

Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice

Steele, Katherine; Quinton-Tulloch, Mark; Amgai, Resham B.; Dhakal, Rajeev; Khatiwada, Shambhu P.; Vyas, Darshna; Heine, Martin; Witcombe, John

Molecular Breeding

DOI: 10.1007/s11032-018-0777-2

Published: 01/04/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Steele, K., Quinton-Tulloch, M., Amgai, R. B., Dhakal, R., Khatiwada, S. P., Vyas, D., Heine, M., & Witcombe, J. (2018). Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. *Molecular Breeding*, *38*, [38]. https://doi.org/10.1007/s11032-018-0777-2

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Research Article
2	
3	Accelerating public sector rice breeding with high-density KASP markers derived
4	from whole genome sequencing of <i>indica</i> rice
5	
6	Katherine A. Steele · Mark J. Quinton-Tulloch · Resham B. Amgai · Rajeev Dhakal ·
7	Shambhu P. Khatiwada [.] Darshna Vyas [.] Martin Heine [.] John R. Witcombe
8	
9	Electronic supplementary material The online version of this article (doi:) contains supplementary material,
10	which is available to authorised users.
11	
12	K.A.Steele (corresponding author: email k.a.steele@bangor.ac.uk, Tel 00 44 1248 388655, ORCID 0000-0003-
13	4896-8857) M.J. Quinton-Tulloch (ORCID 0000-0001-5713-0736) · J.R. Witcombe
14	School of the Environment, Natural Resources and Geography, SENRGY, Bangor University, Bangor, Gwynedd,
15	LL57 2UW, UK
16	
17	R.B. Amgai · S.P. Khatiwada
18	Nepal Agricultural Research Council, Biotechnology Division, PO Box No. 1135 Kathmandu, Nepal
19	
20	R. Dhakal
21	Anamolbiu Private Ltd., P.O. Box 28, Jagritichok, Bharatpur-11, Chitwan, Nepal. Current address: LI-BIRD,
22	Head Office: PO Box 324, Gairapatan, Pokhara, Kaski, Nepal
23	
24	D. Vyas
25	LGC Genomics, Units 1 & 2, Trident Industrial Estate, Pindar Road, Hoddesdon, Herts, EN11 0WZ, UK
26	
27	M. Heine
28	LGC Genomics LGC Genomics TGS Haus 8, Ostendstr. 25, 12459 Berlin, Germany: Current address: NuGEN
29	Technologies Inc.201 Industrial Road, Suite 310 San Carlos, CA 94070, USA

- 30 Abstract
- 31

32 Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding 33 programmes despite rapidly expanding repositories of rice genome sequence data. They rely on 34 >18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. A 35 lack of knowledge about target SNP and InDel variant loci has hampered their uptake of KASP, a 36 proprietary technology of LGC genomics. KASP is a cost-effective single-step genotyping 37 technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array 38 based genotyping when used in selection programmes. Before this study there were 2,015 rice KASP 39 in the public domain, mainly identified by array-based screening leaving large proportions of the rice 40 genome with no KASP marker coverage. Here we have addressed the urgent need for a wide choice 41 of appropriate rice KASP markers, and demonstrated that NGS can provide full genome marker 42 coverage. Through resequencing of nine *indica* rice breeding lines or released varieties, this study has 43 identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP 44 assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold 45 increase in potential selectable KASP markers at a density of 3.1 marker per 1 kb in the *indica* crosses 46 analysed with 377,178 polymorphic KASP marker design sites on average per cross. This knowledge 47 is available to breeders and has been utilised to improve the efficiency of public sector breeding in 48 Nepal, enabling identification of polymorphic KASP at any mapped trait or QTL in relevant crosses. 49 Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses and 50 detecting segregating alleles to aid trait selection during marker-assisted backcrossing, where target 51 traits included rice blast and BLB resistance. Furthermore, we provide the software for plant breeders 52 to generate KASP designs from their own datasets.

53

Keywords Bacterial blight · genomic selection (GS) · kompetitive allele-specific PCR (KASP) · marker-assisted
 selection (MAS) · next generation sequencing (NGS) · physical mapping · rice blast · single-nucleotide
 polymorphism (SNP) · allele mining software

58 Introduction

59

60 Cost is a major factor that determines whether or not marker assisted selection (MAS) is a viable breeding method 61 for national programmes and smaller breeders. Despite advantages such as improved reliability, MAS will rarely 62 be used if it is more expensive than phenotyping. Reducing the costs of markers increases the frequency of cases 63 where MAS is more cost effective than phenotyping. KASP is a cost effective and flexible proprietary technology 64 of LGC Genomics, however, public sector rice breeders have been slow to adopt it because KASP assays have 65 not been widely published in linkage maps to the same extent as SSRs. Where costs permit, SSRs are still the 66 marker technology most commonly used by most public sector breeders, especially for marker-assisted rice 67 breeding (Miah et al., 2013) because they alone provide a sufficient choice of mapped markers. Breeders can 68 choose from over 18,000 SSRs (Narshimulu et al., 2011) while the use of KASP markers is limited by the number 69 publically available and these offer limited options in crosses between *indica* lines.

70 Prior to this study, 2,015 KASP assays were made publically available for rice (Pariasca-Tanaka et al., 71 2015) that were developed in rice using a arrray-based Illumina GoldenGate technology by the Generation 72 Challenge Program of the Consultative Group for International Agricultural Research (CGIAR) to analyse crosses 73 between O. sativa indica and O. glaberrima. The original 2,015 SNPs had been identified from the OryzaSNP 74 project (McNally et al., 2009) and Sanger sequencing. OryzaSNP used 20 genetically diverse genotypes to 75 discover SNPs via long range PCR and re-sequencing of microarrays. To date, and to our knowledge, no large 76 scale SNP and InDel discovery effort has been published for rice where NGS whole genome re-sequencing was 77 used specifically to identify potential KASP, yet there is an urgent need for large numbers of KASP markers in 78 rice.

79 KASP is a single-step genotyping technology that reveals, via fluorescence resonance energy transfer 80 (FRET), pre-identified co-codominant alleles for both SNP and InDel variations between parents and progeny in 81 segregating crosses for MAS. KASP has the major advantage of improved cost-effectiveness because it is both 82 cheaper and more reliable than other marker technologies, including other sequence-based markers, such as 83 TaqMan (Patil et al, 2017). A resource of available genome-wide variations would facilitate KASP to be used for 84 whole genome coverage in genomic selection (GS) which has been pioneered using and array-based technology. 85 Array-based genotyping and NGS-based genotyping technologies (such as Genotyping by Sequencing) are not 86 being taken up by public sector breeders because they lack the flexibility and ease afforded by SSRs. KASP offer 87 the benefits of SSRs plus the added ability of being able to detect functional markers within target genes and

88 KASP are easier to use: either LGC Genomics can provide a full KASP genotyping service or the KASP reagents 89 can be ordered from them for carrying out assays in a basic molecular laboratory. KASP technology is more rapid 90 than SSRs and it has scalability that makes it suitable for a wide range of experimental designs with greatly varying 91 target loci and sample numbers (He et al., 2014). These can range from only a single marker, such as a selectable 92 marker for a specific gene, through to several thousands of markers for applications such GS. The effectiveness 93 of KASP has been demonstrated in plant-breeding applications, including quality control analysis of germplasm 94 (Semagn et al., 2012; Ertiro et al., 2015), screening for candidate alleles and genotyping (Mideros et al., 2013; 95 Pham et al., 2015), bulk segregant analysis and genetic mapping (Ramirez-Gonzalez et al., 2014; Mackay et al., 96 2014), and MAS (Cabral et al., 2014; Leal-Bertioli et al., 2015).

97 Marker assisted breeding has been introduced in Nepal's national programmes, mainly based on SSRs 98 but recently incorporating existing KASP for background selection. However, few of the existing rice KASP were 99 suitable for selection at the breeders' targets of BLB and blast resistance genes and aroma QTLs. Therefore, the 100 objective of the work reported here was to identify appropriate SNPs and InDels, for this purpose, in order to 101 facilitate the uptake of KASP for greater efficiency of rice breeding. At current rates the KASP genotyping service 102 is estimated to be 60% cheaper than running SSRs in-house at NARC's laboratories in Kathmandhu, Nepal: 103 Genotyping 475 samples with 10 assays costs \$0.20 per data point with KASP (full genotyping service, including 104 shipping costs), \$0.39 with in-house KASP and \$0.53 with in-house SSRs.

105This study used whole genome NGS specifically to identify large numbers of SNP and InDel variations106and used bioinformatics filtering of NGS reads to discover potential KASP assays throughout the rice genome.107We re-sequenced nine *indica* rice lines and aligned the sequences to the *indica* reference genome to maximise the108identification of applicable loci. The study provides new evidence on the effectiveness of using NGS sequence109data from a limited number of lines and makes comparisons between the new potential KASP and those that were110available prior to this work for density and genomic distribution throughout the physical map in a range of crosses.

112 Materials and methods

113	
114	Sequence data generation
115	
116	Plant materials and DNA extraction for NGS
117	Nine indica rice lines (Table S1) were selected for sequencing. Three (Sunaulo Sugandha, Anamol Masuli and
118	Sugandha-1) were from a breeding programme in Nepal (Witcombe et al., 2013) and one (Khumal-4) is a widely
119	grown mid-hill variety in Nepal. They are all being used as recurrent parents for rice breeding in Nepal. Sunaulo
120	Sugandha and Sugandha-1 are aromatic. Four (IR64, IR71033, IR65482, IRBB60 and Loktantra) were chosen as
121	donors of resistance to the diseases bacteria blight (caused by Xanthomonas oryzae pv. oryzae) and blast (caused
122	by Magnaporthe oryzae). Seedlings were grown in a controlled environment room at Bangor University (BU) and
123	DNA extracted at BU from the leaves of one representative seedling per variety using Qiagen DNEasy kits
124	(Qiagen, Manchester, UK). The plants were grown to maturity and visually checked for phenotypic uniformity
125	within each variety.
126	

127 NGS, read processing and read alignment

Paired-end sequencing, using the Illumina HiSeq 2000 platform, and read processing was carried out at LGC Genomics (Berlin, Germany). For bioinformatics analysis Illumina adaptor sequences were removed and quality trimming of adaptor-clipped reads was performed, removing reads containing Ns, and 3'-end trimming reads to get a minimum average Phred quality score of 20 over a window of ten bases. Reads with a final length of less than 20 bases were discarded. The sequences have been submitted to the NCBI Sequence Read Archive under BioProject accession PRJNA395505 (available at www.ncbi.nlm.nih.gov/bioproject/395505).

The reference genome sequence used was cultivar 93-11 of *Oryza sativa* ssp. *indica*. The Read Assembly version ASM465v1 of 93-11, sequenced and annotated by the Beijing Genome Institute (Yu et al., 2002; Zhao et al., 2004) was downloaded from EnsemblPlants (http://plants.ensembl.org). Sequencing reads were aligned against this reference using Bowtie2 (Langmead and Salzberg 2012). Discordant or mixed paired-read alignments were not permitted, with all other alignment parameters kept as default. Only read pairs with both reads aligning in the expected orientation were used in subsequent analyses.

140 Variant calling

141 SAMtools (Li et al., 2009) was used to calculate genotype likelihoods and identify single nucleotide 142 polymorphisms (SNPs) and InDels between the aligned sequencing reads and the O. sativa ssp. indica reference. 143 SNPs or insertions with a read depth higher than 200 were filtered out (using vcfutils) due to likelihood of variable 144 copy number repeats influencing read mapping. Also, those with a read depth of less than five were removed. 145 Custom Perl scripts were used to identify variants between all pairwise combinations of the nine rice lines, based 146 on the variant calls made for each variety against the *indica* reference. The positions of the variants were 147 compared against the annotated gene and coding sequence positions to test whether they corresponded to 148 functional mutations.

149 Variant filtering for suitability as KASP markers

150 Variant Call Format (VCF) files generated by SAMtools (see above) were parsed using a custom Perl script 151 (Supplementary File S1) to retrieve the flanking sequences 50 bp either side of each variation site, and identify 152 variants suitable for KASP markers following a stepwise identification process (Figure. S1). The criteria for 153 selection were that the flanking sequences a) did not contain any InDels; b) contained a maximum of four 154 ambiguous bases; c) had a base coverage of at least five at any position; and d) had no more than four consecutive 155 repeats of any 1-5 nucleotide sequence. Variants that passed this filtering were defined as potential KASP markers. 156 The SNP positions of the potential KASP markers were used in the diversity analysis of potential KASP assays 157 below.

158 *In-silico* analysis of diversity using the new and existing KASP markers for the nine rice lines.

159

160 The sequence variants of each of the 1,329,325 potential KASP that passed the filtering (Figure. S1) were used to 161 make 45 comparisons - the 36 possible pairwise comparisons between these nine lines and the nine comparisons 162 to the *indica* reference cultivar. For the 2,015 existing KASP markers based on rice SNPs that had previously 163 been developed (Pariasca-Tanaka et al. 2015), the KASP primer sequences were aligned against the indica 164 reference using BLAST (Altschul et al., 1990) to determine if the sequence reliably aligned to *indica* (those with 165 at least 95% identity). This eliminated 205 KASPs specific to japonica. A further 731 KASP were at sites where 166 no polymorphism was detected between any of the nine lines and the *indica* reference. This left 1,159 existing 167 KASP markers that were used for the same 45 comparisons. The density and distribution of potential and existing 168 KASP were analysed for the nine lines compared tp *indica* reference genome, and for pairwise comparisons 169 between the resequenced lines, using the genome locations of the SNPs and InDels of the KASP marker targets.

171 Validation of KASP assays for genotyping in segregating populations

172

173 Plant materials and DNA extraction for genotyping

174 For KASP genotyping, plants representing the nine sequenced parental lines and progeny lines (at F_1 and BC_1) 175 derived from fifteen crosses between pairs of parents were grown in the field or polyhouse in Nepal, in October 176 2015 and October 2016. Leaf samples were collected from each plant using the LGC Genomics' Plant Sample 177 Collection Kits and delivered to LGC Genomics (Hoddesdon, Herts., UK) for DNA extraction and KASP 178 genotyping (full service). All plants were from the marker-assisted breeding programmes of either Anamolbiu or 179 NARC and parental lines were used as controls for MAS. The first three plates were screened in the first round 180 (69 KASP including 21 new ones) and third round (with a further 5 new KASP). Five plates were screened with 181 in the second round with 86 KASP. Two plates containing only BC₁ material were screened with 40 KASP (39 182 new) in the fourth round.

183

184 Selection of 46 variants and development of new KASP assays

185 The SNPs or InDels selected for validation in this study were either located near to/within target resistant gene 186 alleles (for BLB or blast) or to known fragrance QTLs, or they were useful as background markers in regions 187 where no existing KASP were suitable. They included 35 variants that passed the filtering criteria and 11 variants 188 that did not pass. All 46 new KASP assays gave in-silico validated primers in LGC's Kranken Software and KASP 189 primers were produced by LGC and used in their standard protocol for KASP validation. Here, we define 190 validation as where the KASP assay was successfully used for genotyping in at least one cross. In total, four 191 separate rounds of genotyping were carried out on different sets of segregating lines, each round having a different 192 combination of new and existing KASP assays.

Marker-level, cross-level, and assay-level validation of the KASP assays was carried out using bioinformatics on genotype results from all four rounds. KASP markers were considered to be validated if they successfully genotyped any of the tested progeny lines and identified both predicted parental alleles. Cross-level validation assessed whether a marker could be validated at the marker level using only progeny lines originating from a specific pair of parental lines. Assay-level validation tested whether or not each individual KASP assay had produced genotyping results. Genotyping results from parental lines were not used for validation as they

- 199 would be expected to be homozygous for the tested alleles and thus the genotyping results could not be used to
- 200 validate successful binding of both of the KASP allele-specific primers.
- 201
- 202 Identification and subsequent filtering of 'background' markers
- From the existing 1,159 KASP that reliably aligned to the *indica* reference genome we identified those that were polymorphic *in-silico* in at least three of the bi-parental crosses used for this study. Of these, 75 were selected as 'background' markers for genotyping because they were distributed in genomic regions required for recurrent parent selection. Of the 75 existing KASP, 48 met our filtering criteria (Figure. S1) for selecting variants
- 207 appropriate for marker generation. These existing KASP were used for genotyping in parental and progeny lines
- 208 by LGC Genomics (Hoddesdon, Herts., UK).

- 210 Results 211 212 Sequencing read alignment and identification of variants 213 214 More sequencing reads of all of the nine re-sequenced rice lines aligned in the expected orientation to the *indica* 215 reference (mean of 92.1% \pm 0.96) than to the *japonica* reference (mean of 88% \pm 0.69). Mean *indica* genome 216 coverage was 89% with a mean sequencing depth of 59 for the nine lines (Table S2). We identified variations 217 between the *indica* reference and at least one of the nine lines at 2,561,351 unique sites. For over half (56.5%) of 218 these sites two or more lines were polymorphic against the reference genome and for 3.4% of sites all nine were 219 polymorphic against the reference, whereas more than one-million variant sites were found in only a single line 220 (Figure. S2). There was an average of 0.96 million homozygous variations (SNPs and InDels) between each of 221 the nine rice lines compared with the *indica* reference variety 93-11 (Figure S3). IR71033 was the most similar 222 line to the reference (0.78 million variations) and Sunaulo Sugandha the least similar (1.1 million variations). 223 224 Identification of potential KASP markers and functional markers 225 226 To identify KASP markers that would be informative for crosses between the nine lines and the *indica* reference, 227 in silico filtering of the 2,561,351 variation sites was carried out, based on the composition of their flanking 228 sequences (Figure. S1). The KASP marker sequences were determined for the 1,329,325 sites that passed the 229 filtering criteria, i.e., a conversion rate of 51.9% of the total variation sites. 230 For each of the nine lines, those variations that were suitable for KASP markers were categorised 231 according to the nature of the polymorphism against the *indica* reference (Table 1), determined according to the 232 annotated gene and coding sequence positions. The majority of potential KASP were situated in non-coding 233 portions of the genome, with 78% located in intergenic regions and 11% in introns. Of the remaining 11 % of 234 variations located in the exons, 68% are predicted to result in functional differences due to changes in the amino 235 acids encoded. 236 237 [Table 1 about here] 238
- 239 Comparing diversity in nine *indica* lines at new KASP

241 This new approach of pair-wise comparisons for each of the nine resequenced lines against each other and against 242 the *indica* reference genome identified many more potential new KASP than previously existed for rice (Table 243 2). The highest diversity in the pairwise comparisons was >511,000 in the new set (IR65482 with Sunaulo 244 Sugandha) but only 522 in the existing set (Loktantra with Sunaulo Sugandha). The least informative number of 245 KASP markers in the pairwise comparisons was >245,000 in the new set (IR64 with IR71033) compared with 246 361 in the existing set (IR64 with IR71033). A similar pattern was seen for comparisons with the *indica* reference 247 where the average number of informative KASP markers was 388,540 in the new set and 451 in the existing set. 248 The highest number of new markers against the reference genome was 459,229 for Sunaulo Sugandha, compared 249 with a maximum of 496 for Loktantra with the existing markers.

250

251 [Table 2 about here]

252

The new KASP markers were distributed throughout the entire genome with high levels of marker density (Figure. 1). In a great majority of cases (86.9%) the distance between consecutive informative markers was less than 1 kb with a median distance of 127 bp in all pairwise combinations. Chromosomal distribution plots of markers informative for each pairwise combination of the sequenced lines show very few regions with no markers (Figure. S4).

258

259 [Figures 1 & 2 about here on two whole consecutive pages, use B&W for print and colour for online]

260

261 Comparing diversity in nine *indica* lines at existing KASP

262

Of the 1,890 existing KASP markers that could be aligned against the *indica* reference, 1,159 (61%) were polymorphic between at least one of the sequenced lines and the *indica* reference genome. However, they were not evenly distributed throughout the genome nor across all lines (Figure. 2). In pairwise comparisons between the lines there were between 345 and 520 informative polymorphic markers for each cross combination (Table 2 and Figure. S5). There were some areas of the genome that had polymorphisms in all of the crosses (e.g, between 0.5 Mbp and 10 Mbp on Chromosome 6) but many regions had polymorphisms only in specific pairs of crosses. There were also many regions lacking any polymorphisms (e.g. on Chromosome 7 between 9 Mbp and 16 Mbp there is only one polymorphic marker and it is only in crosses with Loktantra). Consecutive informative existing KASP markers were not often close together, in only 1.1% of cases were they closer than 1 kb. The median distance between markers of 353 kb across all pairwise combinations of lines was over 2,700 times longer than that found for the new markers (Figure S6 and Tables S3 and S4).

The positions of the 1,159 markers that aligned to the indica reference and corresponded to polymorphic sites in our lines were compared with the positions of the new KASP markers. Matches were found for 727 (62.7%) of the existing markers, with new markers not being identified at the other genomic positions due to the filtering criteria applied by the marker detection algorithm (Figure. S1). The filtering method excluded 37% (432 of 1,159) existing KASP markers because they had InDels or repeats of five or more bases in their flanking regions.

280

281 KASP validation for use in genotyping

282

283 KASP genotyping was carried out on F1 and BC1 progeny of fifteen crosses between pairs of the nine re-sequenced 284 lines. For the purposes of KASP validation, genotyped progeny of different generations were grouped according 285 to the parental lines initially crossed, with a KASP assay being considered validated for a particular cross group 286 if genotyping was successful in showing segregation of alleles for one or more progeny lines from any generation 287 of the cross. Eighty-three markers (35 new and 48 existing KASP) that passed our filtering criteria (Figure, S1) 288 were tested on at least one cross, with a total of 412 unique marker-cross combinations. Successful genotyping 289 results were obtained for 78 (94.0%) of these markers including 30 of the new markers, with 394 of 412 (95.6%) 290 marker-cross combinations being successful (Tables S5 and S6).

Genotyping was also carried out with 38 markers (11 new and 27 existing KASP) that did not meet our
filtering criteria, the 11 new markers were designed manually through visualisation of the aligned sequencing
reads at sequences for target traits. 31 (81.6%) of these markers gave genotyping results in at least one of the
progeny tested, including 9 of the new markers. 232 marker-cross combinations were tested, with 201 (86.6%)
being successful (Tables S5 and S6).

Parental lines were genotyped with the KASP markers as controls and the results confirmed the presence of the predicted alleles in the parents but also revealed within-line genetic variation for some of the parents at some loci (data not shown). Expected allelic ratios were detected in segregating progeny for all successfully genotyped crosses (data not shown) and the results informed selection of donor alleles and recurrent (background)

- alleles for 70 existing KASP and 39 newly validated KASP (Table 3 and Table S7), of which 30 were discovered
- 301 from filtering and 9 identified by manual design.

303 Discussion

304 SNPs provide the highest genome-wide density of genetic variants and occur in both coding and non-coding 305 genomic regions. Due to their bi-allelic nature not all SNPs and InDels will be polymorphic for all cross 306 combinations. We showed that, for the existing 2,015 rice KASP markers (all SNPs) published by Pariasca-307 Tanaka et al., 2015, in all cross combinations there were very large gaps between markers across the rice genome 308 (Figure. 2). Only 1,890 were applicable to *indica* and the number that were informative between any pair of nine 309 indica lines studied here varied from as few as 361 to, at most, 522. It is unsurprising that the existing set is 310 insufficient to meet all rice-breeding challenges because, apart from being less numerous than available SSRs, 311 they were derived from chip-based technologies based on SNPs nominated by the rice community to address 312 particular breeding targets. Hence, a much higher density of SNPs or InDel variants are needed in order to identify 313 suitable markers for selection in a broader range of specific crosses.

314 Thousands of SNPs have previously been employed in array-based platforms such as those used in the 315 Illumina Bead Array and the Affymetrix GeneChip (Thomson, 2014). However, unlike KASP, these fixed sets of 316 SNPs do not meet the need of breeders that wish to assay a small number of polymorphic markers known to be 317 linked to traits of interest in their breeding populations, and to have the opportunity to change the set of markers 318 used in subsequent generation. Next-generation sequencing (NGS) technologies have been used to re-sequence 319 of diverse rice genomes or directly for genotyping in technologies such as genotyping by sequencing (GBS) 320 (McCouch et al., 2010; Kumar et al., 2012), but most variants have only been made available as array-based 321 platforms.

322 Here, NGS was used for re-sequencing nine indica breeding lines, chosen with no deliberate effort to 323 select for high diversity, and it identified an average of 1.05 million SNP or InDel variants between any one of 324 the individual rice lines and the *indica* reference genome, out of a total of 2.5 million variants across the whole 325 set of lines (available at www.ncbi.nlm.nih.gov/bioproject/395505). By mining this data using bioinformatics 326 filtering we discovered hundreds of thousands of potential new KASP markers giving high resolution coverage 327 over the entire genome (Figure. 1, Table 1). This has vastly reduced the number of regions with no selectable 328 markers (compare Figures 1 and 2) and offers breeders access to over 1.3 million informative KASP with a 329 minimum of more than 245,000 for any paired combination of the 9 rice lines (Table 2) and has produced over 330 650 times more KASP marker sequences than were available in rice to date. Approximately 92,500 (7%) were 331 located in exons and altered the amino acid sequence encoded, so could be used as functional markers (Table 1). 332 For all pairwise comparisons between lines, over 98% of consecutive informative markers were less than 10 kb

apart, with over 85% being less than 1 kb apart (Figure S6). Some of these comparisons were between lines having common recent ancestors (Table S1) so this data set should provide a high density of polymorphic KASP assays across the genome in almost any cross. Moreover, these estimates are conservative, as many more KASP markers would be identified if the filtering criteria were relaxed slightly to allow the detection of KASP markers in gaps at target genomic regions. Relaxing the criteria is a practical option as they were very stringent; they provided a 52% conversion rate for new markers from identified variations but excluded 37% of the 1,159 existing KASP.

339 Early rice genome sequencing of *indica* and *japonica* revealed about 1 SNP per kb (Feltus et al., 2004) 340 and the material that is subsequently selected to be re-sequenced determines the density of NGS based markers 341 identified. Re-sequencing of 12 cultivated and wild accessions of *indica* that were chosen for gave an average of 342 5.7 nucleotide differences per kb diversity (Xu et al., 2012). Here, we found an average of 3.1 variations per kb 343 in *indica* lines used for breeding in Nepal. All lines were adapted to lowland or medium land and we made no 344 attempt to include diverse lines adapted to greatly different rice ecosystems. They were simply chosen on the basis 345 of being in current breeding programmes in Nepal and seven of the lines were either bred at IRRI or had IRRI 346 lines in their recent ancestry. Hence, the high frequency of KASP markers (Figure 1) we have discovered should 347 also apply to most, or all, other *indica* material of interest to breeders. The total of 2.5 million SNPs in the nine 348 lines compares favourably with the total of 18.9 million found in the 3000 Rice Genomes Project where the lines 349 included were highly diverse across all the O. sativa cultivated groups (Li et al., 2014).

350 We have demonstrated how high-throughput sequencing data can be used to identify so many new KASP 351 markers that they will be useful for many traits across many parental combinations. A set of 39 fully validated 352 marker designs are given here (Table 3). These design sequences can be submitted directly to LGC Genomics for 353 purchase of KASP primers through their KASP by Design (KBD) or KASP on Demand (KOD) services, or for 354 their full genotyping service. This allows breeders with no bioinformatics expertise to utilise these markers in 355 their breeding programs. The software provided (Supplementary File S1) enables breeders to easily generate 356 KASP marker designs using their own, or publicly available, NGS datasets - for any species. In addition, the 357 sequencing reads for the nine resequenced lines is a valuable resource containing suitable variants for numerous 358 breeding targets.

The work has led to suitable KASP assays for NARC and Anamolbiou (Nepal) and many more assays are being rolled out to rice breeders in India (SKUAST) and Pakistan (NIBGE) with the support of LGC Genomics. Work is currently underway, using data from the 3000 Rice Genomes Project, to generate over 20,000 KASP marker designs, of which 4,000 will be fully validated, that will be applicable to a diverse range of rice 363 varieties. These will be made available on the LGC Genomics website, allowing breeders to purchase KASP 364 markers close to existing SSR markers or in a region of interest, without the need for any bioinformatics analysis. 365 In the meantime, the paper authors can be contacted for details of KASP marker designs based on the nine 366 resequenced lines, for any particular region of interest of the rice genome. This increase in the number of usable 367 KASP markers has great practical benefits to public sector plant breeders who can use the knowledge derived 368 from this project to incorporate KASP into MAS to accelerate selection of new varieties. These KASP assays are 369 new tools that can complement other innovations introduced to accelerate varietal adoption by farmers in 370 developing nations (Witcombe et al 2016) to expedite yield improvement and increase food security. By 371 increasing the number of available KASP markers this work is expected to remove the barriers to their adoption 372 so they can accelerate progress in rice breeding for future generations.

373 Acknowledgements This study was co-funded by Innovate UK (Grant number 131781).

374 **References**

- Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. J Mol Biol
 215:403-410
- 377 Cabral AL, Jordan MC, McCartney CA, You FM, Humphreys DG, MacLachlan R, Pozniak CJ (2014)
- 378 Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (*Triticum* 379 *aestivum* L.). BMC Plant Biol 14:340
- 380 Ertiro BT, Ogugo V, Worku M, Das B, Olsen M, Labuschagne M, Semagn K (2015) Comparison of kompetitive
 381 allele specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC
- 382 Genomics 16:908
- Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and
 breeding based on subspecies indica and japonica genome alignments. Genome research 14:1812-1819
- He C, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. Methods in Mol Biol 1145:75–86
- Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush
 GS (1997) Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and
 PCR. Theor Appl Genet 95:313–320
- 389 Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications.
 390 Int J of Plant Genomics 831460
- 391 Kush GS (2005) IR varieties and their impact. Int Rice Res Inst, Los Baños, Phillipines. p. 139
- 392 Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357–359
- 393 Leal-Bertioli SCM, Cavalcante U, Gouvea EG, Ball en-Taborda C, Shirasawa K, Guimar aes PM, Jackson SA,
- 394 Moretzsohn MC (2015) Identification of QTLs for rust resistance in the peanut wild species Arachis magna
- and the development of KASP markers for marker-assisted selection. G3 Genes|Genomes|Genetics 5:1403–
 1413
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The
 sequence alignment/map format and SAMtools. Bioinformatics, 25:2078-2079
- Li, J.Y., Wang, J., Zeigler, R.S. (2014) The 3,000 rice genomes project: new opportunities and challenges for
 future rice research. GigaScience, 3:8.
- 401 Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells
- 402 R, O'Sullivan DM, Rose GA (2014) An eight-parent multiparent advanced generation inter-cross population
- 403 for winter-sown wheat: creation, properties, and validation. G3: Genes|Genomes| Genetics 4:1603-1610

- 404 McCouch SR, Zhao K, Wright M, Tung C-W, Ebana K, Thomsom M, Reynolds A, Wang D, DeClerck G, Ali
- 405 ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice.
 406 Breeding Sci 60:524–535
- 407 McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau
- 408 TE, Stokowski R (2009) Genomewide SNP variation reveals relationships among landraces and modern
- 409 varieties of rice. Proceedings of the National Academy of Sciences106:12273-8.
- 410 Miah G, Raffi MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsattelite
- 411 markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci
 412 14:22499-22528.
- 413 Mideros SX, Warburton ML, Jamann TM, Windham GL, Williams WP, Nelson RJ (2013) Quantitative trait loci
- 414 influencing mycotoxin contamination of maize: analysis by linkage mapping, characterization of near-isogenic
- 415 lines, and meta-analysis. Crop Sci 54:127–142
- 416 Narshimulu G, Jamaloddin M, Vemireddy LR, Anuradha G, Siddiq E (2011) Potentiality of evenly distributed
 417 hypervariable microsatellite markers in marker-assisted breeding of rice. Plant Breeding 130:314-320.
- Pariasca-Tanaka J, Lorieux M, He C, McCouch S, Thomson MJ, Wissuwa M, (2015). Development of a SNP
 genotyping panel for detecting polymorphisms in *Oryza glaberrima/O. sativa* interspecific crosses. Euphytica
- 420 201:67-78.
- 421 Patil G, Chaudhary J, Vuong TD, Jenkins B, Qiu D, Kadam S, Shannon GJ, Nguyen, H. T. (2017). Development
- 422 of SNP Genotyping Assays for Seed Composition Traits in Soybean. International Journal of Plant
 423 Genomics, 2017, 6572969. http://doi.org/10.1155/2017/6572969
- 424 Pham A-T, Harris DK, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song Q, Boerma HR, and Li
- 425 Z (2015) Fine mapping and characterization of candidate genes that control resistance to *Cercospora sojina*
- 426 K. Hara in two soybean germplasm accessions. PLoS One, 10:e0126753
- 427 Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2014)
- RNA-seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding
 in hexaploid wheat. Plant Biotech J 13:613–624
- 430 Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z (2016)
- 431 Development and validation of KASP assays for genes underpinning key economic traits in bread wheat.
- 432 Theor Appl Genet 10:1843-1860

- 433 Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucelotide polymorphism genotyping using kompetitive
- 434 allele specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular
 435 Breeding 33:1–14
- 436 Semagn K, Beyene Y, Makumbi D, Mugo S, Prasanna BM, Magorokosho C, Atlin G (2012). Quality control
- 437 genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines. Theor Appl
- 438 Genet 125:1487–1501.
- 439 Thomson MJ (2014) High throughput SNP genotyping to accelerate crop improvement. Mol Breed 2:195-212.
- 440 Witcombe JR, Gyawali S, Subedi M, Virk DS, Joshi KD, (2013) Plant breeding can be made more efficient by
- 441 having fewer, better crosses. BMC Plant Biol 13:22
- 442 Witcombe J, Khadka K, Puri R, Khanal N, Sapkota A, Joshi K. (2016) Adoption of rice varieties. 2.
- 443 Accelerating Uptake. Experimental Agriculture.:1-7.
- 444 Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J (2012) Resequencing
- 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature
 Biotech 30:105-111
- Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S (2015). Sequencing consolidates molecular markers with
 plant breeding practice. Theor Appl Genet 128:779-795
- Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (*Oryza sativa* L. ssp. indica). Science 296:79–
 92
- 451 Zhao W, Wang J, He X, Huang X, Jiao Y, Dai M, Wei S, Fu J, Chen Y, Ren X, Zhang Y, Ni P, Zhang J, Li S,
- 452 Wang J, Wong GK, Zhao H, Yu J, Yang H, Wang J (2004) BGI-RIS: an integrated information resource and
- 453 comparative analysis workbench for rice genomics. Nucleic Acids Res 32: D377–382

454 Figures	
-------------	--

Figure. 1 Distribution of potential new KASP markers polymorphic between each rice line and the indica
reference. Rows represent the chromosomes, subdivided into the different lines in the order indicated on
chromosome 12 (from top to bottom: IR64, IR71033, IR65482, Sunaulo Sugandha, Anamol Masuli, Khumal-4,
IRBB-60, Loktantra, Sugandha-1), and columns the physical position. Each cell represents an interval of 0.5 Mbp.
Figure. 2 Distribution of previously existing rice KASP markers polymorphic between each rice line and the
indica reference genome. Rows represent the chromosomes, subdivided into the different lines in the order

463 indicated on chromosome 12 (from top to bottom: IR64, IR71033, IR65482, Sunaulo Sugandha, Anamol Masuli,

464 Khumal-4, IRBB-60, Loktantra, Sugandha-1), and columns the physical position. Each cell represents an interval

465 of 0.5 Mbp.

466 Tables

467

468 **Table 1** Categorisation of variations suitable as KASP markers identified between each of the nine sequenced rice lines and the indica reference genotype.

Line	SNPs						InDels				
	Intergenic	Intron	Exon				Intergenic	Intron	Exon		
			Nonsynonymous*	Synonymous	Unknown**	Ratio of Nonsyn/syn			Frameshift*	Inframe*	Ratio of FS/non-FS
IR64	276,103	36,791	25,280	11,946	1,174	2.12	28,831	5,632	1,808	782	2.31
IR71033	214,507	29,360	20,848	9,703	995	2.15	26,527	5,007	1,744	678	2.57
IR65482	316,846	41,673	29,910	14,158	1,554	2.11	34,287	6,527	2,000	949	2.11
Sunulo- Sugandha	326,995	43,021	29,492	14,084	1,336	2.09	32,242	6,267	1,868	924	2.02
Anmol- Masuli	306,934	40,889	28,462	13,469	1,375	2.11	33,241	6,486	1,955	958	2.04
Khumal-4	260,116	34,685	23,594	11,057	1,175	2.13	30,475	5,803	1,842	825	2.23
IRBB-60	217,103	30,887	21,796	10,245	992	2.13	27,830	5,358	1,796	750	2.39
Loktantra	306,922	39,801	27,752	13,149	1,307	2.11	35,428	6,622	2,079	941	2.21
Sugandha-1	233,949	31,956	22,994	10,718	1,143	2.15	29,016	5,483	1,842	815	2.26
Mean of nine lines	273,275 (70.4%)	36,563 (9.4%)	25,570 (6.6%)	12,059 (3.1%)	1,228 (0.3%)	2.12	30,875 (8.0%)	5,909 (1.5%)	1,882 (0.5%)	847 (0.2%)	2.24

*Nonsynonymous SNPs and all InDels within exons are assumed to be functional markers.

470 **SNPs within the coding regions of annotated genes were categorised as unknown if the corresponding amino acid could not be determined with

certainty due to the presence of ambiguous bases

	IR64	IR71033	IR65482	Sunaulo Sugandha	Anamol Masuli	Khumal-4	IRBB-60	Loktantra	Sugandha-1	Indica
IR64		361	413	456	377	511	382	492	441	480
IR71033	245,367 (7.8%)		419	453	470	434	345	453	386	377
IR65482	355,518	322,602		503	488	473	430	442	469	490
Sunaulo Sugandha	(7.4%) 444,337 (7.2%)	(7.3%) 418,294 (7.3%)	511,006 (7.1%)		520	497	440	522	485	486
Anamol	286,304	342,841	403,027	493,297		474	503	391	428	491
Masuli Khumal-4	(7.5%) 376,321 (7.4%)	(7.5%) 323,346 (7.5%)	(7.2%) 397,553 (7.2%)	(7.1%) 481,381 (7.2%)	387,264 (7.3%)		467	473	426	433
IRBB-60	328,293	273,578	397,538	407,849	404,343	369,498		452	441	392
Loktantra	(7. 4 76) 362,689 (7.7%)	(7.5%) 346,699 (7.7%)	(7.5%)	(7.370) 460,348 (7.4%)	(7.270) 332,649 (7.6%)	(7.5%)	378,459 (7.5%)		407	496
Sugandha-	328,829	274,529	385,646	465,745	356,552	330,285	345,187	361,699		421
1 Indica	(7.5%) 388.347	(7.7%)	(7.2%) 447.904	(7.1%) 459.229	(7.2%) 433.769	(7.4%) 369.572	(7.5%)	(7.4%) 434.001	337.913	
	(9.5%)	(11.0%)	(9.8%)	(9.1%)	(9.8%)	(10.5%)	(11.3%)	(10.4%)	(11.0%)	

Table 2 Number of informative markers for each pairwise comparison of the nine sequenced rice lines and the *indica* reference genotype.

Numbers in the lower-left diagonal (shaded) correspond to counts of potential new informative KASP markers identified in this study based on SNPs, with percent of InDels shown in brackets.

Numbers in the upper-right diagonal correspond to counts of informative markers from the existing set of 1,890 KASP markers

that could be aligned against the *indica* reference. All existing informative markers are SNP-based.

ID Indica Japonica Variation type Met filtering criteria? Target allele Reference allele IR64 IR71033 IR65482 IRBB-60 Loktantra Sunaulo- Sugandha Anau Massi bu0000001 1:17107691 11:26052781 Non-synonymous SNP Yes Background T C C C C T T	III T	humal-4
criteria? criteria? <thciteria?< th=""> criteria? <thcriteria?< th=""> <thcriteria?< th=""> <thcri< th=""><th>Τ</th><th></th></thcri<></thcriteria?<></thcriteria?<></thciteria?<>	Τ	
bu0000001 1:17107691 11:26052781 Non-synonymous SNP Yes Background T C C C C C C T 1	T	
	Δ	Т
bu0000002 1:43712357 11:25968298 Intergenic SNP Yes Background A G G G G G A A		A
bu0000003 2:7181457 11:28006481 Non-synonymous SNP Yes Xa resistance A G A G A A G A A G A	A	G
bu0000004 2:13037890 2:12216235 Intergenic SNP Yes RM301 C C C C C C C T C	С	С
bu0000005 3:21352744 3:18993558 Intergenic SNP Yes Background G A A A A A G G G	G	G
bu0000006 4:19577243 4:21625135 Non-synonymous SNP Yes Fragrance QTL G A A A A A G A G	G	G
bu0000007 5:415717 5:437057 Intergenic SNP Yes Xa resistance T T T T G T T T T	Т	т
bu0000008 5:416155 5:437499 Unknown SNP Yes Xa resistance T T T T A T T T T	Т	т
bu0000009 5:417389 5:438733 Intron SNP No Xa resistance C C C C T C C C C C	С	С
bu0000010 5:417820 5:439189 Intron SNP No Xa resistance T T T T C T T T T T	Т	Т
bu0000011 5:7701715 5:7362881 Intergenic SNP Yes Background A G G G G G A A	A	Α
bu0000012 5:19380178 5:18345193 Intergenic SNP Yes Background A T T T A T A A	A	Α
bu0000013 6:11281447 6:10388210 Non-synonymous SNP Yes Pi resistance G G A G G G G G G G	G	G
bu0000014 6:11283253 6:10390022 Non-synonymous SNP No Piresistance T T T G T T T T T	т	т
bu0000015 6:17240520 6:16386769 Intergenic SNP No Pi resistance C C C T C T C T C C	С	С
bu0000016 6:17241451 6:16387700 Intergenic SNP No Pi resistance A A A G A G A G A	A	А
bu0000017 6:17243954 6:16391179 Intergenic insertion No Pi resistance CACAATGGAAG - CACAATGGAAG	-	-
bu0000018 6:17961172 11:23639531 Intergenic SNP Yes Background T C C C C T C T T	Т	Т
bu0000019 7:3573045 7:3678922 Intergenic SNP No Xa resistance G A G G G G A G	G	G
bu0000020 7:3588154 7:3694327 Intergenic SNP No Xa resistance T T T T T C T C T (С	т
bu0000021 7:14382827 7:15929199 Synonymous SNP Yes Xa resistance C C C C C T C O	С	С
bu0000022 7:14384019 7:15930391 Non-synonymous SNP No Xa resistance A A A A A A G A G A G	A	G
bu0000023 7:14384210 7:15930582 Synonymous SNP Yes Xa resistance A A A A A A T A T	A	Т
bu0000024 8:5379548 8:5115025 Synonymous SNP Yes Piresistance A G G G G A G A	G	G
bu0000025 8:8486583 8:7832567 Intergenic SNP Yes Background C T T T T T C C	С	С
bu0000026 8:11193818 8:18168439 Intergenic SNP Yes Background C T T T T T C C	С	С
bu0000027 8:21701896 8:20380804 Intron deletion Yes Fragrance QTL TG TG TG TG TG TG - TG	TG	TG
bu0000028 8:21701975 8:20380883 Intron SNP Yes Fragrance QTL T T T T T T C C	С	С
bu0000029 8:21704520 8:20383435 Intron SNP Yes Fragrance QTL C C C C C C T T	т	т
bu0000030 8:28422597 8:26729241 Intergenic SNP Yes Xa resistance T G G T T T G G G	G	G
bu0000031 9:7018065 9:7513604 Intergenic SNP Yes Background C C C C C C C G G	G	G
bu0000032 9:7725492 11:24474192 Intergenic SNP Yes Background C T T C T C C C C C C C C C C C C C C	С	С
bu0000033 10:15236821 10:16682028 Intergenic insertion Yes Background - G G G G G	-	-
bu0000034 11:5950201 11:6605583 Synonymous SNP Yes Xa resistance A A A A A A T A A	А	А
bu0000035 11:6033817 11:6658350 Intron SNP Yes Xa resistance G G G G G A G C	G	G
bu0000036 11:17838940 11:21047256 Intergenic SNP Yes Xa resistance T A A T T T T T A	т	т
bu0000037 11:19964533 11:24664749 Synonymous SNP Yes Xa resistance G G G G G A G C	G	G
bu0000038 11:20939753 11:24249679 Intergenic SNP Yes Background C T T T T T C C	С	С
bu0000039 12:8644297 12:10835433 Intergenic SNP Yes Background G C G C G C G C	G	G

485 Table 3 New validated KASP assays available from LGC genomics (for sequences see Table S7).

Positions are based on the *indica* ASM4565v1 and *japonica* IRGSP-1.0 reference genomes. Linkage analysis is underway to assign linkage to traits in relevant crosses; preliminary data for IR64 x Jumli Marshi shows that novel 24 is associated with field resistance to BLB locus Pi33 ($\chi^2 = 29.6$, P

<0.01). Shading shows an example of a cross in which the KASP is being used for selection.

490	Supplementary Files
491 492	File. S1 KASP marker design sequence generation software.
493	
494	Supplementary Figures
495	
496	Figure. S1 Overview of the criteria used for identification of potential KASP markers from variations
497	identified using SAMtools.
498	
499	Figure. S2 Number of variations identified at the same positions relative to the indica reference in all
500	sequenced rice lines (maximum nine).
501	
502	Figure. S3 Number of variations (homozygous SNPs, insertions and deletions) identified between each
503	of the nine sequenced rice lines and the indica reference genome.
504	
505	Figure. S4 Distribution of potential new rice KASP markers polymorphic between each rice line pair.
506	Rows represent the chromosomes, subdivided into the different lines (ordered as indicated on
507	chromosome 12), and columns the physical position. SubFigures show the distribution of markers
508	informative for crosses against (a) IR64 (b) IR71033 (c) IR65482 (d) Sunaulo Sugandha (e) Anamol
509	Masuli (f) Khumal-4 (g) IRBB-60 (h) Loktantra (i) Sugandha-1.
510	
511	Figure. S5 Distribution of existing rice KASP markers polymorphic between each rice line pair. Rows
512	represent the chromosomes, subdivided into the different lines (ordered as indicated on chromosome 12),
513	and columns the physical position. SubFigures show the distribution of markers informative for crosses
514	against (a) IR64 (b) IR71033 (c) IR65482 (d) Sunaulo Sugandha (e) Anamol Masuli (f) Khumal-4 (g)
515	IRBB-60 (h) Loktantra (i) Sugandha-1.
516	
517	Figure. S6 Distribution of distances between consecutive informative KASP markers, for new and
518	existing markers, for all combined pairwise combinations of rice lines used in this study. Vertical bars
519	represent the medians with boxes extending from the 25th to 75th percentiles. Whiskers extend from the
520	5th to 95th percentiles, dots represent the minimum and maximum distances.

521	
522	Supplementary Tables
523	
524	Table S1 Details of nine <i>indica</i> rice cultivars and breeding lines used for whole genome NGS.
525	
526	Table S2 Mapping rates, genome coverage and read depth of the nine sequenced rice lines, for all
527	mapped reads and for uniquely-mapped reads only. Only those reads with both pairs aligning in the
528	expected orientation were included.
529	
530	Table S3 Distribution of distances (bp) between consecutive informative existing KASP markers
531	(previously developed using chip-based technology) for all rice line pairings.
532	
533	Table S4 Distribution of distances (bp) between consecutive informative potential new KASP markers
534	(developed here using NGS data) for all rice line pairings.
535	
536	Table S5 Summary of KASP assay validation results. Counts are given of the number of unique marker-
537	cross combinations that have been validated (or otherwise), split according to whether or not the markers
538	met our bioinformatics filtering criteria, and between new and existing markers.
539	
540	Table S6 Details of marker-cross combinations tested for validation of 46 new and 75 existing KASP
541	assays (N.B. some failed assays may be due to lack of polymorphism.)
542	

Table S7 Sequences for new validated KASP assays available from LGC genomics.