

University of Bath

PHD

Development Of A Performance-Portable Framework For Atomistic Simulations

Saunders, William Robert

Award date:
2019

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

Citation for published version:
Saunders, WR 2018, 'Development Of A Performance-Portable Framework For Atomistic Simulations', Ph.D.,
University of Bath.

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Publisher Rights
CC BY
This thesis is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0).

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Jan. 2019

https://researchportal.bath.ac.uk/en/publications/development-of-a-performanceportable-framework-for-atomistic-simulations(aae02bd2-0cf9-45a2-b5c3-0c96690c52c0).html

Development Of A

Performance-Portable Framework For

Atomistic Simulations
submitted by

William Robert Saunders

for the degree of Doctor of Philosophy

of the

University of Bath

Department of Mathematical Sciences

December 2018

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis/portfolio rests with the author

and copyright of any previously published materials included may rest with third parties.

A copy of this thesis/portfolio has been supplied on condition that anyone who consults

it understands that they must not copy it or use material from it except as licenced,

permitted by law or with the consent of the author or other copyright owners, as applicable.

LICENSE

This thesis is licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0).

INCLUSION OF PUBLISHED MATERIAL

This thesis includes material from the following published articles:

W. R. SAUNDERS, J. GRANT AND E. H. MÜLLER, A domain specific language for

performance portable molecular dynamics algorithms, Computer Physics Communications,

224 (2018), pp. 119 - 135, https://doi.org/10.1016/j.cpc.2017.11.006

W. R. SAUNDERS, J. GRANT AND E. H. MÜLLER, Long Range Forces in a Perfor-

mance Portable Molecular Dynamics Framework, Parallel Computing is Everywhere, 2018,

pp. 37 - 46, http://doi.org/10.3233/978-1-61499-843-3-37

https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1016/j.cpc.2017.11.006
http://doi.org/10.3233/978-1-61499-843-3-37

SUMMARY

The simulation of atomic scale interactions is an important tool in the fields of computa-

tional physics and chemistry. These simulations model interactions between large numbers

of individual particles to provide quantitative results that inform and guide physical exper-

iments. Modelling large numbers of interacting particles is a computationally expensive

process that accounts for a significant proportion of CPU time in high performance com-

puting facilities. Furthermore, even with large parallel computers modern simulations

cannot model the vast numbers of particles that exist in relatively small amounts of phys-

ical material. Hence there is significant motivation to design and implement algorithms

which model particle systems in the most computationally efficient manner possible, this is

a highly non-trivial task due to the diversity and complexity of modern high performance

computing hardware. It is important to write simulation code which is performant and

portable between computing hardware, to address these challenges this thesis makes the

following contributions:

Technical Contributions

• We present a new mathematical abstraction in which algorithms involving inter-

acting particles can be described. We demonstrate the abstraction by describing

non-bonded interactions between particles and by describing two structure analysis

techniques.

• We implemented an interface to our code generation framework in terms of our

abstraction. This code generation framework generates efficient parallel code for

two prevalent high performance computing architectures and we demonstrate that

the generated code is competitive in comparison to well established libraries.

• We provide a parallel implementation of the Ewald summation method written in our

abstraction. This Ewald implementation extends the capabilities of our framework

to include long-range electrostatic interactions.

• We provide a parallel Fast Multipole Method (FMM) implementation to further

extend the electrostatic capabilities of our framework. We demonstrate that this

FMM implementation scales well in parallel and is performant when simulated sys-

tems contain millions of charged particles.

Publications And Presentations

I presented the following work in both oral and written form.

• Publication: W. R. SAUNDERS, J. GRANT AND E. H. MÜLLER, A domain

specific language for performance portable molecular dynamics algorithms, Computer

Physics Communications, 224 (2018), pp. 119 - 135, https://doi.org/10.1016/

j.cpc.2017.11.006. Here we present the abstraction and interface to the code

generation framework alongside results from simulations of non-bonded interactions

and structure analysis techniques.

• Presentation and publication (ParCo 2017): W. R. SAUNDERS, J. GRANT AND

E. H. MÜLLER, Long Range Forces in a Performance Portable Molecular Dynamics

Framework, Parallel Computing is Everywhere, 2018, pp. 37 - 46, http://doi.org/

10.3233/978-1-61499-843-3-37. Here we present our parallel Ewald summation

implementation within our abstraction and code generation framework.

• Presentation (CIUK 2016): W. R. SAUNDERS, J. GRANT AND E. H. MÜLLER,

Performance portable molecular dynamics. We presented the abstraction and the

performance of the framework to a general high performance computing audience.

• Presentation (Firedrake 2017): W. R. SAUNDERS, J. GRANT AND E. H. MÜLLER,

Performance portable molecular dynamics. We presented the abstraction and the

parallel performance of the framework to an audience familiar with high-level ab-

stractions and code generation frameworks to compute numerical solutions of partial

differential equations.

• Presentations at the University of Bath: W. R. SAUNDERS, J. GRANT AND

E. H. MÜLLER. We presented our abstraction and implementation at the HPC

Symposium in years 2015-2018 and presented existing algorithms twice at the Dept.

of Mathematical Sciences Numerical Analysis seminar.

Thesis Structure

In Chapter 1 we discuss the background material to motivate molecular dynamics sim-

ulations and review existing software approaches. Chapter 2 presents our separation of

concerns based abstraction in which particle based algorithms can be described. In Chap-

ter 3 we describe our code generation process to produce efficient and portable code using

our abstraction as input and compare performance with existing libraries. Electrostatic

interactions are a major component of molecular dynamics simulations and in Chapter

4 we discuss two algorithms to compute these interactions, we compare the performance

of our implementations of these algorithms with existing codes in Chapter 5. Finally, in

Chapter 6 we conclude this thesis and consider possible future directions.

https://doi.org/10.1016/j.cpc.2017.11.006
https://doi.org/10.1016/j.cpc.2017.11.006
http://doi.org/10.3233/978-1-61499-843-3-37
http://doi.org/10.3233/978-1-61499-843-3-37

ACKNOWLEDGEMENTS

Over the past 4 years my supervisors, Eike Müller, James Grant, Robert Scheichl and

Steve Parker, have provided excellent support and expertise. I am very much aware that

the standard of supervision I have been provided by my supervisors has been greater and

more productive than that experienced by many of my fellow PhD students.

Something much less quantifiable is the support I have received directly and indirectly

from the community of PhD students and postdocs and I wish you all the best with your

current and future endeavours. Furthermore, I am very grateful to my friends and family

for their support and understanding throughout my PhD and for keeping me sane.

Throughout this project, I have made extensive use of the University of Bath HPC

facility Balena. I am very grateful to Steven Chapman and Roshan Mathew for their

advice and support.

Finally, if you are reading this as a PhD student, my advice would be the following:

with correct application of thought you should not be afraid of doing something wrong,

but be prepared to correct the mistake if it does not work.

This PhD project was funded by EPSRC.

CONTENTS

List of Figures . iv

List of Tables . ix

List of Algorithms . xi

1 Background 1

1.1 Scientific Background . 1

1.1.1 Introduction . 1

1.1.2 Statistical Mechanics . 3

1.1.3 Molecular Dynamics . 6

1.1.4 Analysis Techniques . 15

1.2 Modern High Performance Computing . 19

1.2.1 General HPC Facility Topology . 20

1.2.2 Compute Nodes . 20

1.3 Discussion Of Existing Libraries . 28

1.3.1 Overview Of Existing Libraries . 28

1.3.2 Library Comparisons . 29

1.3.3 Discussion And Conclusions . 31

2 A Separation of Concerns Based Abstraction 32

2.1 PyOP2 And Firedrake: An Existing Approach 32

2.2 An Abstraction For Particle Operations . 35

2.3 Abstraction Implementation . 37

2.3.1 Domain Specific Language . 37

2.3.2 Further Examples . 46

3 Code Generation Of Modern Parallel MD Algorithms 52

3.1 Modern Parallel MD Algorithms . 52

3.1.1 Cell Based Methods . 52

3.1.2 Parallel Decomposition . 54

i

CONTENTS

3.1.3 Halo Exchange . 55

3.1.4 Cell To Particle Maps . 57

3.1.5 Finding And Storing Pairs Of Particles 59

3.1.6 Neighbour List Rebuilding . 65

3.2 Code Generation . 65

3.2.1 Particle Loop . 67

3.2.2 Local Particle Pair Loop . 72

3.3 Results . 77

3.3.1 Comparison To Other Codes . 79

3.3.2 Structure Analysis Algorithms . 83

4 Modern Algorithms for Electrostatic Interactions 86

4.1 Introduction . 86

4.1.1 Coulomb Potential Truncation . 88

4.2 Particle Ewald Summation . 89

4.2.1 Parameter Selection . 96

4.3 Fast Multipole Method . 98

4.3.1 Two Dimensional Fast Multipole Method 98

4.3.2 Three Dimensional Fast Multipole Method 112

5 Implementation of Electrostatic Interaction Algorithms 126

5.1 Ewald Implementation . 126

5.2 Ewald Results . 130

5.2.1 Computational Complexity . 130

5.2.2 Strong Scaling . 131

5.3 Fast Multipole Method . 132

5.3.1 Indirect Interactions . 133

5.3.2 Direct Interactions . 136

5.4 Fast Multipole Method Results . 137

6 Conclusion And Future Work 142

6.1 Summary Of Work . 142

6.2 Critical Assessment And Future Work . 144

A Appendices 149

A.1 Largest Subcluster Algorithm . 149

A.2 Negative Binomial Expansion . 150

A.3 Gaussian Units . 150

A.4 3D FMM Force Calculation . 150

A.5 Balena System Architecture . 151

A.6 Example LAMMPS Input Script . 152

A.7 Example HOOMD-blue Python Input Script 153

ii

CONTENTS

A.8 CUDA Code Generation . 153

A.8.1 CUDA Particle Loop . 153

A.8.2 CUDA Local Particle Pair Loop . 160

A.9 Convergence Characteristics Of Ewald Summation 163

Bibliography 166

iii

LIST OF FIGURES

1-1 Lennard-Jones potential plotted in solid black, in dashed black the same

potential truncated and shifted at rc/σ = 21/6 ≈ 1.1 (dotted vertical line)

to create a repulsive only interaction. 8

1-2 Two ellipsoidal particles with axes of symmetry ~u1 and ~u2 separated by ~r. . 9

1-3 Common neighbour analysis for bonded atom pair (i, j) (empty circles).

The set of common neighbours (filled circles) are classified as a (4, 2, 1)

triplet. 18

1-4 Example node configuration comprised of two CPUs each with 8 compute

cores. Performance numbers for memory bandwidth, compute rate and

network bandwidth are representative of an Intel E5-2650v2 (2.6 GHz Ivy

Bridge) combined with an Intel TrueScale QDR network interface. 22

1-5 Example node configuration comprised of two CPUs each with 8 compute

cores paired with some accelerator. Performance numbers are representative

of an Intel E5-2650v2 (2.6 GHz Ivy Bridge) system combined with an Intel

TrueScale network interface. 23

2-1 Triangle described by three edges and three vertices, adapted from PyOP2

documentation [69]. 33

2-2 Triangle from Figure 2-1 with positions added, adapted from PyOP2 doc-

umentation [69]. 33

2-3 Triangle from Figure 2-1 after translation along (1, 1), adapted from PyOP2

documentation [69]. 34

2-4 Example of direct (left) and indirect (centre and right) bonds as described

by the sets E(i)
d , E(i)

and E(i) in Equations (2.8) and (2.9). The bond (v, w)

in the central diagram would be counted twice in E(i)
but only once in E(i). 48

2-5 Local bonds used for CNA construction . 50

iv

List of Figures

3-1 Left: Circle of radius rc around a selected particle. Right: Corresponding

cells (in 2D) that contain all potential neighbours within a radius rc. 54

3-2 Decomposing a domain into four sub-domains. 54

3-3 Halo exchange that must occur between two horizontally adjacent sub-

domains. 55

3-4 2D version of fully periodic halo exchange pattern. 4 sub-domains, each

own a 2× 2 grid of cells shown in grey. Numbers in cells indicate the sub-

domain that owns data in the cell. Left: (north, south) exchange between

sub-domains 0 and 2 indicated by arrows. Right: (east, west) exchange

indicated between sub-domains 0 and 1. Note the second exchange (right)

includes the data from the first (left) exchange. 56

3-5 Example of a cell list (right) constructed from a sub-domain with 4 cells

(left). The arrows follow the path traced to retrieve the indices of particles

in cell 2. 58

3-6 Example of H, l and k for a simple 4 cell sub-domain. 59

3-7 2D comparison between circle of radius rc and cells inspected for neighbours. 60

3-8 Example of the neighbour list and associated starting points. 62

3-9 Strong scaling experiment: parallel speed-up (left) and parallel efficiency

(right) for the time taken (s) to compute nmax = 104 Velocity Verlet itera-

tions of N = 106 particles using DL POLY, LAMMPS and our implementa-

tion (labeled as “Framework”). Efficiency and speed-up are relative to one

full node (16 cores). Efficiency is calculated according to Equation (3.9).

In the left plot perfect scaling is indicated by the dashed gray line. Raw

results are presented in Table 3.3 and simulation parameters are tabulated

in Table 3.2. 80

3-10 CPU-only weak scaling experiment: time taken to integrate the system over

nmax = 5000 time steps (left) and parallel efficiency (right). The efficiency

relative to one full node (right) is calculated according to Equation (3.10).

The top horizontal axes shows the total number N of particles in the system;

the number of particles per core is kept fixed at 512, 000 (8, 192, 000 particles

per node). 82

3-11 CPU-GPU weak scaling experiment with reduced particle number: time

taken to simulate nmax = 5000 time steps (left) parallel efficiency relative

to a single GPU/node, calculated according to Equation (3.10) (right). The

number of particles per node is kept fixed at 512,000. 82

3-12 Evolution of mean Q4, Q5 and Q6 values over the course of the simulation.

The horizontal dashed lines plot the expected Q4 and Q6 values of a perfect

FCC lattice. 84

v

List of Figures

3-13 Probability density of Q4 values (left) and Q6 values (right) in final system

configuration. (left) Dashed vertical line at Q4 = 0.097 is the expected

Q4 value of a perfect hcp lattice. Dashed vertical line at Q4 = 0.191 is

the expected Q4 value of a perfect fcc lattice. (right) Dashed vertical line

at Q6 = 0.485 is the expected Q6 value of a perfect hcp lattice. Dashed

vertical line at Q6 = 0.575 is the expected Q6 value of a perfect fcc lattice. 84

3-14 Weak scaling experiment that combines a simulation with on-the-fly anal-

ysis. Time taken to integrate 5000 steps, parallel efficiency relative to a

single node (right). 85

4-1 Spherical system S of radius L and truncation radius rc = L− a. 88

4-2 One dimensional representation of the charge splitting process for two pos-

itive charges and one negative charge. The −δ,−D(sr) and −D(lr) labels the

figure indicate the charge splitting process for the right-hand charge. 90

4-3 Log-scale plot of the short-range potential induced by a unit charge at the

origin. 92

4-4 One dimension representation of the self interaction between charges and

their corresponding long-range charge density. 94

4-5 A p-term multipole expansion at P constructed from charges contained in

the square containing P will not give an accurate approximation of the

potential ϕ in the shaded region. 100

4-6 Two well separated cells P and Q. 101

4-7 Four p-term multipole expansions at the points P1, . . . , P4 are translated to

the intersection point of the four cells. 101

4-8 The hierarchy of mesh levels for L = 3. 105

4-9 Interaction list in grey for square i. Thick lines indicate the boundaries of

the parent cells. 105

4-10 Overview of 2D FMM cost per step, adapted from [31]. 106

4-11 Overview of the flow of information to and from the grey square in a pass

of the 2D FMM. Multipole to Multipole and Local to Local translations

are illustrated with solid line arrows. Multipole to Local translations are

denoted by dashed line arrows. For clarity multipole to local arrows are

omitted on mesh level 3; the multipole source locations are indicated by

“M” and the centre of local expansions by “L”. The arrow denoted by “(*)”

indicates a generic boundary condition method on level 0 that converts the

p-term expansion Φ0,0 to Ψ0,0 if applicable. 109

4-12 Simulation domain and periodic images. Central grey image represents

the simulation domain, all other squares represent periodic images. The

multipole expansion Φ0,0 centred in squares in the white region is not valid

in the primary image. 110

vi

List of Figures

4-13 Interaction list marked with crosses for square P . The grey square indicates

the primary image and white squares indicate periodic images. Dotted lines

indicate boundaries between the four squares per image. 111

4-14 Spherical coordinate convention. 112

4-15 Left: original multipole to local translation TML along the vector (ρ, α, β)

with O(p4) computational complexity. Right: multipole to local translation

performed by (1) rotating coordinate frame with operation Ry(α)Rz(β)

(2) z-direction multipole to local translation T zML along new z-axis (3)

rotate coefficients back into the original coordinate frame with operation

Rz(−β)Ry(−α). 125

5-1 Time per iteration against particle count for an NaCl system on a single 8

core CPU using OpenMP (our framework) or pure MPI (DL POLY 4). . . 131

5-2 Strong scaling experiment of an NaCl system comparing our implementa-

tion, labeled as “Framework”, with DL POLY 4. Time per iteration (left)

and parallel efficiency relative to one 16-core node (right). Time taken is

recorded for 3.3·104 charges over 300 Velocity Verlet iterations. Short-range

Lennard-Jones interactions are enabled with a cutoff of 3Å. 132

5-3 2D OT distributed over 4 MPI ranks, MPI ranks are labeled in the centre

of the cells. On level l = 1 all cells are owned by rank 0 to keep all the

children of cell 0 on level 0 on the same MPI rank. 134

5-4 (Left) relative error in system potential energy from DL POLY against in-

put precision, dashed black arrows indicate the output error for an input

precision of 10−6. (Right) relative error in system potential energy and

absolute error in particle forces against number of expansion terms used

for all expansions, dashed arrows indicate the number of expansion terms

required to meet the DL POLY output error in the left plot. Average force

error is computed as the average error over all charges over all component

directions. Worst force error is computed as the maximum error over all

ions and all component directions. 139

5-5 Strong scaling comparison between our FMM implementation, labeled as

“PPMD”, and DL POLY FFT based Ewald. (Right) Time taken per Ve-

locity Verlet iteration. (Left) Parallel efficiency as defined in Equation

(3.9) computed relative to 1 node. One node consists of two Intel Xeon E5-

2650v2 CPUs (16 cores per node). Time per iteration and parallel efficiency

is recorded for a system containing 106 charges and a system containing

4 · 106 charges. 140

vii

List of Figures

5-6 Weak scaling test of our FMM implementation. (Right) Time taken per

Velocity Verlet iteration, floating numbers indicate the number of levels

in the octal tree. (Left) Parallel efficiency as defined in Equation (3.10)

computed relative to 1 node. One node consists of two Intel Xeon E5-

2650v2 CPUs (16 cores per node). 141

A-1 LAMMPS Lennard-Jones example script from http://lammps.sandia.gov/

inputs/in.lj.txt . 152

A-2 HOOMD-blue Lennard-Jones example Python script from http://glotzerlab.

engin.umich.edu/hoomd-blue/doc/dump_dcd-example.html 153

A-3 Two charges of strength q separated by distance d aligned parallel to the

x-axis. 164

A-4 Long-range energy contribution of an approximate dipole system constructed

from two charges separated by a distance d. Predicted long-range energy is

plotted in dashed black, computed energy is plotted in solid black. Values

are plotted for Gaussian width α = 1.0 and reciprocal cutoff kc = 200. . . . 165

viii

http://lammps.sandia.gov/inputs/in.lj.txt
http://lammps.sandia.gov/inputs/in.lj.txt
http://glotzerlab.engin.umich.edu/hoomd-blue/doc/dump_dcd-example.html
http://glotzerlab.engin.umich.edu/hoomd-blue/doc/dump_dcd-example.html

LIST OF TABLES

1.1 Values of Q4, Q5 and Q6 for perfect lattices, see [76] and Table 1 in [51]. . . 17

2.1 Fundamental data classes of the DSL . 44

2.2 Supported access descriptors . 45

2.3 Fundamental looping classes of the DSL . 46

3.1 Access descriptors for the loops in the Velocity Verlet Algorithm 17. 78

3.2 Parameters of Lennard-Jones benchmark for the strong scaling experiment;

units are chosen such that σ = ε = 1 († = excluding DL POLY, see main

text). 79

3.3 Strong scaling experiment: time taken (s) to compute nmax = 104 Velocity

Verlet iterations of N = 106 particles using DL POLY, LAMMPS and our

implementation (labeled as “Framework”). Further simulation parameters

are given in Table 3.2. CPU nodes consist of two eight core E5-2650v2

CPUs, GPU nodes contain one or more K20X GPUs. GPUs are compared

against CPU nodes on a one-to-one basis. For GPU results, the Framework

used one CPU core as a host for each GPU. LAMMPS implements a GPU

offload approach and hence used all CPU cores on the node in addition to

available GPUs. All codes were built with the Intel 2016 compiler suite and

OpenMPI 1.8.4 (with the exception of DL POLY, which used OpenMPI

2.0.0). The NVIDIA CUDA toolkit version 7.5.18 was used for the GPU

compilation and the framework was run with Python 2.7.8. 80

3.4 Absolute performance metrics (as percentage of peak performance and inte-

gration time) for two kernels recorded from GPU weak scaling experiment

presented in Figure 3-11. The “Force & PE” kernel is only called every 10

iterations and hence accounts for a smaller proportion of the total runtime

than the “Force” kernel. 83

ix

List of Tables

3.5 Parameters of bond order analysis weak scaling experiment. Units are chose

such that σ = ε = 1. 85

A.1 Relevant differences between SI units and Gaussian units 150

A.2 Balena System Architecture . 151

x

LIST OF ALGORITHMS

1 Time evolution using Velocity Verlet with time step δt. In this example we

use an inter-particle force that is a function of particle positions, in general

this force can be a function of all particle properties. 11

2 BOA Local Particle Pair Loop I. 47

3 BOA Particle Loop II. 48

4 CNA Local Particle Pair Loop I: Calculate direct bonds for each particle. . . 50

5 CNA Local Particle Pair Loop II: Calculate all other bonds in the local

environment. 51

6 CNA Local Particle Pair Loop III: Calculate number of common neighbours

n
(i)
nb, number of bonds n

(i)
b between those common neighbours and the largest

clustersize n
(i)
lcb. 51

7 Method to determine containing cell ci of particle i. 53

8 Construction of linked list cell list. 57

9 Assigning layers to particles and determining cell occupancy counts. Rapa-

port [17] Section 3.4. 58

10 Propose pairs of particles by considering pairs of cells. 60

11 Construction of sequential neighbour list. 62

12 Pairwise kernel execution using a sequential neighbour list. 63

13 Construction of matrix neighbour list based on Rapaport [17] Section 3.4. . . 64

14 Interaction using matrix neighbour list. 65

15 Particle Loop code generation for ParticleDats 69

16 Particle Loop code generation for ScalarArrays and GlobalArrays 70

17 Velocity Verlet integrator used in Section 3.3. The system is integrated

numerically with a time step of size δt until the final time T = nmaxδt. . . . 78

18 2D FMM algorithm to compute Ψl,i for a system with free space boundary

conditions. 107

xi

List of Algorithms

19 2D FMM algorithm to compute the interactions between charges via p-term

local expansions and direct charge-charge interactions. 108

20 3D FMM algorithm to compute Ψl,i for a system with free space boundary

conditions. 118

21 3D FMM algorithm to compute the interactions between charges via p-term

local expansions and direct charge-charge interactions. 119

22 Computational kernel for the contribution to reciprocal space for a particle j. 129

23 Computational kernel to extract the long-range contribution from reciprocal

space. 129

24 Cell by cell method to compute direct charge to charge interactions. 137

25 Calculate maximal cluster size. 149

26 Particle Loop code generation for ParticleDats 155

27 CUDA Particle Loop code generation for ScalarArrays and GlobalArrays . 156

xii

CHAPTER 1

BACKGROUND

1.1 Scientific Background

1.1.1 Introduction

Computational Physics and Chemistry simulate the properties of materials on comput-

ers. Molecular Dynamics (MD) and Monte Carlo (MC) are the two main approaches that

provide quantitative outputs that can be compared with experimental results. Computed

results may complement experimental measurements. For example, one might want to

find an optimal material contained within a huge family of materials. By using simulation

techniques a set of candidate materials can be selected from a huge family of materials for

physical experimentation without requiring time in a laboratory. Furthermore, computer

simulation allows scientific investigation in regions of parameter space which are experi-

mentally inaccessible, e.g. the high temperatures and pressures in solar plasmas or systems

involving hazardous radioactive materials. In these cases, the cost of time and physical

resource in a laboratory is significantly more than for computer simulation, furthermore,

simulation may be the only viable option.

Due to their broad applications, both MD and MC simulations have become a major

tool in computational physics, chemistry, biochemistry and drug discovery and account

for a significant proportion of runtime on high performance computing (HPC) systems.

As MD simulation is a commonly used technique across a wide range of disciplines we

often refer to the collective group of users as “domain specialists” irrespective of scientific

discipline.

This thesis focuses on the MD approach to simulating materials, however, the methods

we describe are applicable to MC, for example, the Hybrid Monte Carlo scheme in section

1.1.3. In the MD approach physical objects, such as atoms and ions or potentially entire

molecules, are represented by points in the simulation domain often referred to as particles.

The particles interact and move through the simulation domain following Newton’s laws

of motion [53]. In classical physics a particle occupies some point in space known as its

1

1.1. Scientific Background

position and carries a velocity that determines the rate of change of position. The set of

positions and velocities taken by the particle are known as the trajectory of the particle.

The computationally expensive and interesting components are calculating the inter-

actions between individual particles, which determine the force exerted on each particle

and the potential energy of the whole system. Interactions are typically described by

potentials which are both mathematically complex and computationally expensive. By

modelling these interactions the equation of state can be predicted and system properties

can be calculated from measurable quantities.

Properties of the simulated system are observed and quantified through a wide range

of analysis techniques which extract and process information from the system of particles.

Analysis techniques can exceed the computational complexity of the simulation itself. Fur-

thermore, without careful implementation modern analysis can easily become prohibitively

expensive to conduct, implementing high performance code for analysis may not be in the

skill set of computational physicists and chemists.

Even with an efficient implementation the cost of computing interactions will dominate

the overall cost of a typical simulation and impose a limit on the number of particles

that a simulation can contain for a given computational resource. With a significant

computational resource and an efficient code a state-of-the-art simulation may contain

in the region of billions of particles [44, 1, 3], which is an extremely small number in

comparison to the number of atoms in a gramme of material.

It is known that there are ≈ 6× 1023 atoms contained in 12 grammes of Carbon-12.

Hence in real experiments that are conducted on multiple grammes of material there are a

vast number of atoms involved, this indicates that experimentally observed properties are

a macroscopic average over a large number of individual particles. Secondly, per particle

events occur on microscopic timescales (femto-picoseconds) in contrast to experimentally

observable properties that occur on much longer timescales.

Simulations are conducted with large numbers of particles (104 - 109) as the error of a

statistical average is expected to decrease proportional to the reciprocal square root of the

number of particles. Physical properties of a system may depend on the effective size of

the system, if too few particles are simulated then observable quantities may be negatively

impacted by these so called finite size effects. Typically, particle counts of 104 − 109 are

sufficient to avoid finite size effects, depending on the exact system.

In a computer simulation per particle properties, such as position and velocity, are

modelled and per particle properties, such as potential energy, can be computed. Physi-

cally observable properties are calculated as ensemble averages, these provide a method to

compute the macroscopic effect of the collection of particles over a period of time. Statis-

tical mechanics describes how to estimate ensemble averages using the trajectories of all

individual particles, these averages are ideally computed over long trajectories of a large

number of particles, which is a computationally expensive process.

2

Chapter 1. Background

1.1.2 Statistical Mechanics

We now provide an introduction to statistical mechanics to motivate the use of Molecular

Dynamics (MD) as a computational tool. More complete descriptions are given by Allen

and Tildesley [2] and by Frenkel and Smit [24]. We begin by introducing the idea of the

“state” of a system; a state is an instance of the degrees of freedom associated with a

system. For example, if we consider a set of N non-interacting particles represented by

points in R3 with some set of velocities also in R3 then there are 6N degrees of freedom.

These 6N degrees of freedom describe the phase space of the system and we refer to each

point X ∈ R6N in the phase space as a state of the system. Since each set of positions

and velocities that are produced by the time evolution of the system corresponds to a

state in the phase space, the state X moves through phase space as the system evolves.

The set of states in phase space that are visited by the time evolution of the system

{X(t)|t ∈ [0, tend]} form a trajectory through the phase space. For simplicity we consider

phase space and time to be discrete, for a continuous system all summations over phase

space should be replaced by integrals.

For each state in the phase space of a system we assume that the total energy H is

defined as,

H = U +K, (1.1)

where U is the system potential energy and K is the system kinetic energy. We assume

the total potential energy U of a system of N particles is given by

U =

N∑
j=1

(
U external
j +

1

2
U inter-particle
j

)
, (1.2)

where U external
j is the potential energy of particle j in any external field and U inter-particle

j

is the potential energy of particle j in the potential field induced by all other particles.

The factor of a half accounts for the double counting of potential energy between pairs

of particles. Point particles carry translational momentum and zero angular momentum.

For N particles the kinetic energy K of the system is given by

K =

N∑
j=1

~pj
2

2mj
, (1.3)

where ~pj and mj are the translational momentum and mass of particle j respectively.

Physical experiments are conducted in the real world where it is impossible to com-

pletely isolate the experiment from the surrounding environment. Hence throughout an

experiment energy will be continuously exchanged with the environment to some extent.

A simulated system can either be perfectly isolated or coupled to a environment in a man-

ner that allows energy to be exchanged between the simulation and the environment. In a

MD simulation, where the evolution of the system is determined by integrating Newton’s

equation of motion, it is relatively straightforward to keep the total energy of the system

3

1.1. Scientific Background

constant up to small fluctuations.

The constant energy scenario corresponds to an experiment which is completely iso-

lated from the surroundings. However, physical experiments are often conducted at a

constant temperature and pressure and it is reasonable to want to replicate these condi-

tions within a simulation such that results can be more easily compared.

We define an ensemble to be the combination of a phase space and a probability

density function (PDF) defined on the phase space. The PDF describes the probability of

occurrence of each state in the phase space. More generally, statistical ensembles describe

which thermodynamic properties are fixed throughout a simulation, for example, in the

micro-canonical ensemble the number of particles N , simulation volume V and total energy

E are fixed. In the canonical ensemble the number of particles N , simulation volume V

and temperature T are fixed. The PDFs for these two ensembles are given by

P (X) =

{
Z−1
E δ(H(X)− E) micro-canonical ensemble with energy E

Z−1
T exp

(
−H(X)
kBT

)
canonical ensemble at temperature T

(1.4)

where Z{E,T} are normalisation constants, kB ≈1.38× 10−23 JK−1 is the Boltzmann con-

stant and H(X) is the total energy of state X. The canonical ensemble describes a finite

system thermally coupled to a infinite heat bath of temperature T , the PDF of the canon-

ical ensemble is known as the Boltzmann distribution [25],

P (X) =
exp

(
−H(X)
kBT

)
∑

Y exp
(
−H(Y)
kBT

) . (1.5)

A macroscopic property A, such as pressure or potential energy, is a function of the

system state A = A(X). The ensemble average 〈A〉ens of a property A is defined as the

mean value of the property over all possible states in the ensemble,

〈A〉ens =
∑
X

A(X)P (X), (1.6)

where P (X) is the probability of state X in the ensemble. We wish to compute ensemble

averages 〈A〉ens as with the correct choice of ensemble these should be comparable to

experimental values.

In general, the normalisation constants Z, such as the denominator of Equation (1.5),

have no known analytic solutions and are essentially impossible to compute exactly. The

idea of MD and MC is to apply importance sampling to estimate the values of 〈A〉ens.

We require that an algorithm satisfies two conditions, which together are sufficient to

sample states according to the correct ensemble distribution, namely detailed balance and

ergodicity. The transition probability π of the underlying Markov process satisfies detailed

balance if

P (X)π(X → X ′) = P (X ′)π(X ′ → X), (1.7)

4

Chapter 1. Background

where π(X → X ′) is the transition probability from X to X ′. This thesis is focused on

the MD approach, and we assume that the MD algorithms we describe satisfy detailed

balance.

The second condition is ergodicity, we define an ergodic algorithm to be one where

all points X in phase space with non-zero probability are reachable by the simulation.

For example, in the constant energy micro-canonical ensemble at energy E the points in

phase space with non-zero probability are those with energy E, for the simulation to be

ergodic all states with energy E must be reachable. Furthermore, to satisfy this particular

ensemble all valid points must occur with equal probability.

In the micro-canonical ensemble consider a system and corresponding phase space

where there are disjoint surfaces of energy E, this situation occurs when a system contains

some form of energy barrier. In the ensemble, for a trajectory to be ergodic it must be

able to reach all points on all energy surfaces with energy E with equal probability. MD

simulations that follow Newton’s Laws of motion do not produce trajectories capable of

“jumping” between energy surfaces and hence are not ergodic in the presence of energy

barriers, Hybrid Monte Carlo is a technique that addresses this limitation.

Discrete trajectories T = {X(t)|t ∈ {δt, 2δt, . . . , tend}} are produced by both MD and

MC simulations. If we assume a trajectory is produced in a manner that satisfies detailed

balance and ergodicity then the states X ∈ T are distributed according to the ensemble

distribution. The average value of a property A along a trajectory T is given by

〈A〉T =
1

Nsteps

Nsteps∑
τ=1

A
(
X̂(τδt)

)
. (1.8)

We assume that the average value of a property 〈A〉T along an ergodic trajectory T tends

to the ensemble average 〈A〉ens i.e.

lim
tend→∞

〈A〉T = 〈A〉ens. (1.9)

Hence in a MD or MC simulation we wish to produce long ergodic trajectories to produce

good estimates of ensemble averages.

MC and MD are both iterative approaches to generate a trajectory through phase

space, but these two techniques operate using fundamentally different approaches. In the

classical MD approach each particle in the system is modelled as a point-wise object with

a position, velocity and force. The force on each particle is computed using phenomeno-

logical potentials that describe the interactions with all other particles. Once the force on

a particle is computed the trajectory of the particle is updated following Newton’s Laws

of motion.

In MC a new state is proposed by taking the current state and applying some per-

turbation. Firstly, if the proposed state is not a member of the ensemble it is rejected

immediately, if the proposed state is a member of the ensemble it is accepted with a prob-

5

1.1. Scientific Background

ability dependent on the energy difference. For example, a simple MC approach based

on Metropolis Hastings [34] for the canonical ensemble takes a state with N particle po-

sitions ~rN and potential energy U = U(~rN) and proposes a new state with positions ~r ′N

and potential energy U ′ = U(~r ′N). The acceptance probability of the proposed positions

~r ′N is given by min [1, exp(U ′/(kBT))/ exp(U/(kBT))].

1.1.3 Molecular Dynamics

The construction of a MD simulation involves multiple design parameters that are altered

to suit the specific requirements of the simulation. We provide a description of a generic

simulation configuration that is widely used for general simulations. We begin with the

simulation domain which, in our configuration, is a cuboid with extents Lx, Ly, Lz. Our

convention will be to place the origin of the coordinate system at the centre of the cuboid,

a particle position ~r is valid if ~r ∈ [−Lx/2, Lx/2]× [−Ly/2, Ly/2]× [−Lz/2, Lz/2].

Particular attention needs to given to the boundary conditions of the simulation do-

main. We apply the convention of using periodic boundary conditions on all three dimen-

sions of the cuboid. In simulations that are focused on simulating thin slab-like sections

of material it may be sensible to only apply periodic boundaries in two of the three di-

mensions. The main idea of using periodic boundary conditions is to avoid introducing

artificial surfaces [2] into a simulation that is focused on bulk material. Furthermore, it is

a non-trivial exercise to construct boundary conditions that are not periodic and behave

in a physically realistic manner as for large volumes of physical material the boundary

becomes irrelevant.

Within the simulation domain N particles are initialised such that particle i has a

position ~ri and an initial momentum ~vimi where ~vi and mi are the velocity and mass of the

particle. The initial positions and velocities of particles are chosen to be physically sensible,

for example, it would be unrealistic to begin a simulation with overlapping particles. The

time evolution of the system is governed by coupled form of Newton’s Second Law [53],

mi
∂2~ri
∂t2

= ~Fi, i = 1, . . . , N, (1.10)

where ~Fi is the force exerted on particle i from all other particles in the system plus any

external field. Note that ~Fi is in principle a function of all particles in the system. In the

general case, there is a contribution to ~Fi from the N − 1 remaining particles located in

the primary image and the N particles located in each periodic image of the simulation

domain. If we write the force exerted on particle i by particle j in periodic image n ∈ Z3

as ~Fij,n then in the absence of any external force field we can explicitly write the force ~Fi

as

~Fi =
∑

n∈Z3\{~0}

N∑
j=1

~Fij,n +
∑

j∈{1,...,N}\{i}

~Fij,~0. (1.11)

We split Equation (1.11) into two terms to explicitly consider contributions from particles

6

Chapter 1. Background

in the primary image (n = ~0) where the summation must exclude the ~Fii,~0 term that

corresponds to particle self-interaction.

We will discuss two major inter-particle interaction types, the first describes short-

range non-bonded interactions, such as Van der Waals forces, and the second describes

long-range electrostatic interactions that exist in simulations containing charged particles.

If two particles i and j interact via both a short-range component ~F sr
ij,n and a long-range

component ~F lr
ij,n then the force ~Fi is given as the sum of forces from these two components,

~Fij,n = ~F sr
ij,n + ~F lr

ij,n. (1.12)

In this thesis we only consider ~F lr
ij,n to be the long-range forces that exist from elec-

trostatic interactions in systems of charged particles and a detailed discussion of these

interactions is given in Chapter 4. We refer to electrostatic interactions as “long-range”

as the effect of the interaction spans the entire simulation i.e. ~F lr
ij,n cannot be truncated

to zero at any cutoff radius without incurring an unbounded error as we demonstrate in

Section 4.1.1.

Long-range interactions, in contrary to short-range interactions, are those with a func-

tional form that can be safely truncated to zero for sufficiently separated particles, i.e.

if a pair of particles are separated by a distance greater than some value rc then in the

simulation they exert no force on each other.

The ability to truncate interactions without incurring a significant error penalty is a

key ingredient of competitive MD simulation codes, as with truncation the short-range

interactions between N particles can be computed with O(N) computational complexity.

Often the short-range interaction between a pair of particles is described as a pairwise

potential U(r) that is a function of the inter-particle distance r = |~rj − ~ri| between the

two particles i and j. The potential energy between i and j is computed by evaluating

U(|~rj − ~ri|) and the magnitude of the force exerted on both particles is

Fij =
−∂U(r)

∂r

∣∣∣∣
r=|~rj−~ri|

. (1.13)

Furthermore, the force exerted on particle i by particle j is computed by scaling the unit

vector from particle i to particle j by the magnitude of the force:

~Fij = − ~rj − ~ri
|~rj − ~ri|

∂U(r)

∂r

∣∣∣∣
r=|~rj−~ri|

. (1.14)

A very common short-range potential is the Lennard-Jones [47] potential,

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
, (1.15)

where ε and σ are parameters that are chosen to best approximate the true interaction

that is being modelled. For this potential a pair of particles will be attracted to each other

7

1.1. Scientific Background

if they are separated by a distance r > 21/6σ and will repel each other if separated by a

distance r < 21/6σ. As evaluating the potential ULJ(r) gives a value that is interpreted as

a potential energy ε must have units of energy and σ must have units of length.

1 2

−1

0

1

2

r/σ

U
(r
) L

J
/
ε

Figure 1-1: Lennard-Jones potential plotted in solid black, in dashed black the same potential
truncated and shifted at rc/σ = 21/6 ≈ 1.1 (dotted vertical line) to create a repulsive only interac-
tion.

For larger values of r, i.e. r/σ > 2, the dominant term in the Lennard-Jones poten-

tial has the form r−6, which converges to zero rapidly enough that the potential can be

truncated to zero at some inter-particle distance rc. When a potential is truncated at a

distance rc it is common practice to shift the entire potential by U(rc) such that there is

no discontinuity in the potential at r = rc as plotted in Figure 1-1.

If we consider a simulation with only short-range interactions and if we can truncate

the potential to zero for pairs of particles that are separated by a distance greater than rc

then we can revise Equation (1.11) to be computationally feasible and evaluate to a well

defined value,

~Fi =
∑

j s.t. |~rj−~ri|<rc
and i 6=j

~Fij . (1.16)

In a similar manner, the total potential energy U of the system can be written as the

sum of the potential energies between all pairs of particles that interact with a non-zero

potential,

U =
1

2

N∑
i=1

∑
j s.t. |~rj−~ri|<rc

and i 6=j

U(|~rj − ~ri|). (1.17)

For a particle i at position ~ri a different particle j at position ~rj is considered a

neighbour if |~ri − ~rj | < rc. If the force and potential energy of each particle is computed

naively for each particle by considering the (N−1) remaining atoms in the system then the

resulting algorithm exhibits a computational complexity of O(N2). However, in physically

8

Chapter 1. Background

realistic simulations of bulk material the spatial distribution of the N particles is typically

approximately uniform, which implies that the number of neighbours of each particle is on

average a constant. In chapter 3.1 we discuss in detail modern algorithms that compute

the short-range interactions with O(N) computational complexity by using cell based

methods to efficiently discard pairs of particles for which |~rj − ~ri| � rc.

In some areas of research, such as the study of Nematic Liquid Crystals (NLC), particles

cannot be considered as point-wise objects as the potential energy between a pair of

particles is a function of their relative orientations. Furthermore, the particular orientation

of the particles can govern the observable property of interest, for example, the light

polarisation of a system of NLC is determined by the collective orientation of the particles.

~r ~u2

~u1

Figure 1-2: Two ellipsoidal particles with axes of symmetry ~u1 and ~u2 separated by ~r.

The Gay-Berne [27] potential and derivatives are an anisotropic variant of Lennard-

Jones interactions that can be applied between ellipsoidal shaped particles. The shape of

each particle is determined by

G(x, y, x) = exp

(−(x2 + y2)

σ2
1

− z2

σ2
2

)
, (1.18)

where σ1 and σ2 are parameters and (x, y, z) is a point in a coordinate system local to the

particle. The origin of this local coordinate system is at the centre of the particle and the z-

axis is the axis of rotational symmetry. This description of particle shape does not describe

an explicit boundary of the particle and the potential itself is formed by considering the

overlap integral between two particles. If ~u1 and ~u2 specify the symmetrical axes of two

ellipsoidal particles which centres are separated by the vector ~r, as in Figure 1-2, then the

9

1.1. Scientific Background

potential energy between the two particles is given by

U(~u1, ~u2, ~r) = ε(~u1, ~u2, ~r)

[(
1

1 + r − σ(~u1, ~u2, ~r)

)12

−
(

1

1 + r − σ(~u1, ~u2, ~r)

)6
]
,

(1.19)

where ε(~u1, ~u2, ~r) = ε̄(~u1, ~u2)νε′(~u1, ~u2, ~r)
µ, (1.20)

ε̄(~u1, ~u2) = ε0
(
1− (~u1 · ~u2)2χ2

)−1/2
, (1.21)

χ =
σ2

2 − σ2
1

σ2
2 + σ2

1

, (1.22)

ε′(~u1, ~u2, ~r) = 1− χ′

2

(
(~r · ~u1 + ~r · ~u2)2

1 + (~u1 · ~u2)χ′
+

(~r · ~u1 − ~r · ~u2)2

1− (~u1 · ~u2)χ′

)
, (1.23)

χ′ =
ε
1/µ
s − ε1/µe

ε
1/µ
s + ε

1/µ
e

, (1.24)

σ(~u1, ~u2, ~r) = σ0

[
1− χ

2

(
(~r · ~u1 + ~r · ~u2)2

1 + (~u1 · ~u2)χ
+

(~r · ~u1 − ~r · ~u2)2

1− (~u1 · ~u2)χ

)]−1/2

(1.25)

and ε0, σ0, εs, εe, µ and ν are constant parameters. In particular εs governes the side-

to-side strength of the potential and εe governes the end-to-end strength. The Gay-Berne

potential is mathematically and computationally more complex than the Lennard-Jones

potential and requires a simulation code to store and make available the orientation of the

particles.

In general, the potential between a pair of particles i and j is given by a function of

the form

Uij = Uij(π
(i), π(j)), (1.26)

where π(i) and π(j) are all properties of the particles, for example, position and charge

in the Lennard-Jones example or shape parameters in the Gay-Berne example. This two-

body potential can be extended to a general n-body potential between particles (1, . . . , n)

as

U1,...,n = U1,...,n(π(1), . . . , π(n)), (1.27)

where {π(1), . . . , π(n)} are the particle properties. In Section 2.2 we present an abstraction

for pair-wise operations between particles in which two-body potentials can easily be

described.

Time Integration: An Energy Conserving Scheme

Given an inter-particle potential, such as a Lennard-Jones potential, and a set of N particle

positions {~ri, i = 1 . . . N} the force ~Fi exerted on each particle i and the system potential

energy U can be evaluated from Equations (1.16, 1.17). Hence from Equation (1.10)

(Newton’s Second Law) the acceleration of each particle can be computed and used to

update the velocities and subsequently the positions of all particles via a time integration

scheme. If the simulation is conducted in an ensemble where the total energy should remain

10

Chapter 1. Background

constant, e.g. the micro-canonical ensemble, then the time integration scheme applied to

the system must be energy conserving.

We use the Velocity Verlet [79, 77] scheme to integrate the system in time as this time

stepping scheme is energy conserving, locally 4th order accurate and globally 2nd order

accurate. The Velocity Verlet scheme is a leapfrog method and is given in Algorithm 1,

where we use superscript n to denote the nth iteration.

Algorithm 1: Time evolution using Velocity Verlet with time step δt. In this exam-

ple we use an inter-particle force that is a function of particle positions, in general

this force can be a function of all particle properties.

Data: Previous positions {~ri n , i = 1 . . . N}, velocities {~vi n , i = 1 . . . N} and

accelerations {~ai n , i = 1 . . . N}.
Result: New positions {~ri n+1 , i = 1 . . . N}, velocities {~vi n+1 , i = 1 . . . N} and

accelerations {~ai n+1 , i = 1 . . . N}.

Compute half update of velocities: ~vi
n+ 1

2 = ~vi
n + 1

2 ~ai
n δt

Compute full update of positions: ~ri
n+1 = ~ri

n + ~vi
n+ 1

2 δt

Compute new accelerations: ~ai
n+1 = 1

mi
~Fi(~r1

n+1 , . . . , ~rN
n+1)

Compute remaining half update of veloci-

ties:

~vi
n+1 = ~vi

n+ 1
2 + 1

2 ~ai
n+1 δt

Computationally the most expensive component is the calculation of the new forces ~Fi

required by the third step in Algorithm 1. Similarly, within a MC simulation the bottleneck

is the computation of the new potential energy. Given a method to compute the particle

forces, we may integrate the system forward in time to construct a trajectory. Each

instance of positions and velocities produced by the evolution of the system of particles is

a point in the phase space of the system.

Thermostats

In the Canonical ensemble the simulated system is considered to be thermodynamically

coupled to a heat bath of constant temperature such that the system and the heat bath

are in thermal equilibrium. This heat bath is considered to have a large enough thermal

mass that fluctuations in the temperature of the simulated system do not change the

temperature of the bath.

The Andersen thermostat [8] is a numerical method to approximately couple the sim-

ulated system to the heat bath via a mechanism where particles stochastically collide

with the heat bath. When a particle collides with the heat bath it is assigned a new

velocity which is sampled from the Maxwell-Boltzmann distribution [50, 49, 11, 12] that

corresponds to the temperature T of the heat bath. The Maxwell-Boltzmann distribu-

tion is the probability distribution of particle velocities found within a system at a given

11

1.1. Scientific Background

temperature.

The strength of the coupling between the particles and the heat bath is governed by a

parameter ν which determines the frequency of collisions. For a given ν the distribution

of time intervals between collisions is a Poisson distribution with parameter ν. Hence the

probability of zero collisions in a time interval t is

P (t) = ν exp(−νt). (1.28)

When a particle collides with the heat bath a new velocity is drawn from the Maxwell-

Boltzmann distribution, to sample from this distribution each component of the new

velocity is individually sampled from a Gaussian distribution with zero mean and variance√
T . As the Andersen thermostat samples an entirely new velocity vector when a particle

collides with the heat bath the method generates velocities which are discontinuous, these

discontinuities indicate that the particle dynamics are not entirely representative of a

physical system. If the study of a system requires highly representative particle dynamics

then there exist extended Lagrangian thermostats such as Nosé-Hoover [55, 54, 38, 39].

Hybrid Monte Carlo

Hybrid Monte Carlo [19, 52] (HMC), also known as Hamiltonian Monte Carlo, is an

importance sampling technique that combines the ideas of MC with Hamiltonian dynamics.

Consider a system where the phase space is partitioned into multiple regions separated

by energy barriers. It is expected that the trajectory a MD simulation follows in the

micro-canonical ensemble will become trapped in a local energy minima and hence not be

ergodic. A MC approach will accept proposed states based on the Boltzmann distribution,

as this distribution is highly peaked large proposed steps will have an unacceptably low

acceptance rate, small proposed steps have a higher acceptance rate but become highly

correlated. HMC allows larger steps through phase space to be proposed without small

acceptance rates and with much smaller correlations between samples.

Hamiltonian dynamics describe the evolution of a point through a phase space of 2d

dimensions. Each point in the Hamiltonian phase space corresponds to the combination

of a d element vector ~Q of Hamiltonian positions and a d element vector ~P of Hamiltonian

momenta. Consider a system of N particles with positions ~r ∈ R3N and momenta ~p ∈ R3N .

Let ~Q = (~r, ~p) = (Q~r, Q~p) ∈ R6N be the Hamiltonian position that corresponds to this

point in phase space and let ~P ∈ R6N be the momenta of the Hamiltonian positions ~Q.

Given ~Q and ~P the time evolution though the Hamiltonian phase space is governed by

12

Chapter 1. Background

Hamilton’s equations

d~Qi
dt

=
∂H

(
~Q, ~P

)
∂ ~Pi

, (1.29)

d~Pi
dt

= −
∂H

(
~Q, ~P

)
∂ ~Qi

, (1.30)

where H (Q,P) is the Hamiltonian of the system. For HMC the Hamiltonian is constructed

as

H
(
~Q, ~P

)
= U (H)(~Q) +K (H)(~P), (1.31)

where U (H) is referred to as the Hamiltonian potential energy and K (H) is the Hamiltonian

kinetic energy. The Hamiltonian potential energy is given by

U (H) = − log
(
ρ
(
~Q
))

, (1.32)

where ρ
(
~Q
)

is the probability density distribution to sample from. We wish to sample

from the Boltzmann distribution:

ρ
(
~Q
)

=
1

Z
exp

(
−U(~Q~r) +K(~Q~p)

kBT

)
, (1.33)

where ~Q~r = ~r are the Hamiltonian positions representing particle positions and ~Q~p = ~p are

the Hamiltonian positions representing particle momenta, U is the inter-particle potential

energy, K is the total kinetic energy of the particle system and Z is the normalisation

constant. Hence the Hamiltonian potential energy can be written more explicitly as

U (H) =
U(~r) +K(~p)

kBT
− log(Z). (1.34)

The Hamiltonian kinetic energy K (H) is defined as the logarithm of the probability

density of the momenta distribution

K (H)
(
~P
)

=
1

2
~P TM−1 ~P , (1.35)

where M is the covariance matrix of the multivariate Gaussian which we assume is diagonal

and the Hamiltonian momenta ~P are samples from a multivariate Gaussian distribution

with zero mean.

By using a symplectic integrator Hamilton’s equations can be integrated from some ini-

tial state at t0 to a time t1 whilst (approximately) conserving the value of the Hamiltonian.

13

1.1. Scientific Background

A leapfrog scheme for Hamilton’s equations with time-step size δt is given by

~P
t+ δt

2
i = ~P t

i +
δt

2

∂U (H)

∂ ~Qi

(
~Qt
)
, (1.36)

~Q t+δt
i = ~Q t

i +
δt

mi

~P
t+ δt

2
i , (1.37)

~P t+δt
i = ~P

t+ δt
2

i +
δt

2

∂U (H)

∂ ~Qi

(
~Qt+δt

)
, (1.38)

where mi is the ith diagonal entry of M , for ~P and ~Q subscript i denotes ith component

and superscript t denotes the tth time step. This integration stage produces a sample from

the probability distribution ρ(~Q, ~P) where

ρ
(
~Q, ~P

)
= exp

(
−H

(
~Q, ~P

))
, (1.39)

= ρ
(
~Q
)
ρ
(
~P
)
. (1.40)

The generated distribution of ~Q from Hamilton’s equations is given by the marginal dis-

tribution ∫
ρ
(
~Q
)
ρ
(
~P
)
d~P = ρ

(
~Q
)
. (1.41)

Hence by constructing the Hamiltonian H in this way the trajectory through the Hamilto-

nian phase space generates samples from the original distribution that we wish to sample

from. Furthermore, if we could numerically integrate Hamilton’s equations forward in time

exactly then the resultant scheme would be rejection free. Using the preceding machinery

an iteration of the HMC algorithm is a two step process:

1. The existing configuration of particle positions and momenta are collectively consid-

ered as the initial (t = t0) Hamiltonian positions ~Q and initial Hamiltonian momenta

~P are sampled from a multivariate normal distribution. Using a symplectic integra-

tor Hamilton’s equations are integrated forward to some end time (t = t1).

2. The resulting system at t = t1 is considered as a proposed configuration and is

accepted with probability

min
[
exp

(
H
(
~Q t0 , ~P t0

)
−H

(
~Q t1 , ~P t1

))
, 1
]

=

min
[
exp

(
U (H)(~Q t0) +K(H)(~P t0)− U (H)(~Q t1)−K(H)(~P t1)

)
, 1
]
.

(1.42)

If the proposed state is rejected then the original state is reused as the next state.

This step exists to correct for numerical error in the time integration scheme.

As discussed by Neal [52] the Hamiltonian momenta must be sampled from the Gaussian

distribution at each iteration of the algorithm to ensure that the Hamiltonian positions

are samples from the desired distribution.

14

Chapter 1. Background

Identifying Common Operations

We identified that in general a n-body potential can be written as U1,...,n(π(1), . . . , π(n))

where {π(1), . . . , π(n)} are particle properties. In addition to inter-particle interactions,

the MD algorithms we have described all read and modify particle properties in a uniform

manner, i.e. a function G is applied such that π(i) ← G(π(i)) for all particles i. We now

describe a selection of existing analysis algorithms, all of which can be described in terms

of n-body operations and operations that uniformly apply a function to the properties of

each particle.

1.1.4 Analysis Techniques

A simulation of a system of particles is of little use without a method to extract useful

information. As we introduced in the statistical mechanics section, an observable of the

system is some function of the state of the simulation. The most simple observables are the

potential and kinetic energy which are scalar valued quantities that are routinely computed

within simulations at either all time-steps or periodically. We present a limited set of

existing analysis techniques with varying algorithmic and computational complexities that

are representative of how typical analysis algorithms operate.

Diffusion Coefficients

Often researchers are interested in the study of complex processes that occur in the simu-

lated system and these processes could be time dependent. For example, the Mean Squared

Displacement (MSD) is a technique that can be used to estimate the diffusion coefficients

in a system. For example, a researcher could investigate the average motion of particles

with type a in a system predominately filled with particles of type b by measuring the

diffusion coefficient. Fick’s second law states that the rate of change of concentration of a

diffusing quantity c is proportional to the divergence of the flux created by the gradient

of c,
∂c

∂t
= ~∇ ·

(
D~∇c

)
, (1.43)

where D is the diffusion coefficient that we wish to measure. Einstein is attributed with

the relation
∂〈~r 2〉
∂t

= 6D, (1.44)

where 〈~r 2〉 is the average MSD. Over a sufficiently long time frame the value of D can be

estimated from a simulation by the relation

〈~r 2〉 = lim
r→∞

6tD. (1.45)

To compute an estimate of D in practice requires that a simulation code records the po-

sitions of all particles at multiple times to compute the value of the MSD. For systems at

equilibrium, diffusion coefficients can also be computed by using the velocity autocorrela-

15

1.1. Scientific Background

tion function (VACF) which measures the correlation between the velocity of a particle at

an initial time t0 and a future time t. The VACF of a particle i between an initial time

t0 and a time of measurement t is defined as ~vi(t0) · ~vi(t) where ~vi(t) is the velocity of the

particle at time t. When evaluated on a system of particles at equilibrium the VACF is

invariant under a change of initial time t0 such that

〈~v(t0) · ~v(t)〉 = 〈~v(0) · ~v(t− t0)〉. (1.46)

Given a method to compute the VACF in a simulation, the diffusion coefficient D can be

subsequently estimated by the relation

D =
1

3

∫ ∞
0
〈~v(0) · ~v(τ)〉dτ. (1.47)

A generalisation of Equation (1.47) for computing transport coefficients in terms of the

integrals of time correlation functions is given by the Green-Kubo relations [29, 46].

A VACF calculation could be computed after the simulation by using a trajectory dump

where the velocity of each particle is recorded at a series of time-steps. Implementation

of an on-the-fly VACF calculation that is computed within the simulation itself requires

the velocity vectors ~vi(0) and ~vi(t) for each particle i. Hence the simulation software

should provide data structures to store an initial set of velocities ~vi(0) and a current set

of velocities ~vi(t).

Given data structures to store initial and current velocities the VACF can be computed

by looping over all particles and incrementing a variable that stores a running total of the

VACF with the contribution from each particle. Initial velocities can be reset by looping

over all particles and copying the value of the current velocity ~vi(t) into the data structure

that stores ~vi(0).

Structure Analysis

An area of interest that requires more advanced analysis techniques is the study of the

local environments of particles within a simulation [48]. For particles in a crystal structure

there exist methods to classify the crystal structure type a particular particle is a member

of. This classification is necessary as the crystalline structure formed by cooling a liquid

of identical particles is not unique. Consider a liquid system of identical particles that

interact with a Lennard-Jones potential which includes an attractive and repulsive com-

ponent. As the system is cooled by removing kinetic energy through a thermostat, such

as an Andersen thermostat, the liquid system will pass through the liquid to solid phase

transition and form a crystalline structure. The crystalline structure formed corresponds

to an arrangement of particles that attempts to minimise the potential energy. As the

minimum of the Lennard-Jones potential is at an inter-particle separation of r = 21/6σ,

from a macroscopic viewpoint, the system is expected to try and maximise the number of

inter-particle distances around r ≈ 21/6σ, producing a crystal structure.

16

Chapter 1. Background

In 3D there exist two common lattices which satisfy the separation requirement, namely

face-centred cubic (fcc) and hexagonal close-packed (hcp). Furthermore, as the system of

particles forms a solid it is highly likely that the solid will be a mixture of both fcc and

hcp and non-classified lattice types. There also exist icosahedral structures that locally

minimise the energy between a subset of particles but cannot be the basis of a lattice. In

the study of glasses [70] and self assembly distinguishing between these structures is an

active area of research.

The bond order analysis (BOA) technique [75] introduces a set of order parameters

which are defined for each particle i as

Q
(i)
` =

√√√√ 4π

2`+ 1

+∑̀
m=−`

|q(i)
`m|2, (1.48)

with ` = 0, 1, 2, The sum

q
(i)
`m =

1

|N (i)|
∑

j∈N (i)

Y m
` (~̂rij), (1.49)

is computed by evaluating the spherical harmonics Y m
` in the directions

~̂rij =
~ri − ~rj
|~ri − ~rj |

,

pointing from the atom i to each of its neighbours j ∈ N (i). The BOA method uses the

following definition of the spherical harmonics,

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPml (cos (θ)) , (1.50)

where Pml denotes the Associated Legendre Polynomial of order (l,m), φ is the azimuthal

angle of ~̂rij and θ is the polar angle of ~̂rij . Atoms are considered to be neighbours if their

distance is smaller than a predefined cutoff range rc. Perfect crystal lattices have well

defined values for Q`. In particular the order parameters with ` = 4, 5, 6 are often used to

estimate the degree and type of crystal. Specific values for fcc, hcp and bcc lattices are

given in Table 1.1 ([76, 51]).

Lattice Structure Q4 Q5 Q6

fcc 0.191 0 0.575

hcp 0.097 0.252 0.485

bcc 0.036 0 0.511

Table 1.1: Values of Q4, Q5 and Q6 for perfect lattices, see [76] and Table 1 in [51].

In a simulation the local structure of the material can therefore be estimated by calcu-

17

1.1. Scientific Background

lating Q
(i)
` and comparing to the reference values in Table1.1. If they agree within some

tolerance, the system is classified to be in the corresponding lattice.

The second local environment analysis method we consider is common neighbour anal-

ysis (CNA) [37]. CNA is a purely topological approach to classify the local environment

of each particle by considering bonded particles. A pair of particles are considered to

be bonded if they exist within a cutoff distance rc of each other. For a pair of bonded

particles (i, j) the set of all particles which are bonded to both i and j are referred to as

common neighbours, the bonds between the common neighbours define a graph G. For

each pair of bonded particles (i, j) the graph of common neighbours G is classified by three

numbers [76]: (1) the number common neighbours nnb i.e. the number of vertices in G, (2)

the number of bonds nb i.e. the number of edges in G, and (3) nlcb the number of bonds

in the largest connected subgraph G′ ⊂ G. For each pair of bonded particles these define

a triplet (nnb, nb, nlcb) (example in Figure 1-3).

i
j

Figure 1-3: Common neighbour analysis for bonded atom pair (i, j) (empty circles). The set of
common neighbours (filled circles) are classified as a (4, 2, 1) triplet.

To classify the local environment of a particle the triplets are computed for each bonded

neighbour and compared to reference signatures for crystal structures. For example, in a

hcp lattice, each atom has 12 bonds, six of which are classified as (4, 2, 1) and the other

six are (4, 2, 2); see Table 1 in [76].

We consider the calculation of the BOA for a set of particles as a two stage process. In

the first stage for each particle the neighbouring particles which are sufficiently close to be

considered as bonded are counted, hence each particle requires data storage for the integer

number of neighbouring particles. For each particle the second stage loops over all nearby

particles and computes the BOA parameters for each neighbour and increments the values

of Q4, Q5, Q6 on each particle, hence storage should be provided for three floating point

values per particle.

Analysis Conclusions

The implementation of more involved analysis methods, such as BOA and CNA, presents a

technical challenge as the methods are often computationally expensive. Most simulation

software provides the capability to periodically store snapshots of the simulation which

can be used as inputs to a stand-alone tool that performs the analysis. Individually a

18

Chapter 1. Background

snapshot can require a non-trivial quantity of storage and hence the storage required to

store a trajectory for post-processing analysis can be significant.

Analysis could be performed within the simulation on-the-fly, this avoids the cost of

storing and reading data which is a relatively slow process. However, to perform on-the-

fly processing the analysis algorithm must be implemented within the simulation software

which requires detailed knowledge of the inner workings of the code. As we have outlined,

performing on-the-fly analysis requires simulation software to allow additional data struc-

tures for particle properties and provide access to fundamental loops over particles and

their neighbours. Typically, this code modification direction requires technical knowledge

outside the area of expertise of the domain specialist performing the simulation and anal-

ysis. However, the analysis methods we have described can be described by loops over

particles and loops over pairs of particles that manipulate a general set of particle data.

Often computationally expensive analysis methods are implemented as sequential stan-

dalone programs which do not exploit available parallelism, typically due to a lack of the

technical expertise required to implement such algorithms in existing low-level program-

ming languages. The data structures and looping mechanisms that are required to produce

a MD simulation framework are the same as those required for many analysis methods. A

framework that allows a extensible method to produce parallel MD simulations can also

provide a flexible and parallel analysis environment for on-the-fly or standalone analysis.

1.2 Modern High Performance Computing

In scientific computing researchers develop and implement algorithms that compute solu-

tions to large scale problems such as weather prediction and material simulation. Typically,

the initial implementations of algorithms are created as prototype software for commodity

hardware, such as laptop and desktop computers, and these implementations demonstrate

that the underlying algorithm is a viable method. Often this commodity hardware pro-

vides insufficient computational performance to apply the method to the original large

scale problem and a High Performance Computing (HPC) facility is required. For exam-

ple, it would be possible in theory to compute a weather forecast on a laptop, however it

would take an extremely long time for an accurate result which would then be useless as

a forecast as the weather would have already occurred.

The weather prediction example is a case where a HPC facility is required to produce

any reasonable result at all. We focus on MD simulation for material modelling where

HPC facilities enable the study of larger systems and drastically reduce the calculation

time required to perform simulations in comparison to commodity hardware. For instance,

a large MD simulation could require weeks or months of compute time on a desktop

computer but by using a HPC facility results could be computed in days.

As a further example, consider an experiment where the same simulation needs to be

performed for a large number of parameters and each simulation performed is computa-

tionally non-trivial. The simulation for each parameter could be computed in turn on a

19

1.2. Modern High Performance Computing

single desktop computer, which may take an unreasonable amount of time, but by using a

HPC facility the overall time to solution is greatly reduced enabling a higher throughput

of results.

1.2.1 General HPC Facility Topology

Most modern HPC facilities share a generic overall structure to provide scalable perfor-

mance. This structure consists of a collection of compute nodes that perform the com-

putations and are interconnected via a high performance network. A HPC facility also

typically contains a large volume of storage for data required by computations and data

produced by computations and an interface for users to access the computer through.

In this section we cover the general architecture of the computational portion of a HPC

facility and the requirements software developers must meet to efficiently use the resource.

A modern compute node is structurally similar to a high performance desktop work-

station and often consists of multiple Central Processing Units (CPUs), a large volume of

fast but volatile system memory commonly known as Random Access Memory (RAM) and

a fast network interface to connect to other resources in the facility. The network interface

is used to connect compute nodes together via specialist interconnects, such as those based

on the InfiniBand standard, or proprietary technology such as Intel Omni-Path. The rate

at which data is transferred across the network is referred to as the bandwidth and the

minimum time required to transfer any data is referred to as the latency. These high

speed networks offer point-to-point bandwidths in the region of 100 Gb/s which is much

higher than conventional Ethernet that provides a bandwidth in the region of 10 Gb/s.

Following convention, we list network bandwidths in units of Gigabits per second (Gb/s)

as opposed to Gigabytes per second (GB/s). Furthermore, specialist networks provide a

point-to-point latency ≈ 1 µs which is lower than conventional Ethernet. This is impor-

tant as for inter-node communication it is common that the latency of the network has a

higher impact on efficiency than the bandwidth available.

1.2.2 Compute Nodes

Memory

Compute nodes contain a hierarchy of volatile memory technologies that store in-use

values, the term volatile is used to indicate that these memory types require continuous

power to retain data. The largest pool of volatile memory with a volume of 10 GB -

2 TB within a compute node is the main system memory which is connected directly

to the CPUs with a hardware link capable of ≈200 GB/s on a modern system. CPUs

themselves contain multiple banks of memory known as the CPU cache with capacities

that vary in the region of 256 kB - 100 MB and bandwidths that vary in the region of 3

TB/s - 100 GB/s, as a general rule of thumb higher bandwidth cache is significantly more

expensive than lower bandwidth cache. Hence CPUs contain a hierarchy of cache levels

that vary from a small capacity cache per core with a high bandwidth and low latency

20

Chapter 1. Background

to the largest cache with the lowest bandwidth and highest latency, this larger cache may

be shared across multiple cores. Values which are repeatedly required by a program are

stored locally within a CPU cache and are accessed much more quickly than if the value

was re-fetched from main system memory.

CPUs

Along with banks of CPU cache and memory controllers a CPU contains multiple identical

units referred to as “cores” that perform operations on input data. The CPU operations

that are the most relevant in many scientific codes are those that operate on floating point

values. A floating point value is an approximation to a real valued number that is made

with 32bits (single precision) or 64bits (double precision). A common unit used to measure

rates of computation is the Giga-Floating Point Operation per Second (GFLOPs) which we

will exclusively use to refer to operations performed on double precision values. The term

“operation” refers to the mathematical operation that the core is performing, for example,

consider the task d← ab+ c which is read as “d is assigned the value of a times b plus c”.

This simple example contains two mathematical operations (addition and multiplication)

and four memory references. We make the distinction between mathematical operations

and CPU operations as they are not equivalent. The two mathematical operations in this

example are performed by one operation in certain cores by an instruction known as a

Fused Multiply Add (FMA).

A popular compute node configuration at the time of writing consists of two CPUs

within a node, each CPU will be comprised of a number of cores as shown in Figure 1-

4. The exact number of compute cores per CPU varies between vendors and individual

models, at the time of writing modern CPU core counts are in the range 2-72.

21

1.2. Modern High Performance Computing

Node

CPU(8 cores) CPU(8 cores)

Network

166 GFLOPs

40 Gb/s

RAM RAM

40 GB/s

Figure 1-4: Example node configuration comprised of two CPUs each with 8 compute cores.
Performance numbers for memory bandwidth, compute rate and network bandwidth are represen-
tative of an Intel E5-2650v2 (2.6 GHz Ivy Bridge) combined with an Intel TrueScale QDR network
interface.

Accelerators

CPUs are capable of executing very general sets of instructions quickly whilst being rela-

tively easy to program. This flexibility alongside a history of relatively cheap prices has

made them the most ubiquitous computing resource in HPC. Advances in other comput-

ing architectures such as Graphics Processing Units (GPUs), Field Programmable Gate

Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) have provided al-

ternative approaches to perform computations. In comparison to CPUs these accelerators

may provide higher memory bandwidth and higher computation rates but only if the

implemented algorithm is suitable for the hardware.

These alternative architectures can be included in node configurations alongside tra-

ditional CPUs and communicate with the CPU and system memory through a high speed

connection such as Peripheral Component Interconnect Express (PCIe). If an accelerator

device operates on memory built into the accelerator itself then any required data must be

transferred from main system to the accelerator over the interconnect and results copied

back in the reverse direction. The time taken to transfer data to and from the accelerator

may negate any performance benefit gained by offloading computation onto the accelera-

tor, and hence successful application of accelerators requires careful software design. An

example node configuration where a pair of CPUs have been combined with a pair of

accelerators is given in Figure 1-5.

22

Chapter 1. Background

Node

CPU(8 cores) CPU(8 cores)
Accelerator e.g.

P100 GPU (5.3 TFLOPs)
Accelerator
(e.g. GPU)

Network

166 GFLOPs

40 Gb/s

RAM RAM

40 GB/s

PCIEv3 16 GB/s

Figure 1-5: Example node configuration comprised of two CPUs each with 8 compute cores paired
with some accelerator. Performance numbers are representative of an Intel E5-2650v2 (2.6 GHz
Ivy Bridge) system combined with an Intel TrueScale network interface.

Floating Point Units (FPU)

In general, the performance of a MD simulation implementation is bound by the achieved

floating point computation rate of on the HPC hardware as opposed to the rate at which

values are retrieved from memory. We now describe how modern CPUs perform floating

point operations as this background material is required knowledge for implementing and

analysing the efficiency of CPU code.

Due to physical constraints regarding heat dissipation and power delivery CPU core

clock speeds have remained reasonably static within the past two decades (2-4 GHz).

CPU manufacturers have increased computational performance by increasing the number

of cores per CPU and increasing the number of instructions that can be executed per

clock cycle per core. To achieve more operations performed per clock cycle CPU cores

have silicon dedicated to specialised tasks, such as vector operations and to manage the

flow of instructions to maximise throughput. To efficiently use a modern CPU for purely

floating point computation a program must use these vector instructions. Vector opera-

tions are a form of Single Instruction Multiple Data (SIMD) parallelism, where the same

mathematical operations are applied to multiple independent sets of data in parallel.

The width of the vector FPU determines how many elements are processed per clock

cycle. In modern CPUs the vector width can vary from 128bit (2 double precision values)

to 512bit (8 double precision values). As an example consider the Intel E5-2650v2 processor

with eight cores and a clock-speed of 2.6 GHz, each core of this CPU contains a vector

addition unit and a vector multiplication unit both with a width of 256bit. These vector

23

1.2. Modern High Performance Computing

units operate on input vectors concurrently and can perform one vector addition and

multiplication per clock cycle assuming the input data is available. If we define R64 to

be the set of real numbers representable in double precision floating point arithmetic the

multiplication unit and addition unit perform the operations defined by vadd and vmul as

element-wise addition and multiplication:

vadd: R4
64 × R4

64 7→ R4
64, (1.51)

vadd



a0

a1

a2

a3

 ,

b0

b1

b2

b3


 7→


a0 + b0

a1 + b1

a2 + b2

a3 + b3

 , (1.52)

vmul : R4
64 × R4

64 7→ R4
64, (1.53)

vmul



a0

a1

a2

a3

 ,

b0

b1

b2

b3


 7→


a0b0

a1b1

a2b2

a3b3

 . (1.54)

Certain CPU architectures, such as the Intel Haswell architecture, can execute the FMA

instruction on vectors of double and single precision values in a similar element-wise fash-

ion,

vfma: R4
64 × R4

64 × R4
64 7→ R4

64, (1.55)

vfma



a0

a1

a2

a3

 ,

b0

b1

b2

b3

 ,

c0

c1

c2

c3


 7→


a0b0 + c0

a1b1 + c1

a2b2 + c2

a3b3 + c3

 . (1.56)

On modern CPUs the vector instructions are the most compute intensive instructions

a CPU core executes, i.e. no other instruction performs more mathematical operations

in the same or fewer clock cycles, hence the vector instructions are used to compute the

theoretical peak computation rate. If we again consider the Intel E5-2650v2 where each

core contains a separate 256bit vector addition and multiplication unit that can perform

a vadd and vmul once per clock cycle then each CPU core could perform eight double

precision mathematical operations per cycle (8 FLOPs). Hence at a fixed clock-speed of 2.6

GHz each core of a E5-2650v2 attains a maximum computation rate of 8 FLOP∗2.6 GHz =

20.8 GFLOPs and the theoretical maximum computation rate of the eight cores is 166.4

GFLOPs.

Compared to the rate a modern CPU can perform computation fetching data from

memory is comparatively slow. For example, the E5-2650v2 can perform floating point

operations at a rate of 166.4 GFLOPs and has a memory bandwidth in the region of 40

GB/s which is 5× 109 double precision values per second. The ratio between the system

24

Chapter 1. Background

memory bandwidth and the computation rate of the CPU indicates that an E5-2650v2 can

theoretically perform ≈ 33 mathematical operations in the time taken to retrieve a single

double precision value from memory. Hence the performance critical portion of a program

must reuse values read from memory for a significant number of compute operations to

achieve a significant proportion of the peak computation rate.

For a section of code the ratio between mathematical operations performed and re-

quired memory bandwidth to main memory is known as the arithmetic intensity and is

commonly measured in FLOPs/Byte. Hence our E5-2650v2 requires an implementation

to achieve an arithmetic intensity of at least 4.2 FLOPs/Byte to theoretically attain peak

performance. Our peak performance calculation required both addition and multiplica-

tion units to be fully utilised on each clock cycle, hence to approach peak performance an

implementation should contain an equal number of additions and multiplications and the

data available to perform the computation. In practice codes contain different numbers of

additions and multiplications and hence cannot approach peak performance.

Graphics Processing Units (GPUs)

GPUs can be viewed as a very wide vector processor which operates on thousands of

elements simultaneously. Although initially designed to accelerate 2D and 3D graphics

these devices are programmable for general purpose computation. From a high level

viewpoint, GPU code must be designed in a SIMD manner such that many (thousands)

of threads can apply the same operation to independent sets of data. GPUs typically

offer higher peak performance than CPUs by containing thousands of cores per GPU

and often operating with a higher power draw limit. GPUs are typically packaged as an

accelerator card that connects to the rest of the host system via the PCIe interface and

include a separate bank of memory that is directly connected to the GPU. The Tesla P100

[57] manufactured by Nvidia features 3584 cores with a power draw limit of 250W and

achieves a peak double precision execution rate of 5.3 TFLOPs using FMA instructions,

this floating point performance is paired with a peak memory bandwidth of 720GB/s.

In contrast to GPU cores CPU cores dedicate a large proportion of silicon space to

functionality that aims to optimise the flow of instructions and data to the CPU execution

units, for example, the floating point vector units. In modern GPU architectures, such as

those manufactured by Nvidia, execution cores are grouped in sizes of 32 into units referred

to as Streaming Multiprocessors (SMs) all 32 cores in a SM execute the same instructions

simultaneously. The scheduling of instructions is performed on a per SM basis as all cores

in the SM execute the same instructions. By grouping the cores into SMs the average area

of silicon space required per core is greatly reduced.

Although a GPU core may only execute instructions from a single thread per clock

cycle GPUs architectures are designed such that the cores host multiple execution threads

simultaneously and incorporate thread scheduling that allows cores to switch execution

between threads efficiently. The idea is that if the execution of a thread stalls whilst

25

1.2. Modern High Performance Computing

waiting for data to be fetched from or stored into the GPU memory then the core can

switch execution to a thread which has no outstanding data movement dependencies and

can continue executing instructions.

The large peak memory bandwidth and computation rate of a GPU is a driving factor

for developing codes for these accelerators, especially for computation bound code such

as the force calculation in MD. The introduction of a GPU into a HPC node further

complicates the memory hierarchy as the device operates on values stored in the onboard

memory, which is connected to the rest of the node through the PCIe bus. A significant

implementation challenge in programming GPUs is the task of structuring the algorithm

such that the PCIe bus does not bottleneck the performance.

A second significant challenge is structuring algorithms such that they are suited to

the highly threaded environment present on GPUs, GPU threads have tighter restrictions

than CPU threads on how they may efficiently access memory and perform computation.

Code which does not efficiently use the highly threaded GPU architecture is unlikely to

provide a performance benefit over a typical CPU implementation.

Hardware Specific Functions

To produce the most efficient code developers may utilise “intrinsic” functions that are

specific to a hardware architecture. These functions map to low level hardware instruc-

tions, for example, the vector instruction vfma. Explicit use of vector operations, such as

the vfma operation, are a typical use case for intrinsic functions as a method to guaran-

tee the output of a compiler. If a compiler is unwilling to automatically produce vector

instructions for a section of code then an intrinsic function forces the compiler to produce

specific instructions. The use of an intrinsic function imposes a restriction on the target

architecture that an implementation can be executed upon, for example, the use of an

intrinsic function for the Advanced Vector Extensions (AVX) instruction set produces an

output that may only be executed on CPUs that feature AVX and hence is not portable

to other CPUs or GPUs.

Similarly, codes written for Nvidia GPUs using CUDA are not portable to GPUs from

other manufactures, such as AMD, or at the time of writing CPUs. On NVIDIA GPU

hardware using intrinsic functions for inter-thread communication improves performance

beyond what the compiler can produce, hence intrinsic functions are commonly used in

CUDA code. As previously discussed, the intrinsic functions prevent an implementation

from being compiled and executed on a different architecture in the absence of some

translation process that removes or re-implements the intrinsic.

Levels Of Parallelism

A common theme of modern HPC architectures is the grouping of large numbers of identi-

cal components to increase the available computational power. At the level of CPU cores

and GPU SMs there is SIMD data parallelism that applies the same operation to multiple

26

Chapter 1. Background

sets of data in parallel. Furthermore, within the compute cores themselves instruction level

parallelism is exploited by re-ordering the flow of instructions to maximise the throughput

of the compute core. Cores are grouped into CPUs which in turn form compute nodes

that may also contain multiple accelerators, e.g. GPUs. Finally, identical compute nodes

are connected via the high performance interconnects to form the HPC facility.

Each level of parallelism in the hierarchy of a HPC facility needs to be addressed effi-

ciently by both algorithms and implementations to make efficient use of the computational

resource. The number of levels of parallelism required to be efficient is a significant con-

cern for the developers of HPC code especially in heterogeneous computing where multiple

hardware architectures are used simultaneously.

Implications For Portable Performance

For a given computational task the most efficient algorithm and implementation for one

hardware architecture is often not efficient on a second hardware architecture. Further-

more, at the point of design of a HPC code a developer can only be aware of current,

past and near future hardware architectures. Typically, these constraints lead to code

being developed which is either efficient on the most ubiquitous hardware available or is

efficient on the leading performance hardware available. Our goal is to produce code for

MD simulations which makes optimal use of modern hardware and is portable between

hardware types.

Due to the technical expertise required to produce efficient code and the domain specific

expertise required to design suitable algorithms MD code development requires knowledge

from at least two different fields; the scientific domain to understand the problem and the

computational domain to understand the hardware and associated programming method-

ologies. Regardless of the target architecture and the method employed to produce efficient

performance critical code the production of a good quality implementation requires a sig-

nificant investment of developer time for an initial release and for maintenance over the

life of the software.

It is highly desirable to produce software which is portable between a wide range of

hardware architectures and efficiently uses each computational resource. If an implemen-

tation is portable between different hardware architectures and efficiently utilises each

hardware resource then it is referred to as “performance-portable”. This performance-

portable approach reduces redevelopment of existing functionality to ensure efficient use

each hardware architecture.

Parallel Programming Models

We consider two parallel programming models; message passing and shared memory. Mes-

sage passing is a form of inter-process communication. We consider an operating system

process to consist of one or more threads that execute instructions and a region of memory

which can only be accessed by this process. The memory region of a process can only be

27

1.3. Discussion Of Existing Libraries

accessed directly by the owning process and hence the transfer of data between processes

requires one process to send data and another process to receive data. By using a Message

Passing Interface (MPI) library the specific details of the inter-process communication are

abstracted away from the programmer. Furthermore, MPI allows the send process to be

on a completely separate compute node to the receiving process, the data is transferred

over the high performance network. As these memory regions are distinct and can be on

separate compute nodes this model is also referred to as a “distributed memory model”.

A operating system process can contain more than one thread known as multithread-

ing, each thread executes its own set of CPU instructions but they share the same memory

region of the parent process, hence using multiple threads is a form of “shared memory”

programming. Separate threads from a single process can execute instructions concur-

rently on separate CPU cores and can communicate through the shared memory. A very

popular and portable method of multithreaded programming is the OpenMP application

programming interface. The CUDA programming language used to programme Nvidia

GPUs operates in a shared memory model. Each thread executed on the GPU cores can

access data in the GPU memory, hence as with most multithreading models the program-

mer must take precautions to avoid race conditions. To utilise multiple GPUs, a robust

and scalable approach is to launch one MPI process per GPU, this process acts as the

controlling host for the GPU and allows communication between GPUs in separate nodes.

Using shared memory parallelism alongside distributed memory parallelism is beneficial

when the overall efficiency of a MPI parallelised program is limited by inter-process com-

munication. By reducing the number of MPI processes through increasing the use of shared

memory parallelism the programmer aims to reduce the time spent communicating data.

This combination of programming models is known as “hybrid” we employ hybrid paral-

lelism with MPI as a distributed memory programming model combined with OpenMP as

a shared memory programming model and refer to this combination as “MPI+OpenMP”.

For example, consider a compute node containing two separate E5-2650v2 CPUs (16 cores

total), we could launch 1 MPI process per CPU and 8 OpenMP threads per MPI process

which would result in 1 OpenMP thread per core.

1.3 Discussion Of Existing Libraries

1.3.1 Overview Of Existing Libraries

As computational chemistry and physics are active and established area of scientific com-

puting there are many existing libraries created as tools for MD simulations. A subset

of these codes are targeted towards particular areas of interest, for example, molecular

biology. Generic MD libraries exist and provide access to collections of methods which

potential users can use for simulation and analysis.

In the remainder of this section we will review some existing codes for atomistic sim-

ulations. Of particular interest for this project is the way the user controls the details

28

Chapter 1. Background

of the simulation. While for many codes it is relatively easy to change parameter val-

ues of a given inter-particle potential, more fundamental changes, such as modifying the

functional form of the potential itself, may require changes to the source code. Successful

source code modification requires knowledge of libraries that have significant code bases.

Furthermore, the static nature of these libraries requires significant development work to

target emerging architectures such as GPUs and Xeon Phi.

The interface for a large proportion of the libraries is through library specific config-

uration files, users determine values for the parameters available in the library and write

these to a file. For example, a user may select a Lennard-Jones potential and specify their

required values of ε and σ. Other common parameters are the temperature and the num-

ber of simulation steps. The library is then launched with a given configuration file and

hopefully produces the results requested often with some history and logging information

for the simulation.

The majority of the popular libraries offer parallel computation on distributed memory

nodes using MPI which in some cases is combined with threading intra-node. For example,

DL POLY [41] provides a multi-process MPI executable designed to be launched with one

process per core. The GROMACS [60] library supports hybrid MPI+OpenMP where a

process may be launched per node which spawns enough threads to use all available cores

on that node. GPU support is restricted to a subset of libraries with varying degrees of

computation offloading e.g. LAMMPS and HOOMD-blue [59] [9]. There is less support

for the Intel Xeon Phi architecture than for GPUs which is likely due to the infancy of

the platform.

1.3.2 Library Comparisons

DL POLY (full name DL POLY 4) is a general purpose MD code currently targeted at

conventional CPUs. Programmed in FORTRAN90, DL POLY implements a spatial do-

main decomposition approach with communication between sub-domains handled with

MPI. Users specify their desired functionality from a predefined set of options within a

configuration file which is read in by the program and executed. DL POLY is the only

code we discuss that follows the classical approach of implementing a CPU only code with

parallelism built using only MPI. Several other codes such as LAMMPS [63], GROMACS,

NAMD [62] and AMBER [61] implement hybrid MPI+OpenMP parallelism to reduce both

the communication cost of an iteration and the additional overhead at each iteration.

Within recent years the performance provided by GPUs has persuaded several organ-

isations to port computationally intensive portions of code to the CUDA programming

language for GPU acceleration. LAMMPS, GROMACS and AMBER claim varying levels

of computation offloading but fall short of a complete offload to the GPU. For exam-

ple, LAMMPS will offload the charge assignment and force interpolation portion of the

Particle-Particle-Particle Mesh (P3M) [35] method to a GPU [64] but uses the host for

communication between nodes. Similarly to LAMMPS, HOOMD-blue will offload non-

29

1.3. Discussion Of Existing Libraries

bonded force calculations to multiple GPUs but will not offload the long range electrostatic

interactions. Typically, users enable GPU offloading by enabling options in configuration

files. In libraries where GPU support is provided through plugin systems users are ex-

pected to enable and compile the plugin into the library in a one time operation. Across

all libraries there is minimal support for the Intel Xeon Phi, but there is evidence of

development as NAMD and AMBER claim limited or experimental support.

User interaction varies on a per library basis, for example, LAMMPS provides an

internal scripting environment where an input script specifies the operations performed

by the library. The LAMMPS script in Appendix A.6 creates a uniform lattice of particles

at a set density within a bounding domain. The script then assigns particle properties such

as mass and velocity and sets a Lennard-Jones potential for all inter-particle interactions.

Finally, the last line of the script instructs LAMMPS to integrate the system forward in

time. In general, simulations share a similar flow of control to the LAMMPS example, an

initial condition is formed which evolves over time using a specified integrator, output is

either at the end of the simulation or periodically throughout the simulation.

Libraries such as OpenMM and HOOMD-blue provide interfaces to the library for

external scripting languages like Python. An example script for HOOMD-blue is given in

Appendix A.7 which expresses a similar simulation to the LAMMPS example but within a

high level language. Custom non-bonded potentials are a feature which are implemented

on a per library basis by either direct source code modification, loading tabulated values,

writing custom plugins or some internal generation. DL POLY, GROMACS, HOOMD-

blue and NAMD will take as an input tabulated values of the potential energy and force

magnitude for a given range of radii. The tabulated inputs are then interpolated by the

libraries to be used internally in simulations. LAMMPS implements an approach where

users write their extension as source code which is compiled into the library prior to

runtime in an add-on style arrangement.

OpenMM provides high level functionality where a non-bonded interaction can be

described as an analytic expression for the potential [21]. OpenMM then analytically

computes the derivative of the expression to produce an analytic expression for the force

as a function of radius. As the OpenCL execution model features runtime compilation

for execution OpenMM compiles the analytic expression into an OpenCL kernel after an

internal optimisation procedure [20]. OpenCL targets both CPU and GPU architectures

hence this method of generation custom potential may be used for both the CPU and

GPU. It should be noted that OpenMM does not support MPI and hence does not natively

scale to multiple nodes, libraries such as GROMACS have successfully used OpenMM as

a means to offload computation to GPUs for acceleration. Secondly, OpenMM provides

only one abstraction layer, if users cannot describe their desired operation within this layer

they must revert to source code modification.

30

Chapter 1. Background

1.3.3 Discussion And Conclusions

The primary aim of this project is not to achieve higher performance than existing produc-

tion libraries, many of which are highly optimised, but to provide a flexible tool applicable

to general tasks in the field of molecular simulation and analysis. No existing codes pro-

vide a framework to support code generation or user development to the extent provided

by our abstraction. We have identified that by using one- and two-particle operations

many MD algorithms can be described for simulations and analysis. The functionality of

existing libraries can be replicated and extended in addition to increased efficiency and

portability by using code generation.

OpenMM performs code generation specifically for custom forces between atomic ob-

jects and for custom integrators but does not target distributed memory architectures and

does not provide a layered abstraction. Multiple existing libraries do provide high level

interfaces to functionality but provide little or no access for user friendly modification or

extension.

Often the simulation itself is not the only computation that a domain specialist wishes

to perform. The simulation process provides data such as trajectories from the system of

interest. This raw data has to be analysed to identify scientifically interesting behaviour.

For example, analysis may investigate the local environment of each particle with local

cluster analysis or investigate long range structure with the radial distribution function.

Existing libraries provide limited on-the-fly analysis but do provide some predetermined

methods of post processing. If a domain specialist requires something non-standard this is

unlikely to be provided. Furthermore, with on-the-fly analysis the dynamics of the model

can be modified during the simulation, implementing feedback from analysis measurements

into simulation parameters would be extremely computationally expensive to implement

with a post processing approach.

Complicated analysis may also require computation time comparable with the simu-

lation itself, which poses problems for domain specialists not familiar with parallelisation

and hardware. There does not appear to be any major library providing accelerator sup-

port for analysis computation. More generally, there is little support for parallel post

processing analysis in either a shared memory or distributed memory setting.

31

CHAPTER 2

A SEPARATION OF CONCERNS BASED ABSTRACTION

2.1 PyOP2 And Firedrake: An Existing Approach

In this section we discuss the abstractions presented by PyOP2 [68] and Firedrake [67].

Together these two projects are an example of the concept that we apply to the field of MD

simulation. PyOP2 provides a library to execute computational kernels on unstructured

meshes. Firedrake uses PyOP2 as an internal component, alongside other frameworks

such as PETSc [10], to provide a framework for computing numerical solutions to PDEs

via finite element methods. We provide some background into Firedrake and PyOP2 as

this combination of a high level interface built on a multiple level execution environment

has proven to be successful in the finite element community. By applying the idea of

using multiple levels of abstraction we produce a new abstraction tailored to MD, we aim

to make the advances in software development now available in finite element software

available in MD related fields.

The key problem that Firedrake solves with PyOP2 is that operations on elements in

meshes in Finite Element Method (FEM) codes result in code which is complex but must be

optimised for particular hardware to be efficient. As there are a limited number of people

who are experts in FEM and HPC development Firedrake implements a separation of

concerns approach which splits the overall problem into a number of smaller sub-problems

which may then be tackled by field experts. The operations on elements are translated into

computational kernels which can be automatically optimised by Firedrake for a specific

hardware at runtime with acceptably low overhead.

The difference between FEM and MD is that in MD we loop over pairs of particles

whereas in FEM Firedrake loops over elements in a mesh. Furthermore, unlike FEM

local domains in MD will have differing numbers of particles, presenting memory and load

balancing issues as particles move throughout the domain.

All mesh based codes to compute numerical solutions of PDEs require the execution of

small computational kernels on each entity (cell, facet or vertex) of a mesh. For example,

32

Chapter 2. A Separation of Concerns Based Abstraction

a finite volume discretisation might increment the pressure value stored in each cell by

summing up the fluxes on all facets which are touching this cell. Since topological relations

between mesh entities are important, PyOP2 represents those in dedicated data structures

and provides iterators over those.

PyOP2 starts with the idea that a mesh such as those found in scientific computations,

e.g. computational fluid dynamics, can be represented by sets of entities connected together

with maps. For example, a graph can be described by a set of vertices, a set of edges and

a map which encodes which edges are connected to each vertex. The framework provides

a Domain Specific Language (DSL) to represent sets of entities and maps between these

sets. By decomposing a high level description into primitive objects optimisation can be

performed in terms of these primitive objects without knowledge of the original high level

problem. In the following example a triangle is represented by three vertices connected

by three edges, the final line describes a map from edges to vertices. If we have edges

e0, e1, e2 and vertices v0, v1, v2 we map e0 → (v0, v1), e1 → (v1, v2) and e2 → (v2, v0).

vertices = op2.Set(3)

edges = op2.Set(3)

edges2vertices = op2.Map(edges, vertices, 2,

[[0, 1], [1, 2], [2, 0]])

Figure 2-1: Triangle described by three edges and three vertices, adapted from PyOP2 documen-
tation [69].

Considering the triangle above we assign a 2D position to each of the vertices. In the

context of PyOP2 we attach data to elements of a set, i.e. we assign a tuple of two real

numbers to each element in the set vertices by using the op2.Dat data structure. First

we declare that each element of the set vertices has a two dimensional object associated

with it by using a op2.DataSet object, secondly, a op2.Dat is created and connected with

the created op2.DataSet object.

dvertices = op2.DataSet(vertices, dim=2)

coordinates = op2.Dat(dvertices,

[[0.5, 0.9], [0.0, 0.0], [1.0, 0.0]],

dtype=float)

Figure 2-2: Triangle from Figure 2-1 with positions added, adapted from PyOP2 documentation
[69].

Finally, suppose we wish to take each element in the set of vertices and apply a fixed

translation along the vector (1, 1). The translation operation is written as a C function

and wrapped within a op2.kernel object with the intent that this kernel will be applied to

33

2.1. PyOP2 And Firedrake: An Existing Approach

each vertex independently. As the application of the kernel to each vertex is independent

the execution may occur in parallel, PyOP2 loops over each vertex in the set of vertices

in parallel and at each vertex applies the translation kernel after a call to op2.par_loop.

translate = op2.Kernel(

"""void translate(double * coords) {

coords[0] += 1.0;

coords[1] += 1.0;

}""", "translate")

op2.par_loop(translate, vertices,

coordinates(op2.RW))

Figure 2-3: Triangle from Figure 2-1 after translation along (1, 1), adapted from PyOP2 docu-
mentation [69].

PyOP2 generates C source code for a shared library that executes the kernel in the

parallel loop. The C source is compiled into hardware instructions by the compiler after

an optimisation stage that aims to maximise the efficiency of the resulting instructions.

The compiler may only apply code transformations that do not impact the correctness of

the output. Furthermore, the compiler only has the C source as an input and cannot apply

any high level reasoning that exploits the structure of the algorithm. After applying code

transformations, the compiler will emit hardware instructions that it heuristically deter-

mines are most efficient, vector instructions are often the most desirable for computation

bound algorithms.

As the compiler has limited optimisation opportunities, the Firedrake implementation,

in conjunction with PyOP2, produces highly efficient C source code by applying high level

reasoning at the code generation stage. The Firedrake project includes the Two-Stage

Form Compiler [36] that manipulates mathematical expressions and transforms generated

code, this method produces a highly efficient C source for the host compiler.

The parallel loop invocation in Figure 2-3 indicates to the PyOP2 framework that the

coordinate data is both read and written to by the kernel by using an access descriptor

(op2.RW). Access descriptors are essential in determining which data is required to be

communicated between private memory processes before kernel execution, the converse

also applies, by only communicating required data unnecessary communication is avoided.

For example, if two par_loops are launched with kernels that both access the same

variable in a read-only manner it can be reasoned that for the first loop execution any

outstanding data dependencies must be resolved between MPI processes. For the second

loop execution it can be reasoned that there are no outstanding data dependencies for this

variable and hence communication between MPI processes is avoided.

34

Chapter 2. A Separation of Concerns Based Abstraction

2.2 An Abstraction For Particle Operations

Motivated by PyOP2, we present an abstraction for describing particle data and operations

with particles, such as the methods we described in Section 1.1.3 and 1.1.4. This section

is an adaptation of our published journal article [73]. We assume that we want to simulate

and analyse a collection of N � 1 particles. Let each particle with global index i ∈
{0, 1, 2, . . . , N − 1} ≡ N have a set of properties π such that π

(i)
r is the value of the r-th

property on particle i. Each particle has exactly M properties, i.e. r ∈ [0,M − 1] ≡M.

This abstract description of particle properties allows general per particle properties

to be described. Described properties could correspond to physically relevant quantities

such as position, momenta and charge. Furthermore, particle properties can correspond

to higher-level information, for example, a description of the type of atom represented by

the particle or to record which molecule an atom is currently a member of.

In addition to per particle properties there can be Mg global properties πgrg with

rg ∈ [0,Mg − 1] ≡ Mg. Global properties allow the description and storage of quantities

which are collective over the set of particles. For example, the total kinetic energy and

potential energy of the system are global quantities. As with per particle properties, global

properties are not restricted to physically motivated quantities and could record higher-

level information, for example, the number of particles classified as members of FCC or

HCP crystalline lattices.

We now describe how operations involving per particle properties and global properties

are performed. We describe two looping operations; a Particle Loop which operates on

individual particles and a Particle Pair Loop which operates on pairs of particles.

Definition 2.1. A Particle Loop is an operation which for each particle i ∈ N reads

properties π
(i)
r with r ∈ MR ⊂ M and writes properties π

(i)
w with w ∈ MW ⊂ M. The

operation can also read global properties πgrg with rg ∈ Mg
R ⊂ Mg and write πgwg with

wg ∈Mg
W ⊂Mg such that the final value of these global properties is independent of the

looping order over the particles. This operation has an O(N) computational complexity

as all particles are looped over once.

Example 2.2 below reads particle data and increments a global property. Mathemat-

ically the increment operation is associative hence the output quantity is independent of

the order in which particles are looped over and reductions occur.

Example 2.2. Kinetic energy calculation. To calculate the total kinetic energy we loop

over all particles i and add 1
2m

(i)
∑d−1

k=0(v
(i)
k)2 to the global variable K. The particle

properties considered in this example are the mass m(i) and the three components v
(i)
k ,

k = 0, 1, 2 of the particle’s velocity vector ~v(i).

Particle Loops are not required to involve global properties and may only involve parti-

cle properties. Particle Loops that only involve particle properties are trivially independent

of the order of execution.

35

2.2. An Abstraction For Particle Operations

Example 2.3. Velocity update. Given current particle velocities ~vi and accelerations ~ai

the first operation in the Velocity Verlet algorithm (Alg. 1) performs ~vi ← ~vi + ~aiδt/2.

Inter-particle operations, such as computing force calculations, require computational

loops over pairs of particles and access to particle properties from two distinct particles,

which cannot be performed by a Particle Loop. Hence we define the Particle Pair Loop

as a general approach to looping over pairs of particles in a manner that is appropriate

for MD.

Definition 2.4. A Particle Pair Loop is an operation which for all particle pairs (i, j) ∈
N × N reads properties π

(i)
r and π

(j)
r with r ∈ MR ⊂ M and modifies properties π

(i)
w

with w ∈ MW ⊂ M such that the result is independent of the order of execution. The

kernel can also read global properties πgrg with rg ∈ Mg
R ⊂ Mg and write πgwg with

wg ∈ Mg
W ⊂ Mg such that the result does not depend on the order in which the loop is

executed over all particle pairs. This operation has an O(N2) computational complexity

as all pairs of N particles are considered.

Example 2.5. Force Calculation. The most obvious example of a Particle Pair Loop

is the force calculation. Here each particle has six relevant properties, namely the three

entries of its position vector and the three entries of the force exerted on the particle by

all other particles. For each particle pair the total force on the first particle is incremented

by the interaction force ~f(~r(i), ~r(j)) which depends on the relative position of the particles,

i.e. the three position properties r
(i)
k for k = 0, 1, 2 are read and the three force properties

F
(i)
k are incremented as F

(i)
k ← F

(i)
k + fk(~r

(i), ~r(j).

The Particle Pair Loop considers all possible pair of particles and has a very general

definition. As discussed in Sections 1.1.3 and 1.1.4, it is highly common for particles which

are spatially well separated to not interact, hence it is computationally advantageous to

formally define a variant of Particle Pair Loop that only requires pairs of particles which

are spatially near to each other.

Definition 2.6. A Local Particle Pair Loop is a Particle Pair Loop that is guaranteed to

include all pairs of particles which are separated by a distance that is less than or equal

to a cutoff distance rc. An implementation of a Local Particle Pair Loop may also loop

over additional pairs of particles that are separated by a distance that is greater than rc.

The algorithms described in Chapter 3 demonstrate how this operation can be performed

with an O(N) computational complexity.

Example 2.7. Truncated Force Calculation. Consider an inter-particle potential with a

functional form that allows truncation at some cutoff radius rc, for example, the Lennard-

Jones potential in section 1.1.3. A Local Particle Pair Loop considers only pairs of particles

for which it is known in advance that the interaction could be non-zero.

Example 2.8. Local environment. Suppose that each atom can be in one of two possible

states. For every atom we want to count the number of other atoms in the same state

36

Chapter 2. A Separation of Concerns Based Abstraction

which are up to a distance rc away. In this case each particle would have five properties,

namely the three entries of the position vector, the state of the atom and the number

of atoms in the same state in the local environment. For each pair of atoms the Local

Particle Pair kernel would first check whether they are less than rc apart by calculating the

distance |~r (i) − ~r (j)| between the particle positions. If this is the case, and both particles

are in the same state, the counter for the number of same-state atoms is increased. The

inter-particle distances are compared with rc as a Local Particle Pair Loop is allowed to

execute the kernel for particle pairs that are separated by more than rc.

Newton’s Third Law

For the vast majority of physically realistic inter-particle potentials the interaction between

a pair of particles produces inter-particle forces which are equal in magnitude but opposite

in direction, this is known as Newton’s Third Law. It should be noted that there exist areas

of research interested in particle simulations where Newton’s Third Law is not applied [42].

In principle this effect can be exploited to reduce the computational work of a Particle

Pair Loop by considering each pair of particles once, the Particle Pair Loop could com-

pute the magnitude of the exerted force once and update the forces of both participating

particles. The iteration set over the N(N − 1)/2 ordered pairs with i < j contains half

the elements of the iteration set of N(N − 1) unordered pairs and hence naively one could

expect a speedup of a factor two.

A modification to Definition 2.4 to allow Newton’s Third Law for a pair of particles

(i, j) would enable the Particle Pair Loop to both read and write to the properties π
(j)
s .

However as we discuss in Section 3.1 this modification is not always advantageous and

in particular this modification causes significant implementation challenges on certain

modern HPC hardware.

2.3 Abstraction Implementation

2.3.1 Domain Specific Language

We present a Python-embedded Domain Specific Language (DSL) designed to facilitate

the implementation of algorithms written in our abstraction. As in PyOP2 the purpose

of the DSL is to provide a high-level programming environment within which algorithms

are written using the data structures and looping mechanisms of the abstraction. The

previous section identifies and defines the data structures and looping methods which

are crucial to both MD simulation and MD related analysis. We describe an interface to

data structures and looping mechanisms which are sufficient to implement the abstraction.

The abstraction requires data structures to store per particle properties π
(i)
r and global

properties πgrg alongside looping mechanisms for the Particle Loop and (Local) Particle

Pair Loops. In our framework this interface is provided by a code generation system

which generates efficient machine code and is described in Chapter 3. We focus on the

37

2.3. Abstraction Implementation

implementation of the Local Particle Pair Loop and not the more general Particle Pair

Loop as in practice the first is vastly more relevant for simulations.

Data Structures

We now describe the data structures we implement to write algorithms in terms of our

abstraction. These data structures separate the user from low level considerations such as

memory management and MPI communication whilst providing the user with a familiar

interface to the underlying data, a summary of the data structures we define is given in

Table 2.1.

Particle properties π
(i)
r are represented by instances of a ParticleDat class. This class

is a wrapper around a 2D numpy [78] array where the properties of particle i populate row

i in the array such that the array index (i, r) stores π
(i)
r . For global properties which are

not associated with any particular particle we provide the ScalarArray and GlobalArray

classes which are wrappers around 1D numpy arrays, unlike ScalarArray a GlobalArray

object performs global reductions automatically.

We allow properties to be split across multiple ParticleDat instances, which can be

named by the user. Splitting properties into multiple ParticleDat instances allows for

properties of different data types and allows for further optimisation in the underlying

framework. Similarly, global properties can be split across multiple ScalarArray and

GlobalArray instances. For example, consider a simulation where each particle i has a

position ~ri ∈ R3, velocity ~vi ∈ R3, acceleration ~ai ∈ R3 and a species indicator si ∈
N. Furthermore, suppose that we wish to compute and store the kinetic energy K ∈ R
and potential energy U ∈ R. This configuration of local and global properties would be

implemented as shown in Listing 2.1

Listing 2.1: Data structure initialisation

r = ParticleDat(ncomp=3, dtype=c_double)

v = ParticleDat(ncomp=3, dtype=c_double)

a = ParticleDat(ncomp=3, dtype=c_double)

s = ParticleDat(ncomp=1, dtype=c_int)

KE = GlobalArray(ncomp=1, dtype=c_double)

PE = GlobalArray(ncomp=1, dtype=c_double)

The wrapped numpy arrays can be accessed through the Python “getitem” and “setitem”

methods which automatically mark particle data as “dirty” if the internal data has been

directly modified by the user. This marking process is an important process to maintain

consistency between memory regions in distributed memory programming models. We

later present a parallel implementation based on a domain decomposition approach where

the simulation domain is divided into disjoint regions which are assigned to MPI processes.

Each MPI process “owns” the assigned region of the simulation domain and the particles

38

Chapter 2. A Separation of Concerns Based Abstraction

contained within this region and stores a local copy of particle data from neighbouring

regions. By marking the ParticleDat as “dirty” all local copies of these particle prop-

erties are marked as invalid to ensure that up-to-date values are communicated between

neighbouring processes if these particular properties are to be accessed in a (Local) Parti-

cle Pair Loop. This communication is automatically performed by the ParticleDat when

required.

The MPI process which owns a particular particle is determined by which sub-domain

of the simulation domain the particle resides in. Furthermore, the time taken to com-

municate particle data between neighbouring processes has a large impact on the parallel

efficiency of the implementation, to ensure that this communication is as efficient as possi-

ble particle data is only communicated if the particle is sufficiently near to the sub-domain

boundary. Hence the implementation requires knowledge of which ParticleDat contains

the particle positions for book-keeping and efficiency reasons, particle positions are stored

in the PositionDat class which is a sub-class of ParticleDat and is identical in all but

name.

The ParticleDat “getitem” and “setitem” methods provide a transparent interface

to particle data when the data is stored in GPU memory. A GPU ParticleDat in-

stance will automatically copy data between host memory and device memory without

user prompting and make this data available in a numpy array. By providing a consistent

interface a Python script can implement an algorithm that accesses particle data through

the ParticleDat objects that can be executed on a range of hardware with minimal mod-

ification. The hardware architecture is chosen in the Python script by setting aliases for

the data structures as shown in Listing 2.2.

39

2.3. Abstraction Implementation

Listing 2.2: Switching between CPU and GPU implementation

import ppmd as md

Set USE_CUDA to True or False

if not USE_CUDA:

define Data.* to refer to host (not CUDA) data structures

Data = md.data

State = md.state.State

set aliases that refer to host looping methods

ParticleLoop = md.loop.ParticleLoop

PairLoop = md.pairloop.PairLoopNeighbourListNS

else:

Data = md.cuda.cuda_data

State = md.cuda.cuda_state.State

set aliases that refer to CUDA looping methods

ParticleLoop = md.cuda.cuda_loop.ParticleLoop

PairLoop = md.cuda.cuda_pairloop.PairLoopNeighbourListNS

Define convenient aliases for the data structures

PositionDat = Data.PositionDat

ParticleDat = Data.ParticleDat

ScalarArray = Data.ScalarArray

GlobalArray = Data.GlobalArray

We provide the State class to group together a set of ParticleDat instances along with

a domain and a boundary condition. In a MD simulation it is expected that particles will

move between the sub-domains formed by the domain decomposition approach. When

a particle moves from a sub-domain into a neighbouring sub-domain the ownership of

that particle is transferred along with all data associated with that particle. As each

sub-domain is owned by a separate MPI process communication must occur to enact this

transfer. In our implementation the State class automatically generates code to efficiently

pack, transfer and unpack the data associated with all particles that transfer between sub-

domains.

Listing 2.3 demonstrates how domain, boundary conditions and particle data are added

to a State instance. We begin by creating a State instance A which is assigned a domain

and a domain boundary condition. Given a domain and a PositionDat the framework can

apply a domain decomposition approach to assign sub-domains to MPI ranks, furthermore,

the positions of particles determines the parent sub-domain and hence the owning MPI

rank. The boundary condition determines exactly what behaviour occurs at the edge of

the domain, a periodic boundary condition instructs the State object that particles that

leave the simulation domain should be suitably “wrapped” around the domain. After the

state A is assigned a boundary condition ParticleDat instances are added to the state.

40

Chapter 2. A Separation of Concerns Based Abstraction

If a particle property is added to A as a ParticleDat then each particle in A is given the

property. Finally, in Listing 2.3 we add GlobalArray instances to store system energies

in, these do not need to be associated with a state object.

Listing 2.3: State initialisation example

Create a State instance to combine further data structures

A = State()

Set the number of particles

A.npart = 10000

Set the domain and boundary condition

A.domain = domain.BaseDomainHalo(extent =(10. , 10., 10.))

A.domain.boundary_condition = domain.BoundaryTypePeriodic ()

Add a PositionDat instance for particle positions

A.r = PositionDat(ncomp=3, dtype=c_double)

Add further ParticleDat instances

A.v = ParticleDat(ncomp=3, dtype=c_double)

A.a = ParticleDat(ncomp=3, dtype=c_double)

A.s = ParticleDat(ncomp=1, dtype=c_int)

GlobalArray instances to store energy

KE = GlobalArray(ncomp=1, dtype=c_double)

PE = GlobalArray(ncomp=1, dtype=c_double)

Kernels And Constants

Both Particle Loops and (Local) Particle Pair Loops execute a computational kernel over

either particles or pairs of particles. This computational kernel is implemented in a section

of C code that implements the required operation. Particle properties are accessed in the

C code through the syntax <symbol>.<pair_index>[<component>] where <symbol> is a

user defined string that identifies the ParticleDat that holds the property, <pair_index>

is either i or j and <component> defines which component of the ParticleDat should

be accessed. In a Particle Loop operation <pair_index> can only be i as these ker-

nels are applied once to all particles in isolation, i.e. there is no second particle to be

indexed by j. Access to global properties stored in ScalarArray or GlobalArray objects

is provided through the C identifier <symbol>[<component>] where <symbol> is a user

specified identifier and <component> indexes into the array. For example:

• r.i[0] += 1.0;, increment by one the first component (0 indexing) of a ParticleDat

labeled in the kernel as r in either a Particle Loop or (Local) Particle Pair Loop.

41

2.3. Abstraction Implementation

• double vtmp = v.j[2];, read the third component of a ParticleDat labeled in

the kernel as v in a (Local) Particle Pair Loop.

• KE[0] += 4.0;, increment a ScalarArray or GlobalArray labeled as KE by four.

An example of a Particle Loop kernel is given by the final step of Algorithm 1 which

updates particle velocities v by using particle accelerations a, this operation is implemented

in the kernel in Listing 2.4. Furthermore, we update the kinetic energy KE using the new

velocities, we assume the particles have unit mass. This kernel contains a constant hdt

which is substituted at the code generation stage (or directly in the Python script) for

the numerical value of δt/2. Instances of the Constant class hold the numerical value of

a symbol and are passed into the constructor of a Kernel.

Listing 2.4: Final step of Alg. 1 implemented in a C kernel.

vv_kernel = Kernel(

name=’VV_example ’,

code = """

v.i[0] += hdt * a.i[0];

v.i[1] += hdt * a.i[1];

v.i[2] += hdt * a.i[2];

KE[0] += 0.5 * (v.i[0]*v.i[0] + v.i[1]*v.i[1] + v.i[2]*v.i[2]);

""",

constants =(Constant(’hdt’, 0.0001) ,)

)

The Lennard-Jones potential in Equation (1.15) is a classic example of an inter-particle

potential that is typically truncated at a cutoff radius rc. The potential and force can be

efficiently computed by writing the potential and the first derivative as

ULJ(r) = 4ε
(σ
r

)6
[(σ
r

)6
− 1

]
+ src , (2.1)

where src = 4ε

(
σ

rc

)6
[(

σ

rc

)6

− 1

]
, (2.2)

−1

r

∂ULJ(r)

∂r
=

48ε

σ2

(σ
r

)8
[(σ
r

)6
− 1

2

]
. (2.3)

By writing the force magnitude as in Equation (2.3) we incorporate a 1/r term to normalise

the direction vector the force acts along and we have written the magnitude in even only

powers of 1/r. Avoiding odd powers is a optimisation to avoid a square root evaluation,

which is expensive.

42

Chapter 2. A Separation of Concerns Based Abstraction

Listing 2.5: Lennard-Jones potential implemented in a C kernel. With substituted constants CV

= 4ε, CF = −48ε/σ2 and cutoff shift = src .

lj_kernel = Kernel(

name=’lj_example ’,

"""

const double R0 = r.j[0] - r.i[0];

const double R1 = r.j[1] - r.i[1];

const double R2 = r.j[2] - r.i[2];

const double r2 = R0*R0 + R1*R1 + R2*R2;

const double r_m2 = sigma2/r2;

const double r_m4 = r_m2*r_m2;

const double r_m6 = r_m4*r_m2;

PE[0] += (r2 < rc2) ? 0.5*CV*(r_m6 -1.0)*r_m6 + cutoff_shift : 0.0;

const double r_m8 = r_m4*r_m4;

const double f_tmp = CF*(r_m6 - 0.5)*r_m8;

a.i[0] += (r2 < rc2) ? f_tmp*R0 : 0.0;

a.i[1] += (r2 < rc2) ? f_tmp*R1 : 0.0;

a.i[2] += (r2 < rc2) ? f_tmp*R2 : 0.0;

""",

constants =(Constant(’CF’, ...), Constant(’CV’, ...),

Constant(’cutoff_shift ’, ...), Constant(’rc2’,rc*rc))

)

Manually writing C kernels provides the user with flexibility in describing the operation

performed at the cost of increased complexity and scope for mistake. In principle the

kernel can be generated from a higher level language or from a mathematical expression

that describes the potential or operation, we do not discuss in any further detail the

generation of kernels from higher level languages.

Access Descriptors

In addition to the kernel itself the user must indicate which C symbol corresponds to which

Python data structure and state exactly how the kernel accesses the data. For example, in

the Velocity Verlet kernel in Listing 2.4 particle accelerations are accessed in a read-only

manner, particle velocities are incremented and the kinetic energy is incremented. Hence

the corresponding accesses descriptors are; READ for accelerations, INC (increment) for

velocities and INC for kinetic energy. The remaining possible access descriptors are; RW

(read and write), INC_ZERO (increment after setting values to zero beforehand) and WRITE

(data is written to). A summary of permissible access descriptors is given in Table 2.2,

data structures may only support a subset of all access descriptors.

The access descriptors indicate to the implementation how a kernel will access data

and hence determine exactly what code should be generated to execute the kernel. For

example, if values in a data structure are only read from then the underlying data can

43

2.3. Abstraction Implementation

Description Python Class

Collection of properties for all particles with
d components per particle. All values are ini-
tialised to x0 when the object is created.

ParticleDat(ncomp=d,
dtype=c double/...,

initial value=x0)

Specialisation of ParticleDat for particle
positions (see Section 2.3.1).

PositionDat(ncomp=d,
dtype=c double/...,

initial value=x0)

Global property (not specific to individual
particles) with d components; values are ini-
tialised to y0.

ScalarArray(ncomp=d,
dtype=c double/...,

initial value=y0)

Global property with d components; values
are initialised to 0. Only permissible ac-
cess types are READ, INC, INC_ZERO. Unlike
ScalarArray objects entries are consistent
across all MPI ranks, i.e. MPI reductions are
automatically performed.

GlobalArray(ncomp=d,
dtype=c double/...,)

Numerical constant which is replaced by its
specific value in kernel, i.e. the string L is
replaced by the numerical value x in the gen-
erated C-code.

Constant(name=L,
value=x)

Kernel object which can be used in one of
the looping classes defined in Table 2.3. The
C-source code is given as a string S and any
numerical constants C1, C2, . . . can be passed
in as a list of Constant objects.

Kernel(name=L,
code=S,
constants=(C1, C2, . . . ,))

Table 2.1: Fundamental data classes of the DSL

be marked as constant to enable more efficient code to be generated. It is essential that

the code generation system creates looping code that is correct for the written kernel,

the access descriptors indicate exactly what code should be generated to ensure correct

execution of the kernel.

Furthermore, if particle data is only read from in a kernel then all copies of the read-

only data that were made before the loop execution remain valid after the completion of

the loop. If a kernel writes to particle data then the data is automatically marked as dirty

after loop execution, this invalidates all copies of this data to ensure consistency.

As (Local) Particle Pair Loops operate on pairs of particles it is expected that due to

the domain decomposition approach the two particles will often reside on different MPI

processes, this scenario is the main reason particle data is duplicated. The transfer of this

particle data is relatively expensive in comparison to computation and is greatly reduced

by using access descriptors to only transfer required data, for example a kernel may only

access particle positions, in which case there is no reason to communicate other particle

data such as charge. Secondly, if copies are not invalidated by either an access descriptor

or use of the “setitem” method the copied data can be reused for multiple kernel launches.

44

Chapter 2. A Separation of Concerns Based Abstraction

Description Access Descriptor

Read-only access access.READ

Write-only access access.WRITE

Read and write access access.RW

Incremental access access.INC

Incremental access, access.INC ZERO

initialise to zero

Table 2.2: Supported access descriptors

Particle Loops

Given a Kernel object that implements a operation for a Particle Loop, as in Listing

2.4, a ParticleLoop object is responsible for executing the kernel over all particles as

in Definiton 2.1. A ParticleLoop is constructed with a Kernel object and a Python

dictonary that maps the C symbols used in the kernel to ParticleDat instances along

with access descriptors. In Listing 2.6 a ParticleLoop is constructed to execute the

Velocity Verlet kernel defined in Listing 2.4. The created ParticleLoop object defines an

execute method that when called executes the loop, hence an operation can be executed

multiple times without re-construction of the ParticleLoop.

Listing 2.6: Particle Loop example with data structures defined in Listing 2.3 and Velocity Verlet

kernel defined in Listing 2.4.

Create ParticleLoop instance

vv_particle_loop = ParticleLoop(

kernel=vv_kernel ,

dat_dict ={

’v’: A.v(INC),

’a’: A.a(READ),

’KE’: KE(INC_ZERO)

}

)

Execute the loop once

vv_particle_loop.execute ()

Particle Pair Loops

In principle a user could wish to execute an operation over all pairs of particles in the

simulation. An execution of a kernel over all pairs will exhibit a O(N2) computational

complexity, far higher than the execution of a kernel over all pairs of particles which

are within a cutoff radius of each other which exhibits a computational complexity O(N).

Furthermore, the high computational complexity of the all-to-all particle pair loop becomes

inefficient and prohibitively expensive for a moderate number of particles. Hence we focus

45

2.3. Abstraction Implementation

on the Local Particle Pair Loop which applies a kernel to pairs of particles which are

within a cutoff rc = rc of each other.

The PairLoop behaves identically to the ParticleLoop object with the addition that

to apply a Local Particle Pair Loop a cutoff radius is required and should be passed to

the constructor of the PairLoop. In Listing 2.7 a PairLoop is constructed to execute the

Lennard-Jones kernel defined in Listing 2.5.

Listing 2.7: Pair Loop example with data structures defined in Listing 2.3 and Lennard-Jones

kernel defined in Listing 2.5.

Create ParticleLoop instance

lj_pairloop = PairLoop(

kernel=lj_kernel ,

dat_dict ={

’r’: A.r(READ),

’a’: A.a(INC_ZERO),

’PE’: PE(INC_ZERO)

},

shell_cutoff=rc

)

Execute the loop once

lj_pairloop.execute ()

Description Python Class

Execute Kernel object k for all particles
and modify particle data (ParticleDat,
PositionDat, ScalarArray or GlobalArray
objects) d1, d2, Each particle data ob-
ject di can be accessed via the corresponding
label Li and has access descriptor Ai defined
in Table 2.2.

ParticleLoop(kernel=k,
dat dict={L1:d1(A1),

L2:d2(A2),
. . . })

Same as ParticleLoop, but execute the ker-
nel over all pairs of particles.

PairLoop(kernel=k,
dat dict={L1:d1(A1),

L2:d2(A2),. . . })

Table 2.3: Fundamental looping classes of the DSL

2.3.2 Further Examples

These examples are excerpts from the published article titled “A Domain Specific Language

for Performance Portable Molecular Dynamics Algorithms” [73]. They demonstrate that

our abstraction is not only limited to force calculations, but can also be used to express

more complicated analysis algorithms.

46

Chapter 2. A Separation of Concerns Based Abstraction

Bond Order Analysis

The BOA method introduced in Section 1.1.4 is motivated by the multipole expansion of

the local environment of a particle. It computes the quantities Q
(i)
` , ` ∈ {4, 5, 6} for each

particle i where

Q
(i)
` =

√√√√ 4π

2`+ 1

+∑̀
m=−`

|q(i)
`m|2, (2.4)

where

q
(i)
`m =

1

|N (i)|
∑

j∈N (i)

Y m
` (~̂rij), (2.5)

~̂rij =
~ri − ~rj
|~ri − ~rj |

, (2.6)

N (i) is the set of neighbours of particle i and Y m
l are the spherical harmonics as defined

in Section 1.1.4. q
(i)
lm encodes the multipole moments of the angular part of the density

distribution formed by the neighbours of particle i. The order parameters Q
(i)
` can be

calculated with the two loops shown in Algorithms 2 and 3. The first local particle pair

loop (Algorithm 2) calculates the number of neighbours ν
(i)
nb = |N (i)| and the moments

q̃
(i)
`m =

∑
j∈N (i)

Y m
` (~̂r(i,j)) (= ν

(i)
nb q

(i)
`m) (2.7)

for m = −`, . . . ,+` for each atom i; those quantities are stored in two ParticleDats. The

particle loop in Algorithm 3 uses ν
(i)
nb and q̃

(i)
`m to calculate the Q

(i)
` according to Equation

(2.4); the result is stored in a third ParticleDat.

Algorithm 2: BOA Local Particle Pair Loop I.

Data: particle positions ~r(i) [READ]

Result: moments q
(i)
`m [INC ZERO], neighbour counts ν

(i)
nb [INC ZERO]

for pairs (i, j) do

if |~r(i) − ~r(j)| < rc then

~̂r(i,j) ← (~r(i) − ~r(j))/|~r(i) − ~r(j)|
for m = −`, . . . ,+` do

q̃
(i)
`m ← q̃

(i)
`m + Y m

` (~̂r(i,j))
end

ν
(i)
nb ← ν

(i)
nb + 1

end

end

Common Neighbour Analysis

The Common neighbour analysis (CNA) introduced in Section 1.1.4 is an example of a

highly non-trivial algorithm that can be implemented within the abstraction with relative

47

2.3. Abstraction Implementation

Algorithm 3: BOA Particle Loop II.

Data: moments q̃
(i)
`m [READ], number of local neighbours ν

(i)
nb [READ]

Result: Q
(i)
` [WRITE]

for m = −`, . . . ,+` do

q
(i)
`m ← q̃

(i)
`m/ν

(i)
nb

end

Q
(i)
` ←

√
4π

2`+1

+∑̀
m=−`

|q(i)
`m|2

ease. To implement the CNA algorithm in our abstraction we proceed in two steps: For

each atom i we first calculate all directly and indirectly bonded atoms. The set E(i)
d

describes the direct bonds which exist between atom i and all other atoms within a cutoff

radius rc. The indirect bonds in the local environment are collected in E(i)
(see Figure

2-4), the indirect bonds of atom i are the direct bonds of atoms which are themselves

directly bonded to i:

E(i)
d =

{
(i, v) : v ∈ N , |~r(i) − ~r(v)| < rc}

E(i)
=
{

(v, w) : v, w ∈ N , |~r(v) − ~r(w)| < rc,

|~r(i) − ~r(v)| < rc
} (2.8)

Since some of the indirect bonds are counted twice in E(i)
, the set E(i) is an ordered

representation of the same bonds:

E(i) =
{

(v, w) : (v, w) ∈ E(i)
, v < w

}
⊂ E(i)

. (2.9)

i

v

i

v v

w

w

i

Figure 2-4: Example of direct (left) and indirect (centre and right) bonds as described by the sets

E(i)d , E(i) and E(i) in Equations (2.8) and (2.9). The bond (v, w) in the central diagram would be

counted twice in E(i) but only once in E(i).

All atoms are assigned a global index inN = {0, . . . , N−1} and the set of all neighbours

of particle i is denoted N (i), i.e. all other atoms j which are within the cutoff rc, hence

if j ∈ N (i) then a direct bond exists between i and j. In a second step we loop over all

pairs (i, j) of atoms and calculate the sets

C = N (i) ∩N (j)

E = {(v, w) : v, w ∈ C, v < w} ⊂ E(i) ∩ E(j).
(2.10)

48

Chapter 2. A Separation of Concerns Based Abstraction

C is the set of common neighbours and E is the set of common neighbour bonds. To avoid

double counting we consider ordered bonds (v, w) ∈ E(i) such that v < w. Together the

two sets C and E define the graph G where common neighbours C are the graph vertices

and bonds between the common neighbours E are the graph edges. The first two entries

of the triplet (nnb, nb, nlcb) can be calculated directly as nnb = |C| and nb = |E|.
To calculate the size of all subgraphs G′ ⊂ G, a random node v ∈ G is chosen. The

size of the subgraph G′ such that v ∈ G′ is obtained with a breadth-first traversal of the

connected component containing v, removing all visited nodes from G in the process. This

is repeated until all nodes have been removed, thus calculating the size of all subgraphs

G′ ⊂ G. The computation of the maximal cluster size nlcb = maxG′⊂G{|G′|} with this

method is shown explicitly in Algorithm 25 in A.1.

The CNA algorithm can be implemented with three Local Particle Pair Loops. We

require the following particle properties and corresponding ParticleDats:

~r (ncomp=3, dtype=c double) ~r(i) stores the position of particle i.

G (ncomp=1, dtype=c long) ~G(i) stores the unique global index particle i.

vnb (ncomp=1, dtype=c long) ν
(i)
nb stores the number of neighbours of particle i, i.e.

ν
(i)
nb = |N (i)|; this is the number of red particles in the inner circle in Figure 2-

5.

νb (ncomp=1, dtype=c long) Number of bonds in the local environment. ν
(i)
b = |E(i)

d ∪
E(i)| counts the directly bonded neighbours of a particle plus the number of indirect

bonds defined in Equation (2.8).

E (ncomp=2ν
(max)
b , dtype=c long) Array representation of the set E(i)

d ∪ E
(i)

defined in

Equation (2.8). Two consecutive entries E
(i)
2k , E

(i)
2k+1 represent a bonded pair in the

local environment of particle i, i.e. one of the links shown in Figure 2-5. The entries

of E(i) are arranged as follows:

• (E
(i)
2k , E

(i)
2k+1) = (G(i), G(j)) with j 6= i for 0 ≤ k < ν

(i)
nb

• (E
(i)
2k , E

(i)
2k+1) = (G(j′), G(j′′)) with j′ 6= i, j′′ 6= i for ν

(i)
nb ≤ k < ν

(i)
b

In other words, the first ν
(i)
nb tuples represent the bonds in E(i)

d and are shown as red

(solid) lines in Figure 2-5. The remaining νb − νnb tuples describe the set E(i)
and

correspond to the blue (dashed) lines. The static size ν
(max)
b of the list has to be

chosen sufficiently large, i.e. ν
(max)
b ≥ maxi{ν(i)

b }.

T (ncomp=3ν
(max)
nb , dtype=c long) Stores the triplets (nnb, nb, nlcb) such that the triplet

(T
(i)
3j , T

(i)
3j+1, T

(i)
3j+2) is (nnb, nb, nlcb) for the j-th bonded neighbour of particle i. The

number of components ν
(max)
nb has to be chosen such that ν

(max)
nb ≥ maxi{ν(i)

nb}.

t(ncomp=1, dtype=c long) stores the number of classified bonds of particle i.

49

2.3. Abstraction Implementation

rc

rc

{E ,E }, k≥νnb

0

1

2

ν -1nb

... 2k

(i)

2k+1
(i)

{E ,E }, k<ν nb2k

(i)

2k+1
(i)

Figure 2-5: Local bonds used for CNA construction

Using those ParticleDats, for each particle the list representation E(i) of the set

E(i)
d ∪ E

(i)
can now be calculated with two Local Particle Pair Loops: the first loop,

shown in Algorithm 4, calculates the first 2ν
(i)
nb entries of E(i) by inspecting the direct

neighbours of each particle. Based on this, the second loop in algorithm 5 adds the

remaining 2(ν
(i)
b −ν

(i)
nb) entries, i.e. the blue (dashed) lines in Figure 2-5. The final Particle

Pair Loop in algorithm 6 then uses the information stored in E(i) and E(j) to extract the

tuple (nnb, nb, nlcb).

Algorithm 4: CNA Local Particle Pair Loop I: Calculate direct bonds for each
particle.

Data: ~r(i) [READ], G(i) [READ].

Result: ν
(i)
nb [INC ZERO], ν

(i)
b [INC ZERO], E(i) [WRITE]

for pairs (i, j) do

if |~r(i) − ~r(j)| < rc then

(E
(i)
2νb
, E

(i)
2νb+1) = (G(i), G(j))

ν
(i)
b ← ν

(i)
b + 1

ν
(i)
nb ← ν

(i)
nb + 1

end

end

50

Chapter 2. A Separation of Concerns Based Abstraction

Algorithm 5: CNA Local Particle Pair Loop II: Calculate all other bonds in the
local environment.

Data: ~r(i) [READ], G(i) [READ], ν
(i)
nb [READ].

Result: ν
(i)
b [INC], E(i) [RW]

for pairs (i, j) do

if |~r(i) − ~r(j)| < rc then

for k = 0, . . . , ν
(j)
nb − 1 do

if E
(j)
2k+1 6= G(i) then

(E
(i)
2νb
, E

(i)
2νb+1) = (E

(j)
2k , E

(j)
2k+1)

ν
(i)
b ← ν

(i)
b + 1

end

end

end

end

Algorithm 6: CNA Local Particle Pair Loop III: Calculate number of common

neighbours n
(i)
nb, number of bonds n

(i)
b between those common neighbours and the

largest clustersize n
(i)
lcb.

Data: ~r(i) [READ], ν
(i)
nb [READ], ν

(i)
b [READ], E(i) [READ].

Result: T (i) [WRITE], t(i) [INC ZERO].
for pairs (i, j) do

if |~r(i) − ~r(j)| < rc then
Set C of common neighbours:

C ← {v : ∃k < ν
(i)
nb , ` < ν

(j)
nb , v = E

(i)
2k+1 = E

(j)
2`+1}

Construct set E of common neighbour bonds:
E ← {}
for k = ν

(i)
nb , . . . , ν

(i)
b − 1 do

if E
(i)
2k ∈ C and E

(i)
2k+1 ∈ C then

(v, w) = (E
(i)
2k , E

(i)
2k+1)

if w > v then
swap v ↔ w

end
if (v, w) 6= E then
E ← E ∪ (v, w)

end

end

end

T
(i)

3t(i)
← |C|

T
(i)

3t(i)+1
← |E|

Calculate largest cluster size, see Algorithm 25:

T
(i)

3t(i)+2
← maxClustersize(E)

t(i) ← t(i) + 1
end

end

51

CHAPTER 3

CODE GENERATION OF MODERN PARALLEL MD

ALGORITHMS

In this chapter we discuss cell based methods, these are a major component in our parallel

decomposition approach and our implementation of Particle Loops and Local Particle Pair

Loops. Furthermore, we provide an overview of our code generation process and present

results from parallel simulations and analysis techniques.

3.1 Modern Parallel MD Algorithms

3.1.1 Cell Based Methods

Execution of a Local Particle Pair Loop can be constructed from two components: firstly,

find all pairs of particles (i, j) with positions (~ri, ~rj) such that |~ri−~rj | < rc, secondly, given

pairs of particles execute the provided kernel on each particle pair. We shall discuss existing

methods where these two components are combined into one operation and methods where

the two stages are treated separately.

All of the methods we describe to identify pairs of particles are known as cell based

methods. Cell based methods decompose the simulation domain into so called cells which

have side lengths greater than the exclusion radius, rc. We discuss how cell based domain

decompositions, firstly, facilitate the efficient discovery of particle pairs and, secondly,

improve the efficiency of MPI communication.

Throughout this section we shall assume that the simulation domain is a cuboid with

extents Lx, Ly, Lz and that the cells are also cuboid shaped. Following the approach of

Rapaport [17] the simulation domain is decomposed into a cell grid of integer dimensions

Gx, Gy, Gz where each cell has side lengths wx, wy, wz and Nc is the total number of

cells. Cells are indexed lexicographically from zero with the map ci = C(c(x)
i , c

(y)
i , c

(z)
i) =

c
(x)
i + c

(y)
i Gx + c

(z)
i (GxGy). Where c

(x)
i = 0, . . . , Gx − 1, c

(y)
i = 0, . . . , Gy − 1 and c

(z)
i =

0, . . . , Gz − 1. Given a cell grid we use Algorithm 7 to determine the cell ci that contains

52

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

a particle i.

Algorithm 7: Method to determine containing cell ci of particle i.

Data: Particle position ~ri, domain extent ~l = (Lx, Ly, Lz), cell array Gx, Gy, Gz
and cell edge lengths wx, wy, wz.

Result: ci: cell containing particle i.

~r′i = ~ri +
1

2
~l (3.1)

c
(x)
i =

⌊
~r′

(x)

i

wx

⌋
, c

(y)
i =

⌊
~r′

(y)

i

wy

⌋
, c

(z)
i =

⌊
~r′

(z)

i

wz

⌋
(3.2)

ci = c
(x)
i + c

(y)
i Gx + c

(z)
i (GxGy) (3.3)

Efficiently computing the cell ci containing a given particle with index i is not typically

problematic even on novel hardware architectures such as GPUs. However, cell based

methods require a map from cell index to the indices of particles contained within the cell,

which should be efficient to construct and evaluate. In a slight abuse of terminology, a

cell to particle map Q is defined such that Q(m) is the set of particles i such that ci = m.

Most often an algorithm to build and evaluate this map which is efficient on one hardware

architecture will not be efficient on another. We shall describe two methods to construct

the cell to particle map, one which is efficient on CPU architectures in a MPI only setting,

the second is designed to be efficient on GPU architectures and can also be applied in a

CPU shared memory model.

Assuming the map from cells to particles Q exists we can identify all pairs of particles

(i, j) such that |~ri − ~rj | < rc without inspecting all particle pairs. The approach will

propose pairs of particles such that |~ri − ~rj | ≥ rc and these are excluded at some later

stage, we describe methods to efficiently exclude these particles by using neighbour list

techniques. Consider a particle i in a cell ci = c
(x)
i + c

(y)
i Gx + c

(z)
i (GxGy) neighbouring

particles j are contained in cells cj = ci + d where d = d(x) + d(y)Gx + d(z)GxGy for

(d(x), d(y), d(z)) ∈ {~d ∈ Z3 : |~d|∞ = 1} ∪ {0}, i.e. the cell ci itself and the surrounding 26

cells. Here we have assumed that the extent of the cells are at least the interaction cutoff

rc, in principle this constraint can be relaxed if more neighbouring cells are considered.

Figure 3-1 demonstrates the cells that should be inspected for potential neighbours of a

selected particles.

53

3.1. Modern Parallel MD Algorithms

Figure 3-1: Left: Circle of radius rc around a selected particle. Right: Corresponding cells (in
2D) that contain all potential neighbours within a radius rc.

3.1.2 Parallel Decomposition

We apply a domain decomposition approach to distribute computational work across MPI

ranks. The simulation domain is subdivided into sub-domains based on the number of

MPI ranks available, each MPI rank owns a sub-domain and owns the particles that are

contained within the sub-domain. For example, in Figure 3-2 a domain is decomposed

across 4 MPI ranks. The sub-domains assigned to each MPI rank are identical in shape

and hence if the distribution of particle positions within the simulation domain is uniform

then each MPI rank is on average assigned the same computational work. Plimpton,

S. et al [63] discuss two other possible work decomposition methods, both permanently

assign particles to MPI ranks at the beginning of the simulation, this approach results

in additional communication overhead between MPI ranks in comparison to a domain

decomposition approach.

Figure 3-2: Decomposing a domain into four sub-domains.

In our approach the domain decomposition across MPI processes is applied before the

cell decomposition, this ordering assigns an equal volume of domain to each MPI rank.

If the order is reversed and cell decomposition occurs before domain decomposition then

implementation issues arise when the number of cells is not an integer multiple of the

number of MPI ranks in each dimension. In this scenario, which is highly likely, either

sub-domain boundaries are along cell boundaries or sub-domain boundaries divide cells in

some way. The first case where sub-domain boundaries align with cell boundaries causes

load imbalance for smaller cell counts the alternative method increases the complexity of

“bookkeeping” operations and MPI communications between MPI ranks.

54

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

It is expected that particles will move throughout the simulation and hence parti-

cles will regularly move between sub-domains. When this happens the ownership of the

particle is transferred from the source to the destination MPI rank. The State class au-

tomatically generates code to move all properties of transferred particles which are stored

in ParticleDat objects between sub-domains when required.

3.1.3 Halo Exchange

The parallel efficiency of a Local Particle Pair Loop is highly dependent on the particular

MPI communication pattern between sub-domains. This communication pattern is often

referred to as a “halo exchange” and is common in parallel scientific code that applies

domain decomposition. The halo exchange can be thought of as a bridge between sub-

domains, in our case particles owned by a sub-domain will interact with particles owned

by a neighbouring sub-domain. Hence any data required to compute interactions, e.g.

particle positions, is copied from the owning MPI rank in the halo exchange. Copying

data between MPI ranks is very slow in comparison to CPU computation and hence we

minimise the amount of data copied and the frequency with which it is copied by inspecting

access descriptors. We refer to the region of the sub-domain that contains data duplicated

from neighbouring sub-domains as the halo region.

The frequency of halo exchange operations is minimised through access descriptors and

“dirty” flags on ParticleDat instances. When a halo exchange is performed on a particle

property the halo regions remain valid until the data is marked as dirty. For example, if

two Particle Pair Loops are launched that only read particle positions then only at most

one halo exchange must be performed.

0,2

0,5

0,8

0,2

0,5

0,8

1,0

1,3

1,6

1,0

1,3

1,6

Figure 3-3: Halo exchange that must occur between two horizontally adjacent sub-domains.

The volume of transferred data is minimised by considering the cell structure imposed

on each sub-domain. In each dimension the cell extents are at least the interaction cutoff

rc by construction, from a sub-domain only the outer shell of cells can ever be required by

a neighbouring sub-domain. Figure 3-3 illustrates the halo exchange pattern between two

sub-domains. Hence the cell to particle map facilitates efficient inter-process communica-

tion in addition to efficient Local Particle Pair Loop execution. From an implementation

perspective, the halo exchange of particle data is more complex than in a grid based sci-

55

3.1. Modern Parallel MD Algorithms

entific code where the number of exchanged elements can be deduced from the underlying

grid and does not change with time. In a MD simulation cells contain numbers of par-

ticles that vary between steps and between cells, these need to be efficiently packed and

communicated.

Each sub-domain is surrounded by 26 neighbouring sub-domains, one neighbour for

each face, edge and vertex of the sub-domain. For the fully periodic case, the neighbours

of a sub-domain on the boundary exist over the boundary. In the naive approach each sub-

domain separately packs and exchanges data with each of its 26 neighbours, we implement

the process described by Plimpton [63] that performs all required data movement in 6

exchanges.

A 2D illustration of this 6-exchange pattern is given in Figure 3-4. The 3 pairs of

opposite faces of the sub-domain are labelled as (north, south), (east, west) and (up,

down). First, all sub-domains halo exchange in the north and south directions, i.e for

the north exchange each process packs and sends the particle data required by the sub-

domain to the north and receives from the sub-domain to the south, this is then repeated

in the opposite direction. All (north, south) communication is contention free and both

directions can be performed simultaneously with a MPI Sendrecv operation. The process

is now repeated in the (east, west) directions with the exception that each sub-domain

packs the particles it owns in boundary cells and includes particles which were received in

the (north, south) exchange. In the final stage each sub-domain packs and sends particle

data it owns and particle data that was received in the previous two exchanges to perform

the (up, down) exchanges.

0

0

0

0

2

2

2

2

1

1

1

1

3

3

3

3

2

2

2

2

0

0

0

0

3

3

3

3

1

1

1

1

0

0

0

0

2

2

2

2

3

3

3

3

1

1

1

1

1

1

1

1

3

3

3

3

2

2

2

2

0

0

0

0

2

2

2

2

0

0

0

0

1

1

1

1

3

3

3

3

3

3

3

3

1

1

1

1

0

0

0

0

2

2

2

2

Figure 3-4: 2D version of fully periodic halo exchange pattern. 4 sub-domains, each own a 2× 2
grid of cells shown in grey. Numbers in cells indicate the sub-domain that owns data in the cell.
Left: (north, south) exchange between sub-domains 0 and 2 indicated by arrows. Right: (east,
west) exchange indicated between sub-domains 0 and 1. Note the second exchange (right) includes
the data from the first (left) exchange.

56

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

3.1.4 Cell To Particle Maps

We describe two cell to particle map approaches, one which is typically efficient on CPU

architectures and one which is efficient on GPU architectures. These cell to particle maps

are utilised as a first stage in all Local Particle Pair Loops we implement and are used to

implement efficient halo exchanges on both architectures.

CPU

For N particles in a sub-domain of Nc cells the cell list method proposed by Rapaport

[17] constructs a forward linked list in an array q ∈ ZN+Nc . The linked list approach has

known and constant memory requirements and typically requires less memory for storage

than alternative methods. The manner in which the list is built is not well suited for highly

threaded architectures, such as GPUs, where atomic operations are relatively expensive.

The linked list is implemented as an array q, for each index i ∈ {0, N − 1} the “current”

particle index is i and the next particle index is qi. An entry of qi = −1 indicates that

i is the last particle index in the list. Elements N to N + Nc − 1 store the index of the

first particle in the list for each cell. An algorithm to construct the array q is given in

Algorithm 8 and an example illustration is given in Figure 3-5.

Algorithm 8: Construction of linked list cell list.

Data: Particle positions ~ri, i = 0, . . . , N − 1 and Nc cells.

Result: Linked list q

Initialise list by resetting the lookup part of the list.

for c = 0, . . . , Nc − 1 do
qN+c = −1

end

Populate the list with particle indices.

for i = 0, . . . , N − 1 do
get cell ci containing particle i from Algorithm 7

qi = qN+ci

qN+ci = i

end

57

3.1. Modern Parallel MD Algorithms

Figure 3-5: Example of a cell list (right) constructed from a sub-domain with 4 cells (left). The
arrows follow the path traced to retrieve the indices of particles in cell 2.

GPU

If the cell list algorithm is implemented on a highly threaded shared memory architecture,

such as a GPU, then the update stages of q in Algorithm 8 will exhibit enough write

contention to render the algorithm inefficient. Rapaport [17] describes a cell occupancy

matrix Hc,l where row c sequentially stores the indices of particles in cell c. The matrix

is constructed by first looping over particles to determine which cell they reside in and

to determine which layer in the cell they are in, layers are assigned to give an order to

the particles in a cell. The layer a particle is given determines which column in the cell

occupancy matrix the particle index should be placed. Hence if particle i is in cell ci

on layer li then Hci,li = i. Algorithm 9 provides an outline of this method and a 2D

illustration is provided in Figure 3-6.

Algorithm 9: Assigning layers to particles and determining cell occupancy counts.

Rapaport [17] Section 3.4.

Data: Particle positions ~ri, i = 0, . . . , N − 1 and Nc cells.

Result: Occupancy matrix H and cell occupancy counters k.

Reset cell counters:

for c = 0 to Nc − 1 do
kc = 0

end

for i = 0 to N − 1 do
get cell ci containing particle i from Algorithm 7

kci = kci + 1 (atomic increment)

li = kci
end

Populate cell occupancy matrix:

for i = 0 to N − 1 do
Hci,li = i

end

58

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

0 1

2 3

0

2

8

7

6

5

3
4

1

0 1 0 210 10 1

0 1 2 3 4 5 6 7 8

Layers ()l

Matrix ()H

6 7 8

0 2

1 4

3 5{

{ Layer

Cell

3

2

2

2
{cell counters ()k

Figure 3-6: Example of H, l and k for a simple 4 cell sub-domain.

From a practical perspective, Algorithm 9 is broken into two sections, in the first par-

ticle layers and cell occupancies are computed and in the second stage storage is allocated

for H and subsequently H is populated. If the particles are not uniformly distributed in

the domain and are instead clustered in a region then the occupancy matrix approach will

require significantly more memory than the cell list approach. However, the sequential

arrangement of particle indices within the occupancy matrix is much more favorable on

hardware architectures where random access to memory is expensive than the cell list

approach.

3.1.5 Finding And Storing Pairs Of Particles

We now describe how pairs of particles are identified by using a constructed cell to particles

map.

Cell By Cell

In cell by cell methods, interacting particles are identified by simply using the cell to

particle map to list the indices of particles in the cells surrounding a chosen particle i. In

Algorithm 10 we provide an overview of a cell by cell approach by Rapaport [17] that loops

over all cells in the sub-domain and for each cell considers all pairs of particles formed

between the initial cell and all neighbouring cells.

59

3.1. Modern Parallel MD Algorithms

Algorithm 10: Propose pairs of particles by considering pairs of cells.

Data: Nc cells, cell list q and particle positions ~r

Result: Kernel launch over all required pairs.

for c = 0, . . . , Nc − 1 do

for k = 0, . . . , 26 neighbouring cells do

c′ = c+ kth offset to neighbouring cell

i = qN+c

while i > −1 do
j = qN+c′

while j > −1 do

if |~ri − ~rj | < rc and i 6= j then
Execute kernel, e.g. compute force between particles i and j.

end

j = qj

end

i = qi
end

end

end

Although we describe this cell by cell approach using a cell list, such as the one con-

structed in Algorithm 8, the method can be applied using any cell to particle map. This

method makes no attempt to store particle pairs and in practice exposes a significant

number of particle pairs which are very well separated and for these pairs the kernel will

be executed unnecessarily. To see this inefficiency, consider a system with particle density

ρ where the cell extent and interaction cutoff is rc. If one particle is considered, this

particle is paired with all other particles within the neighbouring 27 cells containing ap-

proximately 27ρr3
c particles. However, the sphere of radius rc around the chosen particle

contains 4
3πr

3
cρ ≈ 4ρr3

c particles. Hence if we could only propose neighbours in the sphere

of radius rc as opposed to the 27 cells of extent rc then the pairwise kernel will be waste-

fully executed for a fewer number of well separated particles by a factor of 81/(4π) ≈ 6.4,

Figure 3-7 illustrates this ratio in 2D.

rc

Figure 3-7: 2D comparison between circle of radius rc and cells inspected for neighbours.

Cell by cell methods can be implemented in a manner that very efficiently utilises

60

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

SIMD floating point units common in modern CPUs. An efficient technique loads all

required properties from all particles in the cells ci and cj into temporary arrays in a gather

operation. This gather operation collects particle data contiguously in the temporary

arrays which is highly favourable in comparison to the “global” store of particle data

where data access is most likely to be random. Kernel execution is performed ideally

using SIMD instructions using the temporary arrays and after the kernel is launched on

all particle pairs written values are copied back into the global store.

The efficiency of the cell by cell approach can potentially be increased by reducing

the extent of the cells to a fraction of the cutoff radius rc and increasing the number of

neighbouring cells that are considered. The smaller cells form a better approximation

of the sphere of interaction and hence less particle pairs are proposed that are very well

separated. Alternatively, the cell by cell technique is used to discover pairs of particles

that could be within the interaction radius rc of each other, these pairs are then stored in

a data structure known as a neighbour list.

More formally, a neighbour list is a list of pairs of particles (i, j) such that |~ri−~rj | < rn

where rn is a cutoff radius and ~ri and ~rj are particle positions. Typically, rn := rc+δ where

rc is the cutoff of a particular interaction and δ is a buffer region. The buffer region is

chosen such that δ = vmax2Ns where vmax is the maximum particle velocity in any direction

and Ns ∈ N is a number of time step iterations for which we want to guarantee that no

particle has crossed half the buffer region. By adding a buffer region a neighbour list can

be constructed and reused for Ns iterations. The construction of neighbour lists is often

sufficiently expensive, especially on GPU architectures, that neighbour list approaches

are not efficient if the lists are not reused. We now describe two existing neighbour list

approaches, one that is efficient on single-threaded CPU architectures and one that is

efficient in highly threaded shared memory architectures such as GPUs and multicore

CPUs.

Sequential Neighbour Lists

This approach, described by Rapaport [17], uses a cell list to construct a neighbour list in

a sequential manner that is efficient in terms of memory requirements. For each particle

i neighbouring particle indices j are stored sequentially in an array ~b such that all the

neighbours of i form a contiguous block in ~b. We refer to this method as “sequential” as

the indices of neighbours of a particle i are stored adjacent to the neighbours of particle

i + 1. For N particles an auxiliary array ~s ∈ NN+1 stores the location of the neighbours

of each particle in ~b by setting ~si to be the index of the first neighbour of i in ~b, the last

element of ~s is assigned the appropriate terminating value.

61

3.1. Modern Parallel MD Algorithms

Algorithm 11: Construction of sequential neighbour list.

Data: N particles, cell list q, particle positions ~r and cutoff radius rn

Result: neighbour list ~b, starting points ~s

m = −1

for i = 0, . . . , N − 1 do
Determine containing cell: ci.

~si = m+ 1

for k = 0, . . . , 26 neighbouring cells do

c′ = ci + kth offset

j = qN+c′

Loop over potential neighbours in cell c′.

while j > −1 do

if i 6= j and |~ri − ~rj | < rn then
m = m+ 1
~bm = j

end

j = qj

end

end

end

Terminate the list of neighbours of particle N − 1.

~sN = m+ 1

0

3

1

2

0 61 3 8

21 10 2 3 4 4 2 3

4

10

0 1 2 3 4 5
rn

s

b

Figure 3-8: Example of the neighbour list and associated starting points.

An overview of the construction of the neighbour list is provided in Algorithm 11

and an illustration of the approach is given in Figure 3-8. This data structure is not

data parallel due to the adjacent arrangement of particle neighbours, this limitation is

non-trivial to overcome with atomic operations and hence the algorithm is not suitable

for shared memory architectures. Given a sequential neighbour list (~s,~b) a kernel can be

executed over pairs of particles using Algorithm 12.

62

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Algorithm 12: Pairwise kernel execution using a sequential neighbour list.

Data: neighbour list ~b, starting points ~s, particle positions ~r and cutoff radius rc

for i = 0, . . . , N − 1 do

for k = ~si, . . . , ~si+1 − 1 do

j = ~bk

if |~ri − ~rj | < rc then
Execute kernel, e.g. compute force between particles i and j.

end

end

end

Unlike the cell by cell approach the sequential neighbour list loses the cell structure

from which it was constructed. The inner most loop over particle neighbours j has the

potential to access memory in a particularly inefficient manner, if the particle data of

neighbours j is scattered across the global particle data store then access to the particle

data of neighbours is essentially random.

A random access pattern can be partially mitigated by periodically reordering particle

data in memory such that particles which are contained within the same cell are adjacent

in memory. Ideally the order in which particle data is stored should be the same as

the order particle indices are stored in the cell to particle map, hence in neighbour list

construction particle indices are identified and stored in the same order as particle data. If

this reordering is performed then the probability that the data of neighbour j is adjacent

to the data of neighbour j+1 is increased. Furthermore, a cell based reordering potentially

decreases the CPU cache miss rate as the neighbours of particle i are likely to overlap with

the neighbours of particle i+ 1.

Matrix Neighbour Lists

The sequential neighbour list is not data parallel and hence cannot efficiently be im-

plemented in highly threaded shared memory environments, to address this problem we

describe the neighbour matrix approach by Rapaport [17]. This is a method suitable for

implementation on GPU architectures and hence we focus on GPU specific details, the

method is also efficient in a shared memory model with minor modifications.

For N particles a data parallel neighbour list is created using a matrix with N columns

and some reasonable number of rows corresponding to a maximum number of neighbours

per particle. The matrix Wm,i stores the neighbours of particle i in column i with all mth

neighbours on the mth row. All neighbour indices of a particle i are identified and stored

by a single GPU thread to avoid write contention.

This particular layout ensures that the indices of all mth neighbours are sequential

in memory. GPU threads are assigned to particles such that thread i loops over all

neighbours of particle i, the threads in a block of GPU threads are expected to require the

63

3.1. Modern Parallel MD Algorithms

mth neighbour indices simultaneously. With this data layout, contiguous thread indices

are accessing contiguous entries in the neighbour matrix simultaneously, which is the most

efficient memory access pattern on modern GPU architectures. Algorithm 13 constructs

a neighbour matrix H and auxiliary array t that holds the number of neighbours of each

particle from a cell occupancy matrix H.

Algorithm 13: Construction of matrix neighbour list based on Rapaport [17] Section

3.4.
Data: N particles, cell occupancy matrix H, cutoff rn and particle positions ~r

Result: Neighbour matrix W and neighbour count array t

for i = 0 to N − 1 do
Determine containing cell: ci.

m = 0

for k = 0 to 26 neighbouring cells do

c′ = ci + kth offset

for l = 0 to kc′ − 1 do
j = Hc′,l

if i 6= j and |ri − rj | < rn then
Wm,i = j

m = m+ 1
end

end

end

ti = m

end

Pairs of particles are exposed to a pairwise kernel using Algorithm 14, this looping

pattern is extremely similar to the sequential neighbour list method. As with the sequen-

tial neighbour list method the neighbour matrix potentially accesses particle data in a

highly inefficient manner if particle data is arranged in a global store in a unstructured

arrangement. On GPU architectures rearrangement of particle data to group the data by

sub-domain cells is highly recommended for efficient data access.

64

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Algorithm 14: Interaction using matrix neighbour list.

Data: neighbour matrix W , neighbour counts t, particle positions ~r and cutoff

radius rc

for i = 0, . . . , N − 1 do

for k = 0 to ti − 1 do
j = Wi,k

if |~ri − ~rj | < rc then
Execute kernel, e.g. compute force between particles i and j.

end

end

end

3.1.6 Neighbour List Rebuilding

We intend to build a neighbour list using a cutoff radius rn = rc + δ where δ = vmax2Ns.

By padding the radius used to perform cell decomposition and neighbour list construction

we allow particles to move small distances without invalidating the cell to particle map and

neighbour lists, however, these will both need to be reconstructed periodically to remain

valid.

An implementation of a neighbour list algorithm requires the number of steps Ns

and a mechanism to compute the maximum velocity of any particle in any direction

vmax. We provide the IntegratorRange class which allows time step based methods to

be implemented in a Python range like loop as in Listing 3.1. Use of this class allows

neighbour list based pair looping methods to be used by the user without explicit calls to

rebuild cell to particle maps and neighbour lists.

Listing 3.1: Example use of IntegratorRange called with: Ni number of iterations, timestep size

dt, velocities v, list reuse count Ns and shell thickness delta = rn − rc.

for i in IntegratorRange(Ni , dt , A.v, Ns , delta):

particle_loop_1.execute ()

force_calculation.execute ()

particle_loop_2.execute ()

3.2 Code Generation

The project is primary implemented in Python [66] which is a high-level, dynamically

typed and object oriented programming language. Python allows for the easy expression

of algorithms in a high-level manner, for example, time stepping. Python interpreters exist

for most modern operating systems (GNU Linux variants) used on HPC hardware allowing

framework code and user code to be ported between platforms without modification. The

65

3.2. Code Generation

Python community has developed a large collection of libraries for scientific and non-

scientific purposes which usually can be easily imported and used under open source

licenses.

Python is considered as a highly productive language in terms of programmer time

due to its flexibility, but the language is typically not efficient in terms of CPU usage.

Firstly, Python is an interpreted language with typically no optimisation before execu-

tion, secondly, Python is dynamically typed meaning the interpreter must check the type

of objects each time they are parsed. Finally, Python has poor native support for multi-

core programming, the global interpreter lock prevents efficient shared memory threading

techniques as only one thread may interpret source code at a time. Basic multiprocessing

support does natively exist within Python, we use the mpi4py [15] package which provides

Python bindings to an underlying MPI library.

The C programming language is a suitable choice to generate code in for multiple

reasons, the primary reason is that well written C code in combination with a modern C

compiler can be highly efficient. C compilers typically have multiple optimisation stages

that, with a suitable input, produce efficient machine code. Furthermore, C shared libraries

have a well defined interface that allows Python code to load and use functions in shared

libraries in a robust manner. As C is an established language compilers are available on

all major platforms and it is reasonable to assume that future hardware will have support

for the C language. We combine Python and C to leverage the flexibility of Python with

the efficiency possible from C.

We use code generation as it is highly flexible in comparison to alternative methods

that combine Python and C. With careful software engineering it is reasonably straightfor-

ward to implement computationally expensive operations in C by hand as a library which

can be used from Python. In this static approach, new functionality must be added by

writing C code, which is a process we explicitly wish to minimise as the technical nature

of the process may not be in the skill set of the domain specialist. By using our code

generation framework a user benefits from efficient C libraries without hand writing the

library. Furthermore, the separation of concerns approach allows computational scien-

tists to optimise the code generation system and target new hardware architectures as a

continuous process.

Code generation enables high-level optimisations which are typically not possible with

static C libraries. For example, loop fusion is an optimisation where initially separate loops

that access common data are identified and combined, this removes duplicate memory

access. If kernels are combined there is a greater probability that a C compiler or a code

generation framework can identify and perform common sub-expressions elimination, this

is an optimisation where duplicated expressions are computed once and the resulting value

stored to remove duplicated work. Furthermore, code generation allows efficient C code

to be constructed and executed by non-technical users. In the Firedrake [67] project users

formulate input as symbolic expressions, the project generates and executes optimised C

code in parallel in a manner that is invisible to the user.

66

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

In our framework we minimise inter-process communication by avoiding unnecessary

communication and generating efficient packing and unpacking functions. We provide

efficient implementations of our two looping types for two hardware architectures by gen-

erating code from kernels and access descriptors with a relatively small code base. We

now describe the code generation system responsible for executing the Particle Loop and

Local Particle Pair Loop looping mechanisms.

Assumptions And Definitions

We assume that a system of N particles is decomposed across P MPI ranks such that

MPI rank k owns N (k) particles, ideally N (k) = N/P for all k. Furthermore, we assume

the loop L is defined by

L =
(
K,D(p), A(p), D(s), A(s)

)
, (3.4)

where K is a Kernel instance containing a C string written with the syntax described in

Section 2.3.1. D(p) is a collection of m(p) ParticleDat instances with access descriptors

A(p) such that

D(p) = {d(p)
0 , . . . , d

(p)

m(p)}, (3.5)

A(p) = {a(p)
0 , . . . , a

(p)

m(p)}. (3.6)

Furthermore, D(s) is a collection of m(s) ScalarArray or GlobalArray instances with

access descriptors A(s) such that

D(s) = {d(s)
0 , . . . , d

(s)

m(s)}, (3.7)

A(s) = {a(s)
0 , . . . , a

(s)

m(s)}. (3.8)

We now give a technical overview of our code generation method for Particle Loops

and Local Particle Pair Loops. For both looping types our implementation considers each

data structure instance in turn, for each ParticleDat, ScalarArray and GlobalArray C

code is generated that provides the data access required by the corresponding access de-

scriptor. The generation process produces C code such as: function declarations, structure

declarations, indirection indices and loops.

3.2.1 Particle Loop

A Particle Loop implementation is required to execute the kernel K on each particle as

described in Definition 2.1. Fundamentally, this operation is a single loop over all particles

where properties π(i) of particle i are accessed at most once, hence access to particle data

is a data parallel operation. Access to global properties must be performed in a manner

that is independent of the order particles are considered, i.e. operations involving global

properties are associative. Here we shall describe the process to generate C code that

implements a Particle Loop for CPU architectures, in Appendix A.8.1 we describe the

67

3.2. Code Generation

corresponding process for GPU architectures.

We describe the code generation process to implement L for a Particle Loop without

any shared memory techniques, however, our framework implementation will generate C

code using shared memory parallelism with OpenMP. This description produces a valid

C implementation for L and describes the process all our code generation methods apply

to create a shared library that contains an externally callable function. This function is

called by the Python implementation to execute the loop. The general structure of this

kind of library is given in Listing 3.2.

Listing 3.2: Overview of Particle Loop C

// Structs generated per ParticleDat

<generated_structs >

// kernel source wrapped in a function

// ParticleDats are passed using above generated structs

// ScalarArray and GlobalArrays are passed as pointers

inline void k_<kernel_name >(< kernel_parameter_list >){

<kernel_source >

}

// Externally available function to be called from Python

void <kernel_name >_wrapper(const int _N_LOCAL ,

<data_structure_pointers >){

// loop over all owned particles

for(int _i=0 ; _i <_N_LOCAL ; _i++){

// create instances of generated structs

// for each ParticleDat

<kernel_args_creation >

// call kernel

k_<kernel_name >(<kernel_call >);

}

}

In Listing 3.2 <kernel_name> is immediately substituted for the name the user gave to

the kernel, this name is arbitrary and is mentioned for completeness. All other substitution

locations in the code are filled with C code generated from the passed data structures and

accompanying access descriptors. Code is generated for the ParticleDat instances as in

Algorithm 15 and for ScalarArray and GlobalArray instances in Algorithm 16.

For each ParticleDat instance we create a C structure declaration to use as an in-

terface between the user written kernel and the generated looping code. For each particle

index an instance of this structure is created and passed as an argument to a generated

68

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

function that contains the kernel. Typically, with optimisation enabled, modern compilers

will inline the kernel function as requested and perform the indirection described by the

ParticleDat structure without actually creating instances of the structure.

Algorithm 15: Particle Loop code generation for ParticleDats

Data: ParticleDat instances D(p) and access descriptors A(p)

Result: <generated structs>, <kernel args declaration>,

<data structure pointers>, <kernel args creation> and

<kernel call>

for m ∈ {0, . . . ,m(p)} do
Construct identifier sym to use for temporary variables (usually the symbol used

in the kernel)

Identify underlying data type dtype from d
(p)
m

Identify number of components ncomp from d
(p)
m

Determine if the const qualifier is valid from a
(p)
m

(1) Create struct for <generated structs>:

typedef struct {dtype (const) *i;} sym t;

(2) Create entry for <kernel parameter list>: sym t sym

(3) Create entry for <data structure pointers>, a pointer: dtype (const) *

sym

(4) Create entry for <kernel args creation> using above pointer and struct:

sym t sym c = { sym + i * ncomp };
(5) Create entry for <kernel call>, add newly created struct instance to call

arguments: sym c

end

As this example is not applying any shared memory techniques, we do not need to

generate code to handle race conditions between threads as there is only one thread. Hence

ScalarArray and GlobalArray data access can be achieved by passing pointers into the

kernel, in Algorithm 16 we describe the creation of function arguments and parameters

that allow the kernel to access these global data structures. Although we do not describe

the code generation process for a shared memory execution model, our implementation

is capable of producing thread-safe OpenMP code. In Listings 3.3 and 3.4 we present an

example where a ParticleDat is assigned values from a ScalarArray.

69

3.2. Code Generation

Algorithm 16: Particle Loop code generation for ScalarArrays and GlobalArrays

Data: ScalarArray and GlobalArray instances D(s) and access descriptors A(s)

Result: <generated structs>, <kernel args declaration>,

<data structure pointers>, <kernel args creation> and

<kernel call>

for m ∈ {0, . . . ,m(s)} do
Construct identifier sym to use for temporary variables (usually the symbol used

in the kernel)

Identify underlying data type dtype from d
(s)
m

Determine if the const qualifier is valid from a
(s)
m

(1) Create entry for <kernel parameter list>, a pointer:

dtype (const) * sym

(2) Create entry for <data structure pointers>: dtype (const) * sym

(3) Create entry for <kernel call>, add pointer to call arguments: sym

end

Listing 3.3: Example particle loop creation. We create a global 2-vector S and each particle i is

assigned a 2-vector property P. The ParticleLoop copies the vector S into P for each particle.

setup removed for brevity

A.P = ParticleDat(ncomp =2)

S = ScalarArray(ncomp =2)

particle_loop = ParticleLoop(

kernel=Kernel(

name=’plexample ’,

code = """

P.i[0] = S[0];

P.i[1] = S[1];

"""

),

dat_dict ={

’P’: A.P(INC),

’S’: S(READ)

}

)

70

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Listing 3.4: Example generated particle loop from input 3.3. This source code is compiled into a

shared library such that the plexample wrapper function can be called from Python.

/* #### Structs generated per ParticleDat #### */

typedef struct

{

double *restrict i;

} _P_t;

/* #### Kernel function #### */

inline void k_plexample(double const *restrict S, _P_t P)

{

P.i[0]=S[0];

P.i[1]=S[1];

}

/* #### Library function ####

This is the entry point into the generated code from Python , the

number of particles and pointers to the data structures are passed

here.

*/

void plexample_wrapper(int const _N_LOCAL , double const *restrict S,

double *restrict P)

{

/* This is the main loop over particles. */

for (int _i=0; _i <_N_LOCAL; _i++)

{

/* #### Kernel call arguments #### */

_P_t P_c = { P+_i*2};

/* #### Kernel call ####

Here the user written kernel is called.

*/

k_plexample(S,P_c);

}

}

GPU

In Appendix A.8.1 we describe the process we use to generate GPU Particle Loop code.

Our approach assigns one GPU thread to each particle in the order in which particle

data is arranged in memory, this assumes that there are enough particles to fully occupy

the GPU. With this approach, we guarantee that there is no memory access contention

between particle data and by assigning GPU threads in the same order as particle data

we obtain the most efficient data access pattern for particle data.

The GPU is a shared memory environment, hence we need to generate code that

correctly implements the increment operation for GlobalArray instances. We use CUDA

intrinsic functions to communicate data between GPU threads and to atomically increment

71

3.2. Code Generation

values in device memory, an example of this process is presented in Listing A.2 in the

appendix.

3.2.2 Local Particle Pair Loop

We provide an overview of the code generation process for neighbour list based implemen-

tations of Local Particle Pair Loop. The neighbour lists we described are all utilised by

first looping over all particles i then, for each particle i, looping over neighbours j. We

mandated in our abstraction that data from particle j can only be read by the kernel K,

hence our code generation system need only provide read access to this data.

We now describe the additions to the Particle Loop code generation system to imple-

ment the Local Particle Pair Loop assuming that on each architecture a suitable neighbour

list has been constructed. Access to global data stored in ScalarArray and GlobalArray

objects is identical to the Particle Loop case. As in the Particle Loop case we describe the

code generation process for CPU architectures, CUDA code generation for GPU architec-

tures is described in Appendix A.8.2.

We assume that the neighbour list exists as a sequential neighbour list as described in

section 3.1.5. For N particles this neighbour list exists as an array ~S ∈ NN+1 of starting

points (and one end point) and an array of neighbours ~b. The CPU particle loop template

in listing 3.2 is amended to form the pair loop template in Listing 3.5.

72

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Listing 3.5: Template for CPU particle pair loop using a sequential neighbour list.

// Structs generated per ParticleDat

<generated_structs >

// kernel source wrapped in a function

// ParticleDats are passed using above generated structs

// ScalarArray and GlobalArrays are passed as pointers

inline void k_<kernel_name >(< kernel_parameter_list >){

<kernel_source >

}

// Externally available function to be called from Python

void <kernel_name >_wrapper(

const int _N_LOCAL ,

long const * _START_POINTS ,

int const * _NLIST ,

<data_structure_pointers >

){

// loop over all owned particles

for(int _i=0 ; _i <_N_LOCAL ; _i++){

// loop over neighbours of particle _i

for (long _k=_START_POINTS[_i]; _k <_START_POINTS[_i+1]; _k++){

const int _j = _NLIST[_k];

// create instances of generated structs

// for each ParticleDat

<kernel_args_creation >

// call kernel

k_<kernel_name >(<kernel_call >);

}

}

}

Algorithm 15 generates C structures to hold pointers to the data for particle i, we

modify the structure to include a pointer to the data for particle j, these modifications

are described in Listing 3.6. We must also modify the stage that creates the kernel function

argument, this step must initialise the C structure with a pointer to the data of particle

j in addition to the data of particle i.

73

3.2. Code Generation

Listing 3.6: Difference between particle loop C structure and particle pair loop C structure for a

ParticleDat of data type dtype and symbol sym.

// Particle Loop variant

typedef struct

{

dtype *i;

} _sym_t;

// Pair Loop variant

typedef struct

{

dtype *i;

dtype *j;

} _sym_t;

To demonstrate the output, Listing 3.7 contains the Python source code to define a

Local Particle Pair Loop that for each particle counts the number of neighbouring particles

within a distance of 2. The generated C code is presented in Listing 3.8.

Listing 3.7: Example particle pair loop creation that counts neighbouring particles within a cutoff

radius of 2.

setup removed for brevity

A.P = PositionDat(ncomp =3)

A.NC = ParticleDat(ncomp=1, dtype=c_int)

loop = PairLoop(

kernel=Kernel(

name=’n_count ’,

code = """

double r0 = P.i[0] - P.j[0];

double r1 = P.i[1] - P.j[1];

double r2 = P.i[2] - P.j[2];

if (r0*r0 + r1*r1 + r2*r2) < 4.0){

NC.i[0] += 1;

}

"""

),

dat_dict ={

’P’: A.P(READ),

’NC’: A.NC(INC)

},

shell_cutoff =2.0

)

74

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Listing 3.8: Generated C code to count the neighbours of each particle within a radius 2.

// Structs generated per ParticleDat

typedef struct

{

int *i;

int *j;

} _NC_t;

typedef struct

{

double const *i;

double const *j;

} _P_t;

// Kernel function

inline void k_n_count(_NC_t NC, _P_t P){

double r0 = P.i[0] - P.j[0];

double r1 = P.i[1] - P.j[1];

double r2 = P.i[2] - P.j[2];

if ((r0*r0 + r1*r1 + r2*r2) < 4.0){

NC.i[0] += 1;

}

}

// Library function

void n_count_wrapper(int const _N_LOCAL , long const *_START_POINTS , int

const *_NLIST , int *NC , double const *P){

for (int _i=0; _i <_N_LOCAL; _i++)

{

for (long _k=_START_POINTS[_i]; _k <_START_POINTS[_i+1]; _k++)

{

const int _j = _NLIST[_k];

// Struct initialisation

_NC_t NC_c = { NC+_i*1, NC+_j*1};

_P_t P_c = { P+_i*3, P+_j*3};

// Kernel call

k_test_host_pair_loop_1(NC_c ,P_c);

}

}

}

GPU

As in the Particle Loop case, we assign one GPU thread to each particle, which loops over

all the neighbours of the particle. We do not exploit Newton’s Third Law, hence there is

no memory access contention between threads for particle data. To increment global data

75

3.2. Code Generation

we use inter-thread communication and atomic operations in a near identical process to

the ParticleLoop case. This code generation process is described in Appendix A.8.2.

Further Code Generation Discussion

We have provided a description of how our code generation framework produces C code

which is valid but potentially not performant. There are two main classes of optimisation

techniques which we apply to improve performance of the generated code for local particle

pair loops. The first class is to arrange particle data such that it may be accessed more

efficiently by the compute device. On GPU architectures particle data can be grouped by

cell such that the data of particles within a cell form a contiguous block in memory.

On modern CPU architectures the efficiency of the floating point unit is often depen-

dent on the layout of the underlying data. If data is arranged in the incorrect layout for

the vector instructions the compiler must emit instructions to permute the arrangement

of input and output data, and this reordering must occur before “useful” floating point

operations are performed. In a cell by cell approach we know a priori that all particle data

from a pair of cells will be accessed repeatedly, hence we generate code that explicitly

reorders the data from both cells into temporary arrays. The kernel is then launched over

all pairs of particles from the two cells using the data in the correct layout. Finally, we

generate code to move written data back into the global data structure. This approach

requires a kernel that contains enough computational work to amortise the cost of data

movement.

The second main class of optimisations we implement are architecture and to some

extent compiler specific optimisations to generate efficient low-level instructions. For ex-

ample, modern GPU hardware by NVIDIA contains a read-only texture cache which is

shared between all GPU cores. Through inspection of the passed access descriptors we

determine which data is read-only and generate CUDA code that indicates to the NVIDIA

CUDA compiler that this data is potentially a suitable candidate for this cache.

On CPU hardware we exploit the auto-vectorisation capabilities of the compiler. The

compiler reads in the generated C source code and performs internal analysis to determine

which optimisations it views as legal. We are most interested in the analysis that deter-

mines if a loop may be performed with vector instructions, for this to occur the compiler

must find no reason not use vector instructions in the given block of code. To access

GlobalArray data in an incremental manner we often produce C code with a similar

pattern to Listing 3.9 where a variable is incremented in each iteration of a loop. Some

modern C compilers will refuse to generate vector instructions due to a detected loop

dependence (even with restrict qualifiers), clearly there is a loop dependence, however, if

we assume addition of floating point numbers is associative the loop can be performed in

a vector manner. If we emit the C code in listing 3.10 we heuristically find compilers are

more likely to vectorise the loop.

76

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Listing 3.9: Candidate loop where a compiler could refuse to emit vector instructions due to a

loop dependance.

void kernel (..., double * restrict a, ...){

for(int _j=0; _j <_jmax ; _j++){

a[0] += ... ;

}

}

Listing 3.10: Candidate loop where a compiler could be persuaded to emit vector instructions.

void kernel (..., double * restrict a, ...){

double at[0] = {0};

for(int _j=0; _j <_jmax ; _j++){

at[0] += ... ;

}

a[0] += at[0];

}

3.3 Results

This section is adapted from our published article A domain specific language for per-

formance portable molecular dynamics algorithms [73]. To demonstrate the performance,

portability and scalability of our code generation framework on two different mode HPC

architectures, we implemented the Velocity Verlet integrator as described in Algorithms 1

and 17. We simulated a Lennard-Jones liquid system of non-bonded particles interacting

via the potential in Equation (2.1) and parameters in Table 3.2. The C kernel for this

interaction is presented in Listing 2.5 and is executed in a Local Particle Pair Loop. The

position and velocity update stages of the Velocity Verlet Algorithm are performed via

Particle Loops with kernels given in Listings 3.11 and 3.12. A summary of all looping

operations and access descriptors is given in Table 3.1. The full source code can be found

in the examples1 subdirectory of [71]. The same code can be used to run the simulation

both on a CPU and a GPU if the appropriate definitions shown in listing 2.2 are added

at the beginning of the Python code.

1code/examples/lennard-jones

77

3.3. Results

Algorithm 17: Velocity Verlet integrator used in Section 3.3. The system is inte-

grated numerically with a time step of size δt until the final time T = nmaxδt.

Create ParticleDats for forces ~F and velocities ~v.

Create PositionDat for particle positions.

Initialise particle positions and velocities.

Collect ParticleDats and PositionDat in a State object

for timestep i = 1, . . . , nmax do

For all particles i: ~v(i) 7→ ~v(i) + δt
2m

~F (i), ~r(i) 7→ ~r(i) + δt~v(i)

For all pairs (i, j): ~F (i) 7→ ~F (i) + ~f(~r(i), ~r(j))

For all particles i: ~v(i) 7→ ~v(i) + δt
2m

~F (i)

end

Operation Loop type & kernel Access Descriptors

~v(i) 7→ ~v(i) + δt
2m

~F (i) ParticleLoop ~v [INC], ~r [INC],

~r(i) 7→ ~r(i) + δt~v(i) Listing 3.11 ~F [READ]

~F (i) 7→ ~F (i) + ~f(~r(i), ~r(j))
PairLoop ~F [INC ZERO],

Listing 2.5 ~r [READ]

~v(i) 7→ ~v(i) + δt
2m

~F (i)
ParticleLoop

~v [INC], ~F [READ]
Listing 3.12

Table 3.1: Access descriptors for the loops in the Velocity Verlet Algorithm 17.

Listing 3.11: Velocity and position update kernel in the Velocity Verlet Algorithm 17. The

constants dt and dht iMass are set to δt and δt/(2m) and passed to the pairloop as Constant

objects.

v.i[0] += F.i[0]* dht_iMASS;

v.i[1] += F.i[1]* dht_iMASS;

v.i[2] += F.i[2]* dht_iMASS;

r.i[0] += dt*v.i[0];

r.i[1] += dt*v.i[1];

r.i[2] += dt*v.i[2];

Listing 3.12: Velocity update kernel in the Velocity Verlet Algorithm 17. As in Listing 3.11, the

quantity δt/(2m) is passed to the pairloop as a Constant object to replace dht iMASS.

v.i[0] += F.i[0]* dht_iMASS;

v.i[1] += F.i[1]* dht_iMASS;

v.i[2] += F.i[2]* dht_iMASS;

78

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

3.3.1 Comparison To Other Codes

To verify that the code generation approach does not introduce any sizable computational

overheads, we compare the performance of our code to monolithic C/Fortran implemen-

tations in well established and optimised MD libraries. For this we performed the same

strong scaling experiment with DL POLY (version 4.08), LAMMPS (release dated 1st

March 2016) and our code generation framework (subdirectory release of [71]). A strong

scaling experiment investigates how the time to solution for a given computational task

is reduced by increasing the computational resource used. Here the computational task

is a simulation containing a significant number of particles that interact with non-bonded

interactions. Raw results can be found in the accompanying data repository [72].

All codes were built with the Intel 2016 compiler suite and OpenMPI 1.8.4 (with

the exception of DL POLY, which used OpenMPI 2.0.0). The NVIDIA CUDA toolkit

version 7.5.18 was used for the GPU compilation and the framework was run with Python

2.7.8. The numerical experiments were carried out on the University of Bath HPC facility

“Balena”. All nodes of the cluster consist of two Intel Xeon E5-2650v2 (2.6GHz) processors

with eight cores each; in addition some nodes are equipped with Nvidia Tesla K20X GPU

accelerator cards. As the GPU port of LAMMPS offloads the force calculation, we allowed

LAMMPS to use all 16 cores of the host CPU along with the GPU. In contrast, in our

framework the entire simulation is run on the GPU and it is sufficient to use a single MPI

rank which acts as the host controller.

Parameter Value

Number of atoms: N 106

Number of time steps: nmax 104

Number density: ρ 0.8442

Force cutoff: rc 2.5

Force extended cutoff: rn = rc + δ 2.75

Steps between neighbour list update: 20†

Table 3.2: Parameters of Lennard-Jones benchmark for the strong scaling experiment; units are
chosen such that σ = ε = 1 († = excluding DL POLY, see main text).

We use the parameters in Table 3.2, adapted from a LAMMPS benchmark [65]. All

three codes implement the neighbour list method for force calculations. For LAMMPS

and our framework the extended cutoff rn = rc + δ was chosen such that δ = 0.1rc with a

neighbour list update every 20 iterations. In contrast, DL POLY automatically updates

the neighbour-list when necessary.

79

3.3. Results

1
16

4
16

8
16 1 2 4 8 16 32 64

Node/GPU count

10−1

100

101

102

S
p

ee
d

-u
p

1 K20x

4 K20x

8 K20x

Framework

Framework K20x

LAMMPS K20x

LAMMPS

DL POLY

1.0 · 106

6.2 · 104

7.8 · 103

9.8 · 102
Number of particles per CPU core

1
16

4
16

8
16 1 2 4 8 16 32 64

Node/GPU count

0

20

40

60

80

100

120

140

P
ar

al
le

l
effi

ci
en

cy
(%

)

1 K20x

4 K20x

8 K20x
Framework

Framework K20x

LAMMPS K20x

LAMMPS

DL POLY

1.0 · 106

6.2 · 104

7.8 · 103

9.8 · 102
Number of particles per CPU core

Figure 3-9: Strong scaling experiment: parallel speed-up (left) and parallel efficiency (right) for
the time taken (s) to compute nmax = 104 Velocity Verlet iterations of N = 106 particles using
DL POLY, LAMMPS and our implementation (labeled as “Framework”). Efficiency and speed-up
are relative to one full node (16 cores). Efficiency is calculated according to Equation (3.9). In the
left plot perfect scaling is indicated by the dashed gray line. Raw results are presented in Table 3.3
and simulation parameters are tabulated in Table 3.2.

Node/GPU Integration Time (Seconds)

count Framework LAMMPS DL POLY 4

CPU GPU CPU GPU CPU

1/16 6.83 · 103 8.22 · 103

4/16 1.49 · 103 1.67 · 103

8/16 9.18 · 102 1.05 · 103 4.99 · 103

1 5.01 · 102 3.85 · 102 5.69 · 102 2.75 · 102 2.91 · 103

2 2.50 · 102 2.79 · 102 1.47 · 103

4 1.32 · 102 1.08 · 102 1.40 · 102 1.24 · 102 7.76 · 102

8 7.50 · 101 6.95 · 101 7.32 · 101 6.08 · 101 4.92 · 102

16 4.45 · 101 5.72 · 101

32 3.05 · 101 3.25 · 101

64 2.38 · 101 1.72 · 101

Table 3.3: Strong scaling experiment: time taken (s) to compute nmax = 104 Velocity Verlet
iterations of N = 106 particles using DL POLY, LAMMPS and our implementation (labeled as
“Framework”). Further simulation parameters are given in Table 3.2. CPU nodes consist of two
eight core E5-2650v2 CPUs, GPU nodes contain one or more K20X GPUs. GPUs are compared
against CPU nodes on a one-to-one basis. For GPU results, the Framework used one CPU core as
a host for each GPU. LAMMPS implements a GPU offload approach and hence used all CPU cores
on the node in addition to available GPUs. All codes were built with the Intel 2016 compiler suite
and OpenMPI 1.8.4 (with the exception of DL POLY, which used OpenMPI 2.0.0). The NVIDIA
CUDA toolkit version 7.5.18 was used for the GPU compilation and the framework was run with
Python 2.7.8.

The total integration time on up to 1024 cores (64 nodes) and up to 8 GPUs is tabulated

80

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

in Table 3.3. Parallel speed-up and parallel efficiency are plotted in Figure 3-9; grey regions

indicate core counts contained within a single CPU node. On the largest core count (1024

cores) the average local problem size is reduced to 1,000 particles per processor. To

provide a fair comparison, one K20X GPU is compared to a full 16-core CPU node since

in this case the power consumption is comparable (235 W for the K20X GPU [56] vs.

2 × 95 W +(memory power consumption) for the Intel Xeon E5-2650v2 CPU [40]). We

write t(p,N) for the measured wall clock time required to integrate a system with N

particles on p CPU nodes or GPUs. The corresponding speed-up and parallel efficiency

(relative to one CPU node or one GPU) are defined as

Speed-up =
t(1, N)

t(p,N)

Strong parallel efficiency =
t(1, N)

p× t(p,N)

(3.9)

and shown in Figure 3-9.

The absolute times demonstrate that the framework provides comparable performance

and scalability to DL POLY and LAMMPS. In fact we find that for this particular setup

both LAMMPS and our code are significantly faster than DL POLY and scale better. It

should be kept in mind, however, that currently both LAMMPS and DL POLY have a

much wider range of applications and provide functionality which is not yet implemented

in our framework. A socket-to-socket comparison demonstrates that one full GPU can only

deliver a slightly higher performance than a full CPU node. Again, the same is observed

for LAMMPS.

To test performance for very large problem sizes we also carried out a weak scaling

experiment. In a weak scaling experiment the average work per unit computational re-

source is fixed and the total problem size grows proportional to the number of nodes. A

system with 512, 000 particles per CPU core (8, 192, 000 particles per node) was integrated

over 5000 timesteps. For the largest computational configuration (1024 cores) the total

problem size is about half a billion (5.24 · 108) particles. All other system parameters are

unchanged from Table 3.2. The total time for increasing problem sizes is shown in Figure

3-10 (left). The weak parallel efficiency is defined as

Weak parallel efficiency =
t(1, N)

t(p,N · p) (3.10)

and plotted in Figure 3-10 (right). We observe that (relative to one node) the parallel

efficiency never drops below 90% and conclude that the framework will effectively scale to

systems containing very large numbers of particles on a significant core count.

The number of particles on a single CPU node in the previous weak scaling run is

too large to fit into GPU memory. To also compare the weak scalability of the generated

CPU and GPU code we therefore repeat the same experiment with a reduced number

of 512,000 particles per node. The resulting time and parallel efficiency are shown in

81

3.3. Results

Node Integration Time
count (103 Seconds)

1/16 1.61
2/16 1.65
4/16 1.66
8/16 1.52

1 1.91
2 1.93
4 1.94
8 1.96
16 1.99
32 2.01
64 2.09

1
16

2
16

4
16

8
16 1 2 4 8 16 32 64

Node count

0

20

40

60

80

100

120

P
ar

al
le

l
effi

ci
en

cy
(%

)

5.1 · 105

2.0 · 106

8.2 · 106

3.3 · 107

1.3 · 108

5.2 · 108
Number of particles

Figure 3-10: CPU-only weak scaling experiment: time taken to integrate the system over nmax =
5000 time steps (left) and parallel efficiency (right). The efficiency relative to one full node (right)
is calculated according to Equation (3.10). The top horizontal axes shows the total number N of
particles in the system; the number of particles per core is kept fixed at 512, 000 (8, 192, 000 particles
per node).

Figure 3-11. While the parallel efficiency is worse for the GPU, it never drops below 60%.

On one node the GPU code is about twice as fast as the CPU code and on 16 nodes

this speedup factor drops to around 1.3×. This can be explained by the fact that on

one node the CPU implementation is slower and therefore communication overheads will

have a relatively larger impact on the GPU code. To improve scalability further, we will

investigate overlapping communication and communication in the future. This, however,

is usually more challenging on GPUs due to the reduced work in halo regions.

Node/GPU Integration Time (Seconds)

count CPU GPU

1 116.9 60.3

4 123.2 78.0

8 124.8 89.7

16 129.9 94.1

1 4 8 16

Node/GPU count

0

20

40

60

80

100

P
ar

al
le

l
effi

ci
en

cy
(%

) 1 K20x

4 K20x

8 K20x 16 K20x

CPU relative to 1 node

K20x relative to 1 K20x

5.1
· 10

5

2.0
· 10

6

4.1
· 10

6

8.2
· 10

6

Number of particles

Figure 3-11: CPU-GPU weak scaling experiment with reduced particle number: time taken to
simulate nmax = 5000 time steps (left) parallel efficiency relative to a single GPU/node, calculated
according to Equation (3.10) (right). The number of particles per node is kept fixed at 512,000.

82

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Intel Xeon node K20X GPU
kernel peak time peak time

Force 16.5% 54.8% 11.9% 36.9%
Force & PE 7.5% 6.5% 14.3% 2.6%

Table 3.4: Absolute performance metrics (as percentage of peak performance and integration time)
for two kernels recorded from GPU weak scaling experiment presented in Figure 3-11. The “Force
& PE” kernel is only called every 10 iterations and hence accounts for a smaller proportion of the
total runtime than the “Force” kernel.

Absolute performance

To quantify the absolute performance on both CPU and GPU we use data collected in the

second weak scaling experiment (see Figure 3-11). The computationally most expensive

operation in the simulation is the force update step performed with a particle pair loop.

This accounts for 54.8% of the total runtime on the CPU and 36.9% on the GPU. As

in this simulation the potential energy was updated every 10 iterations, we also report

performance metrics for the combined force- and potential-energy (PE) update.

With the vector instruction set each core of an E5-2650v2 (2.6 GHz) Intel CPU can

perform 4 double precision additions and 4 double precision multiplications per clock cycle,

resulting in a total performance of 332.8 GFLOPs per node. The peak double precision

floating point performance of the nVidia Tesla K20x GPU is quoted as 1.31 TFLOPs [58].

Absolute performance numbers for a single-node run are reported in Table 3.4. The

measured times only include the time spent in the auto-generated C code, but we found

that the launch of a shared library function from Python has a negligible overhead (≈
10–20µs). Since the system is spatially homogeneous and there is little load imbalance, we

report measurements collected by a single core on the fully populated node. The results

demonstrate that the computationally most relevant kernels use a significant fraction of the

peak floating point performance. As confirmed by the report generated by the compiler,

the kernel for the Lennard-Jones force calculation in Listing 2.5 is automatically vectorised.

3.3.2 Structure Analysis Algorithms

We present the performance of the structure analysis algorithms described in Sections

1.1.4 and 2.3.2 implemented within our framework.

For this we first add an on-the-fly implementation of the BOA analysis method. This

is achieved by extending the main timestepping loop in Algorithm 17 by calls to the

PairLoop and ParticleLoop which evaluate Q` according to Algorithms 2 and 3. The

source code is available in the examples/on-the-fly-analysis subdirectory of [71].

To initialise the simulation, 125000 identical particles are arranged in a periodic cubic

lattice and their velocities are sampled from a normal distribution. After allowing the

system to equilibrate for 50,000 steps in an microcanonical ensemble we coupled the system

83

3.3. Results

to an Andersen thermostat with a target temperature near zero for 500,000 iterations. The

final configuration consists of two distinct regions. The first is void of particles while the

second contains a crystal structure. Figure 3-12 shows the change of Q4, Q5 and Q6

throughout the simulation.

0.0 · 100

1.0 · 105

2.0 · 105

3.0 · 105

4.0 · 105

5.0 · 105

Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Q

4
,
Q

5
,
Q

6

Q4

Q5

Q6

Qfcc
6

Qfcc
4

thermostat start

Figure 3-12: Evolution of mean Q4, Q5 and Q6 values over the course of the simulation. The
horizontal dashed lines plot the expected Q4 and Q6 values of a perfect FCC lattice.

A distribution of the Q4 and Q6 values at the final time is shown in Figures 3-13 and 3-

13. This distribution describes the proportion of FCC and HCP in the final configuration

as classified by the BOA method. We purely focus on the implementation of the method

and do not attempt a physical interpretation of the results.

0.0 0.1 0.2 0.3 0.4 0.5
Q4 value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
ro

b
ab

ili
ty

d
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Q6 value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ro

b
ab

ili
ty

d
en

si
ty

Figure 3-13: Probability density of Q4 values (left) and Q6 values (right) in final system config-
uration. (left) Dashed vertical line at Q4 = 0.097 is the expected Q4 value of a perfect hcp lattice.
Dashed vertical line at Q4 = 0.191 is the expected Q4 value of a perfect fcc lattice. (right) Dashed
vertical line at Q6 = 0.485 is the expected Q6 value of a perfect hcp lattice. Dashed vertical line at
Q6 = 0.575 is the expected Q6 value of a perfect fcc lattice.

To demonstrate that the resulting code still scales well in parallel, we carry out a weak

scaling experiment with the parameters in Table 3.5. The results are shown in Figure 3-14

and confirm that adding the on-the-fly analysis and thermostat have no negative impact

84

Chapter 3. Code Generation Of Modern Parallel MD Algorithms

Parameter Value

Number of atoms per node: 524288
Number of time steps: nmax 5000
Non-dimensionalised density: ρ 0.8442
Force cutoff: rc 3.0
Force extended cutoff: rc = rc + δ 3.3
Steps between neighbour list updates: 18

Table 3.5: Parameters of bond order analysis weak scaling experiment. Units are chose such that
σ = ε = 1.

Node Integration Time
count (102 Seconds)

1/16 4.37
2/16 4.48
4/16 4.50
8/16 4.60

1 4.99
2 5.03
4 5.09

1
16

2
16

4
16

8
16 1 2 4

Node count

0

20

40

60

80

100

120

P
ar

al
le

l
effi

ci
en

cy
(%

)

3.3 · 104

1.3 · 105

5.2 · 105

2.1 · 106
Number of particles

Figure 3-14: Weak scaling experiment that combines a simulation with on-the-fly analysis. Time
taken to integrate 5000 steps, parallel efficiency relative to a single node (right).

on parallel efficiency.

Finally, the common neighbour analysis was implemented as a parallel post-processing

step. C-Kernels for Algorithms 4, 5, 6 and 25 can be found in the examples2 subdirectory

of [71]. We validated our implementations by verifying that perfect crystals are correctly

classified in each of the FCC, BCC and HPC configurations. We then applied the method

to the test case with 125000 particles mentioned above. For the final configuration the

algorithm classified 19360 (15.5%) particles as FCC and 13052 (10.4%) particles as HCP

while 92588 (74.1%) particles were left unclassified.

2examples/structure/cna

85

CHAPTER 4

MODERN ALGORITHMS FOR ELECTROSTATIC

INTERACTIONS

4.1 Introduction

Alongside the short-range interactions that are used in applications such as atomistic or

molecular modelling, it is typically necessary to also consider the charges that particles

carry. The electrostatic interactions between charged particles cannot generally be com-

puted efficiently via the pairwise operations we describe in earlier chapters. These elec-

trostatic interactions form an important component of the underlying physical properties

of many materials and cannot be neglected.

A detailed description of the theory of electrostatics is given by Jackson [43]. Here we

provide a brief overview of the electrostatic theory required for MD and discuss two existing

methods. We present our parallel implementations of these two methods in Chapter 5. For

simplicity the equations we state and derive are written in Gaussian units, the conversion

between Gaussian units and Systéme international (SI) units is straightforward and an

overview is given in Appendix A.3. We begin by defining the electric field ~E as the force

exerted per unit charge at a point in space. Hence if a particle resides at a position ~r and

carries a net charge q the force ~F exerted on the particle by the electric field ~E is given by

~F = q ~E(~r). (4.1)

Consider a system consisting only of a pair of particles (i, j) at positions (~ri, ~rj) that carry

charges (qi, qj). We can write the force exerted on the first particle ~Fi in terms of the

electric field induced by the second particle ~Ej ,

~Fi = qi ~Ej(~ri). (4.2)

By considering each charged particle as a point-wise object the form of ~Ej is given by

86

Chapter 4. Modern Algorithms for Electrostatic Interactions

Coulomb’s Law,

~Ej(~r) =
qj

|~r − ~rj |2
~r − ~rj
|~r − ~rj |

. (4.3)

For a general charge density ρ(~r) the induced electric field ~E can be described by the

differential form of Gauss’ Law of electrostatics,

~∇ · ~E(~r) = 4πρ(~r). (4.4)

Furthermore, the electric field can be written as the gradient of a potential field known as

the electric field potential φ,

~E(~r) = −~∇φ(~r). (4.5)

By combining the differential form of Gauss’ Law (4.4) with equation (4.5) we deduce that

the electric field potential φ(~r) induced by a charge density ρ(~r) is the solution of Poisson’s

equation:

− ~∇ · (~∇φ(~r)) = −∆φ(~r) = 4πρ(~r), (4.6)

with free space boundary conditions, i.e. the system is surrounded by an infinite vacuum

such that φ(~r)→ 0 as |~r| → ∞.

We can recover Coulomb’s Law from equation (4.6) by considering a charge density ρ

that describes a point-wise particle at the origin with net charge q:

−∆φ(~r) = 4πqδ(~r), (4.7)

where δ is the Dirac delta function. The solution φ to equation (4.7) is proportional to

the fundamental solution of the Laplace equation in three dimensions and is given by

φ(~r) =
q

|~r| . (4.8)

We refer to φ as given by equation (4.8) as the Coulomb potential. Using the Coulomb po-

tential the electrostatic potential energy between a pair of particles (i, j) that are separated

by distance rij and carry charges (qi, qj) is given by

Uij =
qiqj
rij

. (4.9)

With free space boundary conditions, calculating the inter-particle interactions for all

N(N − 1) = O(N2) particle pairs, by using Coulomb’s Law, would be a sufficient though

inefficient method to compute inter-particle forces and potential energies. Typically, sim-

ulation domains are combined with periodic boundary conditions where application of

Coulomb’s Law results in a conditionally convergent summation.

87

4.1. Introduction

4.1.1 Coulomb Potential Truncation

When considering inter-particle interactions via short-range potentials we are able to ig-

nore interactions between pairs of particles which are separated by sufficiently large dis-

tances. Ignoring pairs of sufficiently well separated particles is equivalent to truncating

the potential to zero. In an infinite system the error incurred from the truncation of

short-range potentials is bounded as the functional form of these potentials decays to zero

sufficiently rapidly as inter-particle distance increases.

The Coulomb potential exhibits a functional form proportional to inverse distance

(1/r), as r increases the magnitude of the potential decays to zero. We demonstrate that

as the inter-particle distance r increases the Coulomb potential does not decay to zero at

high enough rate to make a truncation without incurring an unacceptable error.

To demonstrate the effect of a truncation of the Coulomb potential we consider a

spherical system S centred at the origin. Within the sphere S of radius L we place

a constant charge density ρ0 = 1, this is an approximation of a uniformly distributed

collection of charged particles. Outside the sphere we set the charge density to zero, this

represents a vacuum absent of charges.

We investigate the error induced by truncating potentials of the form |~r|−β for β ∈ N
at the centre of the sphere. We consider β > 1 as these values of β correspond to higher

order moments, such as dipole moments in the β = 2 case and quadrupole moments in

the β = 3 case, and these moments are relevant in our Fast Multipole Method discussions

in later sections. The potential Uβ at the centre of the sphere is given by

Uβ(~0) =

∫
S

ρ0

|~r|β d~r, (4.10)

and we recover the electrostatic potential U when β = 1. If we truncate the potential Uβ

at a radius rc = L− a then we ignore the contribution to the potential at the origin from

the charge density contained in a shell of width a at the sphere boundary.

S

L L− a

Figure 4-1: Spherical system S of radius L and truncation radius rc = L− a.

The error in the potential εU at the centre of the sphere due to the truncation of the

88

Chapter 4. Modern Algorithms for Electrostatic Interactions

Coulomb potential at a radius rc = L− a is given by an integral over the excluded shell:

εU =

∫ 2π

0
dφ

∫ π

0
sin(θ)dθ

∫ L

rc

1

rβ
r2dr (4.11)

=


4π

3−β r
3−β
c

((
L
rc

)3−β
− 1

)
if β 6= 3

4π log
(
L
rc

)
if β = 3

(4.12)

We are interested in the behaviour when L/rc → ∞ as this corresponds to an increasing

system size with an interaction cutoff rc that is much smaller than the system extent.

Equation (4.12) demonstrates that for β < 4 the error εU is unbounded and grows in this

limit. Furthermore, when β ≥ 4 the error εU is suppressed by the r3−β
c term. We conclude

that the electrostatic interactions in infinite systems cannot be computed by a truncated

Coulomb potential and now discuss alternative approaches.

4.2 Particle Ewald Summation

This section follows the Particle Ewald Summation discussion by Frenkel and Smit in [26].

Particle Ewald [23, 26] summation is a technique to compute the long-range electrostatic

potential energy and forces arising from Coulombic interactions between charged particles.

The technique is applicable to a set of charged particles contained within a simulation

domain with periodic boundary conditions. Elements of this section are published in the

conference proceedings [74] alongside a parallel implementation. We describe the technique

for a cubic simulation cell of side length L, however, the method is readily generalised to

cuboid simulation cells and parallelepiped shaped simulation domains. The method offers

reasonable performance for small to medium sized systems (N ≈ 103-104 particles) with

a O(N3/2) computational complexity.

As discussed in Section 4.1, the Coulombic potential φ at a point in the domain is the

solution of the equation

−∆φ(~r) = 4πρ(~r), (4.13)

ρ(~r) =
∑
~n∈Z3

N∑
j=1

qjδ(~r − ~rj − L~n). (4.14)

The charge density ρ(~r) is formed by considering the charge qj of particle j to exist at a

single point ~rj . The summation with index n duplicates and translates the charge density

of the primary simulation cube to each periodic image. The solution φ to Equations (4.13,

4.14) is a scalar field which is periodic in R3 with a period given by the extents of the

simulation cell.

Conceptually the Ewald method splits the calculation into two main components by

rewriting the charge density of each particle as the sum of two terms. The two terms,

which sum to give the original charge density, can be treated separately and the results

89

4.2. Particle Ewald Summation

recombined using the superposition principle. More formally, particle j at position ~rj and

total charge qj has a charge density given by qjδ(~r−~rj). We split this charge density into

two terms by adding and subtracting a Gaussian of width ∝ α−1/2 and charge density

Sα(~r):

Sα(~r) =
(α
π

)3/2
exp

(
−α|~r|2

)
(4.15)

δ(~r) = D(sr)(~r) +D(lr)(~r), where (4.16)

D(sr)(~r) = δ(~r)− Sα(~r), (4.17)

D(lr)(~r) = Sα(~r), (4.18)

a one dimensional representation of the splitting process is given in Figure 4-2.

−δ

=

−D(sr)

+

−D(lr)

Figure 4-2: One dimensional representation of the charge splitting process for two positive charges
and one negative charge. The −δ,−D(sr) and −D(lr) labels the figure indicate the charge splitting
process for the right-hand charge.

As Poisson’s equation is linear, the total potential φ is given by the sum of a short-range

potential φ(sr) and a long-range potential φ(lr) where

−∆φ(sr)(~r) = 4π
∑
~n∈Z3

N∑
j=1

qjD
(sr)(~r − ~rj − Ln), (4.19)

−∆φ(lr)(~r) = 4π
∑
~n∈Z3

N∑
j=1

qjD
(lr)(~r − ~rj − Ln). (4.20)

First we focus on the short-range potential φ(sr) where we consider the potential field

induced by a single unit charge at the origin. We separately compute the potential induced

by a delta function charge density and the potential induced by a Gaussian charge density.

We define the short-range potential φ(sr) for a single unit charge as the sum of these two

potentials.

As discussed in the introduction, we can use the fundamental solution of Poisson’s

equation to write down the contribution to φ(sr) from the delta function term in D(sr). If

a unit charge is positioned at the origin then the Coulomb potential induced by the delta

90

Chapter 4. Modern Algorithms for Electrostatic Interactions

function is given by

−∆φ(~r) = 4πδ(~r), (4.21)

with solution

φ(~r) =
1

|~r| . (4.22)

The second contribution to φ(sr) is the potential induced by a Gaussian shaped charge

density Sα centred at the origin with unit volume. We consider only the radial component

of the Poisson’s equation by exploiting the rotational symmetry of the Gaussian charge

density:

−∆φ(~r) = 4πS(sr)
α (~r) (4.23)

=⇒ −1

r

∂2

∂r2
rφ(~r) = 4π

(α
π

)3/2
exp

(
−α|~r|2

)
(4.24)

=⇒ − ∂

∂r
rφ(~r) = 4π

∫ r

∞
r′
(α
π

)3/2
exp

(
−αr′2

)
dr′ (4.25)

= −2
(α
π

) 1
2

exp
(
−αr2

)
(4.26)

=⇒ rφ(~r) = 2
(α
π

) 1
2

∫ r

0
exp(−αr′2)dr′. (4.27)

Using the standard error function defined as

erf(x) =
2√
π

∫ x

0
e−t

2
dt, (4.28)

we can write the potential field induced by a Gaussian charge density as

φ(~r) =
erf(
√
α|~r|)
|~r| . (4.29)

The construction of the short-range charge density D(sr) places a delta function and

an opposing Gaussian function at the position ~rj of each charge. We can construct the

pairwise short-range potential for each charge as the sum of the potential induced by the

delta function and the potential induced by the Gaussian function. If there exists charge

qj with position ~rj then the short-range charge density is

ρ
(sr)
j (~r) = qj(δ(~r − ~rj)− Sα(~r − ~rj)) (4.30)

91

4.2. Particle Ewald Summation

which induces a short-range potential field

φ
(sr)
j (~r) = qj

(
1

|~r − ~rj |
− erf(

√
α|~r − ~rj |)
|~r − ~rj |

)
(4.31)

= qj
erfc(
√
α|~r − ~rj |)
|~r − ~rj |

, (4.32)

where erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt = 1− erf(x). (4.33)

A potential of the form of equation (4.32) decays to zero exponentially quickly with rate

α which allows a truncation at some computationally reasonable inter-particle distance.

A plot of the short-range potential for a unit charge can be found in Figure 4-3.

0 1 2

−6

−4

−2

0

2

r

lo
g
(e
rf
c(
r)
/
r)

Figure 4-3: Log-scale plot of the short-range potential induced by a unit charge at the origin.

We now derive the long-range potential induced by a charge density constructed via

D(lr)(~r). The potential field φ(lr) is the solution of the Poisson’s equation (4.20). The

charge density term is constructed as a sum of purely Gaussian functions and therefore is

a smoothly varying function, furthermore, by construction the charge density is a periodic

function with period L. As a result it is reasonable to assume that the corresponding

potential field φ(lr) is smoothly varying and periodic with period L. Hence a Fourier

Transform approach is a suitable method to compute the form of the long-range potential

φ(lr).

We define the Fourier Transform of a function f : Ω 7→ R as

f̂(~k) =

∫
Ω

exp(−i~k · ~r)f(~r)d~r, (4.34)

and the Inverse Fourier Transform as

f(~r) =
1

V

∑
~k

exp(i~k · ~r)f̂(~k), (4.35)

92

Chapter 4. Modern Algorithms for Electrostatic Interactions

where V is the volume of the domain Ω. The vector ~k is a point in a reciprocal lattice

defined by the simple cubic domain Ω. For a cuboid domain Ω formed by the three

primitive vectors (~L1, ~L2, ~L3) we define the corresponding reciprocal lattice vectors

~G1 =
2π

V
~L2 × ~L3, (4.36)

~G2 =
2π

V
~L3 × ~L1, (4.37)

~G3 =
2π

V
~L1 × ~L2. (4.38)

A point ~k in the reciprocal lattice is given by a linear combination of the reciprocal lattice

vectors with integer coefficients:

~k = g1
~G1 + g2

~G2 + g3
~G3, where g1, g2, g3 ∈ Z. (4.39)

The long range potential φ(lr) is given by

−∆φ(lr)(~r) = 4πρ(lr)(~r), (4.40)

where

ρ(lr)(~r) =
∑
~n∈Z3

N∑
j=1

qjSα(~r − ~rj − Ln). (4.41)

Applying the Fourier Transform to Equation (4.40) gives

|~k|2φ̂(lr)(~k) = 4πρ̂(lr)(~k), (4.42)

where

ρ̂(lr)(~k) =

∫
Ω

exp(−i~k · ~r)
∑
~n∈Z3

N∑
j=1

qjSα(~r − ~rj − Ln)d~r (4.43)

=

∫
Ω

exp(−i~k · ~r)
∑
~n∈Z3

N∑
j=1

qj

(α
π

) 3
2

exp(−α|~r − ~rj − Ln|2)d~r (4.44)

=

∫
R3

exp(−i~k · ~r)
N∑
j=1

qj

(α
π

) 3
2

exp(−α|~r − ~rj |2)d~r (4.45)

=

N∑
j=1

qj

(α
π

) 3
2

∫
R3

exp(−i~k · ~r) exp(−α|~r − ~rj |2)d~r (4.46)

=
N∑
j=1

qj exp

(
−|~k|2

4α

)
exp(−i~k · ~rj). (4.47)

We now apply the Inverse Fourier Transform to Equation (4.42) to give the long-range

93

4.2. Particle Ewald Summation

contribution

φ(lr)(~r) =
1

V

∑
~k 6=~0

exp(i~k · ~r) 4π

|~k|2
N∑
j=1

qj exp

(
−|~k|2

4α

)
exp(−i~k · ~rj), (4.48)

the ~k = ~0 case can be excluded as we assume the simulation domain carries zero net

charge.

The Fourier Transform approach gives a potential field φ(lr) from a charge density

constructed with a Gaussian shaped density at the site of each charge. Hence the potential

field φ(lr)(~ri) at charge i with position ~ri includes the potential induced by the Gaussian

qjSα(~r − ~ri). When evaluating φ(lr)(~ri) at the position of charge i there is a contribution

to the potential from the Gaussian charge density qjSα(~r − ~ri), as in Figure 4-4, which is

referred to as the self interaction. The self interaction of a charge does not contribute to

the force exerted on the charge as the gradient is zero at centre of the Gaussian, but the

self interaction does contribute to the potential energy. Hence the potential energy of the

self interaction must be computed and subtracted from the total electrostatic potential

energy.

Figure 4-4: One dimension representation of the self interaction between charges and their cor-
responding long-range charge density.

The self interaction for each charge is the potential induced by a Gaussian charge

density evaluated at the centre of the charge density. From Equation (4.27) the self

interaction potential φ
(self)
j for charge qj is

φ
(self)
j =

[
2qj
r

(α
π

) 1
2

∫ r

0
exp(−αr′2)dr′

]∣∣∣∣
r=0

, (4.49)

= 2qj

(α
π

) 1
2

using the mean-value theorem. (4.50)

94

Chapter 4. Modern Algorithms for Electrostatic Interactions

Using φ
(self)
j the self interaction energy for a system of N charges is given by

U (self) =
1

2

N∑
j=1

qjφ
(self)(~rj), (4.51)

=
(α
π

) 1
2

N∑
j=1

q2
j . (4.52)

As the self interaction energy is independent of the position of the charge this quantity

can be computed once at the beginning of the simulation and reused for a given set of

constant charges. The total system energy is given by

Ucoul = −U (self) +
1

2

N∑
j=1

(
qjφ

(lr)(~rj)
)

+
1

2

N∑
j=1

qj∑
i 6=j

φ
(sr)
i (~rj)

 , (4.53)

where the i index in the second summation indexes particles in the primary image and

surrounding periodic images. In Section 4.1.1 we argued that the Coulomb potential

could not be truncated, in Appendix A.9 we investigate the convergence behaviour of the

long-range potential for dipole charge distributions.

The electrostatic force exerted per unit charge is determined by the electric field, which

is given by the spatial derivative of the long-range and short-range potential,

~E(~r) = −~∇φ(~r) (4.54)

= −~∇~rφ(sr)(~r)− ~∇~rφ(lr)(~r). (4.55)

If a charge qj is positioned at the origin then the induced short-range force field ~E
(sr)
j per

unit charge at a point ~r is

~E
(sr)
j (~r) = −~∇φ(sr)

j (~r) (4.56)

= − ∂

∂r
φ

(sr)
j (~r)

~r

r
(4.57)

= qj

(
erfc(
√
αr)

r2
+

2
√
α√
πr

exp(−αr2)

)
~r

r
, (4.58)

where r = |~r|. The short-range electric field ~E
(sr)
j (~r) converges to zero at an exponential

rate, given by
√
α, as the inter-particle distance r increases. Hence we truncate ~E

(sr)
j (~r) to

zero at a radius rc ∝ α−1/2 to allow the short-range electric field ~E(sr)(~r) to be computed.

The short-range force field ~Esr at a point ~r is given by the superposition of the short-range

force fields induced by charged particles within a radius rc of ~r,

~Esr (~r) =
∑

j s.t. |~r−~rj |<rc

~Esr
j (~rj − ~r) . (4.59)

95

4.2. Particle Ewald Summation

The long-range force field per unit charge ~E(lr) is readily computed by taking the

gradient of Equation (4.48),

~E(lr)(~r) = −~∇~r φ(lr)(~r), (4.60)

= − 1

V

∑
~k 6=~0
|~k|<kc

i~k exp(i~k · ~rj)
4π

|~k|2
N∑
j=1

qj exp

(
−|~k|2

4α

)
exp(−i~k · ~rj), (4.61)

where kc is a cutoff for the maximum Fourier mode. No correction needs to be made to

the long-range field ~E(lr) for charge self interaction as the gradient at the centre of the

Gaussian is zero.

4.2.1 Parameter Selection

An implementation of the method we have described contains three free parameters, the

first of which is the width α of the Gaussian function used to split the charge density

into a short-range and long-range components. The second parameter is the inter-particle

distance rc at which the short-range potential φ(sr) is truncated to zero. The final pa-

rameter is the reciprocal space cutoff kc which defines a maximum frequency to consider

in the Fourier Transform and Inverse Fourier Transform used in the calculation of φ(lr).

Intuitively, as the Gaussian splitting function becomes narrower (i.e. α increases) we have

to consider higher frequency modes in Fourier space (kc increases) and are allowed to

truncate the short-range potential at a shorter radius (rc decreases).

Given an estimate of error induced by the real space cutoff rc and reciprocal space

cutoff kc from Kolafa and Perram [45], Frenkel and Smit [24] derive a optimal parameter

selection approach based on a computational cost model1. Kolafa and Perram derive the

following expressions for the standard deviation of the real space error δER and standard

deviation of the reciprocal space error δEF ,

δER =
(rc

2L3

) 1
2 1

αr2
c

exp(−αr2
c)Q, (4.62)

δEF =
k

1
2
c√
αL2

1(
πkc√
αL

)2 exp

(
−
(
πkc√
αL

)2
)
Q, (4.63)

where

Q =

N∑
j=1

q2
j . (4.64)

1[24] takes results from [45] without making a required α →
√
α substitution, here we make the substi-

tution.

96

Chapter 4. Modern Algorithms for Electrostatic Interactions

The standard deviations of both error estimates can be rewritten as

δER =

(
s

2
√
αL3

) 1
2 1

s2
exp(−s2)Q, (4.65)

δEF =

(
s

π
√
αL3

) 1
2 1

s2
exp(−s2)Q, (4.66)

where we have made the choice:

rc =
s√
α
, (4.67)

kc =
s
√
αL

π
, (4.68)

for some constant s. These two error estimates are strongly influenced by the functional

form exp(−s2)/s2 such that a choice of s affects both errors in the same manner.

To control the error we choose some error tolerance ε and solve for s such that ε =

exp(−s2)/s2. The remaining free parameter in Equations (4.67, 4.68) is α which is chosen

to minimise the computational cost. We assume there exists a uniform distribution of N

charges in a cube of side length L, hence the particle density in the simulation is N/L3.

For each charge i the short-range potential qiφ
(sr)
j (~ri) is evaluated for all charges j such

that |~ri− ~rj | < rc, i.e. all neighbours within a sphere of radius rc. With a particle density

of N/L3 the number of neighbours per particle is expected to be

Nrc =
4

3

πr3
cN

L3
. (4.69)

Hence if an evaluation of φ(sr) has cost τR then the total cost of evaluating the short-range

potential is approximately

CR(α) =
4

3
π
N2s3

α
3
2L3

τR. (4.70)

For a given charge j and frequency ~k we denote the combined cost of evaluating

exp
(
i~k · ~rj

)
and exp

(
−i~k · ~rj

)
as τF . We compute the Fourier Transform for all frequen-

cies ~k such that |~k| < kc which defines a sphere in reciprocal space. Hence we estimate

the cost of evaluating the long-range potential CF by considering all vectors ~k within the

sphere of radius kc:

CF (α) = N
4

3
πk3

cτF (4.71)

=
4

3π2
s3α

3
2L3NτF . (4.72)

The total cost of the method is estimated by summing the two component costs,

CR(α) + CF (α) =
4

3
π
N2s3

α
3
2L3

τR +
4

3π2
s3α

3
2L3NτF . (4.73)

97

4.3. Fast Multipole Method

Frenkel and Smit [26] find the minimum of Equation (4.73) by setting the derivative with

respect to α to zero, this yields an optimal Gaussian width of

α =

(
τRπ

3N

τFL6

) 1
3

. (4.74)

With the optimal choice of α the estimated cost model given by Equation (4.73) yields a

computational cost of

CR + CF =
4

3π
(τR + τF)N

3
2 (4.75)

which is O(N
3
2). If α is chosen independently of N the dominant term in the cost model

is L3N which leads to a O(N2) computational complexity if L ∝ N 1
3 .

The optimal value of α is dependent on both the extent of the simulation domain and

the number of charged particles and hence should ideally be computed for each simulation.

Furthermore, computing an optimal α depends on accurate estimates of τR and τF which

are expected to be machine dependent.

A variety of methods [18, 16, 22] exist that replace the Fourier Transform with a Fast

Fourier Transform (FFT). As the FFT is typically only applicable to a regular grid these

methods need to pay particular attention to the method used to interpolate functions to

and from the grid. The benefit of a FFT approach is to reduce the calculation of the long-

range potential to O(N logN) complexity. These FFT accelerated methods are highly

popular and implementations can be found in codes such as DL POLY [41] and LAMMPS

[63]. We do not consider these FFT based methods as many libraries already exist and

instead describe the Fast Multipole Method (FMM) which in theory is computationally

optimal with a complexity of O(N).

4.3 Fast Multipole Method

The Fast Multipole Method [31, 30, 32] is a hierarchical method to compute long-range

interactions with a computational complexity that is linear in the number of charged par-

ticles. The main idea is to approximate the potential induced by a group of clustered

together charges by an expansion which is valid far away from the charges. The cost to

accuracy ratio of the method can be tuned by choosing the number of terms in the ap-

proximating expansion. We describe in detail the 2D version of the algorithm as described

in [31] as the structure of the approach is identical to the 3D version and give a working

overview of the 3D version.

4.3.1 Two Dimensional Fast Multipole Method

Multipole Expansion

We begin by representing a point ~r = (x, y) ∈ R2 as the complex valued point x+ iy = z ∈
C. In 2D the fundamental solution to Poisson’s Equation is logarithmic, if a unit charge

98

Chapter 4. Modern Algorithms for Electrostatic Interactions

exists at a point z0 then the induced potential field at a different point z is

ϕ(z) = Re(− log(z − z0)). (4.76)

In this derivation we write ϕ as the result of a complex valued function, the potential itself

should be taken as the real part only. If a point z is such that |z| > |z0| then

log(z − z0) = log(z) + log
(

1− z0

z

)
, (4.77)

= log(z)−
∞∑
k=1

1

k

(z0

z

)k
, as

∣∣∣z0

z

∣∣∣ < 1. (4.78)

Suppose that m charges of magnitudes {qi, i = 1, . . . ,m} are located at positions

{zi, i = 1, . . . ,m} then by the superposition principle the induced potential at z is given

by

ϕ(z) =
m∑
i=1

−qi log(z − zi). (4.79)

If we assume that the m charges are clustered around the origin such that |zi| < r for

i = 1, . . . ,m then at a point z where |z| > r we can write ϕ(z) as an expansion centred at

the origin by using Equations (4.77, 4.78),

ϕ(z) =
m∑
i=1

[−qi log(z)] +
m∑
i=1

[
qi

∞∑
k=1

1

k

(zi
z

)k]
(4.80)

=
m∑
i=1

[−qi log(z)] +

∞∑
k=1

1

zk

[
m∑
i=1

qiz
k
i

k

]
(4.81)

= a0 log(z) +
∞∑
k=1

ak
zk

(4.82)

where

ak =

{ ∑m
i=1−qi if k = 0∑m
i=1

qiz
k
i
k if k > 0.

(4.83)

Equation (4.82) is referred to as a multipole expansion. The computational attraction

of the multipole expansion stems from the independence of the expansion coefficients ak

from the evaluation point z. The expansion coefficients can be computed once for a set of

charges then be subsequently used to compute the potential at any sufficiently far away

point.

In practice the expansion coefficients ak can only be computed for some finite range of

k, we denote the index of the maximum computed coefficient by p. A truncated multipole

expansion ϕp gives an approximation to the true potential ϕ with an error given by the

99

4.3. Fast Multipole Method

non-computed terms

|ϕp − ϕ| =
∣∣∣∣∣ϕ(z)− a0 log(z)−

p∑
k=1

ak
zk

∣∣∣∣∣ (4.84)

=

∣∣∣∣∣∣
∞∑

k=p+1

ak
zk

∣∣∣∣∣∣ . (4.85)

Using the definition of ak we have

|ϕp − ϕ| ≤ A
∞∑

k=p+1

rk

k|z|k (4.86)

≤ A
∞∑

k=p+1

∣∣∣r
z

∣∣∣k = α
∣∣∣r
z

∣∣∣p+1
=

(
A

c− 1

)(
1

c

)p
(4.87)

where

A =

m∑
i=1

|qi|, α =
A

1− |r/z| and c =
∣∣∣z
r

∣∣∣ . (4.88)

If we consider a set of charges contained in a square domain that has been subdivided

into 16 square cells, as in Figure 4-5, then each charge is contained within a parent cell.

At the centre of each cell a p-term multipole expansion is computed from the charges

contained within that cell. The error bound in Equation (4.86-4.87) indicates that a

multipole expansion computed about the centre of a cell cannot be evaluated with any

reasonable accuracy in any of the adjacent cells. For example, the multipole expansion

computed at the cell centre P in Figure 4-5 will not give an accurate approximation of the

potential ϕ in the shaded region, but it will give a good approximation in the unshaded

cells. We refer to cells separated by more than one cell as well separated.

P

Figure 4-5: A p-term multipole expansion at P constructed from charges contained in the square
containing P will not give an accurate approximation of the potential ϕ in the shaded region.

The multipole expansion alone can be used as a more efficient method to compute

the potential between well separated clusters of charges. Consider two well separated

cells with centres P and Q that contain N and M charges respectively as in Figure 4-

6. Naively computing the potential at each particle site has a computational complexity

that is O(NM) which can be reduced to O(N) + O(M) by using multipole expansions.

100

Chapter 4. Modern Algorithms for Electrostatic Interactions

First a p-term multipole expansion is constructed at the points P and Q from the charges

contained in each cell at the cost of O(N) + O(M) work. The p-term expansion at the

point P can be thought of as an approximation to the charge density in the containing cell

and can be evaluated at each of the M points in the second cell to give an approximation

to the potential at each point. Similarly, the expansion centred at Q is evaluated at each

of the N points in the first cell. The total cost of evaluating potentials from expansions is

O(N)+O(M) which yields a reduced computational complexity in comparison to O(NM)

at the cost of reduced accuracy.

P

Q

Figure 4-6: Two well separated cells P and Q.

Multipole to Multipole Translation

The main idea to reach a computational complexity of O(N) is to group together in-

creasingly larger clusters of particles in a hierarchical approach. If two p-term expansions

share an origin then, by using linearity, a single p-term expansion can be formed from the

element-wise sum of terms in the two expansions. If four p-term expansions are centred

in adjacent cells, as in Figure 4-7, then they do not share an origin and cannot be imme-

diately combined through addition. First the origin of each multipole expansion must be

translated to the intersection of the four cells such that they can be combined into a single

multipole expansion, this operation is referred to as a multipole-to-multipole translation.

P1

P3 P4

P2

Figure 4-7: Four p-term multipole expansions at the points P1, . . . , P4 are translated to the inter-
section point of the four cells.

Suppose that

ϕ(z) = a0 log(z − z0) +

∞∑
k=1

ak
(z − z0)k

, (4.89)

101

4.3. Fast Multipole Method

is a multipole expansion that describes the potential induced by m charges q1, q2, . . . , qm

clustered within a circle of radius R centred at z0. Then this multipole expansion can be

shifted to the origin such that for a point z where |z| > R+ |z0|

ϕ(z) = a0 log(z) +
∞∑
l=1

bl
zl
, (4.90)

where

bl =

(
l∑

k=1

akz
l−k
0

(
l − 1

k − 1

))
− a0z

l
0

l
. (4.91)

The error in the potential ϕ from a p-term expansion is given by∣∣∣∣∣ϕ(z)− a0 log(z)−
p∑
l=1

bl
zl

∣∣∣∣∣ ≤
 A

1−
∣∣∣ |z0|+Rz

∣∣∣
 ∣∣∣∣ |z0|+R

z

∣∣∣∣p+1

, (4.92)

where

A =
m∑
i=1

|qi| and |z| > |z0|+R. (4.93)

The proof uses the following expansion as shown in Appendix A.2,

(z − z0)−k =

∞∑
l=k

(
l − 1

k − 1

)
zl−k0 z−l, (4.94)

and the identity,

∞∑
l=1

∞∑
k=1

ak

(
l − 1

k − 1

)
zl−k0

zl
=
∞∑
l=1

l∑
k=1

ak

(
l − 1

k − 1

)
zl−k0

zl
. (4.95)

Given the expansion in Equation (4.94) and the identity in Equation (4.95) we rewrite

Equation (4.89) as

ϕ(z) = a0 log(z)− a0

∞∑
l1=1

1

l1

(z0

z

)l1
+
∞∑
k=1

ak

∞∑
l2=k

(
l2 − 1

k − 1

)
zl2−k0 z−l2 , (4.96)

= a0 log(z) +

∞∑
l=1

[
−z

l
0a0

lzl
+

l∑
k=1

ak

(
l − 1

k − 1

)
zl−k0

zl

]
, (4.97)

= a0 log(z) +

∞∑
l=1

bl
zl
, (4.98)

where

bl =

l∑
k=1

ak

(
l − 1

k − 1

)
zl−k0 − zl0a0

l
. (4.99)

In the transformation of Equation (4.96) into Equation (4.97) Greengard has assumed that

102

Chapter 4. Modern Algorithms for Electrostatic Interactions

the summations are absolutely convergent and hence can be reordered. Hence a p-term

multipole expansion can be translated to the origin with a computational complexity of

O(p2). Furthermore, after translation, Equation (4.92) states that the new radius where

the expansion is invalid is larger and includes the original circle where the expansion was

invalid.

Multipole to Local Translation

While the multipole expansion is accurate far away from the centre of the expansion, a local

expansion is accurate near the centre of the expansion. Multipole expansions are utilised

as descriptors of charge densities and local expansions are used to describe potential fields

in the regions near the centre of the expansions. Suppose that m charges are clustered

within a circle of radius R and centre z0 such that |z0| > (c + 1)R where c > 1. Then

the multipole expansion constructed from these m charges converges in a circle of radius

R centred at the origin. Inside the circle centred at the origin the potential due to the m

charges can be described by the power series

ϕ(z) =
∞∑
l=0

bl · zl, (4.100)

where

b0 =
∞∑
k=1

ak

zk0
(−1)k + a0 log(−z0), (4.101)

and

bl =

(
1

zl0

∞∑
k=1

ak

zk0

(
l + k − 1

k − 1

)
(−1)k

)
− a0

l · zl0
for l ≥ 1. (4.102)

The error of a p-term expansion where p ≥ max(2, 2c/(c− 1)) is given by∣∣∣∣∣ϕ(z)−
p∑
l=0

bl · zl
∣∣∣∣∣ < (

∑m
i=1 |qi|) (4e(p+ c)(c+ 1) + c2)

c(c− 1)

(
1

c

)p+1

, (4.103)

where e is the base of the natural logarithm. This error bound indicates that a multi-

pole expansion cannot be converted into a local expansion near to the original origin of

expansion without significant loss of accuracy. Furthermore, for the 2D FMM algorithm

Equation (4.103) gives a method by which to choose the required number of expansion

terms p based on the required output accuracy.

We refer to a power series such as in Equation (4.100) as a local expansion as it is valid

in the region near the centre of the expansion. To obtain the form of the local expansion

in Equations (4.101 - 4.102) compute the Maclaurin series of Equation (4.89). The l-th

derivative at zero of Equation (4.89) is given by

∂lϕ(z)

∂zl

∣∣∣∣
z=0

= −(l − 1)!
a0

zl0
+
∞∑
k=1

(−1)k
(k + l − 1)!

(k − 1)!

ak

zk+l
0

. (4.104)

103

4.3. Fast Multipole Method

Hence the local expansion of ϕ is

ϕ(z) = a0 log(−z0) +
∞∑
k=1

ak
(−z0)k

+
∞∑
l=1

zl

l!

[∞∑
k=1

(−1)k
(k + l − 1)!

(k − 1)!

ak

zk+l
0

− (l − 1)!
a0

zl0

]
,

(4.105)

= a0 log(−z0) +

∞∑
k=1

ak
(−z0)k

+

∞∑
l=1

zl

[∞∑
k=1

(−1)k
(
l + k − 1

k − 1

)
ak

zk+l
0

− a0

zl0l

]
. (4.106)

Like multipole expansions, if two local expansions share a centre of expansion then the

terms from both can be combined by element-wise addition to form a single expansion.

Converting a multipole expansion into a local expansion has a computational complexity

O(p2).

Local to Local Translation

The origin of p-term local expansion can be shifted without loss of precision. This allows

two or more expansions to be combined by first shifting the origins to a common location

then adding the terms. If

ϕ(z) =

p∑
k=0

akz
l, (4.107)

is a local expansion then by the Binomial Theorem

ϕ(z + z0) =

p∑
k=0

ak

k∑
l=0

(
k

l

)
zk−l0 zl, (4.108)

=

p∑
l=0

(
p∑
k=l

ak

(
k

l

)
zk−l0

)
zl. (4.109)

The process of shifting the origin of a local expansion is referred to as a local to local

translation and has a computational complexity of O(p2). From a physical perspective,

combining two local expansions is equivalent to combining two potential fields through

the superposition principle.

The Fast Multipole Algorithm

We give a description of the 2D algorithm from Greengard and Rokhlin [31]. The method

applies a hierarchical approach to provide a computational complexity of O(N). In this

algorithm the number of terms in all expansions is fixed at a value p ≈ log2(ε) where ε is

an error tolerance. We assume that N charges are contained in a unit square on which

a hierarchy of L meshes are defined. Mesh level l ∈ {0, . . . ,L − 1} subdivides the unit

square into 4l equally sized squares indexed by {0, . . . , 4l − 1} as illustrated in Figure 4-8.

In this decomposition, each square on a level l is subdivided into 4 squares on level l + 1

which are referred to as the children of the larger parent square.

104

Chapter 4. Modern Algorithms for Electrostatic Interactions

l = 0 l = 1 l = 2

Figure 4-8: The hierarchy of mesh levels for L = 3.

We define following notation to describe the algorithm,

Φl,i: The p-term multipole expansion about the centre of square i on level l that describes

the potential induced by charges within square i.

Ψl,i: The p-term local expansion at the centre of square i on level l that describes the

potential induced by all charges outside the square i and its 8 nearest neighbours.

Ψ̄l,i: The p-term expansion about the centre of square i on level l that describes the

potential induced by all charges outside the parent of the square and outside the 8

nearest neighbours of this parent.

interaction list: The interaction list for a square i on level l contains squares on level l

which are the children of the parent square of i and its nearest neighbours which are

well separated from square i, as in Figure 4-9.

i

Figure 4-9: Interaction list in grey for square i. Thick lines indicate the boundaries of the parent
cells.

Algorithms 18 and 19 give a description of the 2D algorithm applicable to a system

with free space boundary conditions. More complex boundary conditions, such as peri-

odic boundary conditions, are discussed in Section 4.3.1. The resulting algorithm has a

computational complexity O(N) and an overview of the cost of each step is given in Table

4-10.

105

4.3. Fast Multipole Method

Step Cost Explanation

Multipole

construction

O(Np) Each of the N charges contributes to one p-term mul-

tipole expansion.

Upward pass O(Np2) Multipole to multipole translation has costO(p2) and

there are O(N) cells on the finest level. The multi-

pole expansion in each of the O(N) cells on the finest

is translated to the origin of the parent cell.

Downward pass -

local to local

O(Np2) Local to local translation has cost O(p2) and there

are O(N) cells on the finest level. Each of the O(N)

cells on the finest level is the target of a single local

to local translation.

Downward pass -

multipole to local

O(Np2) A multipole to local translation has cost O(p2) and

there are O(N) cells on the finest level. Furthermore,

the interaction list for each cell has at most 27 entries

on any level.

Direct interactions O(N) Each of the N charges directly interacts with charges

in the 9 surrounding cells where each cell contains

O(1) charges.

Figure 4-10: Overview of 2D FMM cost per step, adapted from [31].

106

Chapter 4. Modern Algorithms for Electrostatic Interactions

Algorithm 18: 2D FMM algorithm to compute Ψl,i for a system with free space

boundary conditions.

Input: N charges, a maximum level of mesh refinement L and a number of terms p.

Output: Ψl,i

Upward pass:

Form the p-term multipole expansions at

the centre of each square on the finest level

L − 1.

for i = 0, . . . , 4L−1 − 1 do
Construct ΦL−1,i

end

Form the p-term multipole expansion on

each coarser level by using multipole to

multipole translation to shift the child ex-

pansions to the centre of the parent square.

for l = L − 1, . . . , 0 do

for i = 0, . . . , 4l − 1 do
Construct Φl,i from

Φl+1,children(i)

end

end

Downward pass:

By traversing from coarsest mesh to finest mesh the local expansions Ψl,i are

formed in each square on each mesh level.

For l ∈ {0, . . . ,L − 1} do:

On a layer l translate the local expansion

of each parent on layer l− 1 to the centres

of the 4 child squares

for i = 0, . . . , 4l − 1 do

Construct Ψ̄l,i from the local to

local translation of Ψl−1,parent(i)

end

Construct Ψl,i though multipole to local

(MTL) translation of expansions in the in-

teraction list (IL) of square i

for i = 0, . . . , 4l − 1 do

Ψl,i ← Ψ̄l,i

for j ∈ IL(i) do
Ψl,i ← Ψl,i + MTL(Φl,j)

end

end

In the upward pass multipole expansions are computed on levels 0 and 1, however,

with free space boundary conditions there are no well separated squares on these two

mesh levels. In this scenario, the downward pass is initialised by setting Ψ0,0 = Ψ̄0,0 =

Ψ1,i = Ψ̄1,i = 0 for all i. Given the local expansions ΨL−1,i the potential energy can

be computed for each charge using Algorithm 19. A pass of Algorithms 18 and 19 is

illustrated in Figure 4-11 which shows the propagation of information to and from a single

107

4.3. Fast Multipole Method

square on the finest mesh level.

Algorithm 19: 2D FMM algorithm to compute the interactions between charges

via p-term local expansions and direct charge-charge interactions.

Input: N charges and local expansions ΨL−1,i.

Output: Potential energies and optionally forces.

At the end of the downward pass the expansions ΨL−1,i have been computed. To

compute the potential energy and force of each charge the expansions ΨL−1,i are

used in conjunction with a local direct calculation,

For a charge in square i the expansion

ΨL−1,i approximates the potential field

from all squares well separated from i on

level L − 1.

foreach square i = 0, . . . , 4L−1 − 1 do

foreach charge k in i do
Compute interactions with well

separated charges via ΨL−1,i

end

end

For a given charge k in square i the in-

teractions with other charges in square i

and in the 8 nearest neighbour squares of

square i are computed directly.

foreach square i = 0, . . . , 4L−1 − 1 do

foreach charge k in i do
Compute interactions with

charges in i and the nearest

neighbours of i directly

end

end

108

Chapter 4. Modern Algorithms for Electrostatic Interactions

M

l = 3

M

M

l = 2

M

M

l = 1

up up

(*)
l = 1

L

L

l = 2

L

L

M

M

M

MMMM

l = 3

L

M

M

M

M

M

M

MMMMM

M

M

M

MMMMM

MMMMM

M

M

M

downdown

Figure 4-11: Overview of the flow of information to and from the grey square in a pass of the
2D FMM. Multipole to Multipole and Local to Local translations are illustrated with solid line
arrows. Multipole to Local translations are denoted by dashed line arrows. For clarity multipole to
local arrows are omitted on mesh level 3; the multipole source locations are indicated by “M” and
the centre of local expansions by “L”. The arrow denoted by “(*)” indicates a generic boundary
condition method on level 0 that converts the p-term expansion Φ0,0 to Ψ0,0 if applicable.

Free Space and Periodic Boundary Conditions

The simplest boundary conditions to consider are free space boundary conditions where

the simulation domain is surrounded by an infinite vacuum. Free space boundaries can

be implemented in the 2D and 3D method by setting Ψ0,0 = Ψ̄0,0 = Ψ1,i = Ψ̄1,i = 0 and

truncating interaction lists at the boundaries of the domain.

Simulations often require periodic boundary conditions, the potential at a point z in

the primary image due to all periodic images is given by

ϕp(z) =
∑
n 6=~0

ϕn(z), (4.110)

where n ∈ Z2 indexes periodic images and ϕn(z) is the potential induced by periodic image

n at the point z. In Figure 4-12 each square is an image of the simulation domain and the

centre grey square is the primary image. At the end of the upward pass of the FMM the

multipole expansion Φ0,0 approximates the potential induced by the primary image and

is valid in well separated images. Hence the copies of Φ0,0 centred in the hashed region of

Figure 4-12 can be evaluated in the primary image and copies in the white region cannot

be evaluated in the primary image.

109

4.3. Fast Multipole Method

Figure 4-12: Simulation domain and periodic images. Central grey image represents the simula-
tion domain, all other squares represent periodic images. The multipole expansion Φ0,0 centred in
squares in the white region is not valid in the primary image.

We split the potential induced by periodic images into two components, one from

periodic images that are well separated from the primary image and hence the multipole

expansion Φ0,0 can be evaluated, and a second component containing the adjacent images:

ϕp(z) =
∑
|n|∞>1

ϕn(z) +
∑
|n|∞=1

ϕn(z), (4.111)

where |n|∞ denotes the infinity norm of n. The first term in Equation (4.111) refers to

the diagonally hatched region of Figure 4-12 and the second term refers to the white

region. The second summation over the adjacent squares is readily computed in practice

by allowing interaction lists used in the downwards pass of the algorithm to pass over the

boundary and index squares in periodic images. Secondly, in the direct charge to charge

stage of the downward pass charges which reside in squares on the edge of the domain

must consider interactions with charges over the periodic boundary.

For example, with free space boundary conditions all squares on mesh level l = 1 have

empty interaction lists as there are no well separated squares. However, with periodic

boundary conditions all squares on mesh level l = 1 have “complete” interaction lists that

only involve squares in the periodic images. Figure 4-13 illustrates the primary image (in

grey) surrounded by the adjacent periodic images (in white). The crosses in the figure

indicate the required interaction list required to compute Ψ1,P under the assumption that

Ψ̄1,P contains the contribution from all well separated periodic images.

110

Chapter 4. Modern Algorithms for Electrostatic Interactions

P

Figure 4-13: Interaction list marked with crosses for square P . The grey square indicates the
primary image and white squares indicate periodic images. Dotted lines indicate boundaries between
the four squares per image.

The contribution to ϕp(z) from all well separated periodic images is Ψ0,0. We assume

that the total charge a0 in the domain is zero otherwise Ψ0,0 will be infinite. The multipole

expansion at the centre of each well separated periodic image is translated to a local

expansion at the centre of the primary image by

Ψ0,0 =
∑
|n|∞>1

(∞∑
k=1

ak
(−zn)k

+

p∑
l=1

zl

[∞∑
k=1

(−1)k
(
l + k − 1

k − 1

)
ak

zk+l
n

])
, (4.112)

=

∞∑
k=1

ak(−1)k

 ∑
|n|∞>1

1

zkn

+

p∑
l=1

zl

 ∞∑
k=1

(−1)kak

(
l + k − 1

k − 1

) ∑
|n|∞>1

(
1

zk+l
n

) ,
(4.113)

where zn ∈ C is the centre of the periodic image n. This summation over the infinite

lattice of periodic images is not initially well defined as terms of the form

∑
|n|∞>1

1

zmn
, (4.114)

are conditionally convergent for m < 3, for m ≥ 3 the sum can be precomputed and

stored.

Greengard and Rokhlin [31] propose a solution that ensures the summation is con-

vergent in 2D by imposing further physically realistic restrictions. For the m = 1 case

Greengard and Rokhlin consider a system with a single unit charge in the centre of the

box, in the periodic system each charge has a net force of zero due to Newton’s Third

Law. The force on the charge in the primary image is given by

∑
n

(
− d

dz
log(z)

∣∣∣∣
z=zn

)
=
∑
n

−1

zn
. (4.115)

111

4.3. Fast Multipole Method

Hence if we assert that the net force on the charge in the primary is zero then we deduce

∑
n

−1

zn
= 0 =

∑
n

1

zn
. (4.116)

Hence in the two summations in Equation (4.113) that are conditionally convergent the

m = 1 case is set to be zero. Greengard and Rokhlin make a similar argument with a

infinite lattice of dipoles and deduce that for the m = 2 case

∑
n

1

z2
n

= π. (4.117)

We discuss the summation in 3D in section 4.3.2. In summary periodic boundary con-

ditions are realised in 2D by computing Ψ0,0 via a summation over all periodic images

and on mesh level l the values of Ψl,i are computed by allowing interaction lists to index

squares in periodic images.

4.3.2 Three Dimensional Fast Multipole Method

This section provides a working overview of the 3D fast multipole method described by

Greengard [32, 30]. The 3D FMM algorithm is very similar in structure to the 2D al-

gorithm, many components are directly replaced by their 3D counterparts. For brevity

proofs are omitted but are given by Greengard in [30]. As the fundamental solution to

Poisson’s Equation has a different functional form in 3D from 2D, different expansions are

required to describe the 3D potential fields. This description of the algorithm is written

in spherical coordinates where a point P in space is described by a tuple (r, θ, φ) where

r ∈ [0,∞) is the radial distance to the origin, θ ∈ [0, π] is the polar angle measured from

the z-axis and φ ∈ [0, 2π) is the azimuthal angle measured from the x-axis as in Figure

4-14.

x

y

z

P

φ

θ

Figure 4-14: Spherical coordinate convention.

As discussed in Section 4.1, the potential ϕ at a point P = (r, θ, φ) induced by a unit

charge at the point P0 = (ρ, α, β) is

ϕ(P) =
1

R
, (4.118)

112

Chapter 4. Modern Algorithms for Electrostatic Interactions

where R is the separation distance between the two points. The 3D FMM writes the 1/R

potential as an infinite sum of terms, each term is a product of a P dependent function

and a P0 dependent function. If γ is the angle between the vectors P and P0 then by the

cosine rule

R2 = r2 + ρ2 − 2rρ cos(γ). (4.119)

Hence
1

R
=

1

r
√

1− 2uµ+ µ2
, (4.120)

where

u = cos(γ), u =
ρ

r
. (4.121)

For µ < 1 the inverse square root in Equation (4.120) can be written as the series

1√
1− 2uµ+ µ2

=

∞∑
n=0

Pn(u)µn, (4.122)

where Pn(u) is the Legendre Polynomial of degree n. Computationally, the expansion in

Equation (4.122) is not particularly useful as both terms in the summation couple the

source and destination points.

We use the spherical harmonics to obtain an expansion where summation terms de-

pend on either the source or destination point. The spherical harmonics are solutions to

the angular component of the Laplace equation in spherical coordinates. Any harmonic

function ϕ can be written as an expansion around the origin

ϕ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Lmn r
nY m

n (θ, φ), (4.123)

where Lmn are known as the local moments. This expansion is referred to as a local

expansion as when the expansion is truncated at n = p− 1 the resulting p-term expansion

is accurate near to the centre of expansion. A harmonic function ϕ can also be written as a

multipole expansion which when truncated is valid far away from the centre of expansion,

ϕ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Mm
n

rn+1
Y m
n (θ, φ), (4.124)

where Mm
n are known as multipole moments of the expansion. We provide the error

bounds for multipole and local expansions in later sections.

The exact definition of the spherical harmonics Y m
n (θ, φ) varies between physics text-

book sources, we use the definition

Y m
n (θ, φ) =

√
(n− |m|)!
(n+ |m|)!P

|m|
n (cos(θ)) exp(imφ), (4.125)

where Pmn is the (n,m)th associated Legendre polynomial and i =
√
−1.

113

4.3. Fast Multipole Method

The following theorem from [30, 32] relates the Legendre polynomials to the spherical

harmonics and allows Equation (4.122) to be rewritten in a computationally more useful

manner.

Addition theorem for Legendre polynomials

Consider the spherical coordinate points P = (r, θ, φ) and Q = (ρ, α, β) and let γ be the

angle subtended between them. Then

Pn(cos(γ)) =
n∑

m=−n
Y −mn (α, β)Y m

n (θ, φ). (4.126)

Through direct substitution Equation (4.120) is rewritten as

1

R
=

∞∑
n=0

n∑
m=−n

ρnY −mn (α, β)
Y m
n (θ, φ)

rn+1
, (4.127)

which is computationally more useful as summation terms can be grouped into those

dependent on the source point and those dependent on the evaluation point. In the 3D

FMM this identity allows the charge density of a cluster of charges to be approximated at

some central point by an expansion. The expansion can then be evaluated repeatedly at

far away points to give the potential field from the cluster of charges.

Multipole expansion

Here we describe the 3D variant of the 2D multipole expansion in Equation (4.82). Suppose

that l charges {qi, i = 1, . . . , l} are located at positions {Qi = (ρi, αi, βi), i = 1, . . . , l} such

that |ρi| < a∀i. Then at a point P = (r, θ, φ) where r > a the potential ϕ(P) is given by

ϕ(P) =

∞∑
n=0

n∑
m=−n

Mm
n

rn+1
Y m
n (θ, φ), (4.128)

where

Mm
n =

l∑
i=1

qiρ
n
i Y
−m
n (αi, βi). (4.129)

If the infinite sum is truncated at p ≥ 1 terms then an error bound is given by∣∣∣∣∣ϕ(P)−
p∑

n=0

n∑
m=−n

Mm
n

rn+1
Y m
n (θ, φ)

∣∣∣∣∣ ≤ 1

r − a
(a
r

)p+1
l∑

i=1

|qi|. (4.130)

The coefficients Mm
n ∈ C(p+1)2 describe the potential induced by the l charges at a

point P that is well separated from the origin, the centre of this multipole expansion is at

the origin. The following operation translates an expansion centred around the point Q to

an expansion centred around the origin at the expense of increasing the radius at which

114

Chapter 4. Modern Algorithms for Electrostatic Interactions

it can be accurately evaluated.

Translation of a multipole expansion

As in the 2D FMM method (Equations (4.90) and (4.91)), multipole-to-multipole trans-

lation allows several multipole expansions to be combined by shifting the centres of the

expansions to a common origin, the coefficients can then simply be added together. How-

ever, the radius of the sphere in which the new expansion is invalid increases to the sum

of the original radius plus the distance the expansion was translated through.

Suppose that l charges {qi, i = 1, . . . , l} are located within a sphere D centred at

Q = (ρ, α, β) with radius a, and that at a point P = (r, θ, φ) outside D, the potential due

to these charges is given by the expansion

ϕ(P) =

∞∑
n=0

n∑
m=−n

Omn
r′n+1

Y m
n (θ′, φ′), (4.131)

where P − Q = (r′, θ′, φ′). Then the expansion can be translated to the origin such that

for a point P = (r, θ, φ) outside the sphere of radius a+ ρ centred at the origin,

ϕ(P) =

∞∑
j=0

j∑
k=−j

Mk
j

rj+1
Y k
j (θ, φ), (4.132)

where

Mk
j =

j∑
n=0

n∑
m=−n

1

Akj
Ok−mj−n i

|k|−|m|−|k−m|Amn A
k−m
j−n ρ

nY −mn (α, β), (4.133)

and

Amn =
(−1)n√

(n−m)!(n+m)!
. (4.134)

Furthermore, the error in the potential at the point P from a p-term expansion is bounded

by ∣∣∣∣∣∣ϕ(P)−
p∑
j=0

j∑
k=−j

Mk
j

rj+1
Y k
j (θ, φ)

∣∣∣∣∣∣ ≤
(∑l

i=1 |qi|
r − (a+ ρ)

)(
a+ ρ

r

)p+1

(4.135)

Multipole to local conversion

This conversion and translation of a multipole expansion to a local expansion is identical

in process to the 2D variant in Equations (4.100, 4.101). Suppose that l charges {qi, i =

1, . . . , l} are located within a sphere D centred at Q = (ρ, α, β) with radius a, and that

ρ > (c + 1)a with c > 1. Then the multipole expansion in Equation (4.132) converges

inside a sphere D0 of radius a centred at the origin. Inside D0 the potential induced by

115

4.3. Fast Multipole Method

charges {qi, i = 1, . . . , l} is described by the local expansion

ϕ(P) =
∞∑
j=0

j∑
k=−j

LkjY
k
j (θ, φ)rj , (4.136)

where,

Lkj =
∞∑
n=0

n∑
m=−n

Omn i
|k−m|−|k|−|m|Amn A

k
jY

m−k
j+n (α, β)

(−1)nAm−kj+n ρ
j+n+1

. (4.137)

Furthermore, for p ≥ 1,∣∣∣∣∣∣ϕ(P)−
p∑
j=0

j∑
k=−j

LkjY
k
j (θ, φ)rj

∣∣∣∣∣∣ ≤
(∑l

i=1 |qi|
a(c− 1)

)(
1

c

)p+1

(4.138)

Translation of a local expansion

The following result in Equation (4.141) provides the machinery to shift the centre of a

local expansion similar to the 2D case described in Equations (4.107, 4.109). As in the 2D

case, if two local expansions share a centre of expansion then a single local expansion may

be formed from the sum of the coefficients. Let Q = (ρ, α, β) be the origin of the p-term

local expansion

ϕ(P) =

p∑
n=0

n∑
m=−n

Omn Y
m
n (θ′, φ′)r′j , (4.139)

where P = (r, θ, φ) and P −Q = (r′, θ′, φ′). Then

ϕ(P) =

p∑
j=0

j∑
k=−j

LkjY
k
j (θ, φ)rj , (4.140)

where

Lkj =

p∑
n=j

n∑
m=−n

Omn i
|m|−|m−k|−|k|Am−kn−j A

k
jY

m−k
n−j (α, β)ρn−j

(−1)n+jAmn
. (4.141)

The structure of the 3D FMM algorithm is identical to the 2D variant. In the 2D

case a hierarchy of mesh levels was placed on the simulation domain where mesh level l

subdivided the domain into 4l identical squares. For a 3D simulation domain the squares

are replaced with cubes such that a mesh level l subdivides the domain into 8l identical

cubes. For convenience the following notation is defined:

Φl,i the p-term multipole expansion about the centre of cube i on level l that describes

the potential induced by charges within cube i.

Ψl,i the p-term local expansion at the centre of cube i on level l that describes the

potential induced by all charges outside the cube i and its 26 nearest neighbours.

Ψ̄l,i the p-term expansion about the centre of cube i on level l that describes the potential

116

Chapter 4. Modern Algorithms for Electrostatic Interactions

induced by all charges outside the parent of the cube and outside the 26 nearest

neighbours of this parent.

TMM the linear operator mapping the multipole moments {Okj : j ∈ [0, p], k ∈ [−j, j]} to

the multipole moments {Mk
j : j ∈ [0, p], k ∈ [−j, j]} using Equation (4.133).

TML the linear operator mapping the multipole moments {Okj : j ∈ [0, p], k ∈ [−j, j]} to

the local moments {Lkj : j ∈ [0, p], k ∈ [−j, j]} using Equation (4.137).

TLL the linear operator mapping the local moments {Okj : j ∈ [0, p], k ∈ [−j, j]} to the

local moments {Lkj : j ∈ [0, p], k ∈ [−j, j]} using Equation (4.141).

interaction list (IL): The interaction list for a cube i on level l contains cubes on level l

which are the children of the parent cube of i and its nearest neighbours which are

well separated from cube i. In general, this list contains 189 entries, the 2D variant

is illustrated in Figure 4-9.

A pass of the algorithm is initialised by choosing a value of p, the number of expansion

terms, based on the desired accuracy. For an algorithm that exhibits a computational

complexity O(N) the number of mesh levels is chosen as L ≈ log8(N).

117

4.3. Fast Multipole Method

Algorithm 20: 3D FMM algorithm to compute Ψl,i for a system with free space

boundary conditions.

Input: N charges, a maximum level of mesh refinement L and a number of terms p.

Output: Ψl,i

Upward pass:

Form the p-term multipole expansions at

the centre of each cube on the finest level.

for i = 0, . . . , 8L−1 − 1 do
Construct ΦL−1,i

end

Form the p-term multipole expansion on

each coarser level by using TMM to shift

the child expansions to the centre of the

parent cube.

for l = L − 1, . . . , 0 do

for i = 0, . . . , 8l − 1 do

Φl,i = ~0

for k ∈ children(i) do
Φl,i ← Φl,i + TMM(Φl+1,k)

end

end

end

Downward pass:

By traversing from coarsest mesh to finest mesh the local expansions Ψl,i are

formed in each square on each mesh level.

For l ∈ {0, . . . ,L − 1} do:

Translate each local expansion Ψl−1,i on

layer l − 1 to the centres of the 8 child

cubes on layer l using the TLL operator.

for i = 0, . . . , 8l − 1 do

Ψ̄l,i ← TLL(Ψl−1,parent(i))

end

Construct Ψl,i though multipole to local

translation of expansions in the interaction

list (IL) of cube i

for i = 0, . . . , 8l − 1 do

Ψl,i ← Ψ̄l,i

for j ∈ IL(i) do
Ψl,i ← Ψl,i + TML(Φl,j)

end

end

As in the 2D version, in the upward pass multipole expansions are computed on levels

0 and 1, with free space boundary conditions there are no well separated cubes on these

two mesh levels thus these two levels can be neglected in this scenario. Hence with free

space boundary conditions Ψ0,0 = Ψ̄0,0 = Ψ1,i = Ψ̄1,i = 0 for all i.

118

Chapter 4. Modern Algorithms for Electrostatic Interactions

Given the local expansions ΨL−1,i the potential energy and force can be computed for

each charge using Algorithm 21. The electric field is given by the gradient of the potential

field and is required to compute forces, Appendix A.4 derives the equations to compute

the electric field from a local expansion.

Algorithm 21: 3D FMM algorithm to compute the interactions between charges

via p-term local expansions and direct charge-charge interactions.

Input: N charges and local expansions ΨL−1,i.

Output: Potential energies and optionally forces.

At the end of the downward pass the expansions ΨL−1,i have been computed. To

compute the potential energy and force of each charge the expansions ΨL−1,i are

used in conjunction with a local direct calculation,

For a charge in cube i the expansion ΨL−1,i

approximates the potential field from all

cubes well separated from i on level L− 1.

foreach cube i = 0, . . . , 8L−1 − 1 do

foreach charge k in i do
Compute interactions with

well separated charges via

ΨL−1,i

end

end

For a given charge k in cube i the interac-

tions with other charges in cube i and in

the 26 nearest neighbour cubes of cube i

are computed directly.

foreach cube i = 0, . . . , 8L−1 − 1 do

foreach charge k in i do
Compute interactions with

charges in i and the nearest

neighbours of i directly

end

end

Computational complexity

If the number of levels L is approximately log8(N) then the average number of charges

per cube on the finest level s is O(1). Furthermore, the total number of cubes Nc is O(N)

as

Nc =

L−1∑
r=0

8r =
1

7

(
8L − 1

)
=

1

7

(
8log8(N) − 1

)
= O(N). (4.142)

The computational complexity of each stage of the algorithm is as follows:

• Upward pass

119

4.3. Fast Multipole Method

1. Construction of multipole expansions from charges: O(Np2), each particle con-

tributes to one multipole expansion consisting of p2 coefficients.

2. Multipole to multipole translation: O(Np4), there are Nc cubes which per-

form one multipole to multipole translation via the TMM operator which has

computational complexity O(p4).

• Downward pass

1. Local to local translation: O(Np4), there are Nc cubes which perform one local

to local translation via the TLL operator which has computational complexity

O(p4).

2. Multipole to local translation: O(Np4), there are Nc cubes which perform 189

multipole to local translations via the TML operator which has computational

complexity O(p4). This step forms the majority of the computational work

which manipulates multipole and local expansions.

3. Interaction with the “well separated” field though local expansions: O(Np2),

the interaction between each charge and other charges in well separated cubes

occurs through the local expansion which consists of p2 terms.

4. Direct charge-charge interactions: O(N), each charge interacts directly with

charges in the cube it resides in and the 26 neighbouring cubes, each cube

contains O(1) charges by construction.

Hence the overall computational complexity of the method is O(N). Although this is

linear in the number of particles the coefficient is highly non-trivial and is governed by

the O(p4) complexity of the translation operators. In particular the computational cost

of the multipole to local operations is the most significant.

Periodic boundary conditions

As in the 2D FMM, particular attention is given to the computation of Ψ0,0 with periodic

boundary conditions. Computing Ψ0,0 requires the summation over the infinite lattice of

periodic images excluding the primary image and its nearest neighbours. More formally,

given expansion coefficients Omn such that

Φ0,0 =

p∑
n=0

n∑
m=−n

Omn
rn+1

Y m
n (θ, φ), (4.143)

the objective is to compute coefficients Lkj such that

Ψ0,0 =

p∑
j=0

j∑
k=−j

Lkj r
jY k
j (θ, φ). (4.144)

120

Chapter 4. Modern Algorithms for Electrostatic Interactions

We consider the lattice of well separated periodic images, as illustrated for the 2D

case in Figure 4-12, and define ~r~ν = (ρ~ν , α~ν , β~ν) to be the vector to the centre of a well

separated image ~ν ∈ {~x ∈ Z3 : |~x|∞ > 1}. By applying the multipole to local operator

TML to each well separated periodic image we determine that the coefficients of the local

expansion Ψ0,0 are given by

Lkj =
∑
~ν

TML (Omn , ~r~ν) , (4.145)

=
∑
~ν

(
p∑

n=0

n∑
m=−n

Omn i
|k−m|−|k|−|m|Amn A

k
jY

m−k
j+n (α~ν , β~ν)

(−1)nAm−kj+n ρ
j+n+1
~ν

)
, (4.146)

as can be deduced from the definition of TML and Equation (4.137). As the images all

share the same multipole coefficients the multipole coefficients factor out of the summation

over periodic images,

Lkj =

p∑
n=0

n∑
m=−n

Omn i
|k−m|−|k|−|m|Amn A

k
j

(−1)nAm−kj+n

∑
~ν

(
Y m−k
j+n (α~ν , β~ν)

ρj+n+1
~ν

)
, (4.147)

=

p∑
n=0

n∑
m=−n

Omn i
|k−m|−|k|−|m|Amn A

k
j

(−1)nAm−kj+n

Rm−kj+n , (4.148)

where

Rmn =
∑
~ν

Y m
n (α~ν , β~ν)

ρn+1
~ν

. (4.149)

We provide an overview of the method by Amisaki [7] which applies an Ewald derived ap-

proach to compute the matrix Rmn for a system that exhibits no net charge and zero dipole

moment. Although this process is potentially expensive, once the matrix R is computed

it can be reused until the extent of the simulation domain is changed. The method uses

the gamma function Γ(z), incomplete gamma function γ(a, x) and complementary gamma

function Γ(a, x) defined as

Γ(z) =

∫ ∞
0

tz−1 exp(−t)dt = λz
∫ ∞

0
tz−1 exp(−λt)dt. (4.150)

γ(a, x) =

∫ x

0
ta−1 exp(−t)dt, (4.151)

Γ(a, x) =

∫ ∞
x

ta−1 exp(−t)dt. (4.152)

Starting with the gamma function and the substitutions λ = r2
ν and z = n + 1/2, the

matrix R is written as

Rmn (~r~ν) = Fmn (~r~ν) +Gmn (~r~ν), (4.153)

121

4.3. Fast Multipole Method

where

Fmn (~r~ν) =
Y m
n (α~ν , β~ν)

Γ(n+ 1
2)

∫ κ2

0
rn~ν t

n−1/2 exp(−r2
~νt)dt, (4.154)

=
Y m
n (α~ν , β~ν)γ(n+ 1/2, κ2r2

~ν)

Γ(n+ 1
2)rn+1

~ν

, (4.155)

Gmn (~r~ν) =
Y m
n (α~ν , β~ν)

Γ(n+ 1
2)

∫ ∞
κ2

rn~ν t
n−1/2 exp(−r2

~νt)dt, (4.156)

=
Y m
n (α~ν , β~ν)Γ(n+ 1/2, κ2r2

~ν)

Γ(n+ 1
2)rn+1

~ν

. (4.157)

The magnitude of Gmn (~r~ν) decays rapidly as r~ν increases and is analogous to the short-

range component of the Ewald summation method, the matrix Gmn is computed directly

for periodic images within a certain distance of the primary image. The convergence of

the summation in the computation of Fmn is governed by the 1/rn+1
~ν term, this summation

is computed in reciprocal space see [7] for details.

For a cuboid simulation cell Amisaki argues that by angular symmetry the matrix R

is real valued and that the (n,m)th entry is zero if n or m are odd. Furthermore, if the

simulation cell is cubic by using spherical symmetry Amisaki claims the (n,m)th term is

zero if m 6= 0 (mod 4) or if n = 2. For large values of r the summation
∑

~ν 1/rn+1
~ν can be

estimated by the integrals in Section 4.1.1 where we demonstrated the integral cannot be

truncated for n < 3. With these properties of the matrix R all summations of the form∑
~ν 1/rn+1

~ν for n < 3 are chosen to be zero, hence all conditionally convergent summations

have been assigned a physically sensible value.

For each n and m the corresponding entry Rmn is computed as the addition of a sum-

mation over reciprocal space and summation in real space, finally the contribution from

the nearest neighbours are explicitly subtracted,

Rmn = ∑
~h s.t. v~h<hc

and ~h6=~0

inπn−1/2Y m
n (α~h, β~h)vn−2

~h
exp(−π2v2

~h
/κ2)

Γ(n+ 1/2)V

+
∑
~ν∈Z3

s.t. ~ν 6=~0, r~ν<rc

Y m
n (α~ν , β~ν)Γ(n+ 1/2, κ2r2

~ν)

Γ(n+ 1/2)rn+1
~ν

−
∑
~ν∈Z3

s.t. |~ν|∞=1

Y m
n (α~ν , β~ν)

rn+1
~ν

,

(4.158)

where hc is a maximum frequency to consider in reciprocal space and rc is a cutoff in

real space. The index ~h = (ha, hb, hc) ∈ Z3 denotes the vector ha~a
∗ + hb~b

∗ + hc~c
∗ in

reciprocal space with corresponding spherical coordinates (v~h, α~h, β~h). The parameters

122

Chapter 4. Modern Algorithms for Electrostatic Interactions

hc, rc and κ should be chosen such that the errors induced in Ψ0,0 by the errors in the

elements of R are negligible in comparison to the global error, see [7] for a discussion on

parameter selection. From an implementation standpoint, the matrix R is precomputed

once at the beginning of the simulation which induces a relatively tiny overall cost, hence

it is preferable to be “pessimistic” in the parameter selection stage to ensure accuracy is

not lost in the application of the matrix R.

Rotation Matrices

For a p-term expansion the multipole to local operation denoted by TML exhibits a O(p4)

computational complexity if performed with Equation (4.137). Greengard and Rokhlin

[32] present the following approach to reduce the computational complexity to O(p3) by

using rotation matrices. Consider a translation vector parallel to the z axis: (ρ, 0, 0), the

multipole to local translation requires the evaluation of

Y m
n (0, 0) =


√

(n−|m|)!
(n+|m|)! if m = 0

0 otherwise
. (4.159)

Hence for a p-term expansion Equation (4.137) reduces to

Lkj =

p∑
n=0

OknA
k
nA

k
jY

0
j+n(0, 0)

(−1)nA0
j+nρ

j+n+1
, (4.160)

which allows z-direction multipole to local translation with O(p3) computational complex-

ity as there are p2 expansion coefficients indexed by j and k that each require p operations

to translate. The operator T zML(ρ) denotes the application of TML along the z-axis by

distance ρ through applying Equation (4.160). The same approach can be applied to the

multipole to multipole and local to local translations, however, these operations do not

significantly contribute to the computation time and hence we focus on the multipole to

local translation case.

To apply the T zML operator we require machinery to rotate the coordinate systems of

multipole expansions and local expansions. Assume the potential at a point P = (r, θ, φ)

is given by

ϕ(P) =
∞∑
n=0

n∑
m=−n

Bm
n Y

m
n (θ, φ), (4.161)

where Bm
n refers to a local or multipole expansion at the origin:

Bm
n =

{
Lmn r

n local expansion
Mm
n

rn+1 multipole expansion
(4.162)

If the coordinate system is rotated around the z-axis through an angle β then in the new

123

4.3. Fast Multipole Method

coordinate system P = (r, θ, φ′) and

ϕ(P) =
∞∑
n=0

n∑
m=−n

eimβBm
n Y

m
n (θ, φ′). (4.163)

Rotation of multipole or local coefficients Omn around the z-axis through angle β is denoted

by the operator Rz(β) : Omn 7→ Omn exp(imβ). The operator Rz(β) is diagonal and hence

exhibits a O(p2) computational complexity.

The second rotation operation is a rotation of the coordinate system around the y-

axis. Assuming the potential at the point P = (r, θ, φ) is given by Equation (4.161) and

the coordinate system is rotated around the y-axis through an angle α then in the new

coordinate system P = (r, θ′, β) and

ϕ(P) =
∞∑
n=0

n∑
m=−n

B̄m
n Y

m
n (θ′, φ), (4.164)

where

B̄m
n =

{
rn
∑n

m′=−n d
m,m′
n (α)Lm

′
n local expansion

1
rn+1

∑n
m′=−n d

m,m′
n (α)Mm′

n multipole expansion
(4.165)

and dm,m
′

n (α) is the Wigner d-matrix [80, 28]. Rotation of coefficients around the y-

axis through angle α is denoted by the operator Ry(α) : Omn 7→
∑n

m′=−n d
m,m′
n Om

′
n and

has O(p3) computational complexity. Combining the rotation operations and z-direction

translation operation gives

TML = Rz(−β)Ry(−α)T zML(ρ)Ry(α)Rz(β), (4.166)

where (ρ, α, β) is the translation vector. By using Equation (4.166) the operators Rz, Ry
and T zML directly replace the operator TML in Algorithm 20 without any further modifi-

cation to the algorithm. An overview of this rotation matrix approach is illustrated in

Figure 4-15.

124

Chapter 4. Modern Algorithms for Electrostatic Interactions

O

x

y

z
x

y

z

β

α

TML(ρ, α, β)

P

x

y

z
x

y

z

x

y

z

O

x

y

z

Ry(α)Rz(β)

T z
ML(ρ)

Rz(−β)Ry(−α)

P

TML(ρ, α, β)

O

P

Figure 4-15: Left: original multipole to local translation TML along the vector (ρ, α, β) with O(p4)
computational complexity. Right: multipole to local translation performed by (1) rotating coordinate
frame with operation Ry(α)Rz(β) (2) z-direction multipole to local translation T z

ML along new z-
axis (3) rotate coefficients back into the original coordinate frame with operation Rz(−β)Ry(−α).

If all translation operators were modified to use rotation matrices then the complexity

of the 3D FMM would be reduced from O(Np4) to O(Np3). We only replace the multipole

to local translation, hence our implementation is still asymptotically O(Np4). In practice

the TML operator is applied≈ 189 times more often than TMM or TLL hence when p = O(10)

we see a significant improvement without using rotation matrices for these operators.

125

CHAPTER 5

IMPLEMENTATION OF ELECTROSTATIC INTERACTION

ALGORITHMS

We now discuss our implementations of the Ewald summation method and the FMM.

Sections 5.1 and 5.2 are published in the ParCo 2017 conference proceedings [74].

5.1 Ewald Implementation

We implemented the Ewald method within our abstraction and code generation framework

described in Sections 2.2 and 3.1. In summary, the short-range component is implemented

with a Local Particle Pair Loop and the long-range component is implemented with a pair

of Particle Loops and one GlobalArray.

Short Range Potential

By construction, the short-range potential φ(sr)(~r) rapidly converges to zero as the inter-

particle distance |~r| increases. We truncate the short-range contribution to the electrostatic

potential and force with a cutoff rc (see Section 4.2.1),

φ(sr)
rc (~r) =

∑
j with
|~r−~rj |<rc

qj
erfc (

√
α|~r − ~rj |)
|~r − ~rj |

(5.1)

~F (sr)
rc (~r) =

∑
j with
|~r−~rj |<rc

qiqj
~r − ~rj
|~r − ~rj |2

[
erfc (

√
α|~r − ~rj |)
|~r − ~rj |

+ 2

√
α

π
exp(−α|~r − ~rj |2)

]
.

The computational kernel for the local ParticlePair loop is given in Listing 5.1. The

position and charge data are stored per particle in ParticleDat data objects. Simi-

larly, the resulting forces and total potential energy are stored as a ParticleDat and a

GlobalArray object. Listing 5.2 shows the corresponding Python code for launching the

pair loop. In the C-kernel capitalised variables, such as REAL_CUTOFF_SQ, are constants

126

Chapter 5. Implementation of Electrostatic Interaction Algorithms

which are replaced by their numerical values at compile time using the kernel_consts

dictionary.

Listing 5.1: Implementation of the short range force in Equation (5.1) and total electrostatic

energy in the DSL for a Local Particle Pair Loop. Output: short-range potential energy u(sr) =∑N
i=1 U

(sr)
i , U

(sr)
i = qiφ

(sr)
rc (~ri) and short-range forces ~F

(sr)
rc (~ri).

double r0 = r.j[0] - r.i[0];

double r1 = r.j[1] - r.i[1];

double r2 = r.j[2] - r.i[2];

double r_sq = r0*r0 + r1*r1 + r2*r2; double r = sqrt(r_sq);

double mask = (r_sq < REAL_CUTOFF_SQ)? 1.0 : 0.0;

double r_m1 = 1.0/r;

double qiqj_rm1 = q.i[0] * q.j[0] * r_m1 * mask;

double term1 = qiqj_rm1*erfc(SQRT_ALPHA*r);

u[0] += 0.5* term1; // electrostatic energy

double term3 = -1.*r_m1*(qiqj_rm1 * TWO_SQRT_ALPHAOPI *

exp(MALPHA*r_sq) + r_m1*r_m1*term1); // force

F.i[0] += term3 * r0; F.i[1] += term3 * r1; F.i[2] += term3 * r2;

Listing 5.2: Python local ParticlePair loop creation and execution that reads ParticleDats for

positions ~ri and charges qi and increments the ParticleDat for the force ~F
(sr)
rc and GlobalArray

u(sr).

Define kernel

kernel = Kernel(’ewald_sr ’, kernel_code , kernel_consts)

Define and execute pair loop

pair_loop = PairLoop(kernel=kernel , shell_cutoff=rc ,

dat_dict ={’r’: Positions(access.READ),

’q’: Charges(access.READ),

’F’: Forces(access.INC),

’u’: u_sr(access.INC)})

pair_loop.execute ()

127

5.1. Ewald Implementation

Long Range Potential

The evaluation of the long-range potential at position ~ri can be written as

φ(lr)(~ri) =

|~k|<kc∑
~k 6=0

C~kAi,~k

N∑
j=1

A∗
j,~k
qj , (5.2)

=

|~k|<kc∑
~k 6=0

C~kAi,~kρ̂~k, (5.3)

where ρ̂~k =
N∑
j=1

A∗
j,~k
qj , (5.4)

A
j,~k

= exp
(
i~k · ~rj

)
, (5.5)

C~k = 4π/(V ~k2) exp
(
−~k2/(4α)

)
. (5.6)

For an optimal value of α we showed in Section 4.2.1 that kc ∝ N1/6. Hence the

number of reciprocal lattice points Nk within a sphere of radius kc is proportional to k3
c .

The expression in Equation (5.3) is essentially the product of a Nk × N matrix with a

vector of length N followed by a multiplication by a N ×Nk matrix.

Since the particles are distributed between p processors but all Fourier modes are

computed and stored on each processor the computational cost is ∝ NNk/p ∝ N3/2/p.

Every processor only calculates the contribution of all locally stored particles to every

Fourier mode. Combining the contributions of all particles to each of the Nk Fourier

modes therefore requires a global reduction of Nk ∝ N1/2 numbers, resulting in a total

computational cost of t = CN
(
N1/2

p + rN−1/2 log p
)

where the ratio r � 1 depends on

the relative cost of computation and communication on a particular machine. We expect

the code to scale well as long as N � rp log p.

The computation of the long-range potential is split into two ParticleLoops which

correspond to the Nk × N and N × Nk matrix-vector products described above. The

first iterates over all particles j and for each particle computes the contribution to ρ̂~k
defined in Equation (5.3) for all |~k| < kc. An outline of the computational kernel is shown

in Algorithm 22 (for brevity we do not show the corresponding C- and Python-code, but

outline the access descriptors). We order the entries in the GlobalArray ρ̂~k such that loops

over reciprocal vectors ~k are vectorised by the compiler (as confirmed by the generated

assembly code).

128

Chapter 5. Implementation of Electrostatic Interaction Algorithms

Algorithm 22: Computational kernel for the contribution to reciprocal space for a

particle j.

Data: position ~rj [READ], charge qj [READ]

Result: Reciprocal space ρ̂~k [INC]

foreach reciprocal vectors ~k 6= 0 such that |~k| < kc do
ρ̂~k 7→ ρ̂~k +A∗

j,~k
qj

end

Note that the calculation of ρ̂~k requires global reductions since each ~k-component

receives contributions from all particles in the system. This, however, is automatically

handled by the code generation system and requires no explicit coding for the user who

only writes the local kernel in line 2 of Algorithm 22. In our implementation we store

copies of the entire vector ρ̂~k on each MPI process and do not attempt a parallel domain

decomposition in ~k space. Since the number of reciprocal vectors grows∝
√
N this does not

lead to memory issues for moderately sized systems for which the Particle-Ewald method

is competitive. Given the vector ρ̂~k, the electrostatic energies and forces are calculated as

a second ParticleLoop using Equation (5.3) for each particle as in Algorithm 23.

Algorithm 23: Computational kernel to extract the long-range contribution from

reciprocal space.

Data: Position ~rj [READ], charge qj [READ], ρ̂~k [READ].

Result: Total electrostatic potential energy u(lr) [INC] and forces ~F
(lr)
j ≡ ~F (lr)(~rj)

[INC].

foreach reciprocal vectors ~k 6= 0 such that |~k| < kc do

u(lr) 7→ u(lr) + CkAj,~kqj ρ̂~k
~F

(lr)
j 7→ ~F

(lr)
j − i~kCkAj,~kqj ρ̂~k

end

The self-energy (not shown here) is calculated once at the beginning of the simulation

and the cost of this operation is amortised over the total runtime.

Optimisations

We present results for a CPU only implementation where we exploit the regular structure

of the reciprocal space. A point ~k in the reciprocal lattice is given by a linear combination

of the reciprocal lattice vectors with integer coefficients:

~k = g1
~G1 + g2

~G2 + g3
~G3, where g1, g2, g3 ∈ Z, (5.7)

129

5.2. Ewald Results

and ~G1, ~G2 and ~G3 are the reciprocal lattice vectors defined in Section 4.2. We assume

the simulation cell is a cuboid and hence can rewrite contributions to reciprocal space as

A
j,~k

= exp
(
i~k · ~rj

)
, (5.8)

= exp
(
i
[
g1
~G1 + g2

~G2 + g3
~G3

]
· ~rj
)
, (5.9)

= exp
(
ig1

~G1,x~rj,x

)
exp

(
ig2

~G2,y~rj,y

)
exp

(
ig3

~G3,z~rj,z

)
, (5.10)

= exp
(
i ~G1,x~rj,x

)g1
exp

(
i ~G2,y~rj,y

)g2
exp

(
i ~G3,z~rj,z

)g3
. (5.11)

Hence we can compute entries of A by computing exp
(
i ~G1,x~rj,x

)
, exp

(
i ~G2,y~rj,y

)
and

exp
(
i ~G3,z~rj,z

)
once and performing multiplication to compute successively higher powers.

This optimisation is significant as computing exponentials is vastly more expensive than

multiplication.

In a theoretical GPU implementation of Ewald summation the short-range component

would be performed identically using a GPU Particle Pair Loop. For the long-range

component, our algorithm to compute A on CPUs is not suitable for GPUs as for each

charge j the contribution to ρ(~k) would cause write contention if we assigned each thread

a charge. Alternatively, we could assign GPU threads to reciprocal space vectors but then

we would be unable to efficiently apply the optimisation that avoids evaluating exponential

functions.

5.2 Ewald Results

5.2.1 Computational Complexity

With a correct choice of α the Ewald method exhibits O(N3/2) computational cost. Figure

5-1 confirms this by plotting the time per iteration for a NaCl salt simulation against

particle count N at a fixed density of 1 atom per (2.5Å)3. We include repulsive Lennard-

Jones interactions to prevent the particle distribution from collapsing. However, for sizable

particle counts the dominant computational cost is the electrostatic forces: for N = 1.8·105

particles 87% of the time is spent computing Coulombic interactions. For all tests we

set the error tolerance to 10−6 and vary the parameters α and rc (which balance the

work between the real- and Fourier-space) to minimise the runtime. For our framework

the pair (α, rc) takes values between (0.062, 13.5Å) for N = 1728 and (0.013, 29.2Å) for

N = 1.8 · 105. For DL POLY 4 [41] we choose a cutoff value of rc = 10Å. All runs are

carried out on the “Balena” cluster; one node consists of two Intel E5-2650v2 8-core CPUs.

130

Chapter 5. Implementation of Electrostatic Interaction Algorithms

1.7
· 10

3

4.1
· 10

3

8.0
· 10

3

2.2
· 10

4

4.7
· 10

4

8.5
· 10

4

1.8
· 10

5

Particle count (N)

10−2

10−1

100

T
im

e
p

er
it

er
at

io
n

(s
) Framework

DL POLY 4

N3/2

N1

Figure 5-1: Time per iteration against particle count for an NaCl system on a single 8 core CPU
using OpenMP (our framework) or pure MPI (DL POLY 4).

Both implementations show at least the expected scaling with a power of N . For small

particle numbers the SPME method used by DL POLY 4 is in the same ballpark as our

implementation. The SPME method obviously outperforms our method for larger particle

counts where it is an order of magnitude faster.

5.2.2 Strong Scaling

To study the parallel scalability we set the number of particles to N = 3.3 · 104 in a box

of size 80Å × 80Å × 80Å (at the same density as in Section 5.2.1) and increase the core

count. The spatial domain cannot be decomposed into regions of side length less than

the cutoff rc which prevents repeating the runs in Section 5.2.1 on more than one node.

To address this, we fixed rc = 19Å (rc = 10Å for DL POLY 4) at the price of using a

non-optimal value of α (0.032 instead of 0.023). This allows our MPI-only implementation

and DL POLY 4 to scale to 64 cores and we find that it has no negative impact on the

runtime on one CPU. To scale beyond this limit we use a hybrid MPI+OpenMP scheme

with one MPI process per CPU socket to run on up to 256 cores. To quantify any potential

performance loss due to the non-optimal value of α, we also include the relevant data point

with (α, rc) = (0.023, 22.1Å) from Figure 5-1.

131

5.3. Fast Multipole Method

1
16

8
16 1 2 4 8 16

Node count

10−1

100

T
im

e
p

er
it

er
at

io
n

(s
)

Framework MPI+OMP

Framework MPI

DL POLY 4

Framework MPI+OMP
(α, rc) = (0.023, 22.1Å)

3.3 · 104

2.0 · 103

5.1 · 102

1.3 · 102
Number of particles per CPU core

1
16

8
16 1 2 4 8 16

Node count

0

50

100

150

200

250

P
ar

al
le

l
effi

ci
en

cy
(%

)

Framework MPI+OMP

Framework MPI

DL POLY 4

3.3 · 104

2.0 · 103

5.1 · 102

1.3 · 102
Number of particles per CPU core

Figure 5-2: Strong scaling experiment of an NaCl system comparing our implementation, labeled
as “Framework”, with DL POLY 4. Time per iteration (left) and parallel efficiency relative to one
16-core node (right). Time taken is recorded for 3.3·104 charges over 300 Velocity Verlet iterations.
Short-range Lennard-Jones interactions are enabled with a cutoff of 3Å.

Both the MPI and MPI+OpenMP implementations exhibit decent scaling to 16 nodes

(256 cores). DL POLY 4 is faster overall on smaller core counts but does not scale to

larger core counts. The MPI+OpenMP execution of Algorithm 23 on one node achieved

an average of 34% of peak floating point vector performance, our implementation of this

algorithm exhibits an arithmetic intensity of approximately 2. The computationally most

expensive component is the loop over all Fourier modes ~k = (k1, k2, k3). This has been

vectorised over the four quadrants with (sign(k1), sign(k2)) = (+,+), (+,−), (−,+) and

(−,−) and we confirmed that the Intel compiler indeed generates packed vector instruc-

tions.

5.3 Fast Multipole Method

The computational work of the FMM is split into two components; the direct particle-

particle interactions and the indirect interactions through multipole and local expansions.

The direct interactions are extremely similar to the inter-particle potentials discussed

in Section 1.1.3 with an additional constraint on which particle pairs are considered.

The indirect interactions require data structures to represent the hierarchical mesh and

expansion coefficients stored in cells on each level of the tree. Furthermore, we require

efficient implementations of the functions that create and manipulate multipole and local

expansion coefficients. Our implementation approach is to use the flexibility of Python to

pre-compute constant objects, such as rotation matrices, and implement C code for the

computationally expensive components.

The implementation follows Algorithms 20 and 21 and requires the following function-

ality:

1. Determine particle cells and contributions to multipole expansions.

132

Chapter 5. Implementation of Electrostatic Interaction Algorithms

2. Implementation of multipole to multipole translation operation.

3. Movement of multipole expansions from a level to the next coarsest level.

4. Movement of local expansions from a level to the next finest level.

5. Implementation of local to local translation operation.

6. Implementation of multipole to local translation operation.

7. Evaluation of a local expansion at the position of each charge.

8. Direct charge to charge interactions.

5.3.1 Indirect Interactions

Octal Tree

We use the term “Octal Tree” (OT) to refer to the hierarchy of mesh levels imposed on the

simulation domain. We implement data structures to describe Octal Trees such that data

can (1) be attached to cells, (2) moved between levels in the tree and (3) communicated

between adjacent cells on the same level. An OT is distributed across MPI ranks in a

similar manner to the domain decomposition approach described in Section 3.1.2 in that

on the finest level of the OT each MPI rank owns the set of cells that approximately

matches the owned sub-domain of the simulation domain. This matching is approximate

as the mesh cells are discrete objects whereas the sub-domains of the simulation domain

are created by simply assigning each MPI rank an equal portion of the domain.

As each cell in a level of the OT is assigned a unique owner not all MPI ranks will own

cells on the coarse levels. For example, at the top of the OT, on the coarsest level, there

is only a single cell and hence only one MPI rank will own a cell. Secondly, we group cells

such that the child cells of any given cell are all owned by the same MPI rank, the owning

MPI rank of the child cells can be different to the owning MPI rank of the parent. This

grouping reduces the amount of required MPI communication as data transfer between

child cells and parent cells involves at most two MPI ranks, secondly, this grouping reduces

the complexity of the code. An example 2D decomposition is given in Figure 5-3 where

an OT with 3 mesh levels is distributed over 4 MPI ranks.

133

5.3. Fast Multipole Method

l = 2

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

l = 1

0

0

0

0

l = 0

0

Figure 5-3: 2D OT distributed over 4 MPI ranks, MPI ranks are labeled in the centre of the cells.
On level l = 1 all cells are owned by rank 0 to keep all the children of cell 0 on level 0 on the same
MPI rank.

The Python OctalTree class stores an OT as a collection of mesh levels, each mesh

level is decomposed over the maximum possible number of MPI ranks using the policy

described above. A mesh level is stored as an instance of the OctalGridLevel class which

records exactly how the mesh level is distributed over MPI ranks by providing the local

size and offset on each MPI rank. Furthermore, the OctalGridLevel provides the map

from global cell index to local cell index and global cell index to owning MPI rank. The

multipole to local translation operation will require the communication of data stored in

cells between MPI ranks on a mesh level, each OctalGridLevel provides an MPI Cartesian

Communicator from the set of MPI ranks that own cells on the level.

Data Storage On An Octal Tree

The standard FMM algorithm requires storage for a p-term multipole or local expansion

in each cell on each mesh level. We provide the OctalDataTree class to store data in each

cell on each level of the octal tree. This storage is realised as a 4D numpy array where

the first 3 dimensions are determined by the size of the owned block of cells on each rank

and the last dimension is the number of elements in each cell as chosen by the user. This

class has three variants to facilitate the implementation of the FMM algorithm:

“plain” If the MPI rank owns a (Cx, Cy, Cz) block of cells and requests storage for Ne

elements then the allocated numpy array has dimensions (Cx, Cy, Cz, Ne). We use

this type to store local expansions.

“parent” If the MPI rank owns a (Cx, Cy, Cz) block of cells and requests storage for

Ne elements then the allocated numpy array has dimensions (Cx/2, Cy/2, Cz/2, Ne).

This data structure provides storage for the temporary arrays required in the Mul-

tipole to Multipole and Local to Local translations. For example, in a Multipole to

Multipole translation the operator TMM is applied to each of the 8 child cells of a

parent and the result constructed in the temporary array. The temporary array is

then communicated to the MPI rank which owns the parent cell. Hence this type

acts as a staging area for communication between levels of an OT.

134

Chapter 5. Implementation of Electrostatic Interaction Algorithms

“halo” If the MPI rank owns a (Cx, Cy, Cz) block of cells and requests storage for Ne

elements then the allocated numpy array has dimensions (Cx+4, Cy +4, Cz +4, Ne).

For a cell i the multipole to local operation requires data stored in the cells which

are the children of cells adjacent to the parent of i as in Figure 4-9. However, as we

distribute the cells on a level across MPI ranks the cells in the interaction list of a

given cell may be stored on a different MPI rank. Hence the “plain” type is padded by

four cells in each dimension to provide the required storage for MPI communication

within a mesh level. OctalDataTrees of this type provide a halo_exchange method

which automatically communicates the required data on a requested mesh level.

Inter-level communication occurs in both directions, multipole expansion coefficients

are combined and traverse from fine levels to coarse levels. On each level l > 1 we apply

the following process:

1. On mesh level l compute and store multipole expansions Φl,i in a “halo” OctalDataTree

called data_halo.

2. Perform the halo exchange on data_halo to communicate the multipole expansions

within the level l ready for the multipole to local stage of the downward pass.

3. Apply the TMM operator with input expansions in data_halo and store output

expansions in a OctalDataTree of type “parent” on level l called data_parent.

4. Perform inter-level communication by copying the expansions stored in data_parent

on level l into data_halo on level l − 1.

Local expansion coefficients move in the coarse to fine direction in the downward pass.

On each level l > 1 we apply the following process:

1. On mesh level l perform inter-level communication that copies the local expansions

Ψl−1,i = Ψ̄l,i from the previous level. The source local expansions are stored in a

OctalDataTree of type “plain” called data_plain and are copied into data_parent.

2. Apply the TLL operator with source expansions Ψ̄l,i in data_parent on level l and

output expansions in data_plain on level l.

3. Apply the TML operator on level l, source multipole expansions are stored in data_halo

from the upward pass and output local expansions Ψl,i are accumulated in data_plain.

Translation Operations

All three translation operations that manipulate expansions are implemented as C li-

braries. We implement shared memory parallelism with OpenMP in all FMM C libraries

to increase the parallel efficiency of the implementation. Parallel efficiency is increased as

more CPU cores can be allocated per mesh level, in particular on the coarser mesh levels,

for example, mesh level l = 1 which is owned by a single MPI rank and contains eight

135

5.3. Fast Multipole Method

cells. Without a form of shared memory parallelism all computation with cells on these

coarse levels would be computed by a single CPU core. The translation operations are

implemented by applying the following equations:

TMM Equation (4.133)

TLL Equation (4.141)

TML Equation (4.160)

We exploit the structure of the mesh hierarchy to reduce the computational work, in

particular the fact that all cells have identical shape and adjacent cell structure. In the

TMM and TLL operations the values of Y m
n (α, β) are required where α and β are the angular

component of the translation vectors. Similarly, we require the matrices that apply the

rotation operators Rz(β) and Ry(α), the first of which we apply in a matrix free manner

as it is diagonal and elements can be cheaply constructed.

If W =
{
~x : ~x ∈ {−3, . . . , 3}3, |~x|∞ > 1

}
denotes the set of all possible translation

vectors and (r~w, α~w, β~w) is the spherical coordinate representation of an offset vector ~w,

then we pre-compute and store the values of Y m
n (α~w, β~w) and dm,m

′
n (α~w) for all ~w ∈ W.

These pre-computed values are valid for any cubic domain as they are independent of

cube size and in principle could be cached on persistent storage. The final matrix we

pre-compute is Rmn which, as discussed in Section 4.3.2, is applied in the multipole to local

translation of all well separated periodic images.

5.3.2 Direct Interactions

For each particle i we compute and store the containing cell ci when the contribution to

the multipole expansion Φn, ci is computed, the value ci is stored as a particle property in

a ParticleDat. By storing these values in a ParticleDat the halo exchange machinery

developed for the Local Particle Pair Loop implementations in Chapter 3 is simply exe-

cuted to exchange the particle positions ~ri, particle charges qi and particle cells ci between

MPI ranks.

For a charge i the existing Local Particle Pair Loop implementations were designed

for efficiently constructing the list of pairs (i, j) where |~ri − ~rj | < rc, i.e. all neighbouring

charges j within a sphere of radius rc. For the direct interactions, the volume containing

the relevant neighbours of i is not a sphere centred on i but the cube formed as the union

of the cube containing i and the 26 adjacent cubes.

We use a C library specifically written for the direct interactions to compute the

inter-charge interactions. The library uses the cell list method described in Chapter 3 to

construct a map from cells to contained charges. The library then applies a cell by cell

approach to compute the direct interactions as in Algorithm 24. This approach attempts

to minimise the reading and storing of particle data and arranges the temporary values

in an non-interlaced manner which is more efficient for the vector floating point units in

modern CPUs.

136

Chapter 5. Implementation of Electrostatic Interaction Algorithms

Algorithm 24: Cell by cell method to compute direct charge to charge interactions.

Data: Charge positions ~ri, charges ~qi and cells ci. Cell to charge map C. Set of

cells D which are owned by this MPI rank.

Result: Direct potential energy U and charge forces ~f .

U ← 0

for cell d ∈ D do
Populate vector of positions ~rd and charges qd containing all i ∈ C(d)

Initialise vector of forces ~fd ← ~0

for cell d′ adjacent to d do
Populate vector of positions ~rd′ and charges qd′ containing all i ∈ C(d′)
for i ∈ C(d) do

for j ∈ C(d′) do

U ← U +
qidq

j

d′

2|~r id−~r
j

d′ |

~f id ← ~f id +
(
~r id − ~r

j
d

)
qidq

j

d′

|~r id−~r
j

d′ |
3

end

end

end

for i ∈ C(d) do

for j ∈ C(d), j 6= i do

U ← U +
qidq

j

d′

2|~r id−~r
j

d′ |

~f id ← ~f id +
(
~r id − ~r

j
d

)
qidq

j

d′

|~r id−~r
j

d′ |
3

end

end

Write new forces to ParticleDat:

for i ∈ C(d) do
~fi ← ~fi + ~f id

end

end

5.4 Fast Multipole Method Results

Configuration And Parameter Selection

We compare the performance of our FMM implementation with the FFT accelerated

Ewald approach in DL POLY 4. Our test configuration is based on the two ion NaCl

simulation TEST01 [14] from the DL POLY test suite. The Sodium ions (Na) carry a

charge of +1, conversely, the Chloride ions carry a charge of -1. In our configuration the

ions interact with a short range Lennard-Jones potential that prevents oppositely charged

ions from collapsing onto each other. We set the short range cutoff at 4Å, which is small

137

5.4. Fast Multipole Method Results

enough to have negligible impact on the time per iteration. Unlike the FMM method, the

computational cost of FFT based Ewald approaches is dependent on the volume of the

simulation domain, to provide a fair comparison we duplicate the density of the original

configuration. The original configuration places ions in a simple cubic lattice of alternating

species with a lattice constant of 3.3Å in each dimension.

To configure the accuracy of the DL POLY Ewald implementation the user specifies a

desired precision which may or may not be achieved in practice. To configure the accuracy

of the FMM implementation the number of expansion terms are chosen. To fairly compare

the performance of the two different implementations we choose input precision parameters

that provide similar measured output accuracy for the potential energy of the system.

Output accuracy from the FMM implementation and DL POLY is estimated by cre-

ating 10 pseudo random, dipole free and net charge free configurations of 106 ions. To

create a dipole and net charge free configuration we first created a cubic configuration of

125000 ions in a 50x50x50 cubic lattice with a 3.3Å lattice spacing. The position of each

ion is then perturbed in each coordinate direction by a sample from a uniform random

distribution with minimum −3.3/2 and maximum 3.3/2, this adds disorder to the system

whilst ensuring no charges overlap. The 50x50x50 base configuration is duplicated and re-

flected in the appropriate planes to create a 100x100x100 configuration that is dipole free.

The “true” system potential energy for each configuration is computed with our Classical

Ewald implementation presented in Sections 4.2 and 5.2. For each configuration, imple-

mentation and input parameter we take the maximum error over the 10 configurations as

the estimated error.

The estimated output errors from both implementations is plotted in Figure 5-4.

We (as fairly as possible) equate output errors between our FMM implementation and

DL POLY by choosing the output error that corresponds to a DL POLY input precision

of 10−6, which is a typical precision chosen by end users. Based on these results we use 10

expansion terms (spherical harmonics of order 0 to 9) in all multipole and local expansions.

The number of FMM levels L is an integer quantity chosen as L = blog8(αN)c, where

α is a parameter that tunes the number of levels to balance the work between direct

charge-charge interactions and indirect interactions through expansions. The parameter α

is dependent on the HPC hardware and the number of expansion terms used, using more

expansion terms increases the cost of the indirect interactions. For 10 expansion terms we

determined that α = 0.2 was a near optimal value to use. Note that the computational cost

is dependent on the number of levels in the tree, but the output accuracy is independent

of the number of levels.

Both DL POLY and our FMM implementation were compiled with the Intel compiler

version 18.0.0 20170811 and Open MPI version 3.0.0. The FMM implementation was

launched in two modes; MPI only and hybrid MPI+OpenMP using 1 MPI rank and 8

OpenMP threads per socket. DL POLY is a MPI only program.

138

Chapter 5. Implementation of Electrostatic Interaction Algorithms

10
−3

10
−4

10
−5

10
−6

10
−7

10
−8

10
−9

Input ewald precision

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

DL POLY
System Energy Relative Error

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of expansion terms

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

O
u

tp
u

t
er

ro
r

FMM
Force Average Error

Force Worst Error

System Energy Relative Error

Figure 5-4: (Left) relative error in system potential energy from DL POLY against input preci-
sion, dashed black arrows indicate the output error for an input precision of 10−6. (Right) relative
error in system potential energy and absolute error in particle forces against number of expansion
terms used for all expansions, dashed arrows indicate the number of expansion terms required to
meet the DL POLY output error in the left plot. Average force error is computed as the average er-
ror over all charges over all component directions. Worst force error is computed as the maximum
error over all ions and all component directions.

Strong Scaling

To test the strong scaling performance of the FMM implementation we perform 200 Ve-

locity Verlet integration steps of a system containing 106 charged particles and a system of

1603 ≈ 4·106 charged particles. The parameters of the simulation are identical to the NaCl

configuration used to estimate the error in the potential energy. The initial configuration

is a cubic lattice of alternating particle species with a lattice spacing of 3.3Å.

We used 5 mesh levels for the simulation containing 1 · 106 charges which results in

84 cells on the finest mesh level. As our implementation groups cells such that all child

cells of a given cell are on the same MPI rank, this results in 83 = 512 groups of cells

on the finest level to be distributed across MPI ranks, hence with plain MPI execution

the implementation has a hard strong scaling limit at 512 CPU cores. The simulation

containing 4·106 charges uses 6 mesh levels and hence in MPI only execution mode exhibits

a hard strong scaling limit at 4096 cores, more cores than our HPC facility contains.

139

5.4. Fast Multipole Method Results

321 2 644 1288 16

Node count

10−1

100

101

T
im

e
ta

ke
n

p
er

it
er

at
io

n
(s

)

PPMD 1M

PPMD 1M MPI+OMP

DL POLY 1M

PPMD 4M

PPMD 4M MPI+OMP

Ideal Scaling

3.1 · 104

7.8 · 103

2.0 · 103

4.9 · 102
Number of charges per core for N = 1M

321 2 644 1288 16

Node count

0

20

40

60

80

100

P
ar

al
le

l
effi

ci
en

cy
(%

)

PPMD 1M

PPMD 1M MPI+OMP

DL POLY 1M

PPMD 4M

PPMD 4M MPI+OMP

Ideal Scaling

3.1 · 104

7.8 · 103

2.0 · 103

4.9 · 102
Number of charges per core for N = 1M

Figure 5-5: Strong scaling comparison between our FMM implementation, labeled as “PPMD”,
and DL POLY FFT based Ewald. (Right) Time taken per Velocity Verlet iteration. (Left) Parallel
efficiency as defined in Equation (3.9) computed relative to 1 node. One node consists of two Intel
Xeon E5-2650v2 CPUs (16 cores per node). Time per iteration and parallel efficiency is recorded
for a system containing 106 charges and a system containing 4 · 106 charges.

The 106 particle run indicates that DL POLY is ≈ 3 times quicker than our FMM

implementation for this particular simulation. Considering the maturity of DL POLY we

regard the performance of our FMM implementation to be reasonably good for an initial

implementation. The parallel efficiency results indicate that our FMM implementation

does not exhibit unreasonable performance degradation when compared to an existing

code. Furthermore, these results indicate that applying a hybrid MPI+OpenMP model

to our FMM implementation does increase parallel efficiency in the strong scaling limit.

When not in the strong scaling limit, the efficiency of the hybrid approach is approximately

a third less than a pure MPI approach. The hybrid approach introduces atomic operations

not found in the pure MPI implementation, these lead to reduced intra-node parallel

efficiency as described by Amdahl’s Law [6].

Weak Scaling

We set up a weak scaling experiment where the number of charges in the simulation per

CPU core remains fixed. For N particles the FMM method exhibits a computational

complexity that is asymptotically O(N), hence if the number of charges is increased at

the same rate as the number of CPU cores then the time per FMM evaluation should

remain constant. The time taken per iteration is expected to vary as the number of mesh

levels is an integer quantity which is fixed for an interval of charge numbers N . We record

the time taken per Velocity Verlet iteration for particle counts in the range 1 · 106 to

128 · 106 for pure MPI execution and hybrid MPI+OpenMP execution. On 64 nodes we

exhausted available memory for MPI only execution due to memory inefficiencies in non-

140

Chapter 5. Implementation of Electrostatic Interaction Algorithms

FMM related portions of code, for node counts larger than 32 we investigated only hybrid

execution.

321 2 644 1288 16

Node Count

0

1

2

3

4

5

6

T
im

e
ta

ke
n

p
er

it
er

at
io

n
(s

)

5
6 6

6 7 7

7

8

PPMD 1M

PPMD 1M MPI+OMP

Ideal Scaling

2.0 · 106

8.0 · 106

3.2 · 107

1.3 · 108
Total number of charges

321 2 644 1288 16

Node count

0

20

40

60

80

100

120

140

P
ar

al
le

l
effi

ci
en

cy
(%

)

PPMD 1M

PPMD 1M MPI+OMP

Ideal Scaling

2.0 · 106

8.0 · 106

3.2 · 107

1.3 · 108
Total number of charges

Figure 5-6: Weak scaling test of our FMM implementation. (Right) Time taken per Velocity
Verlet iteration, floating numbers indicate the number of levels in the octal tree. (Left) Parallel
efficiency as defined in Equation (3.10) computed relative to 1 node. One node consists of two Intel
Xeon E5-2650v2 CPUs (16 cores per node).

The weak scaling results indicate that the FMM implementation performs approxi-

mately linearly over the particle counts and CPU core counts we investigated. The results

indicate a slight upward trend that we expect is related to how our octal tree distributes

computational work over MPI ranks. Each level in the tree is decomposed over as many

MPI ranks as possible, on the finest level all MPI ranks own cells and perform useful

work. Furthermore, on the coarser levels the maximum possible number of MPI ranks

is relatively low, level 0 is owned by one MPI rank. In this implementation each level

in the downward pass of the FMM algorithm is performed sequentially, for example, the

MPI ranks that own the cells on mesh level 2 must wait until the 1 MPI rank that owns

level 1 completes the downward pass on level 1. Hence we expect a degree of parallel

inefficiency in the weak scaling experiment purely from our MPI decomposition approach.

Future work could investigate a different method to assign cells to MPI ranks to perform

the downward pass.

141

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary Of Work

The focus of this thesis is the performance-portable implementation of MD algorithms for

HPC facilities. We address the issue that the efficient implementation of MD algorithms

requires expertise from the domains of physics and chemistry and from the computational

science domain.

In our literature review and preliminary research we observed that existing MD libraries

typically were designed and implemented in a monolithic manner over many years. These

libraries have a large number of features and are typically efficient on the hardware they

were designed for. However, the monolithic nature of these libraries creates a portability

challenge when new hardware architectures emerge as often algorithms that are efficient

on the first architecture are not efficient on the second. Furthermore, re-writing large code

bases for emerging architectures is an expensive process that requires detailed knowledge

of both the scientific domain and the target hardware architecture.

We identified that alongside simulations, domain specialists perform analysis tech-

niques to produce quantitative outputs from simulations tailored to their area of interest.

Implementing new analysis techniques within existing MD software typically requires de-

tailed knowledge of the inner workings of software packages, frequently with large code

bases, and hence users often dump simulation outputs for post processing. The post

processing of simulation output may well be more computationally expensive than the

simulation itself and implementing analysis in a parallel manner may well be outside the

skill set of domain specialists.

To address those issues, we applied a separation of concerns based approach shown to

be successful in other areas of science. This approach separates the concerns of the do-

main specialists from those of computational scientists. The separation is enabled by our

abstraction that allows a high level description of many algorithms and methods involving

particles. Our abstraction is conceptually simple yet is highly flexible for describing par-

142

Chapter 6. Conclusion And Future Work

ticle data and global data alongside looping mechanisms to execute one- and two-particle

kernels.

We created a Python-embedded DSL that implements our abstraction and serves as

an input to our code generation system. The DSL requires users to implement desired

operations within a subset of the C language. Using C as the DSL language allows low-level

control within the kernel and enables a code generation system to be constructed based on

templating. However, by using the C language we do not fully separate domain specialists

from low-level considerations. For example, a user can write a non-compliant kernel within

the DSL that does not compile, alternatively, a user could attempt to access memory out

of bounds. We discuss future work to address these issues in Section 6.2. While the

user does have to express some operations in C, our implementation successfully abstracts

parallel looping operations away from the user.

We demonstrated that within the abstraction existing methods can be implemented

and new methods can be described. Our DSL allows simulations to be constructed within

a high-level language that has a large repository of other scientific packages that users can

interface with. We demonstrated the capabilities of the abstraction by reimplementing

functionality found in existing MD packages and by implementing non-trivial analysis

algorithms.

The abstraction serves as input to our code generation framework that produces per-

formant C code for two currently dominant HPC architectures. We demonstrated that a

single input Python script can be used to target these two architectures efficiently with

minimal changes. Hence our abstraction and DSL combination is portable between these

two architectures. This portability between architectures is important as it enables algo-

rithms to be described once and reused in a hardware independent manner. Furthermore,

we are confident that due to the flexibility of our approach there is a reasonable chance

that future hardware architectures could be targeted by a code generation system with

our abstraction as input.

We compared our code generation approach with existing libraries for non-bonded

interactions. The strong scaling results presented in Section 3.3 demonstrate that our

generated code and its surrounding implementation is highly competitive with existing

libraries on 1024 CPU cores and multiple GPUs. The corresponding weak scaling results

demonstrate that our implementation scales well to systems containing 5.2× 108 particles

on 1024 CPU cores and 8.2× 106 particles on 16 GPUs.

Our structure analysis results demonstrate that the abstraction is sufficient to im-

plement algorithms that are more complex than inter-particle potentials. We show that

our framework enables parallel on-the-fly analysis to be described and performed within

a simulation. Although we demonstrated this functionality within a simulation, a user

could implement a Python script that only performs analysis and conduct post-processing

of data from a simulation.

Electrostatic interactions are computationally expensive and prevalent in MD simula-

tions. We provide parallel implementations of two existing algorithms that compute long-

143

6.2. Critical Assessment And Future Work

range interactions. The first method we investigated is the Ewald summation method,

which has a non-optimal complexity but enabled our framework to compute electro-

static interactions. Our Ewald method is entirely implemented within our abstraction

and DSL combination and scales extremely well in a strong scaling scenario. In Section

5.1 we demonstrated that our Ewald implementation is capable of scaling a small system

(3.3× 104 particles) across 512 CPU cores with a high parallel efficiency.

We investigated the FMM as the computational complexity is linear in the number of

charges, and this implementation extended the long-range capabilities of our framework.

The improved complexity in comparison to Ewald summation enables our framework to

compute electrostatic interactions between charges in significant sized systems. Our strong

scaling results in Section 5.4 demonstrate that our FMM implementation has comparable

performance with an existing code that implements an FFT accelerated Ewald method on

2048 CPU cores. Furthermore, our weak scaling results demonstrate that our implemen-

tation has a near linear computational complexity.

6.2 Critical Assessment And Future Work

We described an abstraction for one- and two-particle kernels but did not investigate the

case of general n-body potentials. In principle, the current abstraction can describe n-body

potentials as shown by our implementation of the CNA in Section 2.3.2, but the method

we use in this example may well not be the most efficient method in practice. In future

the abstraction and DSL should be extended to allow n-body kernels to be described,

and we do not think this is a greatly challenging extension to create. Furthermore, the

bonded interactions between a group of particles that form a molecule are of interest

to computational chemists and these interactions are described by rigid-body dynamics.

There exist algorithms to compute these rigid body dynamics yet we have not discussed

them in this thesis, as in the case of n-body kernels, we envisage that these dynamics

could be described as an extension to the abstraction.

Furthermore, simulations often contain multiple species of particles, in our existing

framework users are expected to distinguish between particle species by attaching labels.

Distinguishing between particle types by using particle data is a sufficient way to imple-

ment multiple species simulations, however, we expect that a more efficient approach is to

modify our framework such that multiple species interactions are explicitly handled. By

explicitly handling multiple species at the DSL level the framework may make high-level

reasoning that leads to further optimisations which are not currently not possible.

For example, consider a simulation containing two particle types A and B and suppose

that particles of type A have a fixed position and particles of type B are free to move. As

particle of type B move the current framework will perform halo-exchanges for all particles

including those of type A, furthermore the A-A interactions are constant and could be

computed once. As implementing this functionality could lead to significant efficiency

improvements for many simulations we consider multiple species support to be a prime

144

Chapter 6. Conclusion And Future Work

candidate for future work.

The nature of the separation of concerns approach means that future work can improve

the code generation framework without negatively impacting domain specialists. We pro-

vided implementations of neighbour list and cell by cell approaches for the Local Particle

Pair Loop and should investigate further cell by cell approaches where cell sizes may be

smaller than the interaction cutoff. These methods based on smaller cell sizes have the

potential to combine the advantages of neighbour lists with the advantages of cell by cell

methods.

Currently the algorithm and hardware used to execute a Local Particle Pair Loop is

chosen by the user yet for a general kernel the most optimal algorithm and hardware type

is non-obvious. In future the framework could exploit the fact that in a simulation most

of the particle pair-loops are performed many times within a time stepping loop. To select

the optimal algorithm the framework may simply trial different algorithms within the first

few iterations. If a user is performing a multiple hour or day simulation it is worthwhile

spending compute time within the first few iterations to select an optimal algorithm.

There is scope for future implementations of the framework to use multiple hardware

architectures in a heterogeneous manner and furthermore automatically determine from

a set of available architectures which architecture is most efficient for a given kernel and

looping type.

Currently the kernels in the DSL are written by the user in a subset of C and an

experienced user can write highly efficient kernels. However, C is a low-level language

that is technical to write and exhibits unforgiving behaviour from incorrect input. Hence

by using C as the kernel input language we do not completely separate users from low

level considerations. The Unified Form Language (UFL) [5] used by the FEniCS [4] and

Firedrake projects completely separates users from low-level concerns by allowing users to

describe algorithms in a symbolic-like form. The symbolic representation of operations is

translated into low-level code automatically, in the case of the Firedrake project, by using

code generation.

Future work should develop a symbolic-like language, inspired by UFL, such that users

are able to write a symbolic description of a kernel that is automatically translated into a

optimised C-kernel. Implementing a working version of this functionality is very achievable

with existing Python libraries, however, implementing a framework that generates highly

optimal C code is an active area of research. The development of this symbolic kernel

language, although non-trivial, would greatly reduce the barrier-to-entry of our framework

for domain specialists. In general, lowering the barrier-to-entry is a crucial process to

increase the adoption rate of a software project, especially crowed markets.

We investigated CPU and GPU architectures as they are prevalent and readily avail-

able. Very recent CPU models combine a traditional CPU with an FPGA device in the

same socket, if these devices become user programmable and provided they provide suffi-

cient performance then there is significant scope to extend the capabilities of the framework

to FPGA devices. Current FPGA devices are rare within HPC facilities and do not have

145

6.2. Critical Assessment And Future Work

a large enough user base to consider supporting.

With the initial availability of the Isambard [33] HPC facility we investigated using

our existing code generation framework on the Intel Xeon Phi architecture and Cavium

ThunderX2 ARM processors [13]. Due to highly sub-optimal results, uncertain future

support of and small user base we do not expect to investigate the Xeon Phi platform in

the future. Conversely, our initial experimentation on the ThunderX2 platform suggests

that these CPUs could be highly competitive with the Intel CPUs that dominate the

market and that future work should investigate generating efficient code for these cores.

Our current code generation system produces efficient code in comparison to existing

codes but could benefit from further optimisations. In particular we make no attempt to

perform kernel fusion which would combine user written kernels that are compatible to

decrease increase the overall computational work of a simulation. Further improvements

to parallel efficiency could be realised by performing halo-exchanges in parallel with com-

putation, a particle pair-loop could be executed over the interior of a sub-domain whilst

halo exchanges occur to communicate boundary data. This optimisation is likely to be

impactful on accelerator devices such as GPUs where the latency of communication is

higher.

In our FMM results section (Section 5.4) we conclude our FMM implementation is

competitive, however, we identify that the parallel performance could be improved with a

different distribution of work across MPI ranks and this could form the basis of future work.

After the upward pass has been performed, all multipole to local translations on all levels

can be performed simultaneously. The local to local translations would then be performed

sequentially and combined with the results of the multipole to local translations. This

reassignment of cells to MPI ranks reduces the number of idle MPI ranks in the downward

pass by providing a more efficient distribution across MPI ranks of all cells in the octal

tree. Furthermore, future work could investigate a GPU implementation of the FMM

algorithm that performs both the direct and indirect interactions on the GPU.

We focused on the MD approach to compute ensemble averages of quantities, MC is

a popular technique that could be incorporated into the abstraction with the addition of

MC specific properties and looping types. For example, an extension to the abstraction

could allow proposed changes to the properties of a single particle and provide looping

operations that assumed the properties of all other particles remained constant. For our

MD focused implementation we apply a domain decomposition approach for parallelisation

across MPI ranks, this approach is unlikely to be optimal for MC.

In the immediate future we shall investigate using the FMM to compute electrostatic

interactions in a particular type of MC known as kinetic Monte Carlo (KMC). In this ap-

proach the simulated system contains charged particles that occupy sites in the domain.

An iteration of the algorithm proposes moving each charge one-by-one to all of the empty

sites in the immediate vicinity of its current site and for each of these proposed sites the

potential energy of the whole system is computed. One of the proposed moves is then

randomly selected based on the change of system potential energy. As the FMM is a com-

146

Chapter 6. Conclusion And Future Work

putationally optimal and highly flexible method for computing electrostatic interactions,

we are investigating how the method can be adapted to efficiently compute the change in

energy due to a single charge moving. Our initial implementation of an adapted FMM

suggests that our approach offers optimal computational complexity for proposing and

accepting moves.

147

APPENDIX A

APPENDICES

A.1 Largest Subcluster Algorithm

Algorithm 25 can be used to calculate the size of the largest connected component of a

graph given by a set of edges E . For this the edges in each subgraph are counted with a

breadth-first like traversal, counting and removing all visited edges in the process.

Algorithm 25: Calculate maximal cluster size.

Data: Graph defined by a set of edges E .
Result: Smax, the size of the largest cluster.
Smax ← 0
while E 6= ∅ do

S ← 0
Pick some edge (v1, v2) ∈ E
Q ← {v1}
while Q 6= ∅ do

Pick some v ∈ Q and remove it from Q
P ← {(v, w) ∈ E}
Q ← Q∪ {w : (v, w) ∈ P}
S ← S + |P|
Remove all edges e ∈ P from E

end
Smax ← max{S, Smax}

end

149

A.2. Negative Binomial Expansion

A.2 Negative Binomial Expansion

If |z0/z| < 1 then

(z − z0)−k =
∞∑
l=0

(
k + l − 1

l

)
zl0z
−k−l (A.1)

=
∞∑
l=k

(
l − 1

l − k

)
zl−k0 z−l (A.2)

=
∞∑
l=k

(
l − 1

k − 1

)
zl−k0 z−l (A.3)

as (
l − 1

l − k

)
=

(l − 1)!

[(l − 1)− (l − k)]!(l − k)!
(A.4)

=

(
l − 1

k − 1

)
. (A.5)

A.3 Gaussian Units

The relevant differences between the International System of Units (SI) and Gaussian

units are summarised in Table A.1.

Quantity SI unit Gaussian unit

charge Coulomb(C) Statcoulomb(statC)

mass Kilogramme(kg) Gramme(g)

distance Metre(m) Centimetre(cm)

Table A.1: Relevant differences between SI units and Gaussian units

If two charges Q1 and Q2 are separated by distance r then in SI units the magnitude

of the force F between them is given by Coulomb’s law as

F =
1

4πε0

Q1Q2

r2
. (A.6)

In Gaussian units the same force magnitude is written as

F =
Q1Q2

r2
. (A.7)

A.4 3D FMM Force Calculation

The forces exerted between directly interacting charges can be readily computed from the

Coulomb potential. Computing the forces between charges that interact through multipole

150

Appendix A. Appendices

and local expansions requires the spatial derivates of local expansions. If the potential field

is given by the p-term local expansion centred at the origin

Φ(P) =

p∑
j=0

j∑
k=−j

LkjY
k
j (θ, φ)rj , (A.8)

then the electric field ~E at the point P = (ρ, α, β) is given by

~E(P) = −~∇

 p∑
j=0

j∑
k=−j

LkjY
k
j (θ, φ)rj

∣∣∣∣∣∣
r=ρ, θ=α, φ=β

, (A.9)

~∇

 p∑
j=0

j∑
k=−j

LkjY
k
j (θ, φ)rj

 =

~̂rjrj−1Y k
j (θ, φ)

−~̂θ r
j−1

sin θ

√
(j − |k|)!
(j + |k|)! exp (ikθ)

[
j cos(θ)P

|k|
j (cos θ)− (j + |k|)P |k|j−1(cos θ)

]
+~̂φ

rj−1

sin θ

√
(j − |k|)!
(j + |k|)!P

|k|
j (cos θ)ik exp (ikφ) ,

(A.10)

where

~∇ = ~̂r
∂

∂r
+
~̂θ

r

∂

∂θ
+

~̂φ

r sin θ

∂

∂φ
, (A.11)

and

~̂r =

 r cos(φ) sin(θ)

r sin(φ) sin(θ)

r cos(θ)

 , ~̂θ =

 cos(φ) cos(θ)

sin(φ) cos(θ)

− sin(θ)

 , ~̂φ =

 − sin(φ)

cos(φ)

0

 . (A.12)

A.5 Balena System Architecture

This work was supported by the University of Bath HPC facility “Balena”, system archi-

tecture is as outlined in Table A.2

Ivy Bridge Nodes

CPUs 2x Intel E5-2650v2 8 cores, 2.6Ghz (16 cores per node)

Memory Quad channel DDR3-1866 MHz (8 channels per node)

Network Intel True Scale Infiniband (QDR) 40 Gbps

Table A.2: Balena System Architecture

151

A.6. Example LAMMPS Input Script

A.6 Example LAMMPS Input Script

variable x index 1

variable y index 1

variable z index 1

variable xx equal 20*$x

variable yy equal 20*$y

variable zz equal 20*$z

units lj

atom_style atomic

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

run 100

Figure A-1: LAMMPS Lennard-Jones example script from http: // lammps. sandia. gov/

inputs/ in. lj. txt

152

http://lammps.sandia.gov/inputs/in.lj.txt
http://lammps.sandia.gov/inputs/in.lj.txt

Appendix A. Appendices

A.7 Example HOOMD-blue Python Input Script

from hoomd_script import *

create 1000 random particles of name A

init.create_random(N=1000, phi_p=0.01, name=’A’)

specify Lennard-Jones interactions between particle pairs

lj = pair.lj(r_cut=2.5)

lj.pair_coeff.set(’A’, ’A’, epsilon=1.0, sigma=1.0)

integrate at constant temperature

all = group.all()

integrate.mode_standard(dt=0.005)

integrate.nvt(group=all, T=1.2, tau=0.5)

dump an xmle file for the structure information

xml = dump.xml(filename=’dump_dcd.xml’, vis=True)

dump a .dcd file for the trajectory

dump.dcd(filename=’dump_dcd.dcd’, period=100)

run 10,000 time steps

run(10e3)

Figure A-2: HOOMD-blue Lennard-Jones example Python script from http: // glotzerlab.

engin. umich. edu/ hoomd-blue/ doc/ dump_ dcd-example. html

A.8 CUDA Code Generation

Here we describe the CUDA code generation process using the assumptions and definitions

made in Section 3.2.

A.8.1 CUDA Particle Loop

Although modern GPU hardware operates as a wide vector processor GPUs are pro-

grammed in a highly threaded shared memory manner, we generate CUDA code to target

NVIDIA GPUs. We assign a GPU thread to each particle, for a Particle Loop there are

no race conditions to access data stored in ParticleDat instances, furthermore reading

global data is contention free. On GPU hardware our implementation only allows writing

to global data using an incremental access descriptor. The code generation system creates

code that (1) allocates temporary storage local to each thread for a copy of the global

153

http://glotzerlab.engin.umich.edu/hoomd-blue/doc/dump_dcd-example.html
http://glotzerlab.engin.umich.edu/hoomd-blue/doc/dump_dcd-example.html

A.8. CUDA Code Generation

data and (2) creates code to perform a reduction (addition) across all launched threads on

the device. By using temporary storage and inter-thread communication we minimise the

use of atomic operations to write values into global memory. The GPU library template

is presented in Listing A.1.

Listing A.1: Template for CUDA based shared library.

<generated_structs >

// CUDA Kernel definition

__global__ void k_ <kernel_name > (int _D_N_LOCAL ,

<kernel_parameter_list >)

{

int _i = threadIdx.x + blockIdx.x*blockDim.x;

<global_initialisations >

if (_i <_D_N_LOCAL)

{

<kernel_args_creation >

<kernel_source >

}

<global_reductions >

}

// Library function

void <kernel_name >_wrapper(int* _H_BLOCKSIZE , int* _H_THREADSIZE , int

_H_N_LOCAL , <data_structure_pointers >)

{

dim3 _B;

dim3 _T;

_B.x = _H_BLOCKSIZE [0];

_B.y = _H_BLOCKSIZE [1];

_B.z = _H_BLOCKSIZE [2];

_T.x = _H_THREADSIZE [0];

_T.y = _H_THREADSIZE [1];

_T.z = _H_THREADSIZE [2];

// Kernel call

k_<kernel_name > <<<_B ,_T >>>(_H_N_LOCAL , <kernel_call >);

checkCudaErrors(cudaDeviceSynchronize ());

}

The instances of ParticleDat generate code that is very similar to the host CPU

variant, the major difference is that instances of the generated C structures are created

154

Appendix A. Appendices

immediately prior to the kernel code not before the kernel call as in the CPU case. An

overview of the code generation process for ParticleDat instances is presented in Algo-

rithm 26.

Algorithm 26: Particle Loop code generation for ParticleDats

Data: ParticleDat instances D(p) and access descriptors A(p)

Result: <generated structs>, <kernel args declaration>,

<data structure pointers>, <kernel args creation> and

<kernel call>

for m ∈ {0, . . . ,m(p)} do
Construct identifier sym to use for temporary variables (the symbol used in the

kernel)

Identify underlying data type dtype from d
(p)
m

Identify number of components ncomp from d
(p)
m

Determine if the const qualifier is valid from a
(p)
m

(1) Create struct for <generated structs>:

typedef struct {dtype (const) * restrict i;} sym t;

(2) Create entry for <kernel parameter list>, a pointer into the global data:

dtype (const) * restrict d sym

(3) Create entry for <data structure pointers>, a pointer: dtype (const) *

restrict sym

(4) Create entry for <kernel args creation> using above pointer and struct:

sym t sym = { d sym + i * ncomp };
(5) Create entry for <kernel call>, add newly created struct instance to call

arguments: sym

end

CUDA code that reads global data is generated by creating pointers that map to the

correct entry in global memory. To perform reduction operations we create thread local

variables which the kernel writes into. The reduction across all GPU threads then occurs

in a three stage process, (1) inter-thread communication is applied to reduce all values

within a thread warp, (2) thread zero in the warp atomically increments a temporary

storage location for the thread block, finally thread zero in the thread block atomically

increments the values in global memory. An overview of the CUDA code generation

process for global data is presented in Algorithm 27.

155

A.8. CUDA Code Generation

Algorithm 27: CUDA Particle Loop code generation for ScalarArrays and

GlobalArrays

Data: ScalarArray and GlobalArray instances D(s) and access descriptors A(s)

Result: <generated structs>, <kernel args declaration>,

<data structure pointers>, <kernel args creation> and

<kernel call>

for m ∈ {0, . . . ,m(s)} do
Construct identifier sym to use for temporary variables (usually the symbol used

in the kernel)

Identify underlying data type dtype from d
(s)
m

Identify number of components ncomp from d
(p)
m

Determine if the const qualifier is valid from a
(s)
m

(1) Create entry for <kernel parameter list>, a pointer:

dtype (const) * d sym

(2) Create entry for <data structure pointers>: dtype (const) * sym

(3) Create entry for <kernel call>, add pointer to call arguments: sym

if a
(s)
m is read-only then
(4) Create entry for <global initialisations>, directly map to global

data:

dtype const * sym = d sym;

end

if a
(s)
m is increment then
(4) Create entry for <global initialisations>, create a temporary

variable:

dtype sym[ncomp] = {0};
(5) Create entry for <global reductions>, device-wide reduction from

Listing A.2.

end

end

156

Appendix A. Appendices

Listing A.2: Device-wide reduction for global data accessed with kernel symbol sym, data type

dtype and number of components ncomp

// Reduce across the thread warp with inter -thread communication

for(int _iz = 0; _iz < ncomp; _iz++){

sym[_iz] = warpReduceSum <dtype >(sym[_iz]);

}

// Reduce across the thread block using shared memory

// First create and zero shared memory

__shared__ double _d_red_sym [1];

if ((int)(threadIdx.x & (warpSize - 1)) == 0){

for(int _iz = 0; _iz < ncomp; _iz++){ _d_red_sym[_iz] = 0; }

} __syncthreads ();

// 0^th thread of each warp atomically increments the shared

// elements

if ((int)(threadIdx.x & (warpSize - 1)) == 0){

for(int _iz = 0; _iz < ncomp; _iz++){

atomicAdd <dtype >(& _d_red_sym[_iz], sym[_iz]);

}

} __syncthreads ();

// 0^th thread in the thread block increments the globally

// stored elements

if (threadIdx.x == 0){

for(int _iz = 0; _iz < ncomp; _iz++){

atomicAdd <dtype >(& d_sym[_iz], _d_red_sym[_iz]);

}

}

We extend the CPU Particle Loop example to include a GlobalArray instance to

demonstrate the generated reduction code. The Python source code is presented in List-

ing A.3 and the output CUDA code is presented in Listing A.4 and A.5. When using

multithread shared memory parallelism on CPU architectures we employ the same tech-

nique of creating local storage per thread for reduction variables pre kernel launch. Post

kernel launch these temporary variables are reduced into the global storage as in the GPU

case. However, on CPU architectures multithreading is utilised in a more coarse grain

manner and each CPU thread will apply the kernel to multiple particles.

157

A.8. CUDA Code Generation

Listing A.3: Example particle loop creation including incremented global data.

setup removed for brevity

A.P = ParticleDat(ncomp =2)

S = ScalarArray(ncomp =2)

G = GlobalArray(ncomp =1)

particle_loop = ParticleLoop(

kernel=Kernel(

name=’plexample ’,

code = """

P.i[0] = S[0];

P.i[1] = S[1];

G[0]++;

"""

),

dat_dict ={

’P’: A.P(INC),

’S’: S(READ),

’G’: G(INC)

}

)

158

Appendix A. Appendices

Listing A.4: Example generated CUDA particle loop from input A.3, Part I.

// Structs generated per ParticleDat

typedef struct { double *__restrict__ i; } _P_t;

// Kernel device function (CUDA kernel)

__global__ void k_plexample(int const _D_N_LOCAL , double *__restrict__

d_G , double *__restrict__ d_P , double const *__restrict__ d_S)

{

int const _i = threadIdx.x + blockIdx.x*blockDim.x;

// Global data access/initialisation

double G[1] = {0};

double const *S = d_S;

if (_i<_D_N_LOCAL) {

// ParticleDat structs instances

_P_t P = { d_P+_i*2};

// User supplied kernel

P.i[0] = S[0];

P.i[1] = S[1];

G[0]++;

}

// global data reductions

for(int _iz = 0; _iz < 1; _iz++){G[_iz] =

warpReduceSumDouble(G[_iz]); }

__shared__ double _d_red_G [1];

if ((int)(threadIdx.x & (warpSize - 1)) == 0){

for(int _iz = 0; _iz < 1; _iz++){

_d_red_G[_iz] = 0;

}} __syncthreads ();

if ((int)(threadIdx.x & (warpSize - 1)) == 0){

for(int _iz = 0; _iz < 1; _iz++){

atomicAddDouble (& _d_red_G[_iz], G[_iz]);

}} __syncthreads ();

if (threadIdx.x == 0){

for(int _iz = 0; _iz < 1; _iz++){

atomicAddDouble (&d_G[_iz], _d_red_G[_iz]);

}}

}

159

A.8. CUDA Code Generation

Listing A.5: Example generated CUDA particle loop from input A.3, Part II.

// Library function

void plexample_wrapper(int const *__restrict__ _H_BLOCKSIZE , int const

*__restrict__ _H_THREADSIZE , int const _H_N_LOCAL , double

*__restrict__ G, double *__restrict__ P, double const *__restrict__

S)

{

dim3 _B;

dim3 _T;

_B.x = _H_BLOCKSIZE [0];

_B.y = _H_BLOCKSIZE [1];

_B.z = _H_BLOCKSIZE [2];

_T.x = _H_THREADSIZE [0];

_T.y = _H_THREADSIZE [1];

_T.z = _H_THREADSIZE [2];

k_plexample <<<_B ,_T >>>(_H_N_LOCAL ,G,P,S);

checkCudaErrors(cudaDeviceSynchronize ());

}

A.8.2 CUDA Local Particle Pair Loop

On GPU architectures the neighbour list is constructed as a neighbour matrix as described

in Section 3.1.5. The GPU particle pair loop template in Listing A.1 is amended in Listing

A.6 to include code that extracts neighbours from a neighbour list.

160

Appendix A. Appendices

Listing A.6: Template for CUDA based Local Particle Pair Loop.

<generated_structs >

// CUDA Kernel definition

__global__ void k_ <kernel_name > (int _D_N_LOCAL , int *_D_NMATRIX ,

<kernel_parameter_list >)

{

int _i = threadIdx.x + blockIdx.x*blockDim.x;

<global_initialisations >

if (_i<_D_N_LOCAL)

{

// loop over entries in neighbour matrix

// first row contains the number of neighbours

for (int _k=1; _k <= _D_NMATRIX[_i]; _k++)

{

int _j = _D_NMATRIX[_i + _D_N_LOCAL * _k];

<kernel_args_creation >

<kernel_source >

}

}

<global_reductions >

}

// Library function

void <kernel_name >_wrapper(int* _H_BLOCKSIZE , int* _H_THREADSIZE , int

_H_N_LOCAL , int *_D_NMATRIX , <data_structure_pointers >)

{

dim3 _B;

dim3 _T;

_B.x = _H_BLOCKSIZE [0];

_B.y = _H_BLOCKSIZE [1];

_B.z = _H_BLOCKSIZE [2];

_T.x = _H_THREADSIZE [0];

_T.y = _H_THREADSIZE [1];

_T.z = _H_THREADSIZE [2];

// Kernel call

k_<kernel_name > <<<_B ,_T >>>(_H_N_LOCAL , _D_NMATRIX , <kernel_call >);

checkCudaErrors(cudaDeviceSynchronize ());

}

The Python source in Listing 3.7 generates the CUDA source code in Listing A.7 and

161

A.8. CUDA Code Generation

A.8.

Listing A.7: Generated CUDA code to count the neighbours of each particle within a radius 2

using a GPU, part I.

// Structs generated per ParticleDat

typedef struct

{

double const *i;

double const *j;

} _P_t;

typedef struct

{

int *i;

int *j;

} _NC_t;

// Kernel function

__global__ void k_n_count(int const _D_N_LOCAL , int *_D_NMATRIX , double

const * d_P , int *d_NC)

{

int const _i = threadIdx.x + blockIdx.x*blockDim.x;

if (_i <_D_N_LOCAL)

{

for (int _k=1; _k <= _D_NMATRIX[_i]; _k++)

{

int const _j = _D_NMATRIX[_i + _D_N_LOCAL * _k];

_P_t P = { d_P+_i*3, d_P+_j*3};

_NC_t NC = { d_NC+_i*1, d_NC+_j*1};

double r0 = P.i[0] - P.j[0];

double r1 = P.i[1] - P.j[1];

double r2 = P.i[2] - P.j[2];

if ((r0*r0 + r1*r1 + r2*r2) < 4.0){

NC.i[0] += 1;

}

}

}

}

162

Appendix A. Appendices

Listing A.8: Generated CUDA code to count the neighbours of each particle within a radius 2

using a GPU, part II.

// Library function

void n_count_wrapper(int * _H_BLOCKSIZE , int * _H_THREADSIZE , int

_H_N_LOCAL , int * _D_NMATRIX , double const * P, int * NC)

{

dim3 _B;

dim3 _T;

_B.x = _H_BLOCKSIZE [0];

_B.y = _H_BLOCKSIZE [1];

_B.z = _H_BLOCKSIZE [2];

_T.x = _H_THREADSIZE [0];

_T.y = _H_THREADSIZE [1];

_T.z = _H_THREADSIZE [2];

k_n_count <<<_B ,_T >>>(_H_N_LOCAL ,_D_NMATRIX ,P,NC);

checkCudaErrors(cudaDeviceSynchronize ());

}

A.9 Convergence Characteristics Of Ewald Summation

With periodic boundary conditions the simulated system consists of a primary image

surrounded by a lattice of periodic images. In the 3D FMM we constructed the multipole

expansion Φ0,0 which describes the potential induced by any image of the simulation cell,

with expansion coefficients Mm
n the potential at the centre of the primary image from

periodic image ~ν is

ϕ~ν(~0) =

∞∑
n=0

n∑
m=−n

Mm
n

rn+1
~ν

Y m
n (θ~ν , φ~ν). (A.13)

where (r~ν , θ~ν , φ~ν) is the spherical coordinate vector to the centre of image ~ν. In Section

4.3.2 we described the method by Amisaki [7] to compute the matrix R such that

Rmn =
∑
~ν

Y m
n (θ~ν , φ~ν)

rn+1
~ν

. (A.14)

This summation method by Amisaki assigns physically sensible values to summations of

the form

ϕα =
∑

~ν∈Z3\~0

1

|~r~ν |α
(A.15)

where α ∈ {1, 2, 3}, which allows periodic boundary conditions in the 3D FMM. In general,

for α < 4 these summations are conditionally convergent as described by the Riemann

rearrangement theorem. To study the behaviour of these summations in the Ewald method

we consider the α = 1 and α = 2 cases which correspond to the monopole and dipole charge

distributions, the α = 3 quadrupole case could also be of interest.

163

A.9. Convergence Characteristics Of Ewald Summation

The monopole case is zero by the assumption of charge neutrality. This assumption

allows the long-range component of the Ewald method to neglect the ~k = ~0 term and is

physically sensible. To investigate the dipole term we investigate the long-range energy

contribution in the α = 2 case by considering a charge density which is a point dipole.

Consider two charges q1 = −q and q2 = +q at positions ~r1 = (−d/2, 0, 0) and ~r2 =

(d/2, 0, 0) respectively, as in Figure A-3. The dipole moment of these two charges has

magnitude p = qd and is parallel to the x-axis. A point dipole at the origin is formed in

the limit as d→ 0 with p constant.

0

−q +q

−d
2

d
2

Figure A-3: Two charges of strength q separated by distance d aligned parallel to the x-axis.

In the Ewald method the long-range contribution to the electrostatic energy is given

by

φ(lr) =
1

2V

∑
~k 6=~0
|~k|<kc

4π

|~k|2
exp

(
−|~k|2

4α

)
|ρ̄(~k)|2, (A.16)

where

ρ̄(~k) =

N∑
j=1

qj exp(i~k · ~rj). (A.17)

For our two charge system the real part of ρ̄(~k) is

Re
(
ρ̄(~k)

)
= −q cos(~kx(−d/2)) + q cos(~kxd/2), (A.18)

= 0, (A.19)

and the imaginary part is

Im
(
ρ̄(~k)

)
= −q sin(~kx(−d/2)) + q sin(~kxd/2), (A.20)

= 2q sin(~kxd/2), (A.21)

=
2p

d
sin(~kxd/2). (A.22)

We are interested in the contribution of a point dipole which is given by

lim
d→0

(
Im
(
ρ̄(~k)

))
= lim

d→0

(
2p

d
sin(~kxd/2)

)
, (A.23)

= p~kx. (A.24)

164

Appendix A. Appendices

Hence the long-range energy φ(lr) in the limit d→ 0 is

φ(lr) =
1

2V

∑
~k 6=~0
|~k|<kc

4π

|~k|2
exp

(
−|~k|2

4α

)
p2|~kx|2, (A.25)

≤ 2πp2

V

∑
~k 6=~0
|~k|<kc

exp

(
−|~k|2

4α

)
, (A.26)

which is a convergent summation. To compare Equation (A.25) with the system energy

seen in practice from our Ewald implementation presented in section 5.1 we constructed

the system illustrated in Figure A-3. In Figure A-4 we plot the long-range contribution to

the system energy for varying charge separation distances d and plot the predicted value

for d→ 0. Although the long-range contribution to the energy converges the short-range

contribution diverges as erfc(
√
αr)/r →∞ as r → 0.

10−4 10−3 10−2 10−1

Charge separation d

0.00030

0.00035

0.00040

0.00045

0.00050

0.00055

0.00060

0.00065

E
n
er
g
y

Computed long-range energy

Predicted dipole limit

Figure A-4: Long-range energy contribution of an approximate dipole system constructed from two
charges separated by a distance d. Predicted long-range energy is plotted in dashed black, computed
energy is plotted in solid black. Values are plotted for Gaussian width α = 1.0 and reciprocal cutoff
kc = 200.

The long-range potential φ(lr) at a point ~b is

φ(lr)(~b) =
1

V

∑
~k 6=~0
|~k|<kc

4π

|~k|2
exp

(
−|~k|2

4α

)
exp(i~k ·~b)ρ(~k), (A.27)

165

A.9. Convergence Characteristics Of Ewald Summation

where for a dipole charge distribution

ρ(~k) =

N∑
j=1

qj exp(−i~k · ~rj), (A.28)

= −p~kx. (A.29)

The long-range potential at the origin induced by a periodic lattice of dipoles is

φ(lr)(~0) =
1

V

∑
~k 6=~0
|~k|<kc

4π

|~k|2
exp

(
−|~k|2

4α

)
(−p~kx), (A.30)

= 0 for finite kc. (A.31)

If we consider a point ~b 6= ~0 then for the long-range potential

|φ(lr)(~b)| = 1

V

∑
~k 6=~0
|~k|<kc

∣∣∣∣∣ 4π

|~k|2
exp

(
−|~k|2

4α

)
exp(i~k ·~b)(−p~kx)

∣∣∣∣∣ , (A.32)

≤ C1

∑
~k 6=~0
|~k|<kc

1

|~k|2
exp

(
−|~k|2

4α

)
|~kx|, (A.33)

≤ C1

∑
~k 6=~0
|~k|<kc

exp

(
−|~k|2

4α

)
, (A.34)

≤ C2

∫ ∞
k=0

exp

(
−|~k|2

4α

)
= C2

√
απ. (A.35)

We conclude that the Fourier Transform approach defines an ordering of the summation

in Equation (A.15) that is convergent for all reciprocal cutoffs kc. By defining an ordering

of the summation the Ewald method chooses a value for these conditionally convergent

summations. We see in the case of a dipole only system the potential at the origin does

make physical sense, we do not discuss higher order moments.

166

BIBLIOGRAPHY

[1] F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz De La Rubia,

and M. Seager, Simulating materials failure by using up to one billion atoms and

the world’s fastest computer: Work-hardening, Proceedings of the National Academy

of Sciences, 99 (2002), pp. 5783–5787.

[2] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Sci-

ence Publications), Oxford science publications, Clarendon Press, 1989.

[3] N. Allsopp, G. Ruocco, and A. Fratalocchi, Molecular dynamics beyonds the

limits: Massive scaling on 72 racks of a BlueGene/P and supercooled glass dynamics

of a 1 billion particles system, Journal of Computational Physics, 231 (2012), pp. 3432

– 3445.

[4] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,

C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS Project

Version 1.5, Archive of Numerical Software, 3 (2015).

[5] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells,

Unified Form Language: A domain-specific language for weak formulations of partial

differential equations, CoRR, abs/1211.4047 (2012).

[6] G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities, in Proceedings of the April 18-20, 1967, Spring Joint Com-

puter Conference, AFIPS ’67 (Spring), New York, NY, USA, 1967, ACM, pp. 483–485.

[7] T. Amisaki, Precise and efficient Ewald summation for periodic fast multipole

method, Journal of Computational Chemistry, 21, pp. 1075–1087.

[8] H. C. Andersen, Molecular dynamics simulations at constant pressure and/or tem-

perature, The Journal of Chemical Physics, 72 (1980), pp. 2384–2393.

167

Bibliography

[9] J. A. Anderson, C. D. Lorenz, and A. Travesset, General purpose molecu-

lar dynamics simulations fully implemented on graphics processing units, Journal of

Computational Physics, 227 (2008), pp. 5342 – 5359.

[10] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-

man, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knep-

ley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and

H. Zhang, PETSc Web page. http://www.mcs.anl.gov/petsc, 2016. [Online;

accessed 26/05/2016].

[11] L. Boltzmann, Weitere studien über das Wärmegleichgewicht unter Gasmolekülen,

in Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien,

Mathematisch-Naturwissenschaftliche Classe, vol. 66, 1872, pp. 275–370.

[12] , Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen

Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über

das Wärmegleichgewicht., in Sitzungsberichte der Kaiserlichen Akademie der Wis-

senschaften in Wien, Mathematisch-Naturwissenschaftliche Classe, vol. 76, 1877,

pp. 373–435.

[13] Cavium and ARM, ThunderX2 ARM processor. https://www.cavium.com/

product-thunderx2-arm-processors.html.

[14] CCP5, DL POLY 4 TEST01. ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/

DATA/, 2018. [Online; accessed 01/04/2018].

[15] L. Dalćın, R. Paz, M. Storti, and J. D’Eĺıa, MPI for Python: Performance

improvements and MPI-2 extensions, Journal of Parallel and Distributed Computing,

68 (2008), pp. 655 – 662.

[16] T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N · log(N)

method for Ewald sums in large systems, The Journal of Chemical Physics, 98 (1993),

pp. 10089–10092.

[17] D.C.Rapaport, Enhanced molecular dynamics performance with a programmable

graphics processor, Computer Physics Communications, 182 (2011), pp. 926–934.

[18] M. Deserno and C. Holm, How to mesh up Ewald sums. I. A theoretical and

numerical comparison of various particle mesh routines, The Journal of Chemical

Physics, 109 (1998), pp. 7678–7693.

[19] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte

Carlo, Physics Letters B, 195 (1987), pp. 216 – 222.

[20] P. Eastman and V. Pande, Accelerating Development and Execution Speed with

Just-in-Time GPU Code Generation, in GPU Computing Gems, M. Kaufmann, ed.,

vol. 2, pp. 399–407.

168

http://www.mcs.anl.gov/petsc
https://www.cavium.com/product-thunderx2-arm-processors.html
https://www.cavium.com/product-thunderx2-arm-processors.html
ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DATA/
ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DATA/

Bibliography

[21] , Openmm: A hardware-independent framework for molecular simulations, Com-

puting in Science Engineering, 12 (2010), pp. 34–39.

[22] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.

Pedersen, A smooth particle mesh Ewald method, The Journal of Chemical Physics,

103 (1995), pp. 8577–8593.

[23] P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, An-

nalen der Physik, 369 (1921), pp. 253–287.

[24] D. Frenkel and B. Smit, in Understanding Molecular Simulation (Second Edition)

, Academic Press, 2002, p. 64.

[25] , in Understanding Molecular Simulation (Second Edition) , Academic Press,

2002, p. 12.

[26] , in Understanding Molecular Simulation (Second Edition) , Academic Press,

2002, p. 291.

[27] J. G. Gay and B. J. Berne, Modification of the overlap potential to mimic a linear

site-site potential, The Journal of Chemical Physics, 74 (1981), pp. 3316–3319.

[28] Z. Gimbutas and L. Greengard, A fast and stable method for rotating spherical

harmonic expansions, Journal of Computational Physics, 228 (2009), pp. 5621 – 5627.

[29] M. S. Green, Markov Random Processes and the Statistical Mechanics of Time-

Dependent Phenomena. II. Irreversible Processes in Fluids, The Journal of Chemical

Physics, 22 (1954), pp. 398–413.

[30] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, PhD

thesis, Yale University, 1987.

[31] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal

of Computational Physics, 73 (1987), pp. 325 – 348.

[32] , A new version of the fast multipole method for the laplace equation in three

dimensions, Acta Numerica, 6 (1997), pp. 229 – 269.

[33] GW4, Isambard. http://gw4.ac.uk/isambard/.

[34] W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their

Applications, Biometrika, 57.1 (1970), pp. 97–109.

[35] R. Hockney and J. Eastwood, Computer Simulation Using Particles, 1988.

[36] M. Homolya, L. Mitchell, F. Luporini, and D. Ham, TSFC: A Structure-

Preserving Form Compiler, SIAM Journal on Scientific Computing, 40 (2018),

pp. C401–C428.

169

http://gw4.ac.uk/isambard/

Bibliography

[37] J. D. Honeycutt and H. C. Andersen, Molecular dynamics study of melting

and freezing of small Lennard-Jones clusters, The Journal of Physical Chemistry, 91

(1987), pp. 4950–4963.

[38] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys.

Rev. A, 31 (1985), pp. 1695–1697.

[39] , Constant-pressure equations of motion, Phys. Rev. A, 34 (1986), pp. 2499–2500.

[40] Intel Corporation. http://ark.intel.com/products/75269/

Intel-Xeon-Processor-E5-2650-v2-20M-Cache-2_60-GHz, 2013. [Online;

accessed 14/09/2017].

[41] I.T.Todorov, W.Smith, K.Trachenko, and M.T.Dove, DL POLY, Journal of

Materials Chemistry, 16 (2006), pp. 1911–1918.

[42] A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and H. Löwen,

Statistical Mechanics where Newton’s Third Law is Broken, Phys. Rev. X, 5 (2015),

p. 011035.

[43] J. Jackson, Classical Electrodynamics, John Wiley & Sons, 3 ed., 7 1998.

[44] K. Kadau, T. Germann, and P. S. Lomdahl, Molecular Dynamics Comes of

Age:. 320 Billion Atom Simulation on BlueGene/L, 17 (2006), pp. 1755–1761.

[45] J. Kolafa and J. W. Perram, Cutoff Errors in the Ewald Summation Formulae

for Point Charge Systems, Molecular Simulation, 9 (1992), pp. 351–368.

[46] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General The-

ory and Simple Applications to Magnetic and Conduction Problems, Journal of the

Physical Society of Japan, 12 (1957), pp. 570–586.

[47] J. E. Lennard-Jones, Cohesion, Proceedings of the Physical Society, 43 (1931),

p. 461.

[48] A. Malins, S. R. Williams, J. Eggers, and C. P. Royall, Identification of

structure in condensed matter with the topological cluster classification, The Journal

of Chemical Physics, 139 (2013).

[49] J. C. Maxwell, II. Illustrations of the dynamical theory of gases, The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 20 (1860),

pp. 21–37.

[50] , V. Illustrations of the dynamical theory of gases. Part I. On the motions and

collisions of perfectly elastic spheres, The London, Edinburgh, and Dublin Philosoph-

ical Magazine and Journal of Science, 19 (1860), pp. 19–32.

170

http://ark.intel.com/products/75269/Intel-Xeon-Processor-E5-2650-v2-20M-Cache-2_60-GHz
http://ark.intel.com/products/75269/Intel-Xeon-Processor-E5-2650-v2-20M-Cache-2_60-GHz

Bibliography

[51] W. Mickel, S. C. Kapfer, G. E. Schröder-Turk, and K. Mecke, Short-

comings of the bond orientational order parameters for the analysis of disordered

particulate matter, The Journal of Chemical Physics, 138 (2013), p. 044501.

[52] R. M. Neal, Handbook of Markov Chain Monte Carlo, in Handbooks of Modern

Statistical Methods, CRC Press, 2011, ch. MCMC Using Hamiltonian Dynamics.

[53] I. Newton, AXIOMATA SIVE LEGES MOTUS, in Principia Mathematica, 1687.

[54] S. Nosé, A molecular dynamics method for simulations in the canonical ensemble,

Molecular Physics, 52 (1984), pp. 255–268.

[55] , A unified formulation of the constant temperature molecular dynamics methods,

The Journal of Chemical Physics, 81 (1984), pp. 511–519.

[56] NVIDIA Corporation. http://www.nvidia.co.uk/content/PDF/kepler/

Tesla-K20X-BD-06397-001-v05.pdf, November 2012. [Online; accessed

14/09/2017].

[57] , NVIDIA Tesla P100. http://www.nvidia.com/object/tesla-p100.html,

2016. [Online; accessed 03/06/2016].

[58] . http://www.nvidia.com/content/tesla/pdf/

nvidia-tesla-kepler-family-datasheet.pdf, 2017.

[59] U. of Michigan et al, HOOMD-blue web page. http://glotzerlab.engin.

umich.edu/hoomd-blue/, 2016. [Online; accessed 25/05/2016].

[60] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, Tackling exas-

cale software challenges in molecular dynamics simulations with GROMACS, CoRR,

abs/1506.00716 (2015).

[61] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham,

S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman, AMBER, a package of

computer programs for applying molecular mechanics, normal mode analysis, molec-

ular dynamics and free energy calculations to simulate the structural and energetic

properties of molecules, Computer Physics Communications, 91 (1995), pp. 1 – 41.

[62] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,

C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynam-

ics with NAMD, Journal of Computational Chemistry, 26 (2005), pp. 1781–1802.

[63] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal

of Computational Physics, 117 (1995), pp. 1 – 19.

[64] , LAMMPS gpu package documentation. http://lammps.sandia.gov/doc/

accelerate_gpu.html, 2016. [Online; accessed 03/06/2016].

171

http://www.nvidia.co.uk/content/PDF/kepler/Tesla-K20X-BD-06397-001-v05.pdf
http://www.nvidia.co.uk/content/PDF/kepler/Tesla-K20X-BD-06397-001-v05.pdf
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/content/tesla/pdf/nvidia-tesla-kepler-family-datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/nvidia-tesla-kepler-family-datasheet.pdf
http://glotzerlab.engin.umich.edu/hoomd-blue/
http://glotzerlab.engin.umich.edu/hoomd-blue/
http://lammps.sandia.gov/doc/accelerate_gpu.html
http://lammps.sandia.gov/doc/accelerate_gpu.html

Bibliography

[65] , Lennard-Jones liquid benchmark. http://lammps.sandia.gov/bench.html#

lj, 2016. [Online; accessed 03/06/2016].

[66] Python Software Foundation, Python. https://www.python.org/, 2018.

[67] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.

Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Au-

tomating the Finite Element Method by Composing Abstractions, ACM Trans. Math.

Softw., 43 (2016), pp. 24:1–24:27.

[68] F. Rathgeber, G. Markall, L. Mitchell, N. Loriant, D. Ham, C. Bertolli,

and P. Kelly, PyOP2: A High-Level Framework for Performance-Portable Simula-

tions on Unstructured Meshes, in High Performance Computing, Networking, Storage

and Analysis (SCC), 2012 SC Companion:, 2012, pp. 1116–1123.

[69] , PyOP2 Documentation. http://op2.github.io/PyOP2/index.html/, 2016.

[Online; accessed 25/05/2016].

[70] C. P. Royall and S. R. Williams, The role of local structure in dynamical arrest,

Physics Reports, 560 (2015), pp. 1 – 75.

[71] W. R. Saunders. https://doi.org/10.5281/zenodo.496142, 2017.

[72] . https://doi.org/10.5281/zenodo.496147, 2017.

[73] W. R. Saunders, J. Grant, and E. H. Müller, A domain specific language for

performance portable molecular dynamics algorithms, Computer Physics Communi-

cations, 224 (2018), pp. 119 – 135.

[74] , Long Range Forces in a Performance Portable Molecular Dynamics Framework,

in Parallel Computing is Everywhere, 2018, pp. 37 – 46.

[75] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Bond-orientational order

in liquids and glasses, Phys. Rev. B, 28 (1983), pp. 784–805.

[76] A. Stukowski, Structure identification methods for atomistic simulations of crys-

talline materials, Modelling and Simulation in Materials Science and Engineering, 20

(2012), p. 045021.

[77] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, A computer

simulation method for the calculation of equilibrium constants for the formation of

physical clusters of molecules: Application to small water clusters, The Journal of

Chemical Physics, 76 (1982), pp. 637–649.

[78] S. van der Walt, S. C. Colbert, and G. Varoquaux, The NumPy Array: A

Structure for Efficient Numerical Computation, Computing in Science and Engineer-

ing, 13 (2011), pp. 22–30.

172

http://lammps.sandia.gov/bench.html#lj
http://lammps.sandia.gov/bench.html#lj
https://www.python.org/
http://op2.github.io/PyOP2/index.html/
https://doi.org/10.5281/zenodo.496142
https://doi.org/10.5281/zenodo.496147

Bibliography

[79] L. Verlet, Computer ”Experiments” on Classical Fluids. I. Thermodynamical Prop-

erties of Lennard-Jones Molecules, Phys. Rev., 159 (1967), pp. 98–103.

[80] E. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der

Atomspektren. Braunschweig: Vieweg Verlag, Friedr. Vieweg & Son, 1931.

173

	List of Figures
	List of Tables
	List of Algorithms
	Background
	Scientific Background
	Introduction
	Statistical Mechanics
	Molecular Dynamics
	Analysis Techniques

	Modern High Performance Computing
	General HPC Facility Topology
	Compute Nodes

	Discussion Of Existing Libraries
	Overview Of Existing Libraries
	Library Comparisons
	Discussion And Conclusions

	A Separation of Concerns Based Abstraction
	PyOP2 And Firedrake: An Existing Approach
	An Abstraction For Particle Operations
	Abstraction Implementation
	Domain Specific Language
	Further Examples

	Code Generation Of Modern Parallel MD Algorithms
	Modern Parallel MD Algorithms
	Cell Based Methods
	Parallel Decomposition
	Halo Exchange
	Cell To Particle Maps
	Finding And Storing Pairs Of Particles
	Neighbour List Rebuilding

	Code Generation
	Particle Loop
	Local Particle Pair Loop

	Results
	Comparison To Other Codes
	Structure Analysis Algorithms

	Modern Algorithms for Electrostatic Interactions
	Introduction
	Coulomb Potential Truncation

	Particle Ewald Summation
	Parameter Selection

	Fast Multipole Method
	Two Dimensional Fast Multipole Method
	Three Dimensional Fast Multipole Method

	Implementation of Electrostatic Interaction Algorithms
	Ewald Implementation
	Ewald Results
	Computational Complexity
	Strong Scaling

	Fast Multipole Method
	Indirect Interactions
	Direct Interactions

	Fast Multipole Method Results

	Conclusion And Future Work
	Summary Of Work
	Critical Assessment And Future Work

	Appendices
	Largest Subcluster Algorithm
	Negative Binomial Expansion
	Gaussian Units
	3D FMM Force Calculation
	Balena System Architecture
	Example LAMMPS Input Script
	Example HOOMD-blue Python Input Script
	CUDA Code Generation
	CUDA Particle Loop
	CUDA Local Particle Pair Loop

	Convergence Characteristics Of Ewald Summation

	Bibliography

