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Abstract 

 
We find that certain bank characteristics—aggressive credit growth, less reliance on deposit funding, 
and size—prior to the 2007-2009 crisis are consistently related to the systemic dimensions of bank risk 
during the crisis. Exposures to real estate play a major role explaining this relationship: Banks with 
larger real estate betas exhibited higher levels of systemic risk during the crisis. The impact of real estate 
betas on systemic risk increases for larger banks, following aggressive credit growth policies in the 
presence of housing bubbles. We show that the relationship between bank characteristics and risk could 
also be detected using measures of systemic risk calculated prior to the financial crisis.   
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The 2007-2009 financial crisis resulted in the largest realization of bank risk since the Great Depression 

as illustrated by the spectacular declines in banks’ stock market capitalisation. Between May 2007 and 

March 2009, banks listed in the European Union and the United States lost around 82 percent of their 

value. Interestingly in the years preceding the crisis, forward-looking measures of bank risk—regularly 

used by financial investors, central banks, and supervisors to monitor the health of the financial 

system—showed a fairly benign picture and suggested very low levels of expected risk (IMF, 2009). 

Also, these signals were highly clustered making it difficult to disentangle ex-ante between riskier and 

safer institutions (see Figure I). Partly due to this benign picture provided by market-based indicators of 

bank risk prior to the crisis, supervisors, rating agencies and financial practitioners repeatedly 

emphasised the unexpected dimension of the recent crisis.1 The eruption of the crisis, however, revealed 

a huge variability in realized risk across individual banks, as evidenced by the cross-sectional dispersion 

of stock market returns during the crisis, suggesting a strong degree of heterogeneity in ex-ante risk-

taking. 

 These developments in markets’ perceptions of bank risk were important, as in the decades 

before the crisis much of the prudential regulatory action progressively moved away from regulating 

certain banks’ characteristics traditionally considered as sources of bank risk—such as excessive loan 

growth or unstable funding. Instead it focused on bank capital as the main buffer against excessive risk-

taking by banks, and increasingly relied on financial markets’ discipline.2 Coinciding with this move 

away from regulating banks’ characteristics, most of the previous empirical literature tended to find 

mixed results on the impact of certain bank characteristics on risk. For instance, empirical evidence on 

                                                           
1 Gorton (2012, pg.2) suggests that “The recent financial crisis of 2007-2009 in the United States and Europe shows that market economies, 
however much they grow and change, are still susceptible to collapse or near-collapse from financial crisis. This is a staggering thought. 
And it came as a surprise, as financial crises were thought to be things of the past for developed economies, now only occurring in 
emerging markets”. Hoening (2008, pag. 6) also emphasises that “the recent crisis has revealed some new and unexpected vulnerabilities 
in the financial system”.  
2 The Basel II package specifically introduced disclosure and market discipline principles as part of its pillar 3 (Basel Committee on 
Banking Supervision, 2017) while pillar I deals with minimum capital requirements (Basel Committee on Banking Supervision, 2011).  
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how certain bank characteristics—such as leverage, securitization, asset composition, size and non-

interest income—impact on banks’ risk profile often remains contradictory and non-conclusive (Berger, 

Molyneux and Wilson, 2015). As a result one useful empirical exercise would be to “go back to basics” 

and understand whether certain bank characteristics prior to the crisis were associated with banking 

risks.  

 This is the objective of our paper: We test which bank characteristics were associated with higher 

likelihood of bank default and would have helped in the early identification of risks during the 2007-

2009 crisis. This seems relevant, given the relatively poor performance of market-based indicators of 

bank risk and the mentioned focus of bank capital and financial markets’ discipline on the supervisory 

toolbox at the expense of other bank characteristics.  

 A critical challenge is how to incorporate the different dimensions of realised bank risk in such a 

way that the consistency of the results can be assessed. Using a database laboriously compiled for the 

purposes of this study we incorporate several measures of bank risk and analyse how they are related to 

key bank characteristics in the pre-crisis period. Building on the pre-crisis literature (see Berger, 

Molyneux and Wilson, 2015), we group individual bank information into four broad categories—capital, 

asset, funding, and income structures—which concisely aggregate the underlying banks’ characteristics.  

 Another challenge would be whether those characteristics impact on systemic, as opposed to 

idiosyncratic, bank risks. This distinction seems crucial as the buildup of systemic risks at the individual 

bank level would be typically associated with systemic banking crises which are very costly and have 

become more frequent in recent decades (Reinhart and Rogoff, 2009; Calomiris and Haber, 2014). We 

do this by creating different variables accounting for the systemic and idiosyncratic dimensions of bank 

risk. We also create a variable—real estate beta—to proxy for real estate exposure and another variable 
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accounting for housing bubbles as there is significant evidence showing that severe financial crises often 

follow housing bubbles and concentration on real estate (Taylor 2014).  

 Our empirical analysis offers a few key robust results. First, bank size, the rate of credit 

expansion, lower dependence on customer deposits, a weaker capital base for undercapitalised banks in 

the run-up to the crisis consistently accounted for higher levels of ex-post distress.  

 Second, the impact of these characteristics is concentrated on the systemic dimension of bank 

risk and developments in real estate in the run-up to the crisis explain the build-up of this systemic risk. 

We also show that the impact of real estate on systemic risk is heterogeneous and becomes stronger for 

larger banks, following expansionary loan policies, in the presence of housing bubbles and making more 

use of mortgage-backed securities for funding purposes.  

 Third, the effect of certain balance sheet variables on systemic bank risk is non-linear. For 

instance, the direct impact of loan growth on systemic risk is up to three times larger as realized risk 

increases. These results are robust to the inclusion of controls including macroeconomic, risk aversion 

and institutional factors, as well as to the use of instruments to account for potential endogeneity 

between the dependent variable and the regressors. 

 Finally, we re-run our baseline estimations using all available measures of bank risk prior to the 

crisis. The idea is to ascertain whether the muted expectations of bank risk by market participants and 

banking supervisors prior to the crisis could be linked to a lack of predictability of real estate beta and 

other bank characteristics on risk before a crisis takes place. We find that real estate beta, size and less 

funding via stable bank deposits predicted risk also prior to the crisis. Also in this setting, we find that 

their impact is concentrated on the systemic dimension of bank risk.  
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 Our findings have a bearing on the current prudential regulatory debate. They unambiguously 

suggest that aggressive loan growth and less reliance on deposits for funding purposes lead to the 

accumulation of systemic risk thereby supporting the introduction of additional supervisory actions 

linked to these variables.  

 The remainder of this paper is organized as follows. Section I reviews the literature on bank 

characteristics and risk. Section II describes the model, data sources, and how the dataset was 

constructed. Section III presents the main empirical findings and section IV the robustness tests. Section 

V concludes. 

I. Bank characteristics and risk: A literature review 

We structure our review of the literature by grouping bank characteristics into broad categories, which 

have been traditionally related to bank risk, used later in our empirical investigation. We then review the 

evidence on real estate developments as a plausible driver of the relationship between bank 

characteristics and the systemic dimension of bank risk. 

 Capital structure – While financial regulation has given more prominence to bank capital in 

recent decades (Rochet, 2010), the literature offers contradictory results as to the effects of capital on 

bank risk (Freixas and Rochet, 2008). In principle, the higher the capital, the stronger the buffer to 

withstand losses.3 Higher levels of capital—by increasing the skin in the game of shareholders—may 

also reduce risk-shifting incentives towards excessively risky projects at the expense of debt holders. In 

this direction, Beltratti and Stulz (2012) find that banks with higher capital performed better in the initial 

stages of the crisis, and the empirical literature tends to show that holding more capital supports bank 

                                                           
3 This is particularly useful in the banking industry, where the presence of deposit insurance creates an additional incentive for shareholders to take 
advantage of this guarantee by taking on excessive risks (Bhattacharya and Thakor, 1993).  
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soundness, particularly during crises (Demirgüç-Kunt and Huizinga, 2010; Berger and Bouwman, 

2013). 

 In contrast, there are reasons that could bring about a positive relationship between capital and 

risk. For instance, agency problems between shareholders and managers can lead to excessive risk-

taking via managerial rent-seeking. According to the corporate finance literature, lower levels of capital 

(i.e. higher leverage) can intensify the pressure on bank managers by informed debt holders to take on 

fewer risks (Jensen and Meckling, 1976; Calomiris and Kahn, 1991; Diamond and Rajan, 2001). It is 

also possible to envisage a non-linear relationship, whereby both very low and very high levels of 

capital induce banks to take on more risk. Calem and Rob (1999) model a U-shaped relationship 

between capital and risk-taking in which as bank's capital increases the bank first takes less risk and then 

more risk. More recently, Bahaj and Malherber (2017) find a U-shaped relationship between capital and 

lending which also depends on economic prospects.   

 Empirically, higher levels of capital may simply be the result of regulators forcing riskier banks 

to hold higher buffers. There is, in fact, some evidence finding a positive relationship between higher 

levels of bank capital and risk (see for instance Delis and Staikouras, 2011).4  

 Asset structure – The widespread use of private securitization techniques represented a major 

structural development in the decades prior to the 2007-2009 crisis. It allowed banks to sell more easily 

part of their loan book to investors and swiftly turn traditionally illiquid claims (such as bank of bank 

loans) into marketable securities. This, in turn, lowered regulatory pressures on banks’ capital 

requirements (Shin, 2009; Marques-Ibanez and Scheicher, 2010). In principle, from the perspective of 

individual banks, securitization helped banks to manage and diversify their credit risk portfolio more 

effectively, both geographically and by sector. Indeed, most of the empirical evidence from the pre-
                                                           
4 In this respect many of the banks failing during the crisis had capital levels above the average of their peers (Haldane and Madouros, 2012).  
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crisis period suggests that banks more active in securitization markets were more profitable and better 

capitalized (Cebenoyan and Strahan, 2004; Wu et al., 2011). At the same time, banks might also respond 

to the static reduction in risks due to securitization by taking on new ones, for instance by loosening 

their lending standards, increasing their leverage, or becoming systemically riskier (Mian and Sufi, 

2009; Nijskens and Wagner, 2011; Keys et al., 2010). 

 Funding structure – Banks’ traditional source of funding is represented by customers’ deposits. 

High switching costs and the presence of government insurance makes banks’ deposits a stable source of 

funding particularly during periods of crises (Kim et al., 2003; Shleifer and Vishny, 2010). Deposits are, 

however, usually a less flexible source of funding than wholesale markets’ financing such as mortgage 

bonds, repurchase agreements and commercial paper. Financial market investors—being relatively more 

sophisticated than retail depositors—could in principle provide useful market discipline (Calomiris and 

Kahn, 1991). At the same time, the recent financial crisis pointed also to a “dark side” of market funding 

underlying some limitations on the monitoring ability of wholesale investors for systemic risks during 

certain periods (Huang and Ratnovski, 2011; Gorton and Metrick, 2012).    

 Income structure – The global trend towards more diversification in bank income sources has 

led to an expansion of non-interest income revenues, such as those derived from trading, investment 

banking, brokerage fees and commissions. Such diversification can, in principle, foster stability in 

banks’ overall income (Stiroh, 2010). At the same time, it is not clear whether the stronger reliance on 

non-interest income reduces overall banking risk as it tends to be a particularly volatile source of 

revenue which may suffer more in periods of financial stress. As a result, it is also possible that the 

financial stability benefits that may be obtained from diversification accrue only in cases of minor 

idiosyncratic risk, but not in the context of a wider systemic shock (De Jonghe, 2010; Brunnermeier et 

al. 2012).  
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 We also include under this heading loan growth: There is historical evidence suggesting that 

excessive lending preceded most systemic banking crises (Reinhart and Rogoff, 2009). This is also 

confirmed by microeconomic evidence showing that loan growth represents an important driver of risk 

(Laeven and Majnoni, 2003; Foos et al., 2010; Fahlenbrach, Prilmeier and Stulz, 2016). 

  Size – Size can also be an important determinant of banks’ risk (Huang et al., 2012; Tarashev et 

al., 2009; Laeven et al., 2014). Compared to smaller banks, larger institutions could have different 

incentives due to the “too-big-to-fail” problem which might encourage larger institutions to take more 

risks than smaller ones. At the same time bigger institutions might be able to diversify their risks better 

(Demirgüç-Kunt and Huizinga, 2010). 

 Systemic risk and real estate – A crucial consideration, when assessing the impact of these 

variables on bank risk, would be their impact on systemic—as opposed to idiosyncratic—dimensions of 

risk. This as an important aspect as the aggregation of systemic risks would often result on major 

financial crises which tend to be costly and lead to deep recessions (Laeven and Valencia, 2013).  

 There is historical evidence showing that systemic banking crises have become more frequent 

over the last four decades, and that real estate developments tend to be a major factor underlying these 

crises (Reinhart and Rogoff, 2009; Calomiris and Haber, 2014). Supporting this argument it has been 

shown that for more than a century real estate booms have been strongly connected with a higher 

likelihood of systemic crisis (Reinhart and Rogoff, 2008). In recent decades, as real estate lending has 

progressively become an increasingly larger component of banks’ balance sheet, housing developments 

have become a major driver of bank risk (Jorda, Schularick and Taylor, 2015).  

http://www.nber.org/people/rudiger_fahlenbrach
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II. Construction of bank risk variables 

Our baseline specification draws on the previous discussion, grouping the variables by balance sheet 

structures: 
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(1) 

 The dependent variable (ri,c) measures the distress of bank i during the crisis period c (2007Q4 to 

2009Q4),5 while the regressors are computed as the average bank characteristics in the pre-crisis period 

b (2003Q4 to 2007Q3). The use of average information from the pre-crisis period to forecast distress 

during the crisis serves to minimize endogeneity problems. A similar strategy has been adopted by 

Beltratti and Stulz (2012), Bekaert et al. (2014) and Demirgüç-Kunt et al. (2013). From an econometric 

perspective, these variables can be considered predetermined, which guarantees consistent forecasts. 

Whether these forecasting relationships can be also given a causal interpretation is of course a different 

matter. We will come back to this issue in section IV.  

 The statistical sources used and brief description of the main variables included in our study are 

provided in Table I, while Table II shows the main descriptive statistics. Our initial dataset has more 

than 1,100 listed banks from 16 countries.6 The dataset is highly representative, as it covers around 

                                                           
5 Hence, our sample horizon excludes the period of tension in sovereign bond markets. This is because the spillover effects on the banking 
sector would distort our model and, thus, our final results. For instance, between 2009 and 2010, the yield for 10-year Greek government 
bonds increased from 5.2 to 9.3 percent, raising the spread with the government bonds of euro area counterparts from 110 basis points to 
530 basis points. This also affected all the indicators of bank risk for Greek banks. 
6 Namely: Austria, Belgium, Denmark, Germany, Greece, Finland, France, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, 
Sweden, the United Kingdom and the United States. 
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three-fourths of the total aggregate balance sheet of banks operating in the European Union and United 

States. The rest of this section describes in detail the construction of each variable. 

II.A Construction of bank risk variables 

In order to capture the realization of bank risk, it is crucial to recognize that during a crisis, the 

materialization of bank risk unfolds progressively and manifests itself in several and different 

dimensions. We employ alternative measures of bank risk to capture these different dimensions and to 

ensure that our results do not depend on a narrow definition of bank risk. We believe that the use of all 

these measures is crucial to assess the validity of our findings. Indeed, a major possible reason for the 

contradictory findings of earlier empirical studies (see section I) was probably related to the different 

dimensions of risk.7  

 i. Financial support – Our first measure describes whether an institution received any 

government support. The construction of this variable is based on the collection of information relating 

to the public rescue of banks via capital injections, the issuance of state-guaranteed bonds, or other 

government-sponsored programmes.8 It is compiled from several sources, including the European 

Commission, central banks, the Bank for International Settlements, Bloomberg, and the websites of a 

number of government institutions. The resulting dummy variable takes the value of one if public 

financial support was received during the crisis and zero otherwise. This is matched with information on 

listed banking groups (around 1,100 institutions) for which consolidated financial statements are 

available via Bloomberg (see below).9  

                                                           
7 A lingering limitation of all our measures of bank risk is that their values would be all affected by the safety net. 
8 For a comprehensive overview of the public measures in support of the financial sector see Stolz and Wedow (2010). The choice of such 
as a broad measure of government support is pragmatic. When analysing the data, there were many instances of banks receiving several 
types of government support which would have complicated the estimation using a more precise definition of government support 
including the different interventions. 
9 We consider commercial or universal banks only. Hence foreign subsidiaries, investment banks, and non-bank financial institutions are 
not included in our sample.  
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 ii. Systematic risk – Our second measure of bank risk describes the average (i.e. systematic) 

stock market reaction of each bank to movements on the overall stock market index. It is constructed 

using a simple capital asset pricing model, based on the following equation:  

Ri,k,t =βi,k,t*  Rm,k,t + εi,k,t                                                                                                                                                                                                                        (2) 

 where Ri,k,t is the daily logarithmic excess stock market returns for each bank i from country k at 

time t;10 Rm,k,t is the daily logarithmic excess stock market returns from the broad stock market index m 

for country k; and the term εi,k,t is a bank-specific residual. To ensure comparability, we use the broad 

stock market index for each country available from Datastream. For each bank i, we calculate the 

systematic component βi,k,t by running separate regressions on daily data for every quarter q from 

2007Q4 to 2009Q4. We then calculate the average beta for each individual bank during the crisis period. 

Obviously this would reduce our original sample to only those banks which are listed and actively traded 

during our period of study (around 483 institutions). 

 iii. Systemic risk – Our third measure of bank risk broadly captures the reaction of individual 

banks to systemic events. It measures tail dependence in the stock market returns of individual banks 

and equates the magnitude of tail dependence estimates as a measure of systemic risk. It is estimated via 

the marginal expected shortfall (MES) following the model and parametrization by Acharya, Pedersen, 

Philippon and Richardson (2010) calculated from daily data of individual banks' and countries' stock 

market equity returns from Datastream.  

 iv. Central bank liquidity – Our fourth measure of bank risk is based on confidential 

information on the liquidity provided to individual banks by the European Central Bank via the 

Eurosystem. It measures bank risk during a crisis by taking advantage of a change in the central bank’s 

                                                           
10 We calculate excess returns as the difference between stock market returns and the 10-year government bond yield for the country 
concerned.  
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liquidity policy. Namely, in October 2008, following the collapse of Lehman Brothers, the central bank 

switched to a policy of full allotment and fixed rates which meant that euro area banks were able to get 

unlimited liquidity from the Eurosystem at the main refinancing rate provided they pledge adequate 

collateral.11 Our central bank liquidity variable is constructed as the overall liquidity position of each 

institution with the ECB. The liquidity amount is divided by total assets in order to make amounts 

comparable across institutions. Compared to other measures, this variable also accounts for liquidity 

risk, covering a key aspect of bank risk. By construction, this variable reduces our sample further as we 

limit it to the largest 83 euro area banking groups. These banks cover, nonetheless, more than 90 percent 

of the average liquidity provided by the Eurosystem.12 

 v. Idiosyncratic risk – Our fifth measure describes the individual (i.e. non-systematic) 

dimension of bank risk constructed from the component of stock market movements of each bank i 

which is unrelated to movements on the overall stock market index. It is constructed using a simple 

capital asset pricing model (see above) as the average of the quarterly non-overlapping standard 

deviations of the unexplained component εi,k,t (or bank-specific residual) calculated for each bank i from 

country k using daily stock market prices during the crisis period (2007Q4 to 2009Q4). 

 vi. Idiosyncratic risk2 – Our sixth measure of bank risk follows Campbell et al. (2001) by 

decomposing the stock market prices of each bank i into three components of realized volatility: market 

wide, banking industry-specific, and bank-specific volatility. We use the latter as our second variable 

accounting for idiosyncratic bank risk (Idiosyncratic risk2). We use daily stock market data (see above) 

and calculate Idiosyncratic risk2 for every bank i for each quarter q. We then calculate the average 

Idiosyncratic risk2 for each individual bank i during the crisis (2007Q4-2009Q4). 

                                                           
11 Hence we restrict our results to the period of full allotment of liquidity provision by the European Central Bank (starting in October 
2008) to avoid any distortions arising from changes in the central bank operational framework.  
12 We narrow our sample to the largest banking groups to ensure representativeness as in some countries many of the smallest banks often 
draw liquidity with the central bank indirectly via larger institutions. 
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 vii. Structural credit risk – Our last measure of bank risk is the expected default frequency 

(EDF) and captures the constructed one-year ahead probability of default for each individual bank. It is 

computed by Moody’s KMV based on Merton’s model to price corporate bond debt (Merton, 1974). 

The EDF value, expressed as a percentage, is calculated by combining banks’ financial statements with 

stock market information and a proprietary default database. EDF developments are regularly used as an 

indicator by financial institutions, investors, central banks and regulators to monitor the health of the 

financial system.13  

II.B Bank characteristics 

We next match information on average bank risk with data on bank characteristics from the pre-crisis 

period (2003Q4 to 2007Q3), using a dataset of consolidated quarterly financial statements obtained from 

Bloomberg. We also complete our database with information from other sources, such as Dealogic, 

Bank for International Settlements, Moody’s KMV, Bankscope and Datastream (see Table I).  

 The first variable characterizing the banks’ characteristics is real estate beta:  

 Real estate beta – We construct the real estate beta (γi,k,t) by adding to our CAPM regression (2) 

a real estate index:    

Ri,k,t= βi,k,t*  Rm,k,t + γi,k,t*  Re,k,t + εi,k,t                                                                                                                                                                                  (3) 

 where Re,k,t are the excess stock market returns for the real estate market index of country k at 

time t. As in equation (2) Ri,k,t is the daily logarithmic excess stock market returns for each bank i from 

                                                           
13 The final EDF value, expressed as a percentage, represents the implied risk of default and is constructed by combining companies’ 
financial statements with stock market information and a proprietary default database maintained by Moody’s KMV. Compared to other 
measures of expected bank risk, the KMV methodology has various advantages. First, it is not based on ratings which might be biased 
indicators of corporate risk due to conflicts of interest. Second, unlike measures of default risks derived exclusively from accounting 
information—such as Z-scores—, EDF is not a backward-looking indicator of risk. Third, despite their simplifying assumptions, EDF 
estimations of default risk show strong robustness to model misspecifications (Jessen and Lando, 2015). Finally, during the recent financial 
crisis and compared to other measures of default risk, the EDF has done relatively well as a predictor of firms’ risk on a cross-sectional 
perspective. That is, the relative positions of firms ranked according to their EDF levels in the year before the crisis were good predictors 
of rank ordering of default risk during the crisis (Munves et al., 2010).  
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country k at time t;14 Rm,k,t is the daily logarithmic excess stock market returns from the broad stock 

market index m for country k; Re,k,t is the real estate stock market index for each country,15 and the term 

εi,k,t is a bank-specific residual. For each bank i, we calculate the real estate beta (γi,k,t) by running 

separate regressions on daily data for every quarter q from 2007Q4 to 2009Q4. We then calculate the 

average real estate beta for each individual bank during the crisis period. Overall, after excluding banks 

for which no observation was available, we managed to compute the real estate beta for 757 banks.   

 Size – As in our literature review we also include a variable accounting for size, measured as the 

average natural logarithm of total assets of the consolidated institution before the crisis. We also 

calculate a dummy variable (Sifi) to measure whether the institution was categorized as a systemically 

important according to the national supervisory authorities or the Bank for International Settlements.  

We include the other variables into main groups: 

 Capital structure – We approximate bank capital by using a ratio of Tier I capital to total risk-

weighted assets. Tier I capital is the regulatory term for core capital, essentially composed of common 

stocks and disclosed reserves. In line with Calem and Rob (1999) and the proposals made by the Basel 

Committee on Banking Supervision (2010), our measure of capital is interacted with a dummy indicator 

for banks with low capital ratios (below 6 percent) to account for possible non-linear effects for less-

capitalized banks. We also construct a total capital ratio (broader definition of bank capital), as well as a 

a core capital to total assets ratio. 

 Asset structure – A variable capturing an important aspect of the asset structure is the ratio of 

loans to total assets. It provides a summary indication of the extent to which a bank is involved in 

                                                           
14 We calculate excess returns as the difference between stock market returns and the 10-year government bond yield for the country 
concerned.  
15 No index is available for Ireland. 
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traditional lending activities. The other variable characterizing the asset structure is the amount of 

securitization activity. The data on securitization has been constructed by combining data from three 

different sources (Bondware, Home Mortgage Disclosure Act and Standard and Poor’s) and has been 

matched with balance sheet information from individual banks. Then it has been used to calculate the 

private securitization originated per quarter by each bank (i.e. percentage of bank credit sold on to the 

markets) as a proportion of total bank assets during the same period.16 We also distinguish between 

mortgage-backed and other forms of securitization. 

 Funding structure – The third group of regressors is concerned with the structure of on-balance 

sheet funding. It accounts for reliance on short-term wholesale funding, measured as the ratio of short-

term marketable securities to total assets, and more traditional retail deposit funding, also relative to 

total assets.  

 Income structure – We look at the two major income drivers of strategic importance to financial 

institutions. First, banks’ lending strategy is measured as a bank’s average quarterly loan growth minus 

the national average. Second, we capture the degree of income diversification and the extent to which a 

bank has moved towards more volatile non-interest income sources by calculating their value as a 

percentage of total revenue.17  

II.C Additional controls  

As part of our robustness tests, we also include a number of additional controls. First, some of our 

specifications incorporate a group of macroeconomic controls that have been found to be related to 

                                                           
16 We look at individual deal-by-deal issuance patterns in the private securitization market. The advantage of using data on securitization 
activity from Dealogic is that the name of the originator, date of issuance and deal proceeds are registered. The sample includes public 
offerings of funded asset-backed securities (ABSs) as well as issues of cash flow (balance-sheet) collateralized debt obligations (CDOs). In 
other words, the securities included in the sample involve a transfer of funding from market investors to originators so that pure synthetic 
structures (such as synthetic CDOs which transfer credit risk only) and public securitization are not included.  
17 We also disaggregate non-interest income into two broad categories: 1) Securities income which arises from fees, commissions and other 
non-interest banking services such as investment banking, and 2) Trading income undertaken on banks’ on behalf. 
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banking crises in developed countries. These include changes in real housing prices, based on the 

country series constructed by the Bank for International Settlements (Borio and Drehmann, 2009), and 

changes in the broad stock market indices for non-financial corporations, as calculated by Datastream. 

Both of these asset price indices are demeaned from their long-term historical averages to capture 

abnormal changes in borrowers’ collateral values. Second, we account for the impact on bank risk of 

potential corporate governance frictions arising from the bank ownership structure (Laeven and Levine, 

2009; Erkens et al., 2012) with a Herfindahl index of ownership concentration of significant 

shareholders. It is calculated using information from Bankscope as the sum of the squared values of the 

percentage of equity held by each individual shareholder. Third, we account for bank risk aversion as 

revealed during a crisis using stock market returns from the previous crisis. This variable constructed 

using information from Datastream controls for the possibility that banks were accumulating certain 

risks that only materialized during a crisis. 

III. MAIN RESULTS 

This section discusses the main empirical findings of our analysis. We first present the results from 

probit and linear regression models applied to our measures of bank risk. In the next subsections, we test 

the robustness of the results to the pre-crisis period and discuss the insights that can be derived from 

regression quantile estimates applied to systematic risk.  

III.A Baseline results 

Table III provides the estimates of the baseline specification for different measures of bank risk. Column 

(I) reports the results of the Probit regression using as a measure of distress the dichotomous variable 

indicating whether a bank received government support. Columns (II) to (VI) contain the coefficients of 
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OLS regressions where distress is measured by systematic, systemic, central bank liquidity and two 

measures of idiosyncratic risks as described in the previous section.18 

 The results are quite stark and strongly suggest that bank characteristics are highly predictive of 

the broader measures of bank risk (i.e. systemic, systematic, rescue and central bank liquidity). In 

contrast the predictive power of bank characteristics on the idiosyncratic measures of bank risk is very 

mild.  

 With the exception of the idiosyncratic risk variable, the results are remarkably consistent across 

most columns, both in terms of sign and statistical significance.19 This already speaks to the robustness 

and validity of our empirical findings, as they do not depend on a particular definition of bank risk or 

specific samples (sample sizes vary widely in the different models due to data availability). Our results 

remain robust to the inclusion of additional controls (see next section). 

 Focusing on the results for the non-idiosyncratic measures of bank risk (columns I to IV), bank 

size is actually the only variable whose sign changes across the models. It is positively related to 

measures of bank risk in the first three columns. The positive sign is consistent with the view that large 

banks were significantly riskier during the recent crisis. Large banks might have also been considered as 

“too big to fail”, thus inducing governments to rescue them more often (Huang, et al., 2012; Demirgüç-

Kunt and Huizinga, 2010; Tarashev et al., 2009). The apparently contradictory negative sign for size in 

column (IV) is probably explained by the fact that the dependent variable is constructed as the ratio of 

central bank liquidity demand scaled by the size of the financial institution. Since size appears in the 

denominator of the dependent variable, higher size is mechanically associated with lower liquidity/size 

                                                           
18 In this table, we report only the estimates of the marginal effects of the probit model. The estimates and statistical significance of the 
coefficients of the probit model are fully consistent with the interpretation given to the marginal effects. Results are available upon request. 
19 It is important to bear in mind that the results in column (I) calculated via a probit are not directly comparable to those of the other 
columns. 
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ratio. It could be that larger banks were considered as too-big-to-fail by the financial markets and access 

to the private short-term liquidity markets was more open for them than for smaller institutions and 

require, as a result, less central bank liquidity. We next discuss the impact of the different balance sheet 

structures. 

Capital structure – A higher level of capital ex-ante generally tends to decrease the severity of 

bank distress during the crisis although this result does not hold for all definitions of bank risk. A novel 

and important finding of our analysis is that capital is far more important for undercapitalised banks, as 

indicated by the negative and highly statistically significant coefficients for most bank risk variables. 

This non-linear relationship between capital and risk is in line with Calem and Rob (1999), Perotti et al. 

(2011) and the proposals made by the Basel Committee on Banking Supervision in 2010 (BIS, 2010). 

Empirically, it is also consistent with recent empirical results by Gropp et al. (2016) and Behn et al. 

(2016) that show that the effects of higher capital ratios are stronger for weakly capitalized banks.   

 Asset structure – The ratios of loans to total assets are positively related to our measures of 

bank risk (Blaško and Sinkey, 2006). The negative sign for funded securitization suggests that banks, as 

originators, tended to use traditional securitization to off-load riskier loans from their balance sheets 

rather than as an instrument for taking on more risk (Knaup and Wagner, 2012).  

 Funding structure – Customer deposits tend to provide funding stability to banks and reduce 

the probability of a bank rescue. In contrast, the use of short-term marketable securities increases the 

probability of distress (Demirgüç-Kunt and Huizinga, 2010). It appears that those institutions more 

reliant on short-term market funding are more exposed to liquidity risk during the crisis, as it becomes 

problematic to roll over short-term debt to finance illiquid assets. These findings corroborate recent 

country evidence (Hahm, Shin and shin, 2013) and proposals to strengthen anticyclical liquidity 
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regulations such as the use of liquidity charges (see for instance, Brunnermeier, Gorton and 

Krishnamurthy, 2012; Perotti and Suarez, 2011). 

 Income structure – An aggressive expansion in loan growth in the run-up to the crisis is 

generally associated with higher distress during the crisis, arguably due to a relaxation of credit 

standards and deterioration in the credit quality of the asset side of the balance sheet. This result 

emphasises the similarity of the recent crisis with macroeconomic evidence from earlier episodes of 

financial turmoil (Tornell and Westermann, 2002), raising the question of why remedial measures were 

not implemented at the supervisory level to smooth the credit cycle. It also informs the regulatory debate 

going forward (Reinhart and Rogoff, 2009). Results on non-interest income are more blurred and appear 

to be relevant for some of the specifications only.20  

 The next step when considering the relationship between bank characteristics and risk, is to see 

whether the role of certain characteristics is stronger (i.e. quantitatively and statistically more important) 

for the riskier banks (as materialized during the crisis). To do this we classify and rank banks during the 

crisis by quantiles according to their realized levels of bank risk.  

 By construction, probit and linear regression models give only a measure of the central tendency 

of the relationship between dependent and independent variables. This assumes that covariates affect 

only the location of the conditional distribution of y. Still, covariates can affect the conditional 

distribution in other ways, for instance, by affecting one tail but not the other. To give a concrete 

example, our baseline model shows that undercapitalized banks tend to be in greater distress during the 

crisis. But does this result necessarily hold for all banks—as the ordinary least squares, OLS, estimates 

would suggest—or do poorly capitalized banks disproportionately increase the risk for riskier banks 
                                                           
20 In additional specifications we distinguished between two major sources of non-interest income: Securities income (including revenues 
from fees, commissions and other non-interest related banking services such as investment banking) and Trading income. The new results 
(available upon request) do not show any major differences across the main sources of non-interest income.  
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relative to the less risky ones? We can obtain a more complete picture of the distributional dependence 

between the bank characteristics and risk by estimating quantile regressions.21 

 Our regression quantile estimates are obtained by minimizing the objective function 

∑
=

ττb
b−ρ

N

i
bici Xr

1
,, )(min . Here cir ,  is the systematic risk variable for bank i defined in section II.A, biX ,  

contains the same set of regressors as in equation (1), N is the number of observations,

, I is the indicator function whereby I equals one if the expression in parenthesis is 

true and zero otherwise, and  is the probability associated with the quantile c. To facilitate a 

comparison with our baseline model, we use the same empirical specification. 

 We estimate the model using as dependent variable systematic risk. Results for the 10, 25, 50, 75 

and 90 percent quantiles are presented in Table IV. The last column in the Table reports the results of 

the equality test that the slope coefficients of the regression quantiles are all the same. Unsurprisingly, 

the signs of the regression quantile coefficients are coherent with the OLS results. For variables related 

to the asset and funding structure, we notice that the test results reported in the last column of the Table 

reject the null hypothesis that all regression quantile coefficients are equal.22  

 The results show that size, low levels of capital, low deposit base and excessive loan growth all 

unambiguously increase the level of distress during the crisis, irrespectively of which part of the risk 

distribution we are analyzing. Funding via bank deposits buttress bank stability particularly for the 

riskier banks whereas fast paced loan growth and dependence on short-term market funding lead to 

progressively stronger impact on bank distress as the banks join the upper part of the risk distribution. 

                                                           
21 Regression quantiles were first introduced by Koenker and Bassett (1978) and have been widely used ever since (for an introductory 
survey, see Koenker and Hallock, 2001). 
22 The test for the size variable does not reject the null hypothesis that the coefficient of size is equal across all the quantile specifications.  
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This implies that the effects of certain bank characteristics become indeed stronger, as the intensity of 

the realization of bank risk becomes larger.  

 Overall, this section shows that certain bank characteristics—fast loan growth, size and unstable 

funding—prior to the crisis were consistently related to systematic risk and that their impact was non-

lineal. This has the important policy implication that supervisors should be particularly alert by the 

effect of certain bank characteristics due to their impact on the group of riskier banks. As a result, early 

and more intense supervisory intensity would be warranted for banks with those characteristics. 

III.B Real estate developments 

Since bank characteristics seem to predict the systemic dimensions of bank risk, it would be logical to 

understand whether there is a major systemic driver leading to those bank characteristics. A natural 

candidate would be real estate developments which have been historically connected to the majority of 

systemic crises.  

 For this reason Table V incorporates to our baseline regression real estate beta as an additional 

bank characteristic. In fact real estate developments seem to be an important part of the narrative as this 

variable is strongly related to the systemic dimensions of bank risk and takes away some of the 

predictive power of other bank characteristics although size, excessive loan growth and unstable funding 

continue to predict realized bank risk.  

 Clearly real estate developments would also be expected to interact with bank characteristics as 

banks alter their business models to take advantage of profitable opportunities on the real estate 

business. Table VI builds on Table V but also includes, progressively, the interactions between real 

estate beta and three key variables: excessive loan growth, deposit funding and capital ratio. Columns IV 

to VI add the interactions of real estate beta, excessive real estate loan growth, mortgage-backed 
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securitization and capital ratio. It shows that excessive lending growth augments the impact of real estate 

betas on bank risk. That is, banks that “ride the real estate cycle” by lending more aggressively would 

typically end up with higher materialized risk. Mortgage-backed securitization seems to have a similar 

impact on bank risk when interacted with real estate betas. Interestingly the variable excessive loan 

growth continues to be a predictor of bank risk also by itself—i.e. not interacted with real estate. This 

suggests a key role for this variable as a central predictor of bank risk. As expected, concentrations on 

real estate business as measured by the real estate beta becomes a risk factor only during instances of 

housing bubbles (Table VII). During these periods, traditional excessive loan growth also seems to 

become a strong factor forecasting systemic risk. In short, loan growth and real estate exposure seem to 

be the two key variables that ought to be monitored by supervisors, particularly during housing bubbles.  

III.C Size 

Larger institutions might benefit from an implicit guarantee as they might be considered “too-big-too 

fail” by supervisors. They probably have, as a result, an incentive to take on more risks than smaller 

institutions. In fact, most of our results (Tables III to VII) show a clear link between size and realized 

risk. Table VIII considers further the role of size by individuating the effect of systemically important 

banks as designated by supervisory authorities. It also assesses whether the effect of size on bank risk 

becomes stronger as exposure to real estate developments increases.    

 In Table VIII we interact the variable real estate beta with bank size (column I) to assess whether 

the role of too-big-to-fail on bank risk changes as real estate exposure changes. We also interact real 

estate beta with Sifi—a dummy variable designing systemically important financial institutions—

(column II) as well as a triple interaction of real estate beta, Sifi and bank size (column III). Again the 

idea is to see if the designation of an institution as Sifi—which is closer to the concept accounting for 
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Too-big-to-fail status than size—might lead to riskier strategies in connection to real estate 

developments and whether this connection changes as the size of the institution increases.  

 Columns IV, V and VI interact the variable Sifi with our usual key determinants of bank risk: 

Excessive loan growth, deposit funding and capital ratio. Systemic institutions designated as Sifis might 

be able to operate riskier business models characterized by aggressive loan growth, less stable funding 

and a weaker capital position. 

 As expected the variable size is connected to systemic risk and its effect becomes larger as real 

estate beta increases. Yet, somewhat surprisingly, the designation of banks as systemically important 

financial institutions (Sifi) seems to add little predictive power to forecast realized risk. Also when 

interacted with some key bank characteristics. In fact, the value of the Sifi coefficient is negative at 

times.  

III.D Results before the crisis 

The results for our baseline estimations also hold when our measures for bank risk are calculated before 

the crisis takes place. Specifically, we also run our main estimations including information on the 

variables accounting for bank risk calculated as averages of quarterly data for individual banks during 

the 2006Q1 to 2006Q4 period. That is a year before the crisis erupted. The variables accounting for bank 

characteristics—including the real estate beta—are calculated as averages of quarterly data for 

individual banks during the 2003Q4 to 2005Q4 period. The idea is to ascertain whether the predictability 

of certain bank characteristics on bank risk also holds before a crisis takes place so that remedial 

measures could be taken before crises erupted. The use of pre-crisis information of all variables would 

also contribute to add consistency to our empirical findings as it is possible that divergences in the 
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findings of the empirical literature might be due to the use of samples which might be subject to banking 

crises.  

 Interestingly, the new estimations suggest that bank characteristics clearly predicted bank risk 

also prior to the crisis and were particularly relevant to forecast the systemic and systematic components 

of risk.23 The findings also hold the variable real estate beta is included on the analysis (Table IX). 

Hence bank characteristics are good at predicting bank risk not only when a crisis takes place, but also 

before a crisis strikes thereby enhancing the practical implications and validity of our results. In this line 

also, as systemic risks mostly induced in our case by  real estate betas is probably the dimension of risk 

with the strongest importance from a supervisory standpoint, our findings strongly suggests that 

supervisors would need to be particularly watchful at taming risks for banks with certain characteristics. 

In a way, our findings provide supportive evidence at the microeconometric level to the Reinhart and 

Rogoff’s (2009) macroeconomic results. 

 An important practical implication of our findings is that banks with high systemic and 

systematic risk prior to the crisis would also be those institutions with relatively high materialized risk 

during the crisis. Figure II shows that that this was indeed the case. On the X axis, it shows the 

percentile values for the systematic risk variable during the pre-crisis period (2003Q4 to 2007Q3) 

including the 5 percent (i.e. low systematic risk) and 95 percent (i.e. high systematic risk) percentiles. 

On the Y axis, the diagram shows the 5 percent (i.e. low systematic risk) and 95 percent (i.e. high 

systematic risk) percentile values for the systematic risk variable for the crisis period (2007Q4 to 

2009Q4). It clearly shows that those institutions with very high (low) systematic risk before the crisis 

were also well above (below) the average of systematic risk during the crisis. A similar picture appears 

                                                           
23 Results are available upon request. 
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when real estate beta is used instead of systematic risk vouching for the predictability of stock-market 

based indicators of systemic crisis related to real estate developments. 

IV. ROBUSTNESS 

Strictly speaking, the results presented in earlier sections are correlations and not causal relations, 

because of possible endogeneity concerns affecting our estimates. In fact, banks with a stronger risk 

attitude may be more likely to have characteristics linked to a riskier profile, resulting in higher ex-post 

distress during times of crisis. In this case, the causality chain would run from risk to bank 

characteristics, rather than vice versa as implicit in our discussion so far. Tackling causality is generally 

not easy and our set up is no exception. 

To start with, we would like to point out that our results remain of interest to policy makers, 

regardless of whether they can be given a causal interpretation. From a purely forecasting perspective, 

since all dependent variables are predetermined, the policy maker can correctly infer that the banks more 

likely to be in trouble in most occasions in case of crisis are those with poor capital ratios, excessive 

loan growth, too much reliance on market funding and so on. Whether the more risky business model of 

the bank is driven by the risk preferences of its management is of additional interest (and can possibly be 

exploited by the policy maker), but does not subtract from the relevance of our results: banks with 

certain characteristics should be more carefully monitored by supervisors and eventually asked to reduce 

their overall level of risk. 

 These considerations notwithstanding, we address endogeneity concerns by including additional 

control variables in the main regressions additional variables capturing banks’ profitability, corporate 
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governance, and major macroeconomic variables (GDP, house prices, stock market returns) and results 

are qualitatively similar to our baseline specification.24  

 Analogously, further estimations also vouch for the robustness of the results for the estimations 

including information on bank risk for the pre-crisis period. We also account for the possible (lurking) 

effect of possible long-lived risk-taking preferences of individual banks on our findings that affect both 

banks’ characteristics and risk that only materializes in the event of a crisis. We do this by checking that 

our results remain robust to the inclusion of banks’ return during the previous crisis (as suggested in 

Fahlenbrach et al., 2012). 25   

 An alternative strategy to tackle endogeneity concerns is to split the sample between banks with 

a more or less dispersed ownership structure. The idea is that management and shareholders’ risk 

preferences are unlikely to remain the same across these different groups. There is evidence suggesting 

that a more concentrated ownership has a better control over management and is probably more likely to 

undertake riskier and possibly more profitable strategies (Laeven and Levine, 2009; Erkens et al., 2012). 

The results show that our findings remain robust to different groupings of banks, therefore adding 

further evidence in favor of causality running from balance sheet to risk.26  

As an additional robustness test we ran an instrumental variable regression for systematic risk, 

using as instruments the average balance sheet variables of other banks in the country, as suggested by 

Laeven and Levine (2009).27 This instrument captures the industry and country factors driving our 

regressors and should in general not be affected by the risk propensity of the single bank. We find that 

                                                           
24 Results are available upon request. 
25 Following Fahlenbrach et al (2012), the previous crisis return was calculated for the 1998 crisis. We identified the lowest stock price 
level between the 3rd of August and 31st of December 1998 then using daily return data we calculate the return from the 3rd of August to 
the minimum stock price level of the crisis period in 1998. Results are available upon request. 
26 Results are available upon request. 
27 Results are available upon request. For US banks we have considered a breakdown at state level.   
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our results remained unaffected. Finally our results were also robust to the use of the variable EDF as an 

alternative measure of bank risk (described in detail in section II.a).28  

 

V. CONCLUSION 

In the years prior to the 2007-2009 crisis, most forward-looking indicators of bank risk clustered and 

suggested an unusually benign outlook. Hence was the ex-post realization of bank risk during the crisis 

largely unexpected? We show that in the run-up to the crisis different bank characteristics can explain a 

significant portion of the cross-sectional realization of bank risk during the 2007-2009 financial crisis: 

Banks following aggressive credit expansion policies, with unstable funding and large size in the years 

before the crisis experienced more troubles after Lehman’s default. We also show that the impact of 

these characteristics consistently predicts systemic but not idiosyncratic bank risk.  

Exposure to real estate developments seems to be a major driver of bank risk: We consistently 

find that that banks with high levels of real estate beta exhibited higher levels of realized risk during the 

financial crisis. We also show that the link between real estate beta and risk is stronger for larger banks 

that undertook aggressive credit growth policies in the presence of housing bubbles. We also find that 

those bank characteristics that were related to risk as materialized during the crisis were useful to predict 

bank risk also before the financial crisis erupted.  

  

                                                           
28 Results are available upon request. 
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Table I 
Data Sources and Variable Definitions 

This table reports the main variables used in the estimations indicating their name, data sources and a brief description of how the variables have been 
constructed. More detailed information, plus all publicly available data, are available upon request. 

Panel A: Bank risk 
Variable Source Description 
Financial support European Commission, national 

central banks, Bank for 
International Settlements, other 
public institutions and 
Bloomberg.  

Binary variable – 1 if public financial support was received during the crisis period 
(2007Q4 to 2009Q4) and 0, if otherwise. 

Systematic risk Datastream and authors' 
calculation. 

Average of the quarterly non-overlapping betas of a capital asset pricing model 
constructed using daily logarithmic excess stock market returns for each bank i on 
the broad market index of country j calculated for the crisis (2007Q4-2009Q4) and 
non-crisis (2003Q4-2007Q3) periods. 

Systemic risk Datastream and authors' 
calculation following Acharya et 
al. (2010). 

Marginal expected shortfall (MES) – Acharya et al. (2010) – constructed from daily 
bank and country logarithmic stock market returns. It uses a risk level of α =5% 
calculated for the crisis (2007Q4-2009Q4) and non-crisis (2003Q4-2007Q3) 
periods. 

Structural credit risk 
(EDF) 

Moody's KMV. Expected default frequency (EDF). It is calculated as the one-year ahead probability 
of default as computed by Moody’s KMV building on Merton’s model to price 
corporate bond debt (Merton, 1974). The EDF value, expressed as a percentage, is 
calculated by combining banks’ financial statements with stock market information 
and a proprietary default database. We calculate the average EDF for the crisis 
(2007Q4-2009Q4) and non-crisis (2003Q4-2007Q3) periods. 

Central bank liquidity European Central Bank Liquidity received from the ECB to total assets of each bank * 100. Average 
outstanding values for the period of full liquidity allotment from the central bank 
(2009Q1 to 2009Q4). 

Idiosyncratic risk1 Authors' calculation Average of the quarterly non-overlapping standard deviations of the unexplained 
component (εijt) of a capital asset pricing model calculated from daily logarithmic 
excess stock market returns for each bank i on the broad market index of country j 
calculated for the crisis (2007Q4-2009Q4) and non-crisis (2003Q4-2007Q3) 
periods. 

Idiosyncratic risk2 Authors' calculation following 
Campbell et al. (2001) 

Average of the quarterly non-overlapping idiosyncratic (i.e. bank specific) risk 
component of the realized volatility following Campbell et al. (2001). It is 
calculated from daily logarithmic stock market returns decomposing the realized 
volatility of stock market prices for each bank i into three components: market, 
banking industry, and bank-specific volatility. We calculate the average for the 
crisis (2007Q4-2009Q4) and non-crisis (2003Q4-2007Q3) periods. 
 

Panel B: Bank characteristics 
Variable Source Description 
Size Bloomberg Average of quarterly logarithm of total assets (USD millions). 

Capital ratio Bloomberg Average of quarterly Tier I capital to risk-weighted assets' * 100 during the pre-
crisis period (2003Q4 to 2007Q3). 

Undercapitalised  Authors' calculation Average of quarterly interaction between Tier I capital and a low capital dummy 
variable – 1 indicates a bank with a Tier I ratio below 6% – during the pre-crisis 
period (2003Q4 to 2007Q3). 

Total capital ratio Bloomberg Average of quarterly total capital (Tier I and Tier II) to risk-weighted assets’ * 100 
during the pre-crisis period (2003Q4 to 2007Q3). 

Core capital ratio Bloomberg Average of quarterly Tier I capital to total assets' * 100 during the pre-crisis period 
(2003Q4 to 2007Q3). 

Loans to total assets  Bloomberg Average of quarterly total loans to total assets' * 100 during the pre-crisis period 
(2003Q4 to 2007Q3). 

Securitization DCM Analytics Dealogic, S&P 
and HMDA 

Average of quarterly total securitization flow to total assets' * 100 of each 
originating bank during the pre-crisis period (2003Q4 to 2007Q3). 

Real estate loans to total 
assets 

Bloomberg and authors' 
calculation 

Average of quarterly total real estate lending to total assets' * 100 during the pre-
crisis period (2003Q4 to 2007Q3). 

Mortgage-backed 
securitization 

DCM Analytics Dealogic S&P 
and HMDA 

Average of quarterly total mortgage-back securitization flow to total assets' * 100 of 
each originating bank during the pre-crisis period (2003Q4 to 2007Q3). 

Short-term market funding  Bloomberg Average of quarterly short-term market debt (i.e. less than 2 years) to total assets' * 
100 during the pre-crisis period (2003Q4 to 2007Q3). 

Deposit funding Bloomberg Average of quarterly total deposits to total assets' * 100 during the pre-crisis period 
(2003Q4 to 2007Q3). 
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Variable Source Description 
Excessive loan growth Authors' calculation Average of annual lending growth calculated using quarterly data calculated during 

the pre-crisis period (2003Q4 to 2007Q3) minus the average long-trend loan growth 
in each country. 

Excessive real estate loan 
growth 

Authors' calculation Average of annual real estate lending calculated using quarterly data calculated 
during the pre-crisis period (2003Q4 to 2007Q3) minus the excessive loan growth 
variable.  

Non-interest income  Bloomberg Average of quarterly non-interest income to total revenues' * 100 during the pre-
crisis period (2003Q4 to 2007Q3). 

Securities income Bloomberg Average of quarterly fee from securities income – including underwriting activities 
– to total assets' * 100 during the pre-crisis period (2003Q4 to 2007Q3). 

Trading income Bloomberg Average of quarterly trading income to total assets' * 100 during the pre-crisis 
period (2003Q4 to 2007Q3). 
 

 
Panel C: Control variables 

Variable Source Description 

Housing bubble dummy Authors' calculation Binary variable – 1 if observation is from the USA, United Kingdom, Spain, 
Portugal and Ireland; 0 otherwise. 

Real estate beta Datastream and authors' 
calculation following Beltratti and 
Stulz (2012) 

Average of the quarterly non-overlapping real estate betas of a capital asset pricing 
model constructed using daily logarithmic excess stock market returns for each 
bank i on the real estate market index of country j calculated for the crisis (2007Q4-
2009Q4) and non-crisis (2003Q4-2007Q3) periods. 

Profitability Bloomberg Average of quarterly net income to total assets' * 100 during the pre-crisis period 
(2003Q4 to 2007Q3). 

GDP growth Bank for International Settlements Average of quarterly changes in real GDP during the pre-crisis period (2003Q4 to 
2007Q3) demeaned from long-term historical averages. 

House prices  Bank for International Settlements Average of quarterly changes in real housing prices during the pre-crisis period 
(2003Q4 to 2007Q3) demeaned from long-term historical averages. 

Stock market Datastream Average of quarterly changes in broad country's non-financial corporations’ stock 
market indices constructed by Datastream during the pre-crisis period (2003Q4 to 
2007Q3) de-meaned from their long-term historical averages. 

Corporate governance  Thomson Reuters and authors' 
calculation 

Average of yearly sum of the squares of the percentages of the ownership's shares 
controlled by each shareholder on each bank during the pre-crisis period (2003Q4 
to 2007Q3). 

Dispersed ownerships Thomson Reuters and authors' 
calculation 

Binary variable – 1 if the average ownership concentration is less than 10% during 
the pre-crisis period (2003Q4 to 2007Q3); 0 otherwise. 

M&A involvement Thomson Reuters - SDC Platinum 
database 

Binary variable – 1 if the institution was involved in one or more mergers and 
acquisitions (M&A) during the pre-crisis period (2003Q4 to 2007Q3); 0 otherwise. 

Sifi European Central Bank, National 
central banks, Bank for 
International Settlements, and 
Bloomberg  

Binary variable – 1 if the institution was categorised as a systemically important 
financial institution (Sifi); 0 otherwise. 

 

 

  



 
 

33 
 

Table II 
Data Sources and Variable Definitions 

This table reports summary statistics for the primary variables used in this study (see Section II and Table I for further details on the variables). Variables 
accounting for bank risk are calculated using the average values for each bank during the crisis period (2007Q4 to 2009Q4) except for the variable Central 
bank liquidity. The latter is constructed only for the period of full liquidity allotment by the European Central Bank (2009Q1 to 2009Q4). The variables 
accounting for Size, Capital structure, Asset structure, Funding structure, Income structure, Profitability, Corporate governance and Dispersed ownership are 
calculated from the averages of quarterly data for individual banks for the pre-crisis period (2003Q4 to 2007Q3). GDP growth, House prices and Stock 
market are calculated as country averages from quarterly data during the pre-crisis period. M&A involvement and Sifi are also constructed for the pre-crisis 
period.  

Variable N Average Median Standard 
Deviation Q1 Q3 

       Panel A: Bank risk variables 
Financial support 852 0.26 0.00 0.44 0.00 1.00 
Systematic risk 483 0.70 0.47 0.60 0.17 1.28 
Systemic risk 483 3.32 3.07 2.62 1.21 5.23 
Structural credit risk (EDF) 540 0.91 0.32 2.22 0.13 0.79 
Central bank liquidity 83 2.64 1.25 3.43 0.47 4.41 
Idiosyncratic risk1 483 0.02 0.01 0.02 0.00 0.02 
Idiosyncratic risk2 483 0.20 0.12 0.54 0.07 0.22 
       Panel B: Balance Sheet Variables 
Size 852 7.29 6.62 2.07 5.87 8.20 
Capital Structure       
Capital ratio 852 9.63 8.82 5.62 7.31 10.91 
Undercapitalised  852 0.52 0.00 1.47 0.00 0.00 
Total capital ratio 852 13.73 12.83 3.24 11.69 14.64 
Core capital ratio 852 4.72 4.53 2.49 3.08 6.00 
Asset Structure       
Loans to total assets  852 65.53 68.17 15.21 59.58 75.07 
Securitization 852 0.10 0.07 0.10 0.02 0.14 
Real estate loan to total assets 483 19.26 17.18 12.25 11.10 25.04 
Mortgage-back securitization 483 0.08 0.06 0.09 0.01 0.12 
Funding Structure       
Short-term market funding  852 19.41 17.08 12.96 11.10 24.65 
Deposit funding 852 70.78 74.91 15.13 65.77 81.00 
Income Structure       
Excessive loan growth 852 6.27 5.75 2.33 4.72 7.47 
Excessive real estate loan growth 852 2.51 1.37 5.77 -0.34 4.11 
Non-interest income  852 20.01 16.53 14.24 10.98 24.79 
Securities income 483 2.23 1.30 3.79 0.46 3.15 
Trading income 483 4.64 3.85 4.23 1.78 6.47 
Panel C: Control Variables 
Housing bubble dummy 852 0.83 1.00 0.37 1.00 1.00 
Real estate beta 483 0.50 0.60 2.06 -0.45 1.41 
Profitability 852 0.97 0.96 0.95 0.65 1.26 
GDP growth 852 1.29 1.34 0.20 1.34 1.34 
House prices  852 1.19 1.33 0.58 1.33 1.33 
Stock market  852 1.56 1.36 0.63 1.36 1.36 
Corporate governance 676 6.00 1.62 12.58 0.70 3.42 
Dispersed ownership 676 0.87 1.00 0.33 1.00 1.00 
M&A involvement 852 0.24 0.00 0.43 0.00 0.00 
Sifi 852 0.05 0.00 0.22 0.00 0.00 
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Table III 
Bank Characteristics and Risk  

This table reports the results from regressions of several measures of bank risk on bank characteristics. Column (I) reports the results of the probit regression 
using government support as a measure of bank risk. Columns (II) to (VI) contain the coefficients of OLS regressions where bank risk is measured as 
Systematic risk, Systemic risk, Central bank liquidity and two measures of Idiosyncratic risk. See Section II for further details and Table I for variables’ 
definitions. The dependent variables in column I is calculated as a dummy for the crisis period (2007Q4 to 2009Q4). The dependent variables in columns II 
to VI are calculated as averages of quarterly data for individual banks during the crisis period (2007Q4 to 2009Q4) except for the variable Central bank 
liquidity. The latter is constructed only for the period of full liquidity allotment by the European Central Bank (2009Q1 to 2009Q4). The variables 
accounting for Size, Capital structure, Asset structure, Funding structure and Income structure are calculated as averages of quarterly data for individual 
banks during the pre-crisis period (2003Q4 to 2007Q3). *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. 

 

  

Rescue Systematic 
risk 

Systemic    
risk

Central bank 
liquidity 

Idiosyncratic 
risk1

Idiosyncratic 
risk2

(I) (II) (III) (IV) (V) (VI)
Size 0.0409 *** 0.1090 *** 0.6949 *** -0.2979 *** 0.0006 *** 0.0948 **

(0.003) (0.032) (0.134) (0.023) (0.000) (0.042)
Capital ratio -0.0207 *** -0.0097 -0.0349 -0.1814 *** -0.0001 -0.0002

(0.001) (0.007) (0.036) (0.053) (0.000) (0.011)
Undercapitalized -0.0415 *** -0.0811 *** -0.1116 *** -0.0097 -0.0008 *** -0.0051

(0.008) (0.017) (0.040) (0.020) (0.000) (0.019)
Loans to total assets 0.0047 *** 0.0061 *** 0.0356 *** 0.0781 *** 0.0000 -0.0028

(0.001) (0.002) (0.013) (0.004) (0.001) (0.003)
Securitization -0.0103 *** -0.2076 *** -0.5671 *** -0.6012 *** 0.0005 *** 0.0566

(0.001) (0.054) (0.189) (0.143) (0.000) (0.071)
Short-term market funding 0.0071 *** 0.0097 *** 0.0494 * 0.1483 *** 0.0001 * -0.0021

(0.001) (0.003) (0.025) (0.006) (0.000) (0.004)
Deposit funding -0.0103 *** -0.0201 *** -0.0655 *** -0.0759 *** -0.0002 -0.0117 ***

(0.001) (0.003) (0.016) (0.014) (0.001) (0.004)
Excessive loan growth 0.0385 *** 0.1597 *** 0.2765 *** 0.4453 *** 0.0004 *** -0.0230

(0.005) (0.027) (0.075) (0.008) (0.000) (0.037)
Non-interest income -0.0034 *** -0.0043 ** -0.0099 -0.2350 *** -0.0001 -0.0046 *

(0.000) (0.002) (0.011) (0.001) (0.005) (0.003)
Constant -2.8028 *** -1.3420 *** -5.9516 *** 2.9702 *** -0.0074 *** -0.3538

(0.391) (0.257) (1.258) (0.143) (0.001) (0.362)

No. of observations 852 483 483 83 483 483

R2 0.111 0.517 0.378 0.641 0.086 0.059
Percent true positives/negative54.84/76.53
Percent correctly classified 75.0
Hosmer–Lemeshow test 4.44
Hosmer–Lemeshow test p -va 0.8155

Dependent Variable: Measures of Bank Risk
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Table IV 
Quantile Estimates  

Bank Characteristics and Systematic Risk 
This table reports the quantile results from regressions of Systematic risk on bank characteristics. See Table I for variables’ definitions. Columns (I) to (V) 
contain the coefficients of quantile estimates regressions for the 10, 25, 50, 75 and 90 percent quantiles of bank systematic risk calculated as averages of 
quarterly data during the crisis period (2007Q4 to 2009Q4). The variables accounting for Size, Capital structure, Asset structure, Funding structure and 
Income structure are calculated as averages of quarterly data for individual banks during the pre-crisis period (2003Q4 to 2007Q3). The equality test applied 
is the F-test where the null hypothesis purports that the estimated slope coefficients for each variable are not statistically different across all the quantile 
estimates. The p-value for this test is given below the equality test value. *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, 
respectively. 

 
 

  

Q10 Q25 Q50 Q75 Q90 Equality
(I) (II) (III) (IV) (V) Test1

Size 0.1207 *** 0.1148 *** 0.0949 ** 0.1209 ** 0.0724 0.490
(0.032) (0.034) (0.038) (0.050) (0.047) 0.743

Capital ratio 0.0128 -0.0005 -0.0067 -0.0290 ** -0.0476 *** 3.170
(0.008) (0.009) (0.010) (0.013) (0.012) 0.076

Undercapitalized -0.0559 *** -0.0649 *** -0.0615 *** -0.0751 *** -0.0889 *** 0.490
(0.014) (0.016) (0.017) (0.022) (0.021) 0.740

Loans to total assets -0.0007 -0.0005 0.0033 0.0107 *** 0.0065 * 9.800
(0.003) (0.003) (0.003) (0.004) (0.004) 0.002

Securitisation 0.0277 -0.0140 -0.1058 * -0.1332 * -0.1768 ** 8.160
(0.054) (0.054) (0.058) (0.076) (0.074) 0.005

Short-term market funding 0.0014 0.0029 0.0074 ** 0.0161 *** 0.0146 *** 12.430
(0.003) (0.003) (0.004) (0.005) (0.005) 0.001

Deposit funding -0.0145 *** -0.0151 *** -0.0194 *** -0.0298 *** -0.0321 *** 8.110
(0.003) (0.003) (0.003) (0.004) (0.004) 0.005

Excessive loan growth 0.0589 ** 0.0840 *** 0.1396 *** 0.1294 *** 0.1443 *** 4.270
(0.027) (0.030) (0.034) (0.044) (0.041) 0.039

Non-interest income 0.0025 0.0026 -0.0024 -0.0053 -0.0071 ** 3.400
(0.002) (0.002) (0.003) (0.003) (0.003) 0.066

Constant -1.1053 *** -0.9905 *** -1.0841 *** -1.0673 ** 0.0059
(0.275) (0.299) (0.333) (0.433) (0.409)

No. of observations 483 483 483 483 483

Pseudo R2 0.175 0.270 0.353 0.287 0.218
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Table V 
Real Estate Beta and Bank Risk  

This table reports the results from regressions of several measures of bank risk on real estate beta and other bank characteristics. Column (I) reports the 
results of the probit regression using Government support as a measure of bank risk. Columns (II) to (V) contain the coefficients of regressions where bank 
risk is measured as Systematic and Systemic risk as well as two measures of Idiosyncratic risk respectively. See Section II for further details and Table I for 
variables’ definitions. The dependent variables in column I is calculated as a dummy for the crisis period (2007Q4 to 2009Q4). Columns II to V are 
calculated as averages of quarterly data for individual banks during the crisis period (2007Q4 to 2009Q4). The variables accounting for Real estate beta, 
Size, Capital structure, Asset structure, Funding structure and Income structure are calculated as averages of quarterly data for individual banks during the 
pre-crisis period (2003Q4 to 2007Q3). *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. 

 
 

 

 

  

Rescue Systematic 
risk 

Systemic 
risk

Idiosyncratic 
risk1

Idiosyncratic 
risk2

(I) (II) (III) (IV) (V)
Real estate beta 0.0662 ** 1.0971 *** 2.3576 *** 0.0042 0.0963

(0.028) (0.080) (0.804) (0.003) (0.062)
Size 0.0841 *** 0.1037 ** 0.5094 *** 0.0006 0.0873 *

(0.018) (0.040) (0.185) (0.001) (0.045)
Capital ratio -0.0147 *** -0.0136 * 0.0210 -0.0003 -0.0084 **

(0.002) (0.007) (0.055) (0.000) (0.004)
Undercapitalized -0.0784 ** -0.1082 *** -0.1993 -0.0008 0.0156

(0.033) (0.023) (0.148) (0.001) (0.035)
Loans to total assets 0.0072 *** 0.0033 0.0256 ** 0.0000 -0.0055

(0.002) (0.003) (0.012) (0.000) (0.008)
Securitization -0.0077 *** -0.1545 -0.0990 -0.0002 0.0101

(0.002) (0.111) (0.221) (0.003) (0.089)
Short-term market funding 0.0084 *** 0.0068 *** 0.0363 ** 0.0001 -0.0032

(0.003) (0.002) (0.017) (0.000) (0.006)
Deposit funding -0.0124 *** -0.0139 *** -0.0391 * -0.0003 -0.0249

(0.002) (0.004) (0.021) (0.001) (0.021)
Excessive loan growth 0.0445 *** 0.1336 *** 0.2727 ** 0.0004 0.0045

(0.011) (0.018) (0.129) (0.001) (0.023)
Non-interest income -0.0033 *** -0.0029 0.0012 -0.0002 ** -0.0117

(0.000) (0.002) (0.010) (0.000) (0.012)
Constant -2.5073 *** -0.2926 -1.1668 0.0047 0.6502

(0.879) (0.323) (1.340) (0.008) (0.905)

No. of observations 483 483 483 483 483

R2 0.167 0.603 0.453 0.129 0.113
Percent true positives/negatives 66.20/76.61
Percent correctly classified 74.8
Hosmer–Lemeshow test 7.83
Hosmer–Lemeshow test p -value 0.450
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Table VI 
Real Estate Beta and Bank Characteristics 

This table reports the results from regressions of Systematic risk on real estate beta – also interacted with some key bank characteristics –, and bank 
characteristics. See Table I for variables’ definitions. Columns (I) to (III) contain the coefficients of estimates of real estate beta interacted progressively with 
Excessive loan growth, Deposit funding and Capital. Columns (IV) to (VI) contain the coefficients of estimates of Real estate beta interacted progressively 
with Excessive real estate loan growth, Mortgage-backed securitization and Capital. The dependent variable in columns I to VI are calculated as averages of 
quarterly data for individual banks during the crisis period (2007Q4 to 2009Q4).The variables accounting for Real estate beta, Size, Capital structure, Asset 
structure, Funding structure, Income structure, Excessive real estate loan growth and Mortgage-backed securitization are calculated as averages of quarterly 
data for individual banks during the pre-crisis period (2003Q4 to 2007Q3). The equality test applied is the F-test where the null hypothesis purports that the 
estimated slope coefficients for each variable are not statistically different across all the quantile estimates. The p-value for this test is given below the 
equality test value. *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. 
 

 
 

 

 

 

 

 

 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

(I) (II) (III) (IV) (V) (VI)
Real estate beta * Excessive loan growth 0.1124 *** 0.1934 *** 0.2827 ***

(0.021) (0.069) (0.082)
Real estate beta * Deposit funding -0.0066 -0.0126 **

(0.005) (0.006)
Real estate beta * Capital ratio -0.3036 **

(0.153)
Real estate beta * Excessive real estate loan growth 0.0188 *** 0.0180 *** 0.0198 ***

(0.003) (0.003) (0.004)
Real estate beta * Mortgage-backed securitization 0.0511 ** 0.0503 **

(0.021) (0.021)
Real estate beta * Capital ratio -0.1852

(0.132)
Real estate beta 0.2318 ** 0.2893 *** 0.2927 *** 0.3829 *** 0.3469 *** 0.3538 ***

(0.114) (0.095) (0.094) (0.094) (0.096) (0.096)
Size 0.0373 0.0347 0.0280 0.0849 * 0.0941 * 0.0950 *

(0.049) (0.049) (0.049) (0.051) (0.050) (0.050)
Capital ratio -0.0096 -0.0103 -0.0096 -0.0246 ** -0.0217 * -0.0220 *

(0.011) (0.011) (0.011) (0.012) (0.012) (0.012)
Undercapitalized -0.1049 *** -0.1004 *** -0.0923 *** -0.1252 *** -0.1169 *** -0.1157 ***

(0.026) (0.027) (0.027) (0.026) (0.026) (0.026)
Loans to total assets 0.0019 0.0022 0.0017 0.0028 0.0026 0.0024

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Securitization -0.1691 -0.1941 -0.2133 -0.1547 -0.1749 -0.1700

(0.133) (0.136) (0.135) (0.133) (0.132) (0.132)
Short-term market funding 0.0059 0.0063 0.0055 0.0077 * 0.0064 0.0060

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Deposit funding -0.0143 *** -0.0140 *** -0.0139 *** -0.0150 *** -0.0151 *** -0.0150 ***

(0.004) (0.004) (0.004) (0.005) (0.004) (0.004)
Excessive loan growth 0.1919 *** 0.1914 *** 0.1922 *** 0.1546 *** 0.1425 *** 0.1410 ***

(0.042) (0.042) (0.042) (0.044) (0.044) (0.044)
Non-interest income -0.0031 -0.0034 -0.0034 -0.0030 -0.0027 -0.0029

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Constant -0.5373 -0.5523 -0.5320 -0.2607 -0.1931 -0.1551

(0.375) (0.374) (0.372) (0.387) (0.383) (0.384)

No. of observations 483 483 483 483 483 483

R2 0.580 0.586 0.593 0.576 0.587 0.590
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Table VII 
Housing Bubble, Bank Characteristics and Risk   

This table reports the results from regressions of Systematic risk on Housing Bubble interacted with some bank key characteristics, and bank characteristics. 
See Table I for variables’ definitions. Columns (I) to (III) include the coefficients of Housing bubble interacted with Excessive loan growth, Deposit funding 
and Capital ratio. Columns (IV) to (V) include the interactions of Housing Bubble and Real estate beta. The dependent variable is calculated as averages of 
quarterly data for individual banks during the crisis period (2007Q4 to 2009Q4). The variables accounting for Size, Capital structure, Asset structure, 
Funding structure and Income structure are calculated as averages of quarterly data for individual banks during the pre-crisis period (2003Q4 to 2007Q3). 
The equality test applied is the F-test where the null hypothesis purports that the estimated slope coefficients for each variable are not statistically different 
across all the quantile estimates. The p-value for this test is given below the equality test value. *, ** and *** indicate statistical significance at the 10%, 5% 
and 1% levels, respectively. 
 

 
 
 

  

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

(I) (II) (III) (IV) (V)
Housing bubble * Excessive loan growth 0.0570 *** 0.0534 *** 0.0519 ***

(0.007) (0.015) (0.015)
Housing bubble * Deposit funding 0.0005 0.0005

(0.002) (0.002)
Housing bubble * Capital ratio -0.0036

(0.010)
Housing bubble *Real estate beta 1.2592 *** 1.2858 ***

(0.209) (0.229)
-0.0262

Real estate beta (0.070)
Size 0.0891 ** 0.0867 ** 0.0867 ** 0.1364 *** 0.1389 ***

(0.037) (0.038) (0.040) (0.040) (0.044)
Capital ratio -0.0326 *** -0.0330 *** -0.0337 *** -0.0203 * -0.0205 *

(0.010) (0.010) (0.010) (0.011) (0.011)
Undercapitalized -0.0320 * -0.0316 * -0.0332 * -0.0870 *** -0.0870 ***

(0.017) (0.018) (0.018) (0.025) (0.025)
Loans to total assets -0.0013 -0.0015 -0.0016 0.0019 0.0019

(0.003) (0.003) (0.003) (0.003) (0.003)
Securitization -0.2339 *** -0.2305 *** -0.2323 *** -0.1456 -0.1458

(0.068) (0.075) (0.070) (0.119) (0.120)
Short-term market funding 0.0042 0.0041 0.0042 0.0065 * 0.0065 *

(0.003) (0.003) (0.003) (0.004) (0.004)
Deposit funding -0.0114 *** -0.0110 *** -0.0113 *** -0.0120 *** -0.0119 ***

(0.003) (0.004) (0.003) (0.004) (0.004)
Excessive loan growth 0.1120 *** 0.1167 *** 0.1181 *** 0.0983 *** 0.0960 **

(0.031) (0.036) (0.037) (0.034) (0.039)
Non-interest income -0.0035 -0.0033 -0.0034 -0.0043 -0.0043

(0.002) (0.002) (0.002) (0.003) (0.003)
Constant -0.6402 ** -0.6566 ** -0.6482 ** -0.9415 *** -0.9494 ***

(0.270) (0.308) (0.265) (0.326) (0.333)

No. of observations 483 483 483 483 483

R2 0.556 0.556 0.556 0.617 0.617

Bank Risk
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Table VIII 
Real Estate Beta and Size 

This table reports the results from regressions of Systematic risk on real estate beta – also interacted with some key bank characteristics –, and bank 
characteristics. See Table I for variables’ definitions. Columns (I) to (III) contain the coefficients of estimates of real estate beta interacted progressively with 
Excessive loan growth, Deposit funding and Capital. Columns (IV) to (VI) contain the coefficients of estimates of Real estate beta interacted progressively 
with Excessive real estate loan growth, Mortgage-backed securitization and Capital. The dependent variable in columns I to VI are calculated as averages of 
quarterly data for individual banks during the crisis period (2007Q4 to 2009Q4).The variables accounting for Real estate beta, Size, Capital structure, Asset 
structure, Funding structure, Income structure, Excessive real estate loan growth and Mortgage-backed securitization are calculated as averages of quarterly 
data for individual banks during the pre-crisis period (2003Q4 to 2007Q3). The equality test applied is the F-test where the null hypothesis purports that the 
estimated slope coefficients for each variable are not statistically different across all the quantile estimates. The p-value for this test is given below the 
equality test value. *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. 

 
 

 

 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

Systematic 
risk 

(I) (II) (III) (IV) (V) (VI)
Real estate beta * Size 0.2750 ***

(0.091)
Real estate beta *Sifi -1.3387 *

(0.750)
Real estate beta * Sifi * Size -0.2354 *

(0.127)
Sifi * Excessive loan growth 0.0123

(0.042)
Sifi * Deposit funding 0.0050

(0.004)
Sifi * Capital ratio 0.0188

(0.041)
Real estate beta 0.9652 *** 0.6925 *** 0.6559 ***

(0.229) (0.204) (0.211)
Sifi -0.3266 * -0.7371 *** -0.4185 ***

(0.178) (0.247) (0.135)
Size 0.0752 * 0.0830 0.0883 * 0.1742 *** 0.2025 *** 0.1589 ***

(0.042) (0.052) (0.053) (0.034) (0.033) (0.034)
Capital ratio -0.0117 ** -0.0255 ** -0.0246 ** -0.0226 *** -0.0258 *** -0.0220 **

(0.006) (0.012) (0.012) (0.006) (0.009) (0.009)
Undercapitalized -0.0959 *** -0.1127 *** -0.1120 *** -0.0604 *** -0.0739 *** -0.0640 ***

(0.023) (0.027) (0.028) (0.013) (0.019) (0.019)
Loans to total assets 0.0032 -0.0027 -0.0008 0.0041 * -0.0002 0.0028

(0.003) (0.004) (0.003) (0.002) (0.003) (0.003)
Securitization -0.1960 0.0178 -0.0301 -0.1397 -0.2681 *** -0.2132 ***

(0.133) (0.111) (0.115) (0.089) (0.067) (0.054)
Short-term market funding 0.0068 *** 0.0012 0.0038 0.0080 *** 0.0032 0.0065 **

(0.003) (0.004) (0.004) (0.001) (0.003) (0.003)
Deposit funding -0.0133 *** -0.0166 *** -0.0154 *** -0.0232 *** -0.0290 *** -0.0240 ***

(0.004) (0.005) (0.005) (0.003) (0.003) (0.003)
Excessive loan growth 0.1487 *** 0.1393 *** 0.1402 *** 0.1061 * 0.1309 *** 0.1411 ***

(0.026) (0.046) (0.046) (0.055) (0.027) (0.029)
Non-interest income -0.0032 * -0.0001 -0.0001 -0.0030 ** -0.0038 * -0.0045 **

(0.002) (0.003) (0.003) (0.001) (0.002) (0.002)
Constant -0.3962 0.1413 -0.0422 -0.1305 0.1678 -1.2532 ***

(0.350) (0.441) (0.401) (0.393) (0.282) (0.261)

No. of observations 483 483 483 483 483 483

R2 0.604 0.522 0.592 0.470 0.525 0.519
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Table IX 
Before the Crisis  

Real Estate Beta and Bank Risk  
This table reports the results from regressions of several measures of bank risk before the 2007-2009 crisis on real estate beta and other bank characteristics. 
Columns (I) to (V) contain the coefficients of regressions where bank risk is measured as Systematic, Systemic risk, Structural Credit risk as well as two 
measures of Idiosyncratic risk. See Section II for further details and Table I for variables’ definitions. The dependent variables are calculated as averages of 
quarterly data for individual banks during the 2006Q1 to 2006Q4 period. The variables accounting for Real estate beta, Size, Capital structure, Asset 
structure, Funding structure and Income structure are calculated as averages of quarterly data for individual banks during the 2003Q4 to 2005Q4 period. *, 
** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. 
 

 
 

  

Systematic 
risk 

Systemic 
risk

Idiosyncratic 
risk1

Idiosyncratic 
risk2

(I) (II) (III) (IV)
Real estate beta 0.6114 ** 0.6981 * 0.0061 0.0231

(0.286) (0.394) (0.028) (0.027)
Size 0.1645 *** 0.2736 *** -0.0092 0.0109 ***

(0.026) (0.017) (0.008) (0.003)
Capital ratio -0.0308 ** -0.0450 *** 0.0018 0.0016

(0.014) (0.010) (0.001) (0.001)
Undercapitalized -0.1111 *** -0.0089 0.0043 -0.0076

(0.024) (0.036) (0.005) (0.005)
Loans to total assets 0.0079 * 0.0052 *** -0.0001 -0.0001

(0.004) (0.002) (0.001) (0.000)
Securitization -0.1846 * -0.1083 0.0111 -0.0042

(0.100) (0.255) (0.025) (0.014)
Short-term market funding 0.0162 *** 0.0137 *** -0.0001 -0.0004

(0.005) (0.004) (0.001) (0.000)
Deposit funding -0.0170 *** -0.0180 *** 0.0011 -0.0004

(0.005) (0.005) (0.001) (0.000)
Excessive loan growth 0.0269 * 0.0182 -0.0020 0.0000

(0.014) (0.012) (0.002) (0.001)
Non-interest income -0.0015 -0.0048 0.0004 -0.0005

(0.003) (0.004) (0.000) (0.000)
Constant -0.8781 * -1.0554 *** 0.1010 * -0.0943 ***

(0.496) (0.231) (0.055) (0.028)

No. of observations 483 483 483 483

R2 0.261 0.382 0.111 0.227
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Figure I 
Box plot distribution of the stock market returns of individual banks 

The diagram below shows the cross-sectional distribution of stock market returns for the combined sample of listed European 
and US banks included in our exercise for the pre-crisis (2003Q4 to 2007Q3) and crisis (2007Q4 to 2009Q4) periods. It is based 
on monthly stock market prices obtained from Datastream. For the pre-crisis and crisis periods, for each banks we calculate the 
10, 25, 50, 75 and 90 percent quantiles of the distribution of average stock market returns. The “box plot” consists of a “box” 
that moves from the first to the third quartile (Q1 to Q3) of the distribution of stock market returns for the pre-crisis (2003Q4 to 
2007Q3) and crisis (2007Q4 to 2009Q4) periods. Within the box itself, the thick horizontal line represents the median. The area 
below the bottom whisker moves from the 25 to the 10 percent quantile, while the area above the top whisker moves from the 
75 to the 90 percent quantile of the distribution. 

 

 

 

25%

25%

10%

10%

median: 0.30%

median: -0.70%

90%

90%

75% 75%

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

2003Q4-2007Q3 2007Q4-2009Q4



 
 

42 
 

  
Figure II 

Scatter plots of the systematic risk levels for the pre- 
and post-crisis periods 

On the X axis, the diagram below shows the 5 (i.e. low systematic risk) and 95 (i.e. high systematic risk) percentile 
values for the systematic risk variable during the pre-crisis period (2003Q4 to 2007Q3). Systematic risk is calculated as 
the average of the quarterly non-overlapping betas in a capital asset pricing model calculated for each bank i on country 
j using daily stock market data using stock market prices obtained from Datastream for the listed European and US 
banks included in our sample. On the Y axis, the diagram shows the 5 (i.e. low systematic risk) and 95 (i.e. high 
systematic risk) percentile values for the systematic risk variable for the crisis period (2007Q4 to 2009Q4).
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