate; EBA = extrastriate body 
area; FBA = right fusiform body area; TPJ = temporoparietal junction; mPFC = medial 
prefrontal cortex; ant. Temp. = anterior temporal. 
Note: ‘ROI size’ is the total number of voxels in each ROI based on data from a body 
perception localiser or a theory-of-mind localiser. ‘Average localiser mask size’ is the number 
of voxels that overlap in more than 25% of participants within each ROI. Right EBA, for 
example, consists of a 151 voxel ROI, with 98 voxels showing overlap in 100% of 
participants. Analyses were performed on the subset of voxels in each ROI that show overlap 
in more than 25% of participants. Responses for the ToM localiser in ventral mPFC did not 
overlap in more than 25% of participants and therefore no data are reported.	  

Middle mPFC 493 31 54 -1.13(0.36) -3.17 1 
Ventral mPFC - - - - - - 
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Supplementary Table 5. Functional region of interest data for Experiment 2. 

Region ROI size 
(voxels) 

Average 
localiser 

mask size 
(voxels) 

Inter-
subject 
overlap 

(%) 

Percent 
signal 
change 
(SEM) 

t p(fdr) 

Slim > Fixation       
Body localiser       
Right EBA  160 61 100 4.98(0.42) 11.72 <0.001 
Right FBA 153 14 64 1.64(0.21) 7.69 <0.001 
       
ToM localiser       
Right TPJ 993 295 92 -0.70(0.26) -2.67 0.993 
Left TPJ 985 214 88 -0.21(0.26) -0.84 0.993 
Right TP 151 27 71 -0.36(0.28) -1.25 0.993 
Left TP 169 13 63 0.26(0.34) 0.76 0.993 
precuneus 1159 136 67 -0.98(0.41) -2.38 0.993 
Dorsal mPFC 609 70 58 -0.05(0.27) -0.18 0.993 
Middle mPFC 493 50 54 -0.57(0.32) -1.76 0.993 
Ventral mPFC 391 18 46 -0.43(0.68) -0.63 0.993 
       
Muscular > Fixation       
Body localiser       
Right EBA  160 61 100 5.58(0.43) 13.13 <0.001 
Right FBA 153 14 64 1.95(0.28) 7.01 <0.001 
       
ToM localiser       
Right TPJ 993 295 92 -0.74(0.19) -3.98 1 
Left TPJ 985 214 88 -0.22(0.14) -1.6 1 
Right TP 151 27 71 -0.29(0.15) -1.88 1 
Left TP 169 13 63 0.46(0.12) 4.29 0.006 
precuneus 1159 136 67 -1.23(0.27) -4.55 1 
Dorsal mPFC 609 70 58 -0.12(0.2) -0.61 1 
Middle mPFC 493 50 54 -0.81(0.28) -2.94 1 
Ventral mPFC 391 18 46 -1.37(0.4) -3.43 1 
       
Obese > Fixation       
Body localiser       
Right EBA  160 61 100 4.86(0.46) 10.52 <0.001 
Right FBA 153 14 64 1.45(0.31) 4.71 <0.001 
       
ToM localiser       
Right TPJ 993 295 92 -0.63(0.26) -2.46 0.992 
Left TPJ 985 214 88 -0.02(0.24) -0.08 0.992 
Right TP 151 27 71 -0.16(0.23) -0.69 0.992 
Left TP 169 13 63 0.76(0.26) 2.93 0.063 
precuneus 1159 136 67 -0.9(0.32) -2.76 0.992 
Dorsal mPFC 609 70 58 0.26(0.29) 0.88 0.893 
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Abbreviations as Supplementary Table 4.	  

Middle mPFC 493 50 54 -0.54(0.31) -1.74 0.992 
Ventral mPFC 391 18 46 -1.01(0.79) -1.28 0.992 
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Supplementary Figure 1. Percent signal change data in functional regions of interest for 

Experiment 1. 

 
 
Supplementary Figure 1. Percent signal change for each body condition compared to 

fixation across body network and theory-of-mind network functional regions of interest. No 

data are reported for ventral mPFC because less than 25% of participants’ localiser data 

showed responses in this region. Error bars are standard error of the mean. 
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Supplementary Figure 2. Percent signal change data in functional regions of interest for 

Experiment 2. 

 
 
Supplementary Figure 2. Percent signal change for each body condition compared to 

fixation across body network and theory-of-mind network functional regions of interest. Error 

bars are standard error of the mean.	  

-3

-2

-1

0

1

2

3

4

5

6

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

Sl
im

M
us

cu
la

r
Ob

es
e

EBA FBA dorsal
mPFC

middle
mPFC

ventral
mPFC

left TPJ right TPJ precuneus left TP right TP

%
 S

ig
na

l C
ha

ng
e



 50 

Supplementary methods 

Selection and validation of stimuli: To select and validate stimuli, we ran two 

behavioural pilot experiments requiring participants to make socially-relevant judgments 

about silhouettes either presented under unlimited viewing conditions (Pilot 1) or presented 

briefly (Pilot 2). The participants in pilot experiments did not complete the fMRI study. First, 

we made series of body images that represented three different body shapes: muscular, obese, 

and slim. These categories were chosen so that we could compare the perception of bodies 

where a social evaluation is more extreme (muscular and obese) to a body where a social 

evaluation is relatively neutral (slim). Because the focus of our research question was on body 

shape only, we used body silhouettes with heads removed (see Figure 2). Bodies were 

selected to have a posture that was as neutral as possible (no crossed arms or slouching 

postures). Images were gathered from various websites, converted into silhouettes, and 

cropped using GIMP 2.8 (www.gimp.org). To validate that our stimuli were indeed socially 

evaluated differently, in two separate experiments we asked participants to rate bodies. 

Stimuli were presented using an iMac computer and Matlab software using Psychtoolbox 3. 

In both pilot studies, all bodies were presented upright as well as inverted. Inverted 

bodies were included to address an additional question (not reported here). All analyses 

reported here are based on upright bodies. In pilot Experiment 1, 14 participants evaluated 85 

upright bodies by rating them on how well the statement matched the image of a body (with 1 

being ‘completely disagree’ and 9 being ‘completely agree’). Like prior work on the 

evaluation of faces (e.g., Kramer and Ward 2010), statements were taken from Big-5 

personality measures (Extraversion, Conscientiousness, Agreeableness; Donnellan et al. 

2006), as well as physical health (Ware et al., 1996). For instance, to assess physical health, 

participants rated how well each body matched the statement “Accomplishes less due to 

health problems”. Participants completed one of two versions of the task. Both versions were 
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identical with the exception of the content of the questions that were asked. In each version, 

two questions (one positive and one negative) were asked for each of the four measures, 

resulting in 8 questions. Each question was asked for each body. Ratings for each condition 

were compared using a repeated-measures Analysis of Variance, and subsequently in two 

planned comparisons (slim vs. muscular and slim vs. obese). All results are summarised in 

Figure 2. 

In pilot Experiment 2 (n=23), we wanted to find out whether these silhouettes gave 

rise to a social inference during a brief presentation, which would be more akin to conditions 

during the fMRI experiment. To do so, each body was presented for 330 ms, after which it 

was backward masked for 300 ms. The question then remained on screen until a response was 

made. Participants were asked to assess how confident they were about the answer they gave. 

Participants completed one of two versions of the task. These were identical, with the 

exception of how the bodies were paired with the questions. In each version, two questions 

(one positive and one negative) were asked for each of the four measures, resulting in 8 

questions. Each of the bodies was rated on all measures. 

 
Functional region of interest analysis: To perform functional region of interest (fROI) 

analyses, we used the Group-constrained Subject-Specific (GSS) approach (Fedorenko et al., 

2010; Julian et al., 2012; Nieto-Castañón & Fedorenko, 2012). For GSS analyses, the spm_ss 

toolbox was used, which runs in SPM using Matlab 

(http://web.mit.edu/evelina9/www/funcloc.html). fROIs were defined using 1) each 

individual’s activation map for the localiser tasks, and 2) group-constraints or masks. These 

masks refer to a set of “parcels”, which demarcate areas in the brain where prior work has 

been shown to exhibit activity for the localiser contrasts.  

Two sets of fROIs were defined: Body network fROIs that respond to images of 

bodies more than other object categories (Downing et al., 2001) and ToM-network fROIs that 
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support processes associated with theory-of-mind (Saxe & Kanwisher, 2003). For the body 

network fROIs, right FBA and EBA were defined using average coordinates taken from our 

own body localiser data. For example, for GSS analyses in Experiment 1, we used the group 

average coordinates from Experiment 2’s body localiser data. Then for Experiment 2’s GSS 

analyses, we used localiser data from Experiment 1. Therefore, the data used for defining 

fROIs was independent from the data used for estimating responses (Kriegeskorte et al., 

2009). We placed 10mm spheres centred on the average coordinates for FBA and EBA.  

For the ToM-network, six parcels were derived from a group-level map from 462 

participants for the False Belief > False Photograph contrast (Dufour et al., 2013). These 

regions included the dorsal, medial, and ventral prefrontal cortex (DMPFC, MMPFC, 

VMPFC), bilateral temporoparietal junction (TPJ) and precuneus. Bilateral temporal poles 

were identified in a different manner because they were not identified in isolation in the map 

produced by Dufour and colleagues (2013). Instead, we identified coordinates for the 

temporal poles using ToM localiser data in a similar manner to the way body network fROIs 

were selected. That is, for GSS analyses in Experiment 1, we used the average temporal pole 

coordinates from Experiment 2’s ToM localiser data. For Experiment 2’s GSS analysis, we 

used average temporal pole coordinates from Experiment 1’s ToM localiser data. Again, we 

centred 10mm spheres on the group average coordinates for right and left temporal pole. 

For each individual participant, these masks were used to constrain the selection of 

subject-specific fROIs. For each individual and within each body fROI, voxels that passed a 

threshold (p< 0.001, uncorrected) in the Bodies > Cars contrast were defined as that 

individual’s fROI. Similarly, for each ToM fROI, the Belief>Photo contrast was used and 

voxels that passed the same threshold were selected in each individual participant separately. 

All runs of the localiser tasks were used to define fROIs in each individual. Percent signal 

change (PSC) values were extracted from all fROIs and responses were estimated for three 
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separate contrasts: Slim > Fixation; Muscular > Fixation; Obese > Fixation. As implemented 

in GSS, statistical tests were performed on the PSC values using standard Student’s t-tests. 

One-sample t-tests were performed to investigate the response of the body and ToM network 

fROIs. False Discovery Rate (FDR) multiple comparison correction (p<.05) was used to 

correct for the number of fROIs in each functional network. For Experiment 1, the fROI 

results are reported in Supplementary Table 4 and Supplementary Figure 1 and for 

Experiment 2 the fROI results are reported in Supplementary Table 5 and Supplementary 

Figure 2. The data are also made available online to guide future experiments 

(https://osf.io/p4sbr/). 
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