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Summary
We study how uncertainty in the input data of the Radiative Transport equation (RTE), affects

the distribution of (functionals of) its solution (the output data).

The RTE is an integro-differential equation, in up to seven independent variables, that models

the behaviour of rarefied particles (such as photons and neutrons) in a domain. Its applications

include nuclear reactor design, radiation shielding, medical imaging, optical tomography and as-

trophysics. We focus on the RTE in the context of nuclear reactor physics where, to design and

maintain safe reactors, understanding the effects of uncertainty is of great importance.

There are many potential sources of uncertainty within a nuclear reactor. These include the

geometry of the reactor, the material composition and reactor wear. Here we consider uncertainty in

the macroscopic cross-sections (‘the coefficients’), representing them as correlated spatial random

fields. We wish to estimate the statistics of a problem-specific quantity of interest (under the

influence of the given uncertainty in the cross-sections), which is defined as a functional of the

scalar flux. This is the forward problem of Uncertainty Quantification. We seek accurate and

efficient methods for estimating these statistics.

Thus far, the research community studying Uncertainty Quantification in radiative transport

has focused on the Polynomial Chaos expansion. However, it is known that the number of terms

in the expansion grows exponentially with respect to the number of stochastic dimensions and the

order of the expansion, i.e. polynomial chaos suffers from the curse of dimensionality. Instead,

we focus our attention on variants of Monte Carlo sampling - studying standard and quasi-Monte

Carlo methods, and their multilevel and multi-index variants. We show numerically that the quasi-

Monte Carlo rules, and the multilevel variance reduction techniques, give substantial gains over the

standard Monte Carlo method for a variety of radiative transport problems. Moreover, we report

problems in up to 3600 stochastic dimensions, far beyond the capability of polynomial chaos.

A large part of this thesis is focused towards a rigorous proof that the multilevel Monte Carlo

method is superior to the standard Monte Carlo method, for the RTE in one spatial and one

angular dimension with random cross-sections. This is the first rigorous theory of Uncertainty

Quantification for transport problems and the first rigorous theory for Uncertainty Quantification

for any PDE problem which accounts for a path-dependent stability condition. To achieve this result,

we first present an error analysis (including a stability bound on the discretisation parameters)

for the combined spatial and angular discretisation of the spatially heterogeneous RTE, which is

explicit in the heterogeneous coefficients. We can then extend this result to prove probabilistic

bounds on the error, under assumptions on the statistics of the cross-sections and provided the

discretisation satisfies the stability condition pathwise. The multilevel Monte Carlo complexity

result follows.

Amongst other novel contributions, we: introduce a method which combines a direct and

iterative solver to accelerate the computation of the scalar flux, by adaptively choosing the fastest

solver based on the given coefficients; numerically test an iterative eigensolver, which uses a single

source iteration within each loop of a shifted inverse power iteration; and propose a novel model for

(random) heterogeneity in concrete which generates (piecewise) discontinuous coefficients according

to the material type, but where the composition of materials are spatially correlated.

1



Acknowledgements
Over the course of my years at the University of Bath, I have had the pleasure of working with

many people who have made my experience truly enjoyable.

Firstly, I would like to give a massive thank you to my supervisors Ivan Graham and Robert

Scheichl. Both of you made time in your extremely busy schedules to share your enthusiasm and

seemingly endless amounts of knowledge with me. You both have, and continue to be, a great

source of inspiration. For that I am extremely grateful and I cannot thank you enough.

I would also like to send a big thanks to Paul Smith from the Wood Group. I thoroughly

enjoyed my visits to Poundbury and the ANSWERS seminars, and you were always a friendly

and excellent host. You were also the source for many helpful and engaging discussions and I am

lucky to have had the chance to work with you. Another big thank you goes to the rest of the

ANSWERS team at the Wood Group (and particularly Geoff Dobson) for always being willing to

give up your time for discussions. I learned a great detail about radiative transport from you all

- but also the importance of a single word before the many different meanings of ‘Monte Carlo’. I

would also like to thank the Wood Group as a whole for the generous funding of my research.

I would like to also thank Susie, Andreas, Paul, Anna and Jess for their help and encouragement

during the whole SAMBa experience. A thank you also to Matthew Durey and Marcus Kaiser for

making every office hour that little more enjoyable, and for interesting discussions on all of our

research.

In addition, I would like to thank the EPSRC Centre for Doctoral Training in Statistical Applied

Mathematics at Bath for funding me through this project (EP/L015684/1), as well as providing

me with valuable time on the High Performance Computing Service here at Bath.

I am also very grateful to the Numerical Analysis group at Bath, where many excellent and

interesting speakers have expanded my mathematical interest. In particular, I would like to thank

Tony Shardlow and Alastair Spence for their excellent suggestions on papers and future research.

Tony, it was tempting but I managed to avoid “In this thesis...”. Moreover, I would like to thank

Eike Muller for advice on all things Fortran related.

I would also like to thank Elisabeth Ullmann for allowing me access to her Matlab code, which

computed the eigenpairs for the Karhunen-Loéve expansion.
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1.1.4 Fixed Source Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.5 Challenges of the RTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Energy Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Angular Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Analog Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Model Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Thesis Contributions and Outline . . . . . . . . . . . . . . . . . . . . . 24

Fulfilling the global demand for energy by using clean sources of energy is a difficult task

for national governments. Whilst the technology and scalability of renewable energy is still in its

infancy, one other option is that of nuclear power. Nuclear power plants create heat energy through

(ideally self-sustaining) fission chain reactions. This energy is typically converted to electricity by

a turbine.

For centuries, mathematicians and physicists have attempted to predict and emulate such real-

life physical phenomena through the use of (mathematical) models, often in the form of differential

equations. One such example, and the focus of this thesis, is the Radiative Transport Equation

(RTE), which can closely model the behaviour of rarefied particles (such as neutrons and photons)

around a domain [3]. Accurate and efficient computational modelling of the RTE is particularly

important due to the difficulty of experimental work [107]. Our particular focus will be on the

application of the RTE to nuclear reactor physics. However, we note that the RTE has many

other applications including, but not limited to; atmospheric modelling [68], astrophysics in stellar

atmospheres [45], optical tomography (e.g. medical imaging) [61, 168] and radiation exposure in

aviation [180].

Its ability to reliably model particle behaviour makes the RTE a central tool in the design and

operation of nuclear reactors around the world. Within design, industry want to create schematics

for reactors that create as much energy as possible, whilst abiding by strict government safety

regulations (such as those set out by the Office of Nuclear Regulation in the UK). Similarly, the
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CHAPTER 1. INTRODUCTION

operation of existing reactors also concerns itself with maximising energy output whilst constrained

by safety regulations.

We will begin this chapter by introducing the standard assumptions that are made within the

radiative transport literature, whilst also describing the underlying physics. We will then formally

introduce the radiative transport equation itself, including commonly used boundary conditions,

and discuss the two main scenarios of interest - the fixed source problem and the criticality problem.

We then describe some possible solution methods for the fixed source problem, many of which are

used in the remaining thesis. Furthermore, we outline a sequence of simpler versions of the RTE

that will allow us to show that our methodologies work, and also allow us to do some tractable

mathematical theory. Finally, we present a summary of the contributions of this thesis.

1.1 The Radiative Transport Equation

The Radiative Transport equation (RTE, also referred to as Neutron Transport) is a linearised

version of the Boltzmann equation. It is a physically derived balance equation (as will be seen

later in (1.1.6)) which models the flux of rarefied particles in terms of position, angle, energy

and time (in total, seven independent variables). There are a number of different formulations of

the RTE, including the integral equation and surface-integral forms [72, 176], but often it is the

integro-differential equation formulation which is colloquially known as the RTE. To derive the

RTE we make the following two assumptions.

Firstly, we assume that particles are modelled as point particles, i.e. they are completely

determined by their position and velocity. This means that particles travel in straight lines, ignoring

quantum and electromagnetic effects. For a discussion on why this assumption is reasonable, we

refer the reader to [27, §1.1b].
Secondly, we assume that particle-particle interactions are negligible and hence particles can

only interact with larger nuclei. This is also a reasonable assumption because the density of the

larger nuclei within a reactor is typically many orders of magnitude bigger than the density of the

particles. For example, neutron density is around 109 per cubic centimetre, compared to a density

of 1023 per cubic centimetre for the nuclei [202].

Before we introduce the RTE, let us first introduce some notation and discuss the basic un-

derlying physics. At time t ∈ R+ (where R+ := {t ∈ R | t ≥ 0} denotes the non-negative real

numbers), consider a particle with position r ∈ D ⊂ R3 travelling in the angular direction Θ ∈ S2

(where S2 := {v ∈ R3 | |v| = 1} denotes the unit sphere) with some kinetic energy E ∈ R+. As

time evolves, the particle will eventually undergo a collision event with a larger nuclei. There are

three possible collision events; absorption (sometimes referred to as capture), scatter and fission.

If the particle undergoes absorption, the larger nuclei absorbs the particle and its energy is

lost to the system. Simply put, one particle enters the collision event, no particles leave. This is

commonly the case when a particle collides with the nuclei of a control rod or if the boundary of

the reactor is designed to absorb neutrons. The rate at which a particle with position r and energy

E undergoes an absorption event is denoted by σA(r, E), the absorption cross-section.

The second possible collision event is scattering. When a particle with direction Θ′ and energy

E′ collides with a nucleus at position r it can ‘bounce off’ the nucleus. This changes the particle’s

direction and energy to Θ and E respectively. The rate at which a neutron undergoes such an

event is given by σS(r,Θ′,Θ, E′, E), the scattering cross-section. Note that the interaction is

rotationally invariant and hence σS only depends on the cosine between angles, (Θ′ ·Θ), so the

notation σS(r,Θ′ ·Θ, E′, E) is sometimes used. Typically, particles lose energy during a scattering
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CHAPTER 1. INTRODUCTION

collision event, and this is known as downscatter. In rarer cases the opposite occurs, so-called

upscatter [2].

Perhaps the most complex collision event is that of fission. Here, a particle collides with a

nucleus and it is absorbed. Unlike an absorption collision event, this causes a fission reaction to

occur within the nucleus, which in turn emits a number of new particles. The average number

of new particles emitted at a given energy E is given by ν(·, E) ∈ R+. Moreover, the energies

of these particles are given by the distribution χ(E) ∈ R+ (i.e.
∫
R+ χ(E)dE = 1). The released

direction for each of the new particles is isotropic in angle. For a particle at (r, E) in phase space,

the rate at which a fission event occurs is given by σF (r, E), the fission cross-section. Note that

sometimes particles are not released immediately after a fission event - we will assume that these

delayed particles are negligible [27].

A combination of the discussed cross-sections gives us the total macroscopic cross-section,

σ(r, E), defined by

σ(r, E) := σA(r, E) +
1

4π

∫
R+

∫
S2
σS(r,Θ′ ·Θ, E,E′) dΘdE′ + σF (r, E) . (1.1.1)

The total cross-section corresponds to the rate at which any collision event will happen at (r, E).

Inversely, this is commonly known as the mean-free path, λ̃ := 1/σ, the average distance travelled

from one collision to the next.

At this point we would like to make two notes regarding collision events and their cross-sections.

Firstly, the collision events outlined above are somewhat simplified. For example, there are different

types of scattering collision event, e.g. elastic and inelastic scattering [27, 102]. We will not discuss

these further and assume that any given cross-sections account for this.

Secondly, when we use the term ‘cross-section’ we are in fact talking about the macroscopic

cross-section, as opposed to the microscopic cross-section. The microscopic cross-section is the

rate at which a collision event between a single particle and a single nucleus occurs. Its units are

cm2, although sometimes in the physics literature this is stated in barns (1 barn = 10−24cm2).

The microscopic cross-sections are found experimentally and are stored in nuclear data libraries

across the world. Examples of such libraries include; JEFF (used in the UK and internationally)

[177], CENDL (China) [75] and ENDF/B (USA) [44].

In comparison, the macroscopic cross-sections σA, σS and σF can be interpreted as the rate at

which the respective collision events occur (or probabilities when normalised by σ) between a single

particle and a cubic centimetre of the nuclei. Consider a cubic centimetre of material consisting

of N types of nucleus, with the ith nucleus having microscopic cross-section σ̃
(i)
col (for any of the

collision events) and constituting wi (or 100wi%) of the total volume. Then, the macroscopic

cross-section σcol for that collision event and composite material is given by:

σcol =

N∑
i=1

wiA
(i)
d σ̃

(i)
col , (1.1.2)

where A
(i)
d denotes the atom density of the ith nucleus (with units in atoms/cm3 and defined in

[102, (2-1)]). This implies that the units of the macroscopic cross-sections are cm−1.

The final component of the transport equation is that of a fixed source (or forcing) term,

f(r,Θ, E, t) ∈ R+. The source f corresponds to other sources of particles that are not accounted

for by a fission event. For example a radioactive isotope, such as californium-252, loaded into

guide tubes within the reactor core will emit neutrons through spontaneous fission reactions [137].

Collectively, we will refer to the source f , the cross-sections σA, σS and σF , and the fission
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CHAPTER 1. INTRODUCTION

parameters ν and χ, as the nuclear input data.

The derivation of the RTE involves understanding (and balancing) changes in the distribution

of particles. The starting point is to consider the angular density N(r,Θ, E, t); the number of

particles at time t, per unit volume (around r) and with the given energy E and angle Θ. Typically,

we are more interested in the angular flux ψ(r,Θ, E, t), which relates to the angular density by

the following:

ψ(r,Θ, E, t) = v(E)N(r,Θ, E, t) , (1.1.3)

where v(E) is the particle speed given implicitly by E = 1
2mv

2 (where m denotes particle mass).

The derivation involves considering changes over an infinitesimal subset of the seven independent

variables, see for example [27, 52]. We will also be interested in the scalar flux, φ(r, E, t), the

angular average of the angular flux ψ, i.e.

φ(r, E, t) := (Wψ) (r, E, t) :=
1

4π

∫
S2
ψ(r,Θ, E, t) dΘ . (1.1.4)

The full time-dependent RTE is then: Find the angular flux ψ(r,Θ, E, t) satisfying

1

v

∂

∂t
ψ(r,Θ, E, t) = − [Θ · ∇+ σ(r, E)]ψ(r,Θ, E, t)

+
1

4π

∫
R+

∫
S2
σS(r,Θ′ ·Θ, E′, E)ψ(r,Θ′, E′, t) dΘ′dE′ (1.1.5)

+
χ(E)

4π

∫
R+

ν(r, E′)σF (r, E′)

∫
S2
ψ(r,Θ′, E, t) dΘ′dE′

+ f(r,Θ, E, t) ,

for all r ∈ D, Θ ∈ S2, E ∈ R+, t ∈ R+, where ∇ denotes the gradient with respect to r and we

introduce some appropriate boundary conditions in Section 1.1.1. Simply put, (1.1.5) is equivalent

to, for any r, Θ, E and t

Change in particle numbers in ψ(r,Θ, E, ·) =− Loss of particles in ψ(r,Θ, E, ·)

+ Gain of particles in ψ(r,Θ, E, ·) . (1.1.6)

The interpretation (1.1.6) can be taken further. Consider the operator form of (1.1.5), i.e.

1

v

∂

∂t
ψ(r,Θ, E, t) = (−T + S + F)ψ(r,Θ, E, t) , (1.1.7)

where we define

T ψ(r,Θ, E, t) = [Θ · ∇+ σ(r, E)]ψ(r,Θ, E, t) , (1.1.8)

Sψ(r,Θ, E, t) =
1

4π

∫
R+

∫
S2
σS(r,Θ′ ·Θ, E′, E)ψ(r,Θ′, E′, t) dΘ′dE′ , (1.1.9)

Fψ(r,Θ, E, t) =
χ(E)

4π

∫
R+

ν(r, E′)σF (r, E′)

∫
S2
ψ(r,Θ′, E, t) dΘ′dE′ + f(r,Θ, E, t) . (1.1.10)

The operator T on the right hand side of (1.1.7) is a loss term. It comprises of (Θ · ∇ψ),

which is loss due to particle streaming, and (σψ) which is particle loss from undergoing a collision

event. Particles are obviously lost during absorption and fission events (although in the latter,

more particles can be released). One viewpoint of scatter can be that a particle is lost, but a single

new particle is generated.

8
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The operator F on the right hand side of (1.1.7) is a gain term, comprising of gains in neutrons

from a fission event and/or a fixed source.

The operator S on the right of (1.1.7) is an altogether more subtle object. For a given (r,Θ, E, t)

it corresponds to the gain of particles (note the scattering cross-section is integrated over all

incoming angles and energies). However, unlike T and F the overall neutron numbers in the

domain D×S2×R+×R+ will remain unchanged. This is because, if there is a scattering collision

event where particles are lost from ψ(r,Θ′, E′, ·), then there must be a (Θ, E) where ψ(r,Θ, E, ·)
gains a particle.

1.1.1 Boundary Conditions

As with any differential equation, the RTE (1.1.5) requires a suitable (initial or) boundary condition

to ensure well-posedness. In radiative transport, the most commonly considered are the vacuum

and reflective boundary conditions, but there are many others including periodic, rotational and

white boundary conditions. For a further discussion on the numerical methods relating to these

boundary conditions, see for example [175].

The no-inflow (or vacuum) boundary condition assumes that particles cannot be added/enter

from outside of the spatial domain D, i.e. there is zero incoming flux at the boundaries. Mathe-

matically this can be stated as

ψ(r,Θ, ·, ·) = 0 , for all r ∈ ∂D− , (1.1.11)

where we define the inflow boundary by

D− := {r ∈ ∂D | Θ · n(r) < 0} , (1.1.12)

with ∂D denoting the boundary of D, and where n(r) denotes the outward normal vector at r.

On the other hand, reflective boundary conditions state that the (incoming) flux at r ∈ ∂D−,

for a given direction Θ, is equal to the (outgoing) flux at the same r ∈ ∂D−, in the reflected

direction Θ′ = Θ− 2 [Θ · n(r)] n(r). That is,

ψ(r,Θ, ·, ·) = ψ(r,Θ′, ·, ·) , for all r ∈ ∂D− . (1.1.13)

We refer the reader to [178, Fig. 1.1] for an illustration and details. In an industrial context,

reflective boundary conditions are often useful when there is a geometric symmetry to the reactor

[164]. By modelling one half (or subsequently quarters and eighths) of the reactor (rather than the

whole reactor) and imposing reflective boundary conditions, the average flux of particles around

the whole domain remains the same - but the cost to compute is greatly reduced.

1.1.2 Transport in Equilibrium

Throughout this thesis we will only consider steady-state problems. Such problems arise when we

make the following assumption.

Assumption 1.1.1 There is no variation in the source term or the boundary condition in time,

i.e. f(r,Θ, E, t) = f(r,Θ, E), for all r ∈ D, and ψ(r,Θ, E, t) = ψ(r,Θ, E), for all r ∈ ∂D.

9
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This assumption ensures that the angular flux becomes time-independent, i.e. ψ(r,Θ, E, t) =

ψ(r,Θ, E), for all r ∈ D, and hence

∂

∂t
ψ (·, ·, ·, t) = 0 .

The time independence of ψ implies that the system is in equilibrium.

Under Assumption 1.1.1, the solution to the transport equation (1.1.5) is equivalent to the

solution of the steady state or time-independent radiative transport equation: Find ψ(r,Θ, E)

satisfying

[Θ · ∇+ σ(r, E)]ψ(r,Θ, E) =
1

4π

∫
R+

∫
S2
σS(r,Θ′ ·Θ, E′, E)ψ(r,Θ′, E′)dΘ′dE′

+
χ(E)

4π

∫
R+

ν(r, E′)σF (r, E′)

∫
S2
ψ(r,Θ′, E′)dΘ′dE′ (1.1.14)

+ f(r,Θ, E) ,

for all r ∈ D, Θ ∈ S2 and E ∈ R+, and equipped with suitable boundary conditions (as outlined

in Section 1.1.1). Subsequently, (1.1.6) becomes Loss = Gain and the operator form (1.1.7) can

be re-written as

T ψ(r,Θ, E) = (S + F)ψ(r,Θ, E) , (1.1.15)

where the application of the operator T has been brought to the left hand side.

Two of the main scenarios of interest in particle transport are the so-called fixed source problem

and the criticality problem, which we will discuss below.

1.1.3 Criticality Problem

Assume there is no fixed source, i.e. f ≡ 0. Our above discussion assumes that particle gain is

exactly balanced with particle loss (or in the time dependent case, only changes due to time evolu-

tion). However, given a configuration for the reactor (e.g. material concentrations, cross-sections,

position of control rods) it is unlikely that we will achieve an exact balance. In mathematical

terminology, (1.1.14) (and (1.1.15)) will not have a (non-trivial) solution. We therefore introduce

another parameter λcrit > 0 to adjust/re-balance (1.1.14) and this leads us to solve the criticality

problem: Find the smallest λcrit ∈ R+ and ψ 6≡ 0 such that

(T − S)ψ = λcritFψ , (1.1.16)

with some appropriate boundary conditions. Hence, λcrit is the smallest eigenvalue of the gener-

alised eigenvalue problem, with corresponding eigenfunction ψ. We can assume that λcrit is positive

and real as explained in the following remark.

Remark 1.1.2 It is perhaps surprising that we would expect λcrit to be real and positive. The

transport operator T in (1.1.16) is an example of a non self-adjoint differential operator and there-

fore we would generally expect that the eigenvalue spectrum of (1.1.16) includes complex numbers.

However, under the assumptions: (1.1.16) is equipped with the no-inflow boundary conditions

(1.1.11); the spatial domain D is convex; and the cross-sections are homogeneous, isotropic in

angle and strictly positive; then it can be shown that there exists a unique eigenpair (λcrit, ψ), with

λcrit ∈ R+ and ψ 6≡ 0, satisfying (1.1.16). We refer the reader to [142, 178, 205] and [52, Chap.

XXI, §3.5] for further details, and similar results with weaker assumptions.

10
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The goal of the criticality problem (1.1.16) is to find a measure of how far the system is from

balance. We can see that this measure is given by λcrit by considering the three possible states of

(1.1.16):

� Subcritical (λcrit > 1). More particles are being lost than gained, the system is safe but

inefficient;

� Critical (λcrit = 1). The gain and loss of particles is balanced and hence (1.1.14) is well-

posed;

� Supercritical (λcrit < 1). More particles are being gained than lost, the system is creating

large amounts of energy but is unsafe.

Therefore for the non-critical states, a non-zero fixed source/sink of (1−λcrit)×fission contribution

is needed to keep a self-sustaining reaction and ensure (1.1.14) is well-posed.

The applications of the criticality problem are confined to the design and management of nuclear

reactors. Typically, for criticality problems within industry, the literature refers to “k-effective”

instead of λcrit, where

keff :=
1

λcrit
. (1.1.17)

To summarise, the criticality problem tells us what state a reactor system is in, given its

configuration. Adjustments can then be made to ensure a desired balance of safety and efficiency

is achieved.

1.1.4 Fixed Source Problem

For the criticality problem, we are primarily interested in the eigenvalue λcrit, rather than the

angular flux ψ of the system. The fixed source problem asks an alternative question. Assuming we

have a non-zero fixed source and the system (1.1.14) equipped with a suitable boundary condition,

then does a solution of the system uniquely exist? And if so, what is the solution?

Remark 1.1.3 It can be shown that the problem (1.1.14) has a unique solution, when appended

with suitable boundary conditions and under weak assumptions on the cross-sections, source and

the spatial domain. For further details, see [52, 138, 203].

In Section 1.2 we will discuss numerical methods that can are used to estimate the solution.

1.1.5 Challenges of the RTE

It is not difficult to imagine why the problem (1.1.14), in six independent variables (or the problem

(1.1.5) in seven independent variables), would be very challenging to solve numerically. For accurate

solutions to be achieved by discretisation techniques there will be a huge number of associated

degrees of freedom [38]. For time-independent problems for example, [185] reports up to 1010 and

[148] reports 1012 total degrees of freedom.

Moreover, the material properties (and subsequently the values of the cross-sections) can change

the underlying behaviour of the RTE [113]. In particular, consider the following notes:

� the transport operator T , on the left-hand side of the transport equation (1.1.14), is a linear

first-order differential operator, and as such is hyperbolic. It is also an example of a non

self-adjoint differential operator ;

11
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Figure 1-1: Ordering of energy groups from Emax down to Emin.

� when σS is close to σ (e.g. water) then the RTE is well approximated by the neutron diffusion

equation (an elliptic PDE) [139]. In fact, this is the reason the diffusion synthetic acceleration

(DSA) technique [3, 5, 32] works well in this regime;

� when σS is close to σ for the time-dependent RTE, the RTE is well approximated by a

time-dependent parabolic differential equation [113];

Variations in the cross-sectional values can strongly effect the performance of numerical methods.

A prime example of this is the source iteration method [94], which can find a good approximation

to the solution to the RTE quickly - unless the system is highly diffusive [178]. We will discuss

this further in Section 3.1.2.

1.2 Solution Methods

Now that we have the time-independent RTE (1.1.14) equipped with suitable boundary conditions,

we can begin to discuss possible methods for discretising the system and estimating the angular

(and scalar) flux. Whilst not the focus of this thesis, we note that to discretise (1.1.5) in time,

discrete time steps and finite differences are one option [24, pg.4].

1.2.1 Energy Discretisation

The Multigroup Approximation

The standard method for discretising the RTE over the energy domain is the multigroup method.

It makes the following assumptions, which we discuss in more detail below:

Assumption 1.2.1 1. The energy domain is restricted to an interval [Emin, Emax] ⊂ R+ (or

at least, particles which fall outside this energy range are negligible [27]);

2. On given sub-intervals of [Emin, Emax], the angular flux can be expressed as the product of a

known (piecewise smooth) function in energy with an unknown energy-independent function,

see (1.2.2);

3. The source can also be expressed as a similar product of functions, see (1.2.3).

We note that the multigroup method could still be constructed without these assumptions, but it

adds substantial complications to the theory, see [27, §1.6d and §4] for further discussion.

Consider a strictly decreasing sequence of G + 1 points on the energy interval Emax = EG >

EG−1 > · · · > E0 = Emin, which form G groups of size ∆Eg = Eg − Eg−1, for g = 1, · · · , G.

This is illustrated in Figure 1-1. On each of the energy groups, the multigroup method assigns

piecewise constant values (in energy) to the nuclear input data (e.g. cross-sections). We note that

cross-sections can have a complex shape in energy (particular in resonance regions, see Figure 1-2)

and hence a large G is often required (e.g. [185] reports G = 150).

12
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Figure 1-2: Illustrated resonance region for a cross-section of Uranium-238 nuclei, plotted against
energy. Taken from [70].

To formulate the multigroup approximation, consider (1.1.14) and re-write
∫
R+ dE

′ =
∑G
g′=1

∫ Eg′
Eg′−1

dE′.

Then integrating (1.1.14) over the interval [Eg−1, Eg] gives

(Θ · ∇)

∫ Eg

Eg−1

ψ(r,Θ, E)dE +

∫ Eg

Eg−1

σ(r, E)ψ(r,Θ, E)dE =

∫ Eg

Eg−1

f(r,Θ, E)dE (1.2.1)

+
1

4π

∫ Eg

Eg−1

∫
S2

G∑
g′=1

∫ E′g

Eg′−1

σS(r,Θ′ ·Θ, E′, E)ψ(r,Θ′, E′)dE′dEdΘ′

+

∫ Eg

Eg−1

χ(E)

4π

∫
S2

G∑
g′=1

∫ E′g

Eg′−1

ν(r, E′)σF (r, E′)ψ(r,Θ′, E′)dE′dΘ′dE ,

for all g = 1, · · · , G.

Now, Assumption 1.2.1(2.) assumes there exists a known and (piecewise smooth) function kψ

and an unknown function ψg (the angular flux on the gth energy group ∆Eg) such that [108]

ψ(r,Θ, E) = kψ(E)ψg(r,Θ) , for all Eg−1 ≤ E ≤ Eg , (1.2.2)

where kψ is normalised such that
∫ Eg
Eg−1

kψ(E)dE = 1, for all g = 1, · · · , G. Likewise, Assumption

1.2.1(3.) assumes there exists a known function kf , normalised such that
∫ Eg
Eg−1

kf (E)dE = 1, and

fg (the source on the gth energy group ∆Eg) such that

f(r,Θ, E) = kf (E)fg(r,Θ) , for all Eg−1 ≤ E ≤ Eg , (1.2.3)

for all g = 1, · · · , G.

Plugging (1.2.2) and (1.2.3) into (1.2.1) and defining the gth group input data (which can be

evaluated as illustrated in [27, §4.5] or [42, pg.11]):

σg(r) :=

∫ Eg

Eg−1

σ(r, E)kψ(E) dE ;

σS,g′,g(r,Θ
′ ·Θ) :=

∫ Eg

Eg−1

∫ Eg′

Eg′−1

σS(r,Θ′ ·Θ, E′, E)kψ(E′) dE′dE ; (1.2.4)

χg :=

∫ Eg

Eg−1

χ(E) dE ;

νg′(r)σF,g′(r) :=

∫ Eg′

Eg′−1

ν(r, E′)σF (r, E′)kψ(E′) dE′ ,

13
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allows us to re-write (1.1.14) as

[Θ · ∇+ σg(r)]ψg(r,Θ) =
1

4π

G∑
g′=1

∫
S2
σS,g′,g(r,Θ

′ ·Θ)ψg′(r,Θ
′)dΘ′

+
χg
4π

G∑
g′=1

νg′(r)σF,g′(r)

∫
S2
ψg′(r,Θ

′)dΘ′ (1.2.5)

+ fg(r,Θ) , for g = 1, · · · , G .

This is a system of equations (with input data σg, σS,g′,g, σF,g′ , χg, νg′ , fg) for the unknowns:

ψg(r,Θ) :=

∫ Eg

Eg−1

ψ(r,Θ, E′) dE′ , for g = 1, · · · , G ,

i.e. the angular flux for the gth energy group. Subsequently the scalar flux for each energy group

can be found via:

φg(r) :=
1

4π

∫
S2
ψg(r,Θ) dΘ . (1.2.6)

The boundary conditions (1.1.11), (1.1.13) also hold for the group angular fluxes ψg(r,Θ) in an

analogous way.

Throughout this thesis, we will only be considering problems with a single energy group (i.e.

G = 1, see Assumption 1.3.1(i) below). This is often referred to as the mono-energetic or the one-

speed transport problem. In this case there is no need to distinguish between different group fluxes

(and similar) and we therefore simplify notation by defining ψ(r,Θ) = ψg(r,Θ), φ(r) = φg(r) and

likewise for the group input data (1.2.4), from now on. Moreover, all fission neutrons will have the

same energy when released and hence χ1 = 1. Therefore, for G = 1, (1.2.5) becomes

[Θ · ∇+ σ(r)]ψ(r,Θ) =
1

4π

∫
S2
σS(r,Θ′ ·Θ)ψ(r,Θ′) dΘ′ + ν(r)σF (r)φ(r) + f(r,Θ) , (1.2.7)

where we define

φ(r) :=
1

4π

∫
S2
ψ(r,Θ) dΘ .

1.2.2 Angular Discretisation

We will now consider two possible discretisations with respect to the angular variable Θ, the

discrete ordinates (or SN method) and the spherical harmonics (or PN method).

Discrete Ordinates (SN)

Consider the angular variable Θ ∈ S2 in (1.2.5). We can define Θ in spherical co-ordinates (ϕ, θ)

by

Θ(θ, ϕ) =

Θx

Θy

Θz

 =

sin θ cosϕ

sin θ sinϕ

cos θ

 , (1.2.8)

where (Θx,Θy,Θz) refer to the direction of the angles in the Cartesian co-ordinate system given

by the set of all vectors r = (x, y, z). The angle ϕ ∈ [0, 2π] represents the azimuthal angle in the

xy-plane and θ ∈ [0, π] is the polar angle in the z-axis. A physical description is given in Figure

1-3 or [27, pg.3].

The discrete ordinates method approximates (1.2.7) by enforcing (1.2.7) to hold for a finite
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Figure 1-3: Spherical co-ordinates representation of Θ, defined in (1.2.8).

set of N angles {Θk}Nk=1, where the angular integral is approximated by quadrature. That is, we

begin by approximating the scalar flux φ by its (N -angle) approximation

φN (r) :=
1

4π

N∑
k′=1

wk′ψk′(r) . (1.2.9)

where we use the notation ψk(r) = ψ(r,Θk), and where {wk}, {Θk} denote the weights and

directions, respectively, for the specific discrete ordinates method. Then, we have the following

system of transport equations along each direction Θk:

[Θk · ∇+ σ(r)]ψk(r) =

N∑
k′=1

wk′
σS(r,Θk′ ·Θk) + ν(r)σF (r)

4π
ψk′(r) + fk(r) , (1.2.10)

for all k = 1, · · · , N , where we have used the notation fk(r) = f(r,Θk).

For an example of the weights wk and directions Θk, for problems (such as (1.2.7)) with angles

defined on the sphere S2, we refer the reader to the TN quadrature set [200] and the level-symmetric

LQN set [134, 148].

For problems where the angles are defined on the unit circle, e.g. [110, 10], then one option is

the uniformly spaced angles [110, Example 4.1]

Θk =

(
cos

2πk

N
, sin

2πk

N

)T
, (1.2.11)

equipped with the (equal) weights wk = (2π/N), for all k = 1, · · · , N .

In 1D problems, where the (cosine of the) angle is defined over the interval [−1, 1], the Gauss-

Legendre rules are often used because of their high accuracy (they integrate polynomials of order

2N −1 exactly). Moreover, if we consider the double Gauss rule (i.e. two separate Gauss-Legendre

rules on [−1, 0) and (0, 1] respectively) then the abscissa are well placed to tackle a singularity

that arises when the angle becomes perpendicular to the plane (i.e. cos Θx = 0 for a spatially

one-dimensional problem in the x-direction). This will be discussed later and is a key feature in

Chapter 3 and Chapter 4 of this thesis.

One main disadvantage of the SN method is the so-called ‘ray-effect’ [52, 134], i.e. the appear-

ance of unphysical flux oscillations due to the limited number of chosen directions.

Spherical Harmonics (PN)

One other option for angular discretisation, that goes back to the origins of nuclear reactor theory,

is the spherical harmonics (or PN ) method. The PN method tackles the angular domain by writing

15



CHAPTER 1. INTRODUCTION

the angular dependence of the flux, cross-sections and source in terms of spherical harmonics [27,

§4], [134] of limited degree, and then forces the residual to vanish when integrated against each

spherical harmonic.

Spherical harmonics and discrete ordinates have also been combined [68]. Here, discrete ordi-

nates is used in the same way as it is on the left hand side of (1.2.10), but spherical harmonics are

used to compute the right hand side of (1.2.10). This method was shown to give good gains over

the stand-alone methods.

1.2.3 Spatial Discretisation

Application of the multigroup and discrete ordinates method(s) leads to a system of equations

(1.2.10) which have been discretised in energy and angle, but are not discrete in the spatial variable.

We now discuss a method for tackling the spatial dimension, the Discontinuous Galerkin finite

element method (DG or DG-FEM).

Discontinuous Galerkin

Discontinuous Galerkin (DG) belongs to a family of methods for solving PDEs known as the

finite element methods (FEM), although strictly speaking it combines ideas from FEM and finite

volume schemes. DG was first invented as a solution method for the RTE [166], and it has since

been successfully employed across elliptic, hyperbolic and parabolic problems [49, 50, 150, 156].

A unified view and comparison of DG methods for elliptic problems is given in [8] and references

therein.

For simplicity, when introducing the DG scheme, we will consider the following problem instead

of (1.2.10): For a specific angle Θk, find ψ(r,Θk) such that

[Θk · ∇+ σ(r)]ψ(r,Θk) = f(r,Θk) , (1.2.12)

for all r in the spatial domain D = [0, 1]3, and equipped with some appropriate boundary condi-

tions. We note that this problem is similar to the “pure transport problem” that we discuss later

in Section 1.3.

We discretise D = [0, 1]3 by considering the tensor product of 1D meshes 0 = x0 < x1 <

· · · < xMx
= 1, 0 = y0 < · · · < yMy

= 1 and 0 = z0 < · · · < zMz
= 1, where (Mx,My,Mz)

relates to the refinement of the mesh in each co-ordinate direction. Subsequently, let {Ch} denote

a family of (disjoint and open) cuboids Dh (chosen parallel to the axes), with closure Dh, such

that D =
⋃
Dh∈Ch D

h, where h denotes the maximum diameter of any cuboid Dh (with boundary

∂Dh, and h depends on the choice of (Mx,My,Mz)). Note that we consider cuboids cells Dh for

simplicity in this presentation, but many other possibilities exist. These include tetrahedral and

hexagonal cells [29, 156], as well as adaptively refined meshes [150].

The first step in constructing our particular numerical method for (1.2.12) can be found by

multiplying both sides of (1.2.12) by a test function v(r) (defined on a cuboid Dh), integrating

over Dh and then applying Green’s identity (integration by parts) to the resulting equation. This

gives

−
∫
Dh

(Θk · ∇v)ψ dr +

∫
Dh

σψv dr +

∫
∂Dh

(Θkψ · n)v dr =

∫
Dh

fkv dr , (1.2.13)

for all test functions v, with n denoting the unit outward normal vector at a cell boundary. Details

of this construction are given in Section A.1.

16



CHAPTER 1. INTRODUCTION

Now, we define the finite element solution space

V h := {v ∈ L2(D) | ∀Dh ∈ Ch, v
∣∣
Dh
∈ QK(Dh)} ,

where v
∣∣
Dh

denotes the restriction of v onto the element Dh and QK(·) denotes the space of

polynomials of separate degree K. For the remainder of this discussion we will focus on the case

K = 1.

Moreover, let Mf = (23)MxMyMz denote the total number of degrees of freedom in the 3

spatial dimensions (with each cuboid containing 23 degrees of freedom, one in each corner). Then,

we define a set of basis functions {vj(r) ∈ V h | j = 1, · · · ,Mf} that span the space V h, such that

vj(r
(i)) :=

1 if i = j

0 otherwise
, for j = 1, · · · ,Mf , (1.2.14)

where r(i) denotes the ith spatial degree of freedom, for i = 1, · · · ,Mf . We seek a (piecewise

polynomial) function in V h that is a good approximation to the angular flux for a specific angle

(or the scalar flux approximation (1.2.9)). The approximation of the angular flux solution of

(1.2.10), for all k, then belongs to (V h)⊗N , the Nth tensor product space of V h.

The Discontinuous Galerkin method seeks an approximation of the solution to (1.2.13). That

is: Find ψh,Nk ∈ V h such that for all Dh ∈ Ch,

−
∫
Dh

(Θk · ∇vj)ψh,Nk dr +

∫
Dh

σψh,Nk vj dr +

∫
∂Dh

(Fk · n)vj dr (1.2.15)

=

∫
Dh

fkvj dr , for all k = 1, · · · , N , and all vj ∈ Q1(Dh) ,

where ψh,Nk ≈ ψ(·,Θk) and where we choose a numerical flux Fk such that (Fk · n) approximates

(Θkψ
h,N
k · n) at the cell boundaries ∂Dh, with n again denoting the unit outward normal vector

at a cell boundary.

The inclusion of the numerical flux is important as, without it, the discontinuities lead (Θkψ
h,N
k ·

n) to be double-valued at the interior boundaries [96]. Moreover, at the exterior boundaries,

the numerical flux ensures that the given boundary conditions are weakly imposed - that is, the

boundary conditions are satisfied within integral identities. For example, in the case of the no-

inflow boundary conditions (1.1.11) and for an element Dh sharing a boundary with D− (defined

in (1.1.12)), we set
∫
∂Dh−

(Fk · n)vj dr = 0, where for clarity we re-write the term in (1.2.15) as

∫
∂Dh

(Fk · n)vj dr =

(∫
∂Dh−

+

∫
∂Dh+

)
(Fk · n)vj dr =

∫
∂Dh+

(Fk · n)vj dr , (1.2.16)

where we assume that the angle Θk is not moving directly parallel to an edge of the element Dh,

and where we define the inflow and outflow boundaries for an element Dh as (respectively)

∂Dh
− := {r ∈ ∂Dh | Θk · n(r) < 0} and ∂Dh

+ := {r ∈ ∂Dh | Θk · n(r) > 0} . (1.2.17)

Many examples of Fk are used in the literature, including the (global and local) Lax-Friedrich

fluxes [50, 150] and the centered flux [96]. Later, we will apply the so-called upwind flux [96] to a

variety of spatially two-dimensional applications. That is, we define

Fk(r) · n(r) := (Θk · n(r))ψh,N,+k (r) , for all r ∈ ∂Dh
− , (1.2.18)
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for each k = 1, · · · , N , where we also define

ψh,N,+k (r) := lim
ε→0

ψh,Nk (r + εΘk) , for all r ∈ ∂Dh
− . (1.2.19)

The upwind flux is a natural choice for the numerical flux, however so-called locking1 has been

observed for systems in optically thick diffusive regimes (i.e. the material is scattering dominated

and its mean-free path λ̃ := 1/σ is small compared with the size of D). We refer the reader to an

excellent introduction in [96]. For further discussions, we refer the reader to [49] which gives an

excellent survey of DG methods applied to a variety of problems, and to [35] which discusses the

stability aspects of certain numerical flux choices.

Finally, to compute a solution to (1.2.15) we write ψh,Nk as the following basis expansion

ψh,Nk =

Mf∑
j=1

Ψj,kvj ∈ V h , for all k = 1, · · · , N ,

where Ψj,k is the coefficient corresponding to the jth spatial degree of freedom, for j = 1, · · · ,Mf ,

and the kth angle, for k = 1, · · · , N . We can then solve the resulting linear system to find the

vector of coefficients Ψ = (Ψj,k)
Mf ,N
j=1,k=1.

The original analysis of the DG scheme in a two-dimensional spatial domain (for both trian-

gular2 and rectangular elements) was given in [132]. They considered the pure transport equation

(i.e. the right hand side of (1.2.10) is replaced by a generic spatially-dependent function and the

resulting equation is studied along a fixed angle, see ahead to Section 1.3), proving O(hK) con-

vergence of the angular flux (along the specific direction) in the L2(D) norm, where h denotes the

maximum diameter of the elements. Subsequently for triangular elements, [111] proved O(hK+1/2)

convergence in L2(D), along with similar results on other Lebesgue spaces (but under some uni-

formity restrictions on the triangulations). The sharpness of this result was shown via a counter

example in a later paper [160], although O(hK+1) has been observed in some examples, e.g. [170].

Finite element methods have also been applied to radiative transport in the angular and energy

domains [36, 150], instead of the more traditional spatial approach outlined above. This works

in much the same way as the spatial DG method, but where the angular and/or energy domain

is divided into a mesh, a solution space and piecewise polynomial basis functions are defined,

and the weak formulation is constructed (rather than the multigroup method discretisation of the

energy domain or the discrete ordinates discretisation of the angular domain, for example). An

overall space-angle-energy finite element scheme then considers the tensor product of the individual

meshes.

There are also many other methods for angular and spatial discretisation that we have not

discussed here. We briefly note a few below;

� reduced-order modelling of angles [38],

� method of characteristics [13] (and short characteristics [195]),

� Crank-Nicolson (or diamond differencing) [5, 93]. We discuss this further in the context of

spatially one-dimensional transport problems in Chapter 3,

� corner balance (discontinuous) finite differencing [46].

1which is defined in [21] by: “a numerical scheme for the approximation of a parameter-dependent problem is
said to exhibit locking if the accuracy of the approximation deteriorates as the parameter tends to a limiting value.”

2here, the polynomial space QK is replaced by PK , which denotes the space of polynomials of total degree K
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Each of the methods that we have discussed so far, for estimating a solution of the RTE, are

deterministic methods and require discretisation of the spatial, angular and energy domains.

1.2.4 Analog Monte Carlo Simulation

One further method that does not discretise in space, angle or energy (and does not directly solve

the subsequent system of equations) is the analog Monte Carlo (aMC) method [133, §7− 3]. The

idea is to simulate (many) particle histories (i.e. the trajectory of a single particle over time) in a

way that replicates the true behaviour of a particle - this includes incorporating random numbers

when the behaviour of the particle is statistically uncertain. For this reason, aMC is a standard

method used in industry. The method was first devised, in the context of radiative transport, at Los

Alamos in 1949 [141]. Since then many developments have been made, of which we discuss a few

below. We refer the reader to the texts [127, 192] for further details and [136] for a comprehensive

review of acceleration techniques for analog Monte Carlo methods.

The concept of aMC is best explained via an illustrative example. For simplicity assume that we

have a homogeneous material over the spatial domain [0, 1]3 and that we are solving a fixed source

problem, discussed in Section 1.1.4. Now, consider a single particle with a randomly obtained r,

Θ and E, determined by treating the (normalised) source f over [0, 1]3× S2×R+ as a probability

density function. A simple example would be a constant source with isotropic scattering and a

known energy of the source particles, then we draw r ∼ U
(
(0, 1)3

)
, define Θ by (1.2.8) with

θ ∼ U(0, π), ϕ ∼ U(0, 2π), and take E fixed. Here, U(·) denotes the uniform distribution over a

given domain.

The particle now travels in a straight line in the direction Θ until it undergoes a collision event.

The distance the particle travels before the collision event (assuming it does not interact with the

boundary) is given by d = −σ−1 log y1, where y1 ∼ U(0, 1). A nice justification is given in [178,

§4], which uses

P[ distance travelled ≥ d ] = exp(−σd) . (1.2.20)

We also refer the reader back to the definition (1.1.1) and the proceeding discussion there. Hence,

the new position of the particle is given by

r̃ = r− 1

σ
log y1 Θ . (1.2.21)

The type of collision event is determined by splitting the unit interval [0, 1] into disjoint subintervals

according to the probabilities of each collision event and then throwing another random number

y2 ∼ U(0, 1) to select a subinterval. That is,

Collision Type =


fission if y2 ∈

[
0, σFσ

)
absorption else if y2 ∈

[
σF
σ ,

σA+σF
σ

)
scatter otherwise

. (1.2.22)

Once the specific collision event is determined, random numbers can then be generated to establish

the latest state of the system. For example, the number of new particles is determined by ν(·, E)

and the corresponding particle energies are distributed according to χ(E).

Note that in the presence of heterogeneous cross-sections the equation (1.2.21) no longer holds.

A number of methods are commonly employed to deal with this issue. One commonly used example

is Woodcock tracking [207], which artificially homogenises the cross-section(s). This method can be

computationally faster (for complex geometries) than other methods (e.g. simply tracking whether
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the particle crosses a boundary between materials), but there are issues when there is a large jump

in cross-sections between neighbouring materials.

Furthermore, the criticality problem discussed in Section 1.1.3, is more difficult than the fixed

source problem, as the source of neutrons relies on the unknown flux (which we are trying to

estimate). A common methodology here is to run ‘batches’ of particle histories and after each

batch update the source estimate (until so-called source convergence is achieved [97]). The concept

of superhistory powering [37] is a particular example.

Extending the simple aMC framework illustrated above allows industrial level codes, such as

MCBEND and MONK® , developed by the ANSWERS® software team at the Wood Group, to easily

model additional complexities that are not accounted for by (1.1.5), such as delayed neutrons and

gamma-rays. Hence, the aMC is often the most accurate technique for transport calculations.

However, and as we will see for Monte Carlo sampling later, the convergence in (root-)mean square

error (see (2.4.2)) is O(n−1/2), when n particle histories are taken. This is slow and is exacerbated

in certain scenarios. For example in shielding calculations, (accurate) tallying at the low-energies

is difficult because the particles are often absorbed by the shielding material before they reach low

energies [97] and likewise for (accurate) tallying far from the source, for deep penetration problems

[97].

Due to the slow convergence of the aMC, a number of so-called variance reduction techniques

have been developed to accelerate the convergence. A few of these methods have a similar intu-

ition to that of importance sampling in statistics. The basic idea is to put more onus/effort into

simulating (more) particles that are in more important areas of the domain (i.e. those with a

higher flux) and vice versa. We emphasise that this is not just in space, but in angle and energy

also. However, the acquisition of a good importance map requires prior knowledge of the physical

processes within the system, e.g. the flux. We refer the reader to the concepts of Russian roulette

(with splitting) [33, 97] and source biasing [33] as examples.

Finally, we emphasise that the aMC method discussed here is different to that of the Monte

Carlo sampling methods we will discuss later (in Section 2.4.1), with the similarity only arising

from the notion of repeated sampling.

1.3 Model Problems

As we discussed in Section 1.1.5, finding a solution to (1.1.14) is far from an easy task, even on a

supercomputer, due to the coupling over the six independent variables. The mathematical analysis

is no easier. Hence, we will consider a sequence of simpler problems that will allow us to show

that our methodologies work, and also allow us to do some tractable theory. We emphasise that

the following model problems are not simplifying approximations of (1.1.14), but are solutions to

(1.1.14) under simplifying assumptions on the input data. This is except for the first assumption

that will follow in Assumption 1.3.1, which we already alluded to in Section 1.2.1 and (1.2.5).

We also note that the solution methods discussed in the previous section can easily be applied

to any of the problems below, for the most part we will omit the details.

Mono-energetic Radiative Transport

The first model problem we will consider is that of mono-energetic (or one-speed) transport, with

isotropic input data. It is given by the following assumptions.

Assumption 1.3.1 1. (‘Mono-energetic’) There is only a single energy level E (i.e. G = 1);
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2. (‘Isotropic input data’) The source f and scattering cross-section σS are independent of angle

Θ.

We remove the notational burden associated with the multigroup approximation, defining

ψ(r,Θ) = ψg(r,Θ) and similarly for the nuclear input data. Under Assumption 1.3.1, then

(1.1.14) becomes: Find ψ(r,Θ) such that

[Θ · ∇+ σ(r)]ψ(r,Θ) =
σS(r) + ν(r)σF (r)

4π

∫
S2
ψ(r,Θ′) dΘ′ + f(r) , (1.3.1)

where we note that the isotropic assumption ensures that the coupling in angle is now purely with

respect to the angular flux ψ. This formulation also allows us to more easily understand the second

quantity that we are interested in, the scalar flux φ(r), defined by

φ(r) :=
1

4π

∫
S2
ψ(r,Θ′) dΘ′ , (1.3.2)

i.e. the angular average of the angular flux. For flux calculations in a reactor the scalar flux is

often more useful - we are typically interested in how many particles are contained with an reactor

subdomain, rather than wanting to know the spread over directions.

Radiative Transport in 2D Space

There are two main forms of Radiative Transport in two spatial dimensions, we will refer to them

as; the ‘2D-2D’ (or pseudo-3D [150]) problem and the ‘2D-1D’ problem. They are both 2D in the

spatial variable, but the ‘2D-2D’ is parameterised by both of the angular variables (θ and ϕ) in

(1.3.1), whereas the ‘2D-1D’ is only parameterised by ϕ.

Pseudo-3D Radiative Transport

We will show below that the solution to the pseudo-3D transport equation is also the solution to

the transport equation in (1.3.1), under the following assumption.

Assumption 1.3.2 There is no variation in the input data in the z-direction, i.e.

σA(r) = σA(x, y), σS(r) = σS(x, y), σF (r) = σF (x, y), ν(r) = ν(x, y) and f(r) = f(x, y).

We emphasise this is not an approximating assumption. In fact for some parts of the reactor

this is often the case, e.g. control rods consist of columns of material and hence have the same

cross-sections in the vertical direction.

Now consider an independent (to (1.3.1)) spatially 2D problem: Find ψ̂(2,2)(x, y,Γ) such that[
Γ · ∇̂+ σ(x, y)

]
ψ̂(2,2)(x, y,Γ) (1.3.3)

=
σS(x, y) + ν(x, y)σF (x, y)

2π

∫
C1
ψ̂(2,2)(x, y,Γ′)

(
1− |Γ′|2

)−1/2
dΓ′ + f(x, y,Γ) ,

with some appropriate boundary conditions, where ∇̂ := (∂/∂x, ∂/∂y) and Γ is defined by

Γ(θ, ϕ) :=

(
Θx

Θy

)
= sin θ

(
cosϕ

sinϕ

)
.

The angular domain is the unit disc C1 := {v ∈ R2 | |v| ≤ 1}. Problems of this form can be seen,

for example, in [9] and [191] (with the cylindrical coordinates transport operator, see [27]).
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Lemma 1.3.3 Let ψ̂(2,2)(x, y,Γ) be the solution to (1.3.3) with some appropriate boundary con-

ditions, and define ψ by ψ(x, y, z,Θ) = ψ̂(2,2)(x, y,Γ) for all z ∈ R and all Θz ∈ [−1, 1]. Then,

under Assumption 1.3.2 the solution to (1.3.1) is ψ(x, y, z,Θ).

Proof. First consider the left hand side of (1.3.3), then[
Γ · ∇̂+ σ(x, y)

]
ψ̂(2,2)(x, y,Γ) = [Θ · ∇+ σ(x, y)] ψ̂(2,2)(x, y,Γ) = [Θ · ∇+ σ(r)]ψ(r,Θ) ,

where the first equality holds because ψ̂(2,2) is independent of z, hence the derivative of ψ̂(2,2) in the

z direction is zero and the choice of Θz is irrelevant. The second equality holds due to Assumption

1.3.2 and ψ = ψ̂(2,2).

Now consider the right hand side of (1.3.1). We are primarily interested in the integral (since

it is obvious that σS(r) = σS(x, y) etc.). Since sin θ is the Jacobian for spherical co-ordinates, then∫
S2
ψ(r,Θ′) dΘ′ =

∫ π

0

∫ 2π

0

ψ(x, y, z, sin θ cosϕ, sin θ sinϕ, cos θ) sin θ dϕdθ

=

∫ π

0

∫ 2π

0

ψ̂(2,2)(x, y, sin θ cosϕ, sin θ sinϕ) sin θ dϕdθ . (1.3.4)

To integrate this expression, let us first split the integral with respect to θ into the sum of

two integrals over [0, π/2] and (π/2, π]. Consider the first of these, and make the substitution

r = sin θ ∈ [0, 1], then

dr = cos θdθ =
√

cos2 θdθ =
√

1− sin2 θdθ =
√

1− r2dθ ,

and hence

dθ =
dr√

1− r2
.

Applying this substitution allows us to re-write (1.3.4) (for θ ∈ [0, π/2]) as∫ 1

0

∫ 2π

0

ψ̂(2,2)(x, y, r cosϕ, r sinϕ) r(1− r2)−1/2 dϕdr ,

and by doing a similar calculation on (π/2, π], we can combine the two integrals and write∫ π

0

∫ 2π

0

ψ̂(2,2)(x, y, sin θ cosϕ, sin θ sinϕ) sin θ dϕdθ

= 2

∫ 1

0

∫ 2π

0

ψ̂(2,2)(x, y, r cosϕ, r sinϕ) r(1− |r|2)−1/2 dϕdr

= 2

∫
C1
ψ̂(2,2)(x, y,Γ′) (1− |Γ′|2)−1/2 dΓ′ ,

since r is the Jacobian for polar co-ordinates, and we use the definition of Γ. This gives us the

(integral part of the) right hand side of (1.3.3). Finally, it is fairly simple to show a variety of

boundary conditions can also have equivalent representations in this 2D formulation. Hence, the

result holds.

2D-1D Radiative Transport

A related problem that has been studied in the literature, e.g. [110, 10, 32], is the two-dimensional

radiative transport equation parameterised by a single angle (here referred to as the ‘2D-1D’
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Figure 1-4: Projection of an angle on the unit semi-circle, onto the z-axis.

problem). It is given by: Find ψ̂(2,1)(x, y, ζ) such that

[
ζ · ∇̂+ σ(x, y)

]
ψ̂(2,1)(x, y, ζ) =

σS(x, y) + ν(x, y)σF (x, y)

2π

∫
S1
ψ̂(2,1)(x, y, ζ′) dζ′ + f(x, y, ζ) ,

(1.3.5)

with appropriate boundary conditions, where we define

ζ(ϕ) :=

(
cosϕ

sinϕ

)
,

and hence the angular domain of (1.3.5) is the unit circle S1 = {v ∈ R2 | |v| = 1}.

1D Slab Geometry

Finally, let us consider the transport equation (1.3.1) one last time. This time we will show that the

solution to (1.3.1) is also the solution to a spatially one-dimensional problem, under the following

assumption.

Assumption 1.3.4 There is no variation in the input data in the xy-plane, i.e.

σ(r) = σ(z), σS(r) = σS(z), σF (r) = σF (z), ν(r) = ν(z) and f(r) = f(z).

This assumption is equivalent to assuming that the system is symmetric in the azimuthal angle

[53, eq.(5.12)].

Consider the following spatially one-dimensional problem, which is independent of (1.3.1),

(1.3.3) and (1.3.5): Find ψ̂(1,1)(z, µ) such that[
µ
∂

∂z
+ σ(z)

]
ψ̂(1,1)(z, µ) =

σS(z) + ν(z)σF (z)

2

∫ 1

−1

ψ̂(1,1)(z, µ′) dµ′ + f(z, µ) , (1.3.6)

with some appropriate boundary conditions, where we define µ(θ) = Θz = cos θ, and hence our

angular domain is now [−1, 1]. This is equivalent to projecting angles on the unit semi-circle onto

the z-axis, as illustrated in Figure 1-4. The equation (1.3.6) is often referred to in the literature

as the 1D slab geometry problem.

Lemma 1.3.5 Let ψ̂(1,1)(z, µ) be the solution to (1.3.6) with some appropriate boundary condi-

tions, and define ψ by ψ(x, y, z,Θ) = ψ̂(1,1)(z, µ), for all (x, y) ∈ R2 and all (Θx,Θy) ∈ C1 (the

unit disc). Then, ψ(x, y, z,Θ) satisfies (1.3.1) under Assumption 1.3.4.

Proof. First consider the left hand side of (1.3.6). Then,[
µ
∂

∂z
+ σ(z)

]
ψ̂(1,1)(z, µ) = [Θ · ∇+ σ(z)] ψ̂(1,1)(z, µ) = [Θ · ∇+ σ(r)]ψ(r,Θ) ,
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where the first equality holds because ψ̂(1,1) is independent of x and y and hence the choice of Θx

and Θy is arbitrary (and µ = Θz). The second equality holds because of Assumption 1.3.4 and

ψ = ψ̂(1,1).

For the right hand side of (1.3.6), we are again only really interested in the integral. Applying

our assumption gives∫
S2
ψ(r,Θ′) dΘ′ =

∫ π

0

∫ 2π

0

ψ(x, y, z, sin θ cosϕ, sin θ sinϕ, cos θ) sin θ dϕdθ

=

∫ π

0

∫ 2π

0

ψ̂(1,1)(z, cos θ) sin θ dϕdθ

= −2π

∫ −1

1

ψ̂(1,1)(z, µ) dµ′ = 2π

∫ 1

−1

ψ̂(1,1)(z, µ) dµ′ , (1.3.7)

where the third line applies the substitution µ = cos θ (with dµ = − sin θ) and then integrates

over the (unused) variable ϕ. Plugging (1.3.7) into the the right hand side of (1.3.1) and using

Assumption 1.3.4 gives the right hand side of (1.3.6).

Pure Transport

The final model problem we consider is often referred to as pure or purely (absorbing) transport. It

is useful for mathematical analysis as it allows us to study the transport operator T , without the

additional complexities of angular (and energy) coupling. The pure transport equation is: Find

u(r) such that

[Θ · ∇+ σ(r)]u(r) = g(r) , (1.3.8)

for all r ∈ D, with some suitable boundary conditions. The equation (1.3.8) can be interpreted

in two ways, when compared with (1.2.7) - both involve considering the solution for a fixed angle

and fixed energy (making them parameters), but they differ in their construction of g: (i) g being

a generic right hand side; (ii) system being purely absorbing, i.e. σS = σF = 0 and σA = σ, and

hence g = f . The analysis holds regardless of the definition.

We prove a closed-form expression for the solution of (1.3.8), subject to the no-inflow boundary

conditions, in Section A.2. Subsequently, a useful link between the pure transport problem (1.3.8)

and the radiative transport problem (1.3.1) is given in Theorem A.2.1.

We also note that spatially one and two-dimensional versions of the pure transport problem

are obvious and we will not construct them here.

1.4 Thesis Contributions and Outline

Within this thesis exist a number of novel contributions. I:

� prove theoretical results on the underlying solution and integral operators of radiative trans-

port in one spatial and one angular dimension, in the case of heterogeneous cross-sections

(Section 3.2);

� present an error analysis for the combined spatial and angular discretisation of the spatially

heterogeneous radiative transport equation, in one spatial and one angular dimension. The

error estimates are explicit in the heterogeneous cross-sections and allow for very low regu-

larity and discontinuities. The discretisation considered is the discrete ordinates method in

angle combined with the classical diamond difference scheme in space (Chapter 3);

24



CHAPTER 1. INTRODUCTION

� prove bounds for the discretisation parameters of the aforementioned discretisation schemes

that ensure stability, explicit in the heterogeneous cross-sections (Theorem 3.3.10);

� present an extension of the error estimate to probabilistic bounds, in the case of random

cross-sections with certain statistical properties. This includes cross-sections represented by

log-normal random fields equipped with the Matérn covariance function (Section 4.1.1);

� theoretically estimate the parameter values in the multilevel Monte Carlo complexity theory

(discussed in Section 2.4.3), for a transport equation in one spatial and one angular dimension.

This includes the introduction of a sequence of discretisation parameters that are sample

dependent in order to ensure stability (Section 4.1.1 - Section 4.1.2);

� present the application of standard and quasi-Monte Carlo, and their multilevel variants, to

quantify uncertainty in radiative transport. We apply these techniques to a number of prob-

lems, reporting problems in up to 3600 stochastic dimensions (Section 4.3 and Chapter 5);

� present a hybrid direct-iterative algorithm for solving the radiative transport equation in one

spatial and one angular dimension (Section 4.2);

� numerically examine an inexact iterative eigensolver which uses a single source iteration

within each loop of a (shifted) inverse power iteration. This stops the number of source

iterations blowing up, which can occur when the underlying source problem becomes nearly

singular due to the variable shifts (Section 5.1.5);

� model the heterogeneity in concrete via Gaussian random fields equipped with a Matérn

covariance function. Whilst this isn’t novel, the way we model the cross-sections via the

random field is - through a sequence of maps. This gives (piecewise) discontinuous cross-

sections, where the material composition in the model has spatial correlation according to

the Matérn covariance (Section 5.2.5).

Some of these contributions have been presented in the following papers:

� I.G. Graham, M.J. Parkinson, and R. Scheichl. Error Analysis and Uncertainty Quantifi-

cation for the heterogeneous transport equation in slab geometry. 2018. In preparation for

submission, Autumn 2018.

� I.G. Graham, M.J. Parkinson, and R. Scheichl. Modern Monte Carlo variants for Uncer-

tainty Quantification in Neutron Transport. In Contemporary Computational Mathematics

A Celebration of the 80th Birthday of Ian Sloan, J. Dick, F.Y. Kuo, and H. Wozniakowski

(Eds.), pages 455 – 481. Springer, 2018.

Finally we outline the structure of this thesis. In the next chapter we will introduce the

area of Uncertainty Quantification and describe the two key components at its heart - generating

realisations of input data and estimating the statistics of the corresponding output data. Firstly,

we describe methods to generate realisations of (spatially correlated) random fields, for the nuclear

input data. Then, to estimate the statistics of some quantity of interest, we describe Monte Carlo

sampling methods (as well as quasi-Monte Carlo, and their multilevel variants).

The third chapter is largely concerned with an error analysis for the combined spatial and

angular discretisation of the spatially heterogeneous RTE, in one spatial and one angular dimension.

The error estimates are explicit in the heterogeneous coefficients and allow for very low regularity

and jumps. We also present a stability bound on the discretisation parameters, explicit in the

coefficients. Chapter four then assumes that the cross-sections are random with certain statistical
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properties, including the case of log-normal random fields equipped with a Matérn covariance

function, and we subsequently prove probabilistic bounds on the error - provided the discretisation

satisfies the stability condition pathwise. This leads to novel rigorous complexity estimates for

Monte Carlo and multilevel Monte Carlo approaches to uncertainty quantification, that account

for the path-dependent stability condition. Moreover, we present a novel hybrid algorithm which

combines a direct and iterative solver to accelerate the computation of the solution to the RTE.

Numerical results are provided throughout.

In the final chapter we illustrate the techniques described in Chapter 2 to more physically

relevant problems in radiative transport (than the spatially one-dimensional fixed source problem

considered in Chapters 3 and 4). In particular, we consider a spatially two-dimensional fixed source

problem discretised using a Discontinuous Galerkin scheme and discrete ordinates, and a spatially

one-dimensional criticality problem. We also test an iterative eigensolver which uses a single source

iteration within each loop of a shifted inverse power iteration, and propose a model for (random)

heterogeneity in concrete - using a sequence of maps combined with a Gaussian random field to

generate (piecewise) discontinuous cross-sections, but where the composition of materials in the

concrete are spatially correlated.
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The focus of this thesis is on the theory and application of methods in Uncertainty Quantification

(UQ), to problems in radiative transport. One of the primary aims of UQ is to accurately and

efficiently estimate the statistical properties of the final state of a model (such as functionals of

the solution of a differential equation), given the uncertainty in the input data.

Uncertainty Quantification has many applications outside of radiative transport. Examples

include, but are not limited to; finance [41, 80, 106], stochastic differential equations [54, 80],

biological systems [167], engineering [16, 40, 67], atmospheric modelling [112], wave phenomena

(such as acoustics and seismology) [143, 144] and subsurface groundwater flow [48, 172, 199].

Often uncertainty is grouped into two categories; systematic uncertainty and statistical uncer-

tainty. Systematic uncertainty is ‘man-made’ uncertainty - in a perfect world there would be none.

It is uncertainty that arises because, for example, we have some lack of knowledge of the system

or require better measuring equipment. An example in the context of radiative transport are the

cross-sections, since nuclear data libraries (such as JEFF [177], CENDL [75] and ENDF/B [44])

report different cross-sectional values for a variety of element/isotope and energy group combina-

tions. On the other hand, statistical uncertainty is inherent to the physical system. For example,

the cross-sections relate to the probability of each of the possible collision events and so, given the

occurrence of a collision event, we cannot say with certainty which will happen (just how likely it

is) - recall (1.2.22) and the surrounding discussion.

Whilst the different types of uncertainty are interesting, for our purposes it is not necessary to

categorise them in such a way. Instead, we assume that we have a model for the uncertainty in

the input data, and that we can generate realisations from this model.
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We will begin this chapter by introducing some notation and basic probability theory that

are at the heart of Uncertainty Quantification (UQ). We will then introduce the type of UQ

problem considered in this text - radiative transport problems with random nuclear input data

(i.e. coefficients) represented by spatial (and possibly correlated) random fields. In Section 2.3 we

will detail a number of methods used to generate realisations of the random input data, focusing

on expansion methods such as the Karhunen-Loéve expansion. Finally, to estimate the statistics

of a quantity of interest, we will detail the Monte Carlo (sampling) method and variants thereof,

including; quasi-Monte Carlo point sets and multilevel Monte Carlo.

2.1 Random Variables, Random Fields and Moments

To formally describe the random model, we must first present some details of basic probability

theory. We will primarily use the texts [95, 116] which cover the discussion below in more detail.

For a more radiative transport focussed discussion, we refer the reader to [133]. Two probabilistic

quantities of particular importance in this thesis are random variables and random fields.

Let (Ω,G,P) denote a probability space, where ω ∈ Ω denotes an outcome from the sample

space Ω, G denotes a σ-algebra of possible events in Ω, and P : G 7→ [0, 1] denotes an associated

probability measure.

A (real) random variable Q is a measurable real-valued function Q : Ω 7→ R, that assigns

numerical values to possible events in the sample space1. Subsequently, a random field over a given

space X is a collection of random variables {Q(·, x) | x ∈ X}, where the choice of X determines

the type of random field, e.g. spatial, temporal, spatio-temporal. The notation Q will interchange

between random variables and random fields. Three common examples of random field that we

will discuss in this work are the uniform, Gaussian and log-normal random fields.

A random field is defined to be a uniform (respectively, Gaussian) random field on X if, for all

1 ≤ n <∞ and all combinations (x1, · · · , xn), for x1, · · · , xn ∈ X, the finite collection

[Q(·, x1), · · · , Q(·, xn)] , has multivariate uniform (respectively, Gaussian) distribution. (2.1.1)

A random field Q is called log-normal if logQ is a Gaussian field. Under some technical assumptions

that we do not specify, the connection between the random field over a continuum and the finite-

dimensional distributions in (2.1.1) are given by Kolmogorovs Extension Theorem [116].

It will turn out that, solutions (and functionals of the solutions) to the radiative transport

equation, under the assumed uncertainty in the input data, will be represented by random fields

(and random variables) with some unknown underlying distribution(s). We wish to estimate these

distributions.

An important quantity that is related to the distribution of a random variable Q is its (statis-

tical) moments (at least those that exist), where the kth moment is defined by

E[Qk] :=

∫
Ω

Qk(ω) dP(ω) =

∫
Ω

Qk(ω)p(ω) dω . (2.1.2)

We use p(ω) to denote the probability density function (pdf) of the random variable Q. Formally,

1This definition is not rigorous. Strictly speaking, a (real) random variable is defined as a function Q : Ω 7→ R,
such that for all subsets M ⊂ R, the pre-image of Q defined by Q−1(M) := {ω ∈ Ω | Q(ω) ∈M} ∈ G. We refer the
reader to [95, 116] for further details.
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the kth moment of a random variable Q exists if Q ∈ Lk(Ω), where we define

Lk(Ω) :=

{
Q : Ω 7→ R | ‖Q‖kLk(Ω) :=

∫
Ω

|Q(ω)|k dP(ω) <∞
}
, (2.1.3)

that is Lk(Ω) denotes the Lebesgue space on Ω with respect to the probability measure P. For

random fields, the notion of Lebesgue space(s) extends to the so-called Bochner space(s), Lk(Ω;X),

defined by

Lk(Ω;X) :=

{
Q : Ω 7→ X | ‖Q‖kLk(Ω;X) = E

(
‖Q‖kX

)
:=

∫
Ω

‖Q(ω, ·)‖kX dP(ω) <∞
}
, (2.1.4)

for some Banach space (X, ‖ · ‖X). Note the relationship Lk(Ω) = Lk(Ω;R).

Whilst the techniques illustrated in this chapter are applicable to estimate all moments (that

exist), we will focus on estimating just one - the expected value (the first moment). For a random

variable Q ∈ L1(Ω), the expected value E[Q] is defined by

E[Q] :=

∫
Ω

Q(ω) dP(ω) < ∞ . (2.1.5)

It is important to note that it is not restrictive to focus on estimating E[Q], and many more

complex statistics can be constructed. For example, if we wish to compute the kth moment of Q

we can consider another random variable ξ = Qk and estimate E[ξ] instead. Similarly, if we want

to evaluate variants of moments, e.g. the variance (the centered second moment) defined by

V[Q] := E
[
(Q− E[Q])

2
]

= E[Q2] − (E[Q])
2
< ∞ , (2.1.6)

where we assume Q ∈ L2(Ω), then we just need to estimate several expected values, i.e. E[Q] and

E[ξ] with ξ := Q2. In much the same way, we can estimate the pdf of Q by computing a finite

number of moments and taking the pdf estimate that maximises the Shannon entropy [23, 31, 34],

so-called moment matching.

Considering ξ = ξ(Q, b), for another parameter b ∈ R, allows us to estimate more complex

statistics via E[ξ], e.g. the characteristic function can be estimated by defining ξ(Q, b) := exp (ibQ),

and the cumulative distribution function (cdf) by

P[Q ≤ b] = E[1(−∞,b](Q)] = E [ξ(Q, b)] , ξ(Q, b) := 1(−∞,b](Q) , (2.1.7)

where 1S(·) denotes the indicator function for some set S.

One exception, which cannot be written simply as the expected value(s) of some quantity, are

the quantiles of a distribution. There are a variety of algorithms for computing quantiles, e.g.

[66, 118], but we do not deal with the additional technicalities in this text.

2.2 Uncertainty Quantification

As we have already mentioned, the goal of Uncertainty Quantification is to understand how un-

certainty in the input data affects the output data of a physical model. In this thesis we will focus

on the effects of uncertainty in the nuclear input data on (functionals of) the scalar flux φ. Such

functionals L will produce quantities of interest Q(ω) ∈ R by the relationship Q(ω) = L(φ(ω, ·)),
for ω ∈ Ω. We will assume throughout that Q ∈ L2(Ω), i.e. Q is a random variable with finite

variance. We seek an accurate and efficient estimator of E[Q].
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Let us assume that the nuclear input data; σS = σS(ω, ·), σA = σA(ω, ·), σF = σF (ω, ·),
ν = ν(ω, ·) and f = f(ω, ·) are (possibly dependent or correlated) random fields belonging to some

space X, that is problem specific. For notational simplicity we group the input data into a vector

of random fields

Z(ω, ·) := [σS(ω, ·), σA(ω, ·), σF (ω, ·), ν(ω, ·), f(ω, ·)] . (2.2.1)

Then, the radiative transport problems introduced in Chapter 1 become integro-differential

equations with random coefficients, and subsequently the solution(s) ψ and φ (and Q) become ran-

dom fields (random variables) themselves - we seek their distribution. For example, the transport

problem (1.3.6) becomes: Find ψ(ω, x, µ) such that[
µ
∂

∂x
+ σ(ω, x)

]
ψ(ω, x, µ) = [σS(ω, x) + ν(ω, x)σF (ω, x)]φ(ω, x) + f(ω, x, µ) , (2.2.2)

for x ∈ [0, 1], µ ∈ [−1, 1], where

φ(ω, x) :=
1

2

∫ 1

−1

ψ(ω, x, µ′) dµ′ ,

with σ(ω, ·) = σS(ω, ·) +σA(ω, ·) +σF (ω, ·) and where we satisfy suitable boundary conditions, for

almost all realisations ω ∈ Ω. The extension of (2.2.2) to higher dimensional problems are obvious.

We note that, as well as being dependent on ω ∈ Ω, the scalar flux φ (and ψ) is a function of

the nuclear input data Z = Z(ω, ·). Likewise, Q = L(φ) is a function of Z. We will abuse notation

throughout this thesis by considering Q(ω) and Q(Z) = Q(Z(ω, ·)) as equivalent, for ω ∈ Ω (also

see ahead to Notation 2.3.1).

2.3 Generating Random Fields

Now that we have discussed the underlying probabilistic framework, we can begin to understand

how uncertainty propagates through the RTE. As we have already mentioned, we will assume that

we have a known model for the uncertainty - we will focus on the case where the uncertainty

is represented by a spatial random field. Hence, our first step is to find methods for generating

realisations of a random field Z over the spatial domain D. For simplicity, we will assume that Z

contains only a single random field (unlike the five random fields in (2.2.1)). For further details on

this section, we refer the reader to [135, 194].

One of the simplest ways to generate a realisation of a spatial random field is to simulate a

random variable, according to some distribution, at each spatial point. For example, drawing from

the uniform distribution

Z(·, r) ∼ U [m− ε,m+ ε] , for all r ∈ D , (2.3.1)

could be an uncorrelated model accounting for measurement error ε around a mean m. If we draw

i.i.d. from a Gaussian distribution, this is typically referred to as white noise.

Whilst the model in (2.3.1) is interesting, a more physically relevant model would typically

incorporate correlation between spatial points. A simple extension of (2.3.1) is to have perfect

correlation on certain (non-overlapping) subdomains of D. That is, consider a sequence of open

subdomains Di ⊂ D such that D =
⋃
iDi and Di ∩Dj = ∅, for all i 6= j. Then,

for each Di , and for all r ∈ Di , Z(·, r) ∼ U [m− ε,m+ ε] . (2.3.2)
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Figure 2-1: Examples of (2.3.1) and (2.3.2) on D = [0, 1], on the left and right respectively, with
m = 0.5 and ε = 0.025. The disjoint domains are D1 = [0, 0.25), D2 = [0.25, 0.5), D3 = [0.5, 0.75)
and D4 = [0.75, 1] for (2.3.2).

Such a piecewise constant model will be used in the numerical results of Section 5.1.6. In Figure 2-1

we give an example of a realisation of (2.3.1) and (2.3.2) in one spatial dimension, with m = 0.5

and ε = 0.025.

For the rest of this section, we will discuss more advanced models for generating realisations

of correlated random fields. Such models rely on the concept of covariance, which for two random

variables Z1 and Z2, is defined by

Cov (Z1, Z2) := E [(Z1 − E[Z1]) (Z2 − E[Z2])] , (2.3.3)

e.g. Z1 = Z(r1) and Z2 = Z(r2), for two spatial points r1 and r2. The choice of covariance function

is dependent upon the problem, but due to (2.3.3) it has to be symmetric positive (semi-)definite.

We note that correlation and covariance are proportional to one another, i.e.

Corr(Z1, Z2) =
Cov (Z1, Z2)√
V[Z1]V[Z2]

.

2.3.1 Covariance Functions

We will now introduce a family of covariance functions that will be the focus of this thesis. They

are known as the Matérn class of covariances and are defined by the function

Cν(r1, r2) = σ2
var

21−ν

Γ(ν)

(
2
√
ν
‖r1 − r2‖

λC

)ν
Kν

(
2
√
ν
‖r1 − r2‖

λC

)
, (2.3.4)

for two points r1, r2 ∈ D and for some norm ‖ · ‖, e.g. the standard `1 or `2-norms [47, 172]. The

class is parametrised by the smoothness parameter ν ≥ 0.5; λC is the correlation length, σ2
var is

the variance, Γ is the gamma function and Kν is the modified Bessel function of the second kind.

Note that intuitively, the correlation length λC corresponds to the length scale at which two points

are correlated and the variance σ2
var is related to the amplitude of the covariance function. We also

note that any Matérn covariance is symmetric (strictly) positive definite, by Bochners theorem.

Moreover, we note that it is well known that a Gaussian random field equipped with a Matérn

covariance function, such as (2.3.4), is dνe − 1 times differentiable with respect to the distance

‖r1 − r2‖ - this is easy to see by recalling the differentiability of the modified Bessel function of

the second kind.

The limiting case of (2.3.4), i.e. when ν →∞, corresponds to the Gaussian covariance function

(sometimes referred to as the double exponential covariance in the literature), i.e.

C∞(r1, r2) = σ2
var exp(−‖r1 − r2‖2/λ2

C) . (2.3.5)
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The other special case of the Matérn covariance arises when ν = 0.5. This corresponds to the

exponential covariance function

C1/2(r1, r2) = σ2
var exp(−‖r1 − r2‖/λC) . (2.3.6)

Other examples of covariance function include the spherical covariance [194] and the rational

quadratic covariance [165], but they are not considered in this work.

2.3.2 Karhunen-Loève Expansion

One of the most popular techniques for generating realisations of correlated random fields is to

write the random field as an infinite expansion, separating the stochastic dimension(s) from the de-

terministic dimension(s). There are many available options here, but the methods we will consider

differ in their choice of the deterministic component, with the random component taken to be a

sequence of (pseudo-)random numbers (distributed according to the choice of random field). An ex-

ample of such an expansion method, that is extensively used in the literature [60, 78, 93, 123, 181],

is the Karhunen-Loève (KL) expansion. The KL expansion takes, as the deterministic component,

the (weighted) eigenfunctions of the integral operator with the covariance as its kernel (see ahead

to (2.3.8)).

For simplicity, assume each realisation Z(ω, ·) of a random field (equipped with a continuous

covariance function Cν) is a function on a bounded domain X ⊂ R . Then by assuming Z ∈
L2(Ω, L2(X)) (recall (2.1.4)), we can use the KL expansion to sample from Z by writing

Z(ω, x) = Z̄(x) +

∞∑
i=1

√
ξi ηi(x) yi(ω) , (2.3.7)

for all x ∈ X, where Z̄(x) denotes the mean value of the field at x ∈ X and {yi} denotes a set of

pairwise uncorrelated random variables with mean zero and unit variance [78, 181]. In the special

case of a Gaussian random field, yi
iid∼ N (0, 1), but for all other cases (e.g. yi ∼ U(−

√
3,
√

3))

they are not necessarily independent. The ξi and ηi are the eigenvalues and the L2(X)-orthogonal

eigenfunctions of the integral operator with kernel given by the chosen covariance function Cν , e.g.

those proposed in Section 2.3.1. That is, we find ξi and ηi such that

ξiηi(·) =

∫
X

Cν(·, x)ηi(x) dx , for i = 1, 2, · · · , (2.3.8)

which is an eigenvalue problem, with close relations to the Fredholm integral equation of the second

kind. We note that the eigenfunctions are known to be L2(X)-orthogonal by the spectral theorem

for a self-adjoint operator.

Notation 2.3.1 As noted in Section 2.2 the (scalar) flux solution of a specific RTE problem, with

random coefficients, is φ(ω, r) (for all r ∈ D). We can also write this as φ(y(ω), r) to indicate that

φ obtains its randomness from the d random variables y1, · · · , yd (through the expansion (2.3.7)).

Likewise, the quantity of interest is defined by

Q(ω) := L(φ(ω, ·)) ,

where L is a functional acting on the spatial variable in φ. Therefore, we can also write

Q(y(ω)) = L(φ(y(ω), ·)) .
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Figure 2-2: Two examples of a Gaussian random field on [0, 1], equipped with Matérn covariance
and generated by the truncated KL expansion on a mesh with size 1/256. The parameters used

are λC = 0.1, σ2
var = 1, yi

iid∼ N (0, 1) and; (Left) ν = 1.5, (Right) ν = 0.5.

Moreover, we can consider the expected value of Q as a (deterministic) function of Q(y). For

example, if yi ∼ U(−
√

3,
√

3) for all i = 1, · · · , d, then we can write

E[Q] =
1

2
√

3

∫ √3

−
√

3

Q(y) dy .

In practice, the KL expansion needs to be truncated after a finite number of terms, denoted

here by d. Hence, (2.3.7) is approximated by

Z(ω, x) ≈ Z̄(x) +

d∑
i=1

√
ξi ηi(x) yi(ω) . (2.3.9)

The accuracy of this truncation depends on the decay of the eigenvalues [135]. In the case of the

Matérn class of covariances introduced in Section 2.3.1, it is known that (for ν <∞) the ith largest

eigenvalue satisfies [135]

ξi ≤ c i−(1+(2ν/sdet)) , (2.3.10)

for some constant c > 0, where sdet denotes the dimension of the deterministic field (i.e. X ⊂ Rsdet)
and ν is again the smoothness parameter introduced in (2.3.4). That is, for ν < ∞ the decay is

algebraic and depends on the smoothness parameter ν. In the case ν =∞ the decay is exponential.

For the Matérn covariance with ν = 0.5, and for X ⊂ R, the eigenvalues and eigenfunctions

can be estimated numerically as the solution to a transcendental equation [78, 135]. For other

choices of X and ν, the eigenpairs can be computed using the Nyström method [155] - see, for

example, [62]2. However, for problems where X ⊂ Rsdet , for sdet ≥ 2, the cost of generating the

KL expansion (particularly finding the eigenpairs via the Nyström method) can be very expensive.

There are some methods which reduce the cost of finding the eigenpair, for example a Krylov

subspace eigensolver can be accelerated by using a fast multipole method [181], or by using H-

matrix techniques [115].

The KL expansion can be used for any given covariance function. However, as the focus of this

thesis is on the Matérn class of covariances, we will colloquially refer to the KL expansion for a

random field with Matérn covariance as simply the KL expansion. In Figure 2-2, we present two

samples of a Gaussian random field on X = [0, 1] ⊂ R equipped with different Matérn covariances,

2We thank Elisabeth Ullmann for allowing us access to her code in Matlab
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and generated using the KL expansion. In both cases we illustrate the difference between the same

sample of a random field, using two different truncation parameters d.

Artificial Covariance Expansion

An alternative method for generating realisations of a random field, on X ⊂ R2, was recently

introduced in [63, 64, 60]. Here the {ηi(·)} are chosen to be cosine functions defined on X and the

{ξi} are assumed to (asymptotically) decay like (2.3.10), up to a constant. These artificial choices

allow us to generate realisations of a random field, but without any substantial costs - such as

those that arise from computing the eigenpairs for the KL expansion.

To sample from Z at r = (r1, r2) ∈ X ⊂ R2, we can write

Z(ω, r) = Z(r) +

∞∑
i=1

√
ξi cos

(
2πρ1

i r1

)
cos
(
2πρ2

i r2

)
yi(ω) , (2.3.11)

where for i = 1, 2, · · · , we define

ξi := σ2
var

Bi∑∞
j=1Bj

, Bi :=

1 , when i ≤ λ−1
C(

i− 1
λC

)−(1+ν)

, when i > λ−1
C

,

τi :=

⌈
−1

2
+

√
1

4
+ 2i

⌉
, ρ1

i := i− 1

2
τi (τi + 1) , ρ2

i := τi − ρ1
i ,

with parameters λC , σ2
var, ν, and where {yi} denotes a set of pairwise uncorrelated random vari-

ables with mean zero and unit variance, e.g. yi
iid∼ N (0, 1). We also recall the abuse of notation

mentioned in Notation 2.3.1. In Figure 2-3 we give a numerical comparison of the {ξi} in the KL

expansion and the {ξi} in (2.3.11), where we note that the {ξi} in (2.3.11) are good approximations

to the eigenvalues of the KL expansion when λC ≈ 1.

It is useful to observe that τi ∈ Z, and hence ρ1
i , ρ

2
i ∈ Z, for all i = 1, 2, · · · .

For the remainder of this thesis, all spatially two-dimensional problems will be restricted to the

spatial domain D = [0, 1]2, and hence for simplicity in the proceeding discussion we will restrict to

this case now. We note that simple extensions of the comments made below can also be made for

many other spatial domains D.

Of course, as with the KL expansion we also have to truncate the expansion (2.3.11) to d <

∞ modes. Throughout this work we refer to (2.3.11), truncated to d modes, as the Artificial

Covariance (AC) expansion. This is to reflect the fact that the L2

[
(0, 1)2

]
-orthogonality3 of

{cos
(
2πρ1r1

)
cos
(
2πρ2r2

)
}∞ρ1,ρ2=0 implies (2.3.11) is actually the KL expansion (2.3.9) of a random

field with an unknown (artificial) covariance function. The unknown covariance has eigenfunctions

ηi(r) = cos
(
2πρ1

i r1

)
cos
(
2πρ2

i r2

)
and eigenvalues ξi.

Remark 2.3.2 We will refer to all random fields for which we use the AC expansion to generate

realisations, as random fields equipped with the artificial covariance function.

Moreover, note that the expansion in (2.3.11) induces a symmetrical structure on [0, 1]2 (with

vertical and horizontal lines of symmetry originating from the midpoint of [0, 1] in the x and y

axes respectively), because cos (2mπz) = cos (2mπ(1− z)), for any m ∈ N and any z ∈ [0, 1].

Heterogeneity is unlikely to be symmetric and so to remedy this, and acquire the AC expansion

3since we can integrate over the r1 and r2 components separately and it is well known that {cos (2mπx)}∞m=0
are L2(0, 1)-orthogonal, for x ∈ (0, 1)
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Figure 2-3: A numerical comparison of the {ξi} for the KL expansion (2.3.9) and the AC expansion
(2.3.11), with σ2

var = 1 and differing λC and ν parameters.

that we will consider within this work, we remove the factor of two from the cosine functions (which

still upholds the orthogonality4 in L2

[
(0, 1)2

]
) to acquire the truncated and non-symmetric AC

expansion on [0, 1]2:

Z(ω, r) ≈ Z(r) +

d∑
i=1

√
ξi cos

(
πρ1

i r1

)
cos
(
πρ2

i r2

)
yi(ω) . (2.3.12)

In Figure 2-4 we present a comparison of samples of a random field, generated using the expansion

(2.3.11) and the non-symmetric alternative (2.3.12).

2.3.3 Circulant Embedding

Another popular method for generating realisations of a random field is Circulant Embedding

[90, 91, 135]. In general, circulant embedding reduces the computational cost of the following

method.

Let C̃ν denote the M ×M covariance matrix (the covariance function evaluated at all pairs of

M chosen discrete points on X), and factorise C̃ν (i.e. by Cholesky decomposition, which exists

because the covariance matrix is symmetric positive semi-definite) into the product of an M ×M
lower triangular matrix LM , and its transpose LTM , i.e.

C̃ν = LML
T
M . (2.3.13)

Then, we can compute a realisation Z(ω, ·) of a random field by considering the product of LM

4by orthogonality of {cos (mπx)}∞m=0
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Figure 2-4: Samples of a Gaussian random field on [0, 1]2 equipped with the artificial covariance
(see Remark 2.3.2), using the expansion methods (2.3.11) and (2.3.12) respectively. We consider a

mesh with size 1/256. The parameters are ν = 0.5, λC = 1, σ2
var = 1, yi

iid∼ N (0, 1) and d = 1024
modes.

and an M × 1 vector of pairwise uncorrelated random variables y(ω) = [y1(ω), · · · , yM (ω)], i.e.

Z(ω, r) = LMy(ω) . (2.3.14)

The dependence of Z on the spatial dimension r ∈ X is given by the M points on X (and therefore

implicitly given by LM ). Moreover, we note that (2.3.14) represents the field at the M discrete

points exactly (there is no truncation, as with the expansion methods above). However, C̃ν is

typically dense [90] and therefore the factorisation step (2.3.13) in the method (2.3.13) – (2.3.14)

costs O(M3) operations.

Circulant embedding aims to make the factorisation step (2.3.13) more efficient - but requires

the M discrete points to be uniformly spaced across X. The idea is to embed the covariance matrix

C̃ν within a (larger) N ×N circulant matrix 5, for N ≥M , i.e.

C̃circν :=

(
C̃ν A

AT B

)
, (2.3.15)

where A ∈ RM×(N−M) and B ∈ R(N−M)×(N−M) are matrices chosen to ensure that C̃circν is

symmetric positive definite. The paper [91] gives a theoretical upper bound on the size of A and

B which ensures the positive definiteness of C̃circν ; assuming C̃ν is the covariance matrix induced

by the Matérn covariance function. Given that C̃circν is a positive definite circulant matrix, we

can then factorise C̃circν in O(N logN) operations via the Fast Fourier transform. We refer the

reader to the book [135] for further details. We also note the paper [159] which extends the idea

of circulant embedding to allow the M discrete points to be in a block-regular structure (i.e. they

are uniformly spaced on sub-domains of X), rather than uniformly spaced over X.

We now have a number of methods which generate realisations of a random field - we will

use these methods to generate realisations of some assumed uncertainty in the nuclear input data.

Therefore, we turn our attention towards methods for estimating the statistics of the output data,

i.e. the expected value of the quantity of interest Q defined in Section 2.2, given some prescribed

uncertainty in the input data.

5a matrix is circulant if each of its row (shifted by one element to the right and wrapped back around) is the
same as the row below
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2.4 Computing the Expected Value

In this section, we will discuss methods for estimating the expected value of a quantity of interest

Q := L(φ), defined as a functional L of the scalar flux φ. In order to estimate E[Q] numerically,

we need to make the following approximations:

� Bias Error: For a given sample ω ∈ Ω, we can only approximate the value of Q(y(ω)) ≈
Qh(y(ω)), where h is a parameter relating to the accuracy of the approximation. For our

particular example, Qh is the approximation acquired by applying the functional L(·) (or

possible approximations of it) to an approximation of φ computed using a mesh of size h;

� Truncation Error: The expansion methods, discussed in Section 2.3.2, used to generate

realisations of the input data are required to be truncated to d <∞ terms. Hence, we are re-

stricted from (the potentially infinite-dimensional) y = [y1, y2, · · · ] ∈ RN to a d−dimensional

approximation yd = [y1, · · · , yd] ∈ Rd. This also leads to a further approximation of the

quantity of interest, i.e. Q ≈ Qh ≈ Qh,d;

� Sampling Error: We can only estimate the (integral in the) expected value E[Qh,d] by an

estimator Q̂h,d, e.g. by Monte Carlo and multilevel Monte Carlo estimators.

We will focus on the case when d is large, and hence for simplicity, we will assume that the

truncation error is negligible compared to the bias and sampling errors. Moreover, we will drop

the dependence on d, writing yd = y, Qh,d = Qh and Q̂h,d = Q̂h. This is sometimes referred to as

the finite-noise assumption in the literature, e.g. [198].

The first source of error in the approximation is |E[Q−Qh]|, which arises from estimating E[Q]

by E[Qh]. The second error source is from the approximation of E[Qh] by an estimator Q̂h. We

will quantify the overall accuracy of an estimator by its mean square error (MSE), e(Q̂h)2, defined

by

e(Q̂h)2 := E
[
(E[Q]− Q̂h)2

]
. (2.4.1)

If we assume that the estimator Q̂h is unbiased, i.e. E[Q̂h] = E[Qh], then the MSE (2.4.1) can be

expanded as

e(Q̂h)2 = E
[
(E[Q]− E[Q̂h] + E[Q̂h]− Q̂h)2

]
= E

[(
E[Q]− E[Q̂h]

)2
]

+ E
[(

E[Q̂h]− Q̂h
)2
]

+ 2E
[(

E[Q]− E[Q̂h]
)(

E[Q̂h]− Q̂h
)]

︸ ︷︷ ︸
=0

=
(
E [Q]− E

[
Q̂h

])2

+ V
[
E[Q̂h]− Q̂h

]
+
(
E
[
E[Q̂h]− Q̂h

])2

︸ ︷︷ ︸
=0

= (E [Q−Qh])
2

+ V[Q̂h] , (2.4.2)

i.e. the squared bias of the approximation Q ≈ Qh, plus the sampling error V[Q̂h] = E[(Q̂h −
E[Qh])2]. The third term on the second line is zero because E[Q] and E[Q̂h] are deterministic

constants and E
[(

E[Q̂h]− Q̂h
)]

= E[Q̂h]−E[Q̂h] = 0. Using these two facts, the definition of the

variance in (2.1.6) and that Q̂h is an unbiased estimator i.e. E[Q̂h] = E[Qh], then the remaining

equalities hold in a similar way.

The rate of convergence of the sampling error V[Q̂h] depends on the specific choice of estimator

Q̂h, and we will discuss a number of possible estimators below. In order to compare the various

estimators we measure their effectiveness in terms of computational ε-cost Cε, that is, the number
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of (floating point) operations to achieve e(Q̂h)2 < ε2, for a given accuracy ε > 0. A sufficient

condition for the MSE in (2.4.2) to be less than ε2, is for both the squared bias and the sampling

error to be less than ε2/2. This is by no means a necessary condition, and a number of authors

have worked on finding the optimal ratio between the two errors, see [51, 100] for examples using

Monte Carlo estimators (see ahead to (2.4.8)).

To bound the ε-cost for each method, we make the following assumptions on the bias error

|E [Q−Qh] | and on the (average) cost to compute a single sample of Qh, denoted C(Qh) (e.g.

measured in floating point operations):∣∣∣E [Q−Qh]
∣∣∣ = O (hα) , (2.4.3)

E [C(Qh)] = O
(
h−γ

)
, (2.4.4)

for some constants α, γ > 0. The remainder of this chapter will now be devoted towards different

choices of estimators.

One method for estimating Q (and its statistics) which has received significant attention from

the UQ community within radiative transport, e.g. [16, 69, 85] and references therein, is the poly-

nomial chaos expansion. Most recent research has focussed on using the non-intrusive polynomial

chaos approach discussed below, and has largely been concerned with the curse of dimensionality

(see ahead to (2.4.7)). Recent advancements include: (adaptive) sparse grid ideas for estimating the

coefficients [85]; hybrid mixtures of polynomials [17]; and the high-dimensional model representa-

tion [16], i.e. decomposing the quantity of interest into a sum of lower-dimensional representations

of the quantity of interest, each of which depends on successively larger subsets of the components

of y = [y1, · · · , yd].
The (non-intrusive) polynomial chaos method estimates the quantity of interest Q by using the

following expansion [65]

Q(y(ω)) ≈
P∑
k=0

ϕkbk(y(ω)) , (2.4.5)

where {ϕk} denote (unknown) coefficients and {bk(y)} denote (known) multi-dimensional orthog-

onal polynomials, which should be selected based on the type of uncertainty in the input data (we

refer the reader to [210, Table 4.1]). We must then estimate the coefficients in (2.4.5), e.g. by

using the (non-intrusive) spectral projection (NISP):

ϕk =
E [Q bk]

E [b2k]
, (2.4.6)

where we estimate the expectation E [Q bk] (in the numerator) by computing Q(y(k)) at finitely

many selected points {y(k)} and applying quadrature - the denominator E
[
b2k
]

is usually known

due to our choice for bk. To justify (2.4.6), multiply (2.4.5) by an additional orthogonal polynomial

bj , use the orthogonality of {bk} and integrate over Ω.

Polynomial chaos belongs to a larger family of interpolation methods, which include the stochas-

tic collocation [209, 20, 65] and stochastic Galerkin methods [78, 30]. The main advantage of these

methods is that they can achieve exponential convergence in the sampling error [20, 210], provided

Q is sufficiently smooth with respect to y [209]. The drawback is that the cost to achieve a cer-

tain accuracy typically grows (sometimes exponentially) with the dimension d, prohibiting their

application in high dimensions - this is the curse of dimensionality (originally coined by Bellman

in 1957 [28]). For example, for the polynomial chaos expansion (2.4.5), the number of polynomials

P grows exponentially in the number of stochastic dimensions d and in the maximum order of the
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polynomials MP [78, 18, 16], i.e.

P =
(d+MP )!

d! MP !
− 1 . (2.4.7)

The alternative to interpolation methods are the family of Monte Carlo sampling methods.

Importantly, they do not suffer from the curse of dimensionality. We will discuss the standard

Monte Carlo method below in Section 2.4.1, before detailing more advanced variants in later

sections.

2.4.1 Monte Carlo Sampling

For each n ∈ N, let Z(n) denote the nth realisation of a random field (e.g. generated by the

expansion methods in Section 2.3.2 using a vector of independent pseudo-random numbers y(n)).

For our particular example of random nuclear input data within the RTE, e.g. (1.3.1), Z(n) :=[
σ

(n)
S , σ

(n)
A , σ

(n)
F , ν(n), f (n)

]
, where σ

(n)
S , σ

(n)
A , σ

(n)
F , ν(n), f (n) denote the nth realisations of the

random fields σS , σA, σF , ν and f respectively.

The (standard) Monte Carlo (MC) estimator for E[Qh] is defined by

Q̂MC
h :=

1

NMC

NMC∑
n=1

Qh(Z(n)) , (2.4.8)

where NMC is the number of Monte Carlo samples. The convergence Q̂MC
h → E[Qh] holds by the

law of large numbers (discussed in Appendix B). We note that it is simple to prove that Q̂MC
h is

an unbiased estimator of E[Qh], we give a one-line proof in Section B.2.

Furthermore, if we assume that for h sufficiently small

V[Qh] ≈ c , for some constant c > 0 , independent of h , (2.4.9)

then the sampling error of the MC estimator (which is given by V
[
Q̂MC
h

]
, see (2.4.2)) can be

shown to be

V
[
Q̂MC
h

]
=

1

N2
MC

V

[
NMC∑
n=1

Qh(Z(n))

]
=

1

N2
MC

NMC∑
n=1

V
[
Qh(Z(n))

]
=

V[Qh]

NMC
, (2.4.10)

where the penultimate equality holds by the independence of {Z(n)}. This allows us to re-write

the MSE (2.4.2), for the specific case of a MC estimator, as:

e(Q̂MC
h )2 = (E [Q−Qh])

2
+ N−1

MCV[Qh] . (2.4.11)

Note that standard Monte Carlo estimators are notoriously slow to converge - O(N
−1/2
MC ) for the

root-MSE.

Notation 2.4.1 For two functions f, g : X 7→ R, for X ⊂ R, we use the notation f ∼ g to mean

that there exists x̃ ∈ R such that |f(x)| ≤ cg(x), for all x ≥ x̃, where c > 0 denotes an unspecified

constant.

Due to assumption (2.4.3), a sufficient condition for the squared bias to be less than ε2/2 is

h ∼ ε1/α. Moreover, due to assumption (2.4.9) the sampling error of Q̂MC
h is less than ε2/2 for

NMC ∼ ε−2. In our numerical computations we will ensure that NMC is taken sufficiently large
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by estimating V
[
Q̂MC
h

]
using the sample variance, i.e.

V
[
Q̂MC
h

]
≈ 1

NMC(NMC − 1)

NMC∑
n=1

(
Qh(Z(n))− Q̂MC

h

)2

, (2.4.12)

and increasing NMC until V
[
Q̂MC
h

]
≤ ε2/2. A proof that the sample variance is an unbiased

estimator of V
[
Q̂MC
h

]
is given in Appendix B.2.

With these choices of h and NMC , it follows from Assumption (2.4.4) that the mean ε-cost of

the standard Monte Carlo estimator is

E
[
Cε(Q̂MC

h )
]

= E

[
NMC∑
n=1

C(Qh(Z(n)))

]
= NMC E [C(Qh)] = O

(
ε−2h−γ

)
= O

(
ε−2− γα

)
.

(2.4.13)

The ε−2 arises from the slow convergence of the standard Monte Carlo estimator. In our

application, where each sample Qh(Z(n)) involves the numerical solution of an integro-differential

equation, the MC estimator quickly becomes impractical. The alternative Monte Carlo approaches

that we will now present aim to improve this situation in two complimentary ways. Firstly we

will discuss methods that find well-distributed samples in high dimensions (opposed to the random

samples of MC), such as quasi-Monte Carlo (QMC) sampling methods. Thereafter we discuss

variance reduction techniques, and in particular multilevel variants of Monte Carlo. These methods

use a hierarchy of numerical approximations to the integro-differential equation to shift the bulk of

the computations to cheap, inaccurate coarse models whilst providing the required accuracy with

only a handful of expensive, accurate model solves. They are also complimentary to the QMC

methods we will discuss first.

2.4.2 Improved Sampling: Quasi-Monte Carlo

One approach to reduce the computational ε-cost in (2.4.13), by improved sampling, is based on the

use of quasi-Monte Carlo (QMC) rules, which replace the random samples in (2.4.8) by carefully

chosen deterministic samples (leading to an estimator Q̂QMC
h ). Initially interest in QMC points

arose within number theory in the 1950’s, and the theory is still at the heart of good QMC point

construction today. The primary aim of such theory nowadays (we revisit this point below) is to

find point sets that achieve O(N−λQMC) convergence of the (square root of the) sampling error, for

some λ > 1/2, with the hidden constant being independent of d. For example, for a particular PDE

problem with (log-normal and uniform respectively) random coefficients, [89, 124] show dimension

independent O
(
N−1+δ
QMC

)
convergence, for any δ > 0, by proving that the quantity of interest they

consider (i.e. Q = Q(y)) belongs to some appropriate weighted Sobolev space (i.e. Q has bounded

mixed derivatives, with respect to y). Such an analysis is still an open question for transport

problems and we do not attempt it here.

More recently, so-called higher-order QMC rules have been developed that can achieveO(N−λQMC)

convergence for λ > 1, provided the quantity of interest belongs to an appropriate higher-order

weighted Sobolev space (see for example [74, §2.2]). One example is the interlaced polynomial

lattice rule (IPL) which has been studied in [57, 86, 87]. Despite the name, the IPL rule is both a

lattice rule (discussed below) and a type of digital net [74].

In the 1950’s and 1960’s, the analysis of QMC rules within the number theory community fo-

cused on the convergence of QMC rules with respect to the number of samples NQMC , whilst ignor-

ing the dependence on d. This meant that convergence rates of the formO
(

(logNQMC)d−1N−1
QMC

)
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(unless other assumptions were made) were often proven. As the demand for tackling problems

with large d increased, this was deemed a fundamental flaw of QMC methods as (for large d) the

logarithmic factor could dominate the improved O(N−1
QMC) convergence rate. It wasn’t until the

paper [41] that QMC rules were more widely believed to be effective for high-dimensional problems

(in this case a 360-dimensional integral was estimated) [122]. Subsequently, recent analysis has

been more focused towards dimension-independent convergence rates.

A notable example has come in the context of PDEs with random coefficients. Here the theory

for (dimension-independent) quasi-Monte Carlo estimators (and multilevel variants, see ahead to

Section 2.4.3) has been developed, where the coefficients are represented by a uniform random

field [124, 125], or the (more difficult6) case where the coefficients are represented by a log-normal

random field [89, 123]. A recent paper has also analysed QMC rules for an eigenvalue problem

with uniform random coefficients [79]. Reviews of the recent developments of QMC theory, within

high-dimensional quadrature and (elliptic) PDEs with random coefficients, are given in [58, 122]

respectively.

Beyond theoretical considerations, there have been many applications of QMC rules to problems

in this field, e.g. [90, 93, 172]. Other research areas where QMC rules have been successfully

applied include; stochastic differential equations [84], maximum likelihood estimation [121], and

(more recently) estimation of (functionals of) Bayesian posterior distributions [56, 179]. We will

focus on the practical implementation of QMC rules and will not discuss the underlying theory any

further - we refer the interested reader to the books [152, 131] for good introductory references.

Before we get into the details of certain QMC rules, it will be useful to observe that the

problem of estimating E[Q] is equivalent to estimating a d-dimensional integral with integrand

Q(y) - where we recall that we assumed y = [y1, · · · , yd] ∈ Rd. For example, when ω takes values

from Ω according to the uniform probability measure i.e. dP(ω) = dω, we can re-write

E[Q] =

∫
Ω

Q(y(ω)) dω = c

∫
[0,1]d

Q(ỹ) dỹ , (2.4.14)

where ỹ = My(ω) is defined by a suitable (linear) transformation M : Ω 7→ [0, 1]d and c is an

appropriate scaling constant. Another example is when ω takes values from Rd according to the

product Gaussian measure, i.e. dP(ω) =
∏d
j=1 ϕ(ωj)dω, then

E[Q] =

∫
Ω

Q(y(ω))

d∏
j=1

ϕ(ωj) dω =

∫
(0,1)d

Q(ỹ) dỹ , (2.4.15)

where ỹ =My := [Υ(y1), · · · ,Υ(yd)]. Here Υ denotes the univariate standard normal cumulative

distribution function7 and ϕ denotes the standard normal probability density function, i.e.

Υ(z) :=

∫ z

−∞
ϕ(t) dt , ϕ(z) =

1√
2π

exp

(
−z

2

2

)
for any z ∈ R . (2.4.16)

We note that for the infinite-dimensional case (i.e. d → ∞) it is substantially more difficult to

prove (2.4.15). We refer the reader to the extensive discussion in [89, eq.(1.6)-(1.7) and §3.3].

The choice of QMC point sets can be split into two categories: lattice rules and nets [152]. We

will discuss (randomised) rank-1 lattice rules below.

6for example, because we no longer have (uniform) bounds from above and below on the random coefficient(s) -
hence Lax-Milgram cannot be used

7in the literature this is usually denoted Φ, but we reserve that notation for a quantity relating to an approxi-
mation of the scalar flux φ

41



CHAPTER 2. UNCERTAINTY QUANTIFICATION

Rank-1 Lattice Rules

Lattice rules correspond to, as the name suggests, point sets where the points are distributed in a

lattice structure. A lattice rule (in d-dimensions) is determined by a generating vector z ∈ Zd and

the difficulty, for large d, comes in attempting to construct a generating vector that produces well-

distributed points. Specifically we seek a point set, from which the estimator Q̂QMC
h is constructed,

which minimises the worst-case error:

sup
‖Qh‖F≤1

|E[Qh]− Q̂QMC
h | , (2.4.17)

for some (given and possibly weighted) function space F.

The construction of generating vectors in high-dimensions first started with the Korobov con-

struction [58] and since then several methods have been devised. A notable example is the

component-by-component (CBC) algorithm [186, 187], a greedy algorithm which minimises a

variant of the worst-case error (2.4.17) at each step. Subsequently, [154] presented a fast-CBC

algorithm, which accelerates the computation of the worst-case error (2.4.17) by using the Fast

Fourier Transform, see also [74, eq.(12),(15)] and [57]. For the reader concerned with a purely

practical implementation of QMC methods, a repository of QMC rules including pre-computed

generating vectors can be found at [73, 120]. In theory, the generating vector z should be chosen

problem specific [89]. However, standard generating vectors such as those available at [73, 120],

seem to also work well (and better than MC samples).

Once we have a suitable generating vector z ∈ Zd, we can construct P ≥ 2 rank-1 lattice points

{y(p)} by using the simple formula

y(p) = frac
( p
P

z
)
, p = 1, . . . , P , (2.4.18)

where ‘frac(·)’ denotes the fractional part function applied component-wise to a vector. We note

that (2.4.18) is a rank-1 lattice rule because it contains one generating vector. There have been

some works into higher-rank lattice rules, e.g. [59], but we do not consider these here.

However, the rank-1 lattice points (2.4.18) were chosen deterministically and are not indepen-

dent (hence there would be an additional covariance term in the QMC equivalent of (2.4.10), see

[129, eq.(5)]) and the resulting estimator will be biased. Fortunately, by randomising the rank-1

lattice points - which is achieved by ‘adding8’ a uniformly distributed shift to (2.4.18) - we can make

the subsequent QMC estimator (see ahead to (2.4.20)) unbiased. Note that it is important that

the shift preserves the lattice structure, otherwise the randomised QMC points become standard

Monte Carlo points and no benefit will be observed.

Consider S ∈ N independent and uniformly distributed random shifts (∆s)
S
s=1 in [0, 1)d. Then,

we can construct NQMC = S P randomised rank-1 lattice points by

y(p,s) = frac
( p
P

z + ∆s

)
, p = 1, . . . , P, s = 1, . . . , S (2.4.19)

where the number of random shifts S is fixed. Observe that the random shift ensures y(p,s) ∼
U
(
[0, 1)d

)
and it preserves the lattice structure between all P points (for the sth shift).

The randomised lattice points in (2.4.19) are used to generate realisations Z(p,s) = Z(y(p,s))

of a random field, in the same way as the MC samples. Then, we have the (randomised) QMC

8the definition of ‘adding’ changes dependent on the type of QMC rule considered
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estimator

Q̂QMC
h :=

1

S

S∑
s=1

Q̂∆s

h =
1

S

S∑
s=1

1

P

P∑
p=1

Qh

(
Z(p,s)

)
=

1

NQMC

NQMC∑
n=1

Qh

(
Z(n)

)
, (2.4.20)

where we have abused notation by writing Z(p,s) = Z(n), for a 2-tuple (p, s) which uniquely maps

to each n = 1, · · · , NQMC , and where we define the one-shift estimator (taking P samples) by

Q̂∆s

h :=
1

P

P∑
p=1

Qh

(
Z(p,s)

)
. (2.4.21)

We now prove that the randomised lattice points produce an unbiased QMC estimator (2.4.20):

E∆[Q̂QMC
h ] = E∆

[
1

S

S∑
s=1

1

P

P∑
p=1

Qh

(
Z(y(p,s))

)]

=
1

S

S∑
s=1

1

P

P∑
p=1

E∆

[
Qh

(
Z(y(p,s))

)]

=
1

S

S∑
s=1

1

P

P∑
p=1

∫
[0,1)d

Qh

(
Z
[
frac

( p
P

z + ∆s

)])
d∆s

=
1

S

S∑
s=1

1

P

P∑
p=1

∫
[0,1)d

Qh

(
Z(y(p,s))

)
dy(p,s)

=
1

S

S∑
s=1

1

P

P∑
p=1

E[Qh]

= E[Qh] ,

where the fourth line follows from y(p,s) d
= ∆s ∼ U

(
[0, 1)d

)
(as noted below (2.4.19)), and where

we use
d
= to denote equality in distribution and we use E∆[·] to denote the expectation with respect

to the random shift ∆ ∼ U
(
[0, 1)d

)
, i.e. for any function f = f(∆), then

E∆ [f ] :=

∫
[0,1)d

f (∆) d∆ . (2.4.22)

Therefore, even a single shift leads to an unbiased QMC estimator (2.4.20). Moreover, we note

that the randomisation also gives us a practical error estimate of the sampling error - the variance

of the estimator with respect to the shifts [89], i.e.

V∆

(
Q̂QMC
h

)
:= E∆

[(
Q̂QMC
h − E[Qh]

)2
]
. (2.4.23)

Let us now make the following assumption [90], which can be justified based on certain assumptions

being satisfied (see [89, 125] for further details):

V∆

[
Q̂QMC
h

]
≤ c (NQMC)−1/λ , (2.4.24)

for λ ∈ (1/2, 1] and a constant c > 0. We note that the Monte Carlo rate is recovered as λ → 1.

Therefore, we can re-write the MSE (2.4.2), for the specific case of a QMC estimator using a
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randomised rank-1 lattice rule, as:

e(Q̂QMC
h )2 ≤ (E∆ [Q−Qh])

2
+ c(NQMC)−1/λ . (2.4.25)

Again, assumption (2.4.3) ensures a sufficient condition for the squared bias in (2.4.25) to be

less than ε2/2 is h ∼ ε1/α. Moreover, due to assumption (2.4.24) the sampling error of Q̂QMC
h is less

than ε2/2 for P ∼ NQMC ∼ ε−2λ (for a fixed number of shifts S). In our numerical computations

we will ensure that NQMC is taken sufficiently large by estimating V∆

[
Q̂QMC
h

]
by the (unbiased

[89]) sample variance (with respect to the number of shifts S), i.e.

V∆

(
Q̂QMC
h

)
≈ 1

S(S − 1)

S∑
s=1

(
Q̂∆s

h − Q̂
QMC
h

)2

, (2.4.26)

and increasing NQMC until the sample variance in (2.4.26) is less than ε2/2. We recall that Q̂∆s

h

is defined in (2.4.21). The sample variance in (2.4.26) is concerned with9 the squared difference

between the QMC estimator over all shifts, Q̂QMC
h , and the QMC estimator for a single shift ∆s,

Q̂∆s

h , for all s = 1, · · · , S.

Therefore, by using h ∼ ε1/α, P ∼ NQMC ∼ ε−2λ and (2.4.4), we can show that the mean

computational ε-cost of the QMC estimator satisfies

E
[
Cε(Q̂QMC)

]
= E

NQMC∑
n=1

C(Qh(Z(n)))

 = NQMC E [C(Qh)] = O
(
ε−2λ− γα

)
. (2.4.27)

When λ→ 1
2 , this is essentially a reduction in the ε-cost by a whole order of ε, compared with the

standard MC estimator (see (2.4.13)). In the case of non-smooth random fields, we typically have

λ ≈ 1 and the ε-cost grows with the same rate as that of the standard MC estimator. However, in

our experiments and in experiments for diffusion problems [90], the absolute cost is always reduced.

We note that it is important to select S sufficiently large in order to guarantee that the estimate

in (2.4.26) is accurate. However (for a fixed computational budget), we also want the number of

points P ∼ ε−2λ to be large in order to reduce the sampling error in (2.4.24). In the literature,

S ∈ [8, 20] is often suggested.

Latin Hypercube Sampling

One other alternative to MC and QMC sampling is Latin Hypercube sampling, a type of stratified

sampling first introduced in [140]. Here, the samples are chosen to satisfy a Latin Hypercube

condition [157, Chapter 10] - for d = 2 this means that, when the space is divided into N2
LH

disjoint squares, only a single sample is permitted in each row and each column of the squares.

Once a hypercube (or square for d = 2) is selected for the sample, the sample position is then drawn

from a uniform distribution over that hypercube. Formally, the nth Latin Hypercube sample is

given by

y(n) :=
π(n) −U(n)

NLH
, for U(n) ∼ U(0, 1)d , for all n = 1, · · · , NLH , (2.4.28)

9in comparison, (2.4.12) is concerned with the squared difference between the MC estimator over all samples,

Q̂MC
h , and the single sample Qh(Z(n)), for all n = 1, · · · , NMC
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Figure 2-5: Two examples of Latin Squares in 2D, with NLH = 3 samples. The selected Latin
squares are shaded grey and the samples are uniformly distributed over these squares.
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Figure 2-6: Comparison of 256 (Left) Monte Carlo, (Centre) Latin Hypercube and (Right) quasi-
Monte Carlo samples on [0, 1]2. MC points drawn uniformly on [0, 1]2, Latin Hypercube samples
drawn using the lhsdesign function in Matlab and the QMC points are drawn according to an
(non-randomised) extensible rank-1 lattice rule found at [120].

where each π(n) denotes a vector of elements chosen randomly from the set {1, · · · , NLH} such

that, for all j = 1, · · · , d, (
π(1)

)
j
,
(
π(2)

)
j
, · · · ,

(
π(NLH)

)
j
,

is a random permutation of the set {1, · · · , NLH}. We present two simple illustrations of NLH = 3

Latin Hypercube samples (for d = 2) in Figure 2-5.

The Latin Hypercube estimator then takes the same form as (2.4.8), but with Latin Hypercube

samples y(n). It can be proven that [140, Thm. 1 and pg.244], [157, Theorem 10.1], under certain

conditions on Q (which are always satisfied as NLH →∞ [193]), the Latin Hypercube estimator is

unbiased and has lower variance than the Monte Carlo estimator (2.4.8). However, the convergence

rate (for the sampling error) is the same as the MC estimator [193, Corollary 1], but with a better

constant [119, 193]. We refer the reader to [196, 208] for more advanced Latin Hypercube sampling

procedures.

We illustrate the difference, for d = 2, between the Monte Carlo, Latin Hypercube and (rank-1

lattice) quasi-Monte Carlo samples in Figure 2-6. We also note that a numerical comparison of

the accuracy of Monte Carlo, Latin Hypercube and a (net based) QMC method is given in [119],

whom concluded that QMC outperformed both methods, in general.

2.4.3 Variance Reduction: Multilevel Monte Carlo

The ‘improved sampling’ techniques previously discussed, such as the QMC method, aim to reduce

the sampling error in the MSE by finding samples that are better distributed than MC samples.

We will now consider a second category of methods, the variance reduction methods, which seek to

find estimators with lower variance when using the same initial sampling. Many of these techniques
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have been developed and we mention just a few here: importance sampling, control variates [81],

Monte Carlo with least-squares [151] and Richardson extrapolation [80, 130]. The focus for the

remainder of this chapter will be on multilevel and multi-index Monte Carlo, two examples using

control variates.

The multilevel Monte Carlo (MLMC) method uses a hierarchy of discrete models of increasing

cost and accuracy, corresponding to a sequence of decreasing discretisation parameters h0 > h1 >

· · · > hL = h. Here, only the most accurate model on level L is designed to give a bias error of

O(ε) by choosing hL = h ∼ ε1/α as above (for MC). The bias error of the other models can be

significantly higher.

MLMC methods were first proposed in an abstract way for high-dimensional quadrature by

Heinrich [103] and then popularised in the context of stochastic differential equations in mathe-

matical finance by Giles [80]. They were first applied in uncertainty quantification in [26, 48] for

elliptic PDEs and quickly gained popularity. They have since been further developed and applied in

a variety of other problems, including parabolic problems [83], hyperbolic problems [93, 143, 144],

variational inequalities [117] and Kalman filters [105].

MLMC methods exploit the linearity of the expectation, writing

E[Qh] = E[QL] =

L∑
`=0

E[Y`] , where Y` := Q` −Q`−1 and Q−1 := 0 ,

where we have abused notation by writing Q` = Qh` . Each of the expected values E[Y`] on the

right hand side is then estimated separately. In particular, in the case of a standard MC estimator

with N` samples used to estimate each E[Y`], we obtain the MLMC estimator

Q̂MLMC
h :=

L∑
`=0

ŶMC
` =

L∑
`=0

1

N`

N∑̀
n=1

Y`(Z
(`,n)) . (2.4.29)

Here, {Z(`,n)}N`n=1 denotes the samples of the random field corresponding to i.i.d. MC samples

on level ` and chosen independently from the samples on the other levels. An illustration of the

overall algorithm is given in Figure 2-7.

Since each E[Y`] is estimated independently (here using MC estimators) then we can write

V[Q̂MLMC
h ] = V

[
L∑
`=0

ŶMC
`

]
=

L∑
`=0

V
[
ŶMC
`

]
, (2.4.30)

and hence by using (2.4.10) we have that V
[
ŶMC
`

]
= N−1

` V[Y`]. Subsequently the MSE (2.4.2)

for the MLMC estimator (2.4.29) can be re-written as:

e(Q̂MLMC
h )2 = (E [Q−Qh])

2
+

L∑
`=0

N−1
` V[Y`] . (2.4.31)

We want to find the sequence {N`} that achieves V[Q̂MLMC
h ] =

∑L
`=0N

−1
` V[Y`] ≤ ε2/2, for as

little computational cost as possible. This result was first given in [80], and we detail the proof in

Appendix C by using the method of Lagrange multipliers.

Lemma 2.4.2 Consider the MLMC estimator Q̂MLMC
h , defined in (2.4.29), where E[Y`] is esti-

mated with N` Monte Carlo samples, for all ` = 0, · · · , L. Then the (optimal) choice of {N`}, in

the sense that it minimises the cost of the MLMC estimator whilst achieving V[Q̂MLMC
h ] ≤ ε2/2,
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Figure 2-7: Illustration of the MLMC algorithm for three levels. (Green) circles denote samples
estimating E[Q0]; (Blue/Red) ellipses denote samples estimating the difference E[Y`]. Note that
estimating the expectation of the difference Y` = Q` − Q`−1 requires using the same sample on
two different levels.

is given by

N` =

2ε−2

(
L∑
`=0

√
V[Y`]C`

)√
V[Y`]

C`

 , (2.4.32)

where C` := E [C(Y`)] denotes the average cost of a single sample of Y` = Q`−Q`−1, and d·e denotes

the ceiling function.

In practice it is necessary to estimate V[Y`] and C` in (2.4.32) from the computed samples,

updating N` as the simulation progresses.

The key idea in MLMC is to avoid estimating E[Qh] = E[QL] directly. Instead, the expectation

E[Y0] = E[Q0] of a possibly strongly biased, but cheap approximation of Qh is estimated. The

bias of this coarse model is then estimated by a sum of correction terms E[Y`] using increasingly

accurate and expensive models. Since the Y` represent small corrections between the coarse and

fine models, it is reasonable to conjecture that there exists β > 0 such that

V[Y`] = O(hβ` ) , (2.4.33)

i.e. the variance of Y` decreases as h` → 0. Such a condition holds if Q` converges to Q pathwise.

This is verified for a diffusion problem in [47], and for a certain transport problem in Chapter 4

and Chapter 5. Therefore the number of samples N` to achieve a prescribed accuracy on level

` can be gradually reduced (according to (2.4.32)), leading to a lower overall cost of the MLMC

estimator. More specifically, we have the following cost savings.

Remark 2.4.3 (i) On the coarsest level, using (2.4.4), the cost per sample is reduced from

O(h−γ) to O(h−γ0 ). Provided V[Q0] ≈ V[QL] and h0 can be chosen independently of ε (i.e.

(2.4.9)), the cost of estimating E[Q0] to an accuracy of ε in (2.4.29) is reduced to O(ε−2);

(ii) On the finer levels, the number of samples N` to estimate E[Y`] to an accuracy of ε in (2.4.29)

is proportional to V[Y`]ε
−2. Now, provided V[Y`] = O(hβ` ), for some β > 0 (i.e. (2.4.33)),

which is guaranteed if Q` converges almost surely to Q pathwise, then we can reduce the

number of samples as h` → 0. Depending on the actual values of α, β and γ, the cost to

estimate E[YL] on the finest level can, in the best case, be reduced to O(ε−γ/α).

We emphasise that each sample of Y`(Z) := Q`(Z) − Q`−1(Z) is found by computing Q` and

Q`−1 for the same realisation Z. To achieve variance reduction (i.e. (2.4.33)) it is very important

that Q`(Z) is (strongly) positively correlated with Q`−1(Z), for all 1 ≤ ` ≤ L. To explore this point
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further, recall that we assumed (in (2.4.9)) that V[Q`] ≈ c, a positive constant independent of h`,

for all ` = 0, · · · , L. Then, we can write

V[Y`] = V[Q`] + V[Q`−1]− 2Cov (Q`, Q`−1) ≈ 2 (V[Q`]− Cov (Q`, Q`−1)) ,

where Cov (·, ·) is defined in (2.3.3). To be able to estimate E[Y`] in fewer samples than E[Q`],

but to achieve the same overall prescribed accuracy, we require that V[Y`] < V[Q`]. A necessary

condition for this to hold is Cov (Q`, Q`−1) ≥ (1/2)V[Q`], but assuming that Q` converges to Q

pathwise then lim`→∞Cov (Q`, Q`−1) = V[Q`]. This variance reduction (i.e. lim` V[Y`] = 0) is

fundamental to the gains of MLMC.

Assuming (2.4.33) holds, [48] proved the following theorem on the average computational ε-cost

of the MLMC estimator ([80] first proved a similar result). We present a sketch of the proof in

Appendix C.

Theorem 2.4.4 Assume that (2.4.3), (2.4.33) and (2.4.4) hold with α, β, γ > 0 and α ≥ 1
2 min{β, γ}.

Then, for any ε < exp(−1), there exists an L ∼ log(ε−1) and a sequence {N`}Ll=0 such that

e(Q̂MLMC
h )2 ≤ ε2 and

E
[
Cε(Q̂MLMC

h )
]

= O
(
ε−2−max{0, (γ−β)/α}

)
, for β 6= γ . (2.4.34)

For β = γ, we can achieve E
[
Cε(Q̂MLMC

h )
]

= O
(
ε−2 log(ε)2

)
.

Theorem 2.4.4 states that, provided (2.4.33) holds for some β > 0, the MLMC always achieves

a gain of O
(
ε−min{β,γ}/α) over standard Monte Carlo. For β > γ, the cost of the MLMC method

is O
(
ε−2
)

(i.e. the dominant computational cost is on the coarsest levels, see Remark 2.4.3(i)).

This fact can be exploited to design unbiased multilevel estimators of the expected value of the

exact quantity of interest E[Q] with cost O
(
ε−2
)

[169]. On the other hand, if γ > β = 2α, the

cost of the MLMC method is

O
(
ε−2− γ−βα

)
= O

(
ε−2− γα+ 2α

α

)
= O

(
ε−γ/α

)
,

(i.e. the dominant computational cost is on the finest levels, see Remark 2.4.3(ii)). This is optimal,

in the sense that it is equivalent (up to a constant) to the cost of computing a single (standard)

Monte Carlo sample to O(ε) accuracy - since (2.4.3) requires h ∼ ε1/α to ensure O(ε) accuracy

and the mean cost of a single sample is given by (2.4.4), hence

E[C(Qh)] = O
(
h−γ

)
= O

(
ε−γ/α

)
.

For certain problems (e.g. hyperbolic PDEs), a stability condition on the discretisation param-

eter h must be satisfied otherwise instabilities in the numerical scheme can lead to a large bias error

in the approximation Q ≈ Qh. The appearance of such stability conditions is a particular issue

for MLMC, which relies upon the estimates Qh being (strongly) positively correlated for different

values of h. The author is not aware of any theoretical results for MLMC when the discretised

problem requires a stability constraint, despite the increased interest in such problems - see for

example [25, 143, 144]. The detailed analysis of the affect of the stability condition on the MLMC

theory, for a spatially one-dimensional radiative transport problem, is given in our paper [92]. We

will discuss this further in Chapter 4.

One other area of active research within MLMC, is its application to the computation of cdfs

and pdfs, e.g. [31, 67, 82, 118]. Here there is the additional difficulty of justifying (2.4.33) when
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the quantity of interest is discontinuous on its domain. For example, consider the cumulative

distribution function of Q and write

P[Q ≤ b] = E[1(−∞,b](Q)] = E [ξ(Q, b)] , ξ(Q, b) := 1(−∞,b](Q) , for all b ∈ R , (2.4.35)

where 1S(·) denotes the indicator function for some set S. Then, we can use the MLMC estimator

(2.4.29) to estimate E [ξ] = P[Q ≤ b], by considering a sequence of approximations {ξ`}L`=0 as

before, where we define ξ`(ω, b) := ξ (Q`(ω), b), for all ` = 0, · · · , L. However in general, there

exists a b ∈ R such that, for all ω ∈ Ω (and assuming Q`(ω) 6= Q`−1(ω)) then

either: ξ`(ω, b) = 1 , and ξ`−1(ω, b) = 0 ; (2.4.36)

or ξ`(ω, b) = 0 , and ξ`−1(ω, b) = 1 .

That is, the estimates of the quantity of interest fall on opposite sides of the discontinuity, depend-

ing on the chosen level. This counteracts the correlated samples that MLMC relies upon, see [82,

Remark 5.1].

One option to remedy this is to consider a smooth approximation to the discontinuous function

[82]. The problem with this smoothing approach is that the smoothing parameter should depend

on the required tolerance of the problem, which leads to difficult tuning of MLMC. For the specific

case of estimating densities and distributions, other options have been suggested which move

away from formulas such as (2.4.35). For example, [31] uses the moment matching method where

(finitely many) statistical moments of the quantity of interest are estimated via MLMC, and then

an estimate of the pdf is constructed using the moment estimates.

Finally we note that the multilevel approach is not restricted to standard MC estimators and

can also be used in conjunction with QMC estimators [84, 125, 123] or with stochastic collocation

[198]. A comprehensive review is given in [81]. We discuss the multilevel variant of QMC next.

Multilevel Quasi-Monte Carlo

An important observation, first made in [84], is that the gains of quasi-Monte Carlo are compli-

mentary to the gains of MLMC. Consider samples Z(`,n) of a random field corresponding to the

(randomised) rank-1 lattice points (2.4.19), for each level ` = 0, · · · , L (instead of the i.i.d. MC

samples in (2.4.29)) - with the same abuse of notation as in (2.4.20). Then, we can define the

multilevel quasi-Monte Carlo (MLQMC) estimator by

Q̂MLQMC
h :=

L∑
`=0

Ŷ QMC
` =

L∑
`=0

1

NQMC
`

NQMC∑̀
n=1

Y`(Z
(`,n)) , (2.4.37)

where NQMC
` = S P` denotes the total number of QMC samples on level `, with S uniform shifts

of P` rank-1 lattice points, for each ` = 0, · · · , L.

A theoretical result on the computational ε-cost of Q̂MLQMC
h can be proven, which is analogous

to Theorem 2.4.4, see [197, 125, 123]. We present the result below.

Theorem 2.4.5 Assume that (2.4.3) and (2.4.4) hold with α, γ > 0, and that there exists λ ∈ ( 1
2 , 1]

and β > 0 such that α ≥ 1
2 min{β, λ−1γ} and

V∆

[
Ŷ QMC
`

]
= O

((
NQMC
`

)−1/λ

hβ`

)
. (2.4.38)
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Moreover, fix the number of random shifts on each level as S. Then, for any ε < exp(−1), there

exists an L ∼ log(ε−1) and a sequence {NQMC
` }L`=0 such that e

(
Q̂MLQMC
h

)
≤ ε2 and

E
[
Cε(Q̂MLQMC

h )
]

= O
(
ε−2λ−max{0, γ−βλ

α }
)
. (2.4.39)

For βλ = γ, we can achieve E
[
Cε(Q̂MLQMC

h )
]

= O
(
ε−2λ log(ε−1)1+λ

)
.

The convergence rate λ ∈ ( 1
2 , 1] can be further improved by using the higher-order QMC rules that

we previously mentioned, e.g. [57, 86, 87], but we do not consider this here.

The complexity result in Theorem 2.4.5 (and Theorem 2.4.4) can also be extended to include the

truncation error that arises from the use of the (d`-truncated) expansion methods in Section 2.3.2.

We refer to [123, 125] for further details.

The question still remains as to what the optimal values for NQMC
` are in (2.4.37). In an

analogous way to (2.4.32), we can show that they are given by

NQMC
` =

2λε−2λ

(
L∑
`=0

C
1

λ+1

` V∆[Y`]
λ
λ+1

)λ(
V∆[Y`]

C`

) λ
λ+1

 . (2.4.40)

Note that (2.4.40) depends strongly on the value of λ ∈ ( 1
2 , 1], i.e. the rate of (sampling error)

convergence of the (randomised) rank-1 lattice rule from (2.4.38).

In practice it is difficult to accurately estimate λ, because a pre-asymptotic rate λeff > λ is

typically observed [123]. We will give a practically more useful approach for computing (on-the-fly)

quasi-optimal NQMC
` below, see (2.4.42) and the surrounding algorithm. First let us give details

on the justification behind it (i.e. (2.4.41)) - we refer to [123] for further details.

Let us assume that V∆

[
Ŷ QMC
`

]
≈ v`

(
NQMC
`

)−1/λ

(ignoring higher-order terms), for some

λ > 0 and for some level-dependent constant 0 < v` ≤ chβ` , for all ` = 0, · · · , L. Moreover, assume

C` ≈ w`NQMC
` (ignoring lower order terms) for a level-dependent constant w` which is independent

of NQMC
` , for all ` = 0, · · · , L. Then, if we set up the same constrained optimisation problem that

is used in the computation of (2.4.40) (and is similar to that outlined in the proof of (2.4.32)), it

follows that
V∆[Ŷ QMC

` ]

C`
≈ λ

µ
, for all ` = 0, · · · , L , (2.4.41)

where µ is the Lagrange multiplier (a level-independent constant) used to compute the solution

of the optimisation problem (further details are given in [123, § 3.3]). This means that the the-

oretically optimal values of NQMC
` from (2.4.40) ensure that V∆[Ŷ QMC

` ]C−1
` is approximately

constant on all levels. Hence, building an algorithm that (on-the-fly) ensures V∆[Ŷ QMC
0 ]C−1

0 ≈
V∆[Ŷ QMC

1 ]C−1
1 ≈ · · · ≈ V∆[Ŷ QMC

L ]C−1
L will give us quasi-optimal values for NQMC

` - without

needing to compute them a-priori and without relying on an accurate estimate of λ. This leads us

to the following adaptive procedure to choose NQMC
` , as suggested in [84]. We also note that the

algorithm can easily be adapted to estimate quasi-optimal N` for MLMC. We use this adaptive

procedure for all numerical experiments, instead of (2.4.32) and (2.4.40).
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Starting with an initial number of samples on all levels, we alternate the following two steps until

V[Q̂MLQMC
h ] ≤ ε2/2:

(i) Estimate C` and V∆[Ŷ QMC
` ] by using all of the current NQMC

` samples, for all ` = 0, · · · , L.

(ii) Compute

`∗ =
L

arg max
`=0

(
V∆[Ŷ QMC

` ]

C`

)
, (2.4.42)

and double the number of samples on level `∗.

We will discuss an extension of the multilevel Monte Carlo framework, known as Multi-Index

Monte Carlo, in Appendix D.

In the next two chapters we propose and analyse efficient multilevel Monte Carlo methods

(discussed in Section 2.4.3) for quantifying the effect of uncertainty in the nuclear input data on

the output variable φ (or a related quantity of interest). There is a growing recent interest in this

question in the more general context of kinetic equations (e.g. [143, 144, 213]). In the particular

case of nuclear applications, our work is relevant to the assessment of how material fluctuations

can affect the uncertainty of flux computations.

The analysis of multilevel Monte Carlo methods for PDE problems has so far been restricted

to the case of ODE and coercive elliptic PDE models, where it has generated a lot of interest (e.g.

[80], [48]). As far as we are aware, the results in the next two Chapters are the first which consider

this question for hyperbolic integro-differential equations of the form (1.1.14).
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The results of this chapter describe how (deterministic) heterogeneity in the material coefficients

manifests itself in the operators underlying the RTE, and consequently in the error estimate for the

numerical method. That is, this chapter is concerned with an error estimate for the deterministic

problem - this result is key to the analysis of the multilevel Monte Carlo method in Chapter 4.

To allow the first results to be established, we make the simplifying assumption of one spatial

and one angular dimension, the so-called “1D slab-geometry” case in reactor theory (which we pre-

viously introduced in Section 1.3). We discretise with the classical discrete ordinates method, using

a certain Gauss like rule with 2N quadrature points in angle and classical diamond differencing (or

Crank-Nicolson) on a mesh with step-size h in the spatial variable. The resulting approximation

of the scalar flux φ is denoted φh,N .

We assume that the spatial domain can be partitioned into subintervals, on each of which the

input data σS , σA and f belongs to the Hölder1 space Cη, for some η ∈ (0, 1). This allows for data

with low smoothness and permits jumps in material properties across interfaces. We denote this

space by Cηpw and equip it with the norm ‖ · ‖η,pw. The main result of this chapter, and our first

error estimate, is Theorem 3.3.11 which shows that there are constants R,R′, both dependent on

1we refer the reader ahead to Notation 3.1.1 for details on the notation used in this introduction
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σ, σS such that, when

N−1 + h logN + hη ≤ R(σ, σS)−1 , (3.0.1)

we have the error estimate for the scalar flux:

‖φ− φh,N‖∞ ≤ R′(σ, σS)
(
N−1 + h logN + hη

)
‖f‖η,pw , (3.0.2)

Both R,R′ are independent of f and their dependence on σ, σS is known explicitly, but they blow

up, e.g., if σS/σ → 1 anywhere in the domain or if ‖σ‖∞‖σ−1‖∞ → ∞. This is natural as, for

example, it is known that when σS is close to σ the transport equation degenerates to a diffusion

equation and hence we expect subsequent difficulties. We presented an overview of the required

steps to achieve (3.0.2) in our paper [93, §3], without many details and with certain assumptions

removed. The proof of (3.0.1), (3.0.2) is obtained by generalising the theory of the integral equation

reformulation of (1.1.5) to the heterogeneous case; the homogeneous case having been studied in

detail in [163].

The appearance of the h logN term in (3.0.2) reflects the fact that the transport equation in

slab geometry has a singularity in its angular dependence (explained in Section 3.1). This imposes

a compatiblity constraint (i.e. (3.0.1)), which implies that the angular discretisation cannot be

indefinitely refined if the spatial discretisation is kept fixed. The appearance of this term in the

error estimate means that the accuracy of the method, measured in ‖ · ‖∞, can be no better than

O(h), even if the cross-sections are very smooth. A faster rate is possible if one uses a higher order

method or measures the error in Lp norms, the latter proved for constant cross-sections in [163].

However, we will not pursue this further and thus limit our analysis to less smooth data (η < 1).

The numerical analysis of the RTE (and related integro-differential equation problems) dates

back at least as far as the work of H.B. Keller [114]. After a huge growth in the mathematics

literature in the 1970’s and 1980’s, progress has been slower since. This is perhaps surprising,

since discontinuous Galerkin (DG) methods (i.e. Section 1.2.3) have enjoyed a massive recent

renaissance and the neutron transport problem was one of the motivations behind the original

introduction of DG [166].

The fundamental paper on the analysis of the discrete ordinates method for the transport equa-

tion is [163], where a full analysis of the combined effect of angular and spatial discretisation is

given, under the assumption that the cross-sections are constant. The delicate relation between

spatial and angular discretisation parameters required to achieve stability and convergence is de-

scribed there, and is also seen again in the present work (see the h logN term in (3.0.2)). Later

research e.g. [11], [12] produced analogous results for models of increasing complexity and in higher

dimensions, but the proofs were mostly confined to the case of cross-sections that are constant in

space. A separate and related sequence of papers (e.g. [128], [204], and [7]) allow for variation in

cross-sections, but error estimates explicit in this data are not available there.

We also note that there is a growing literature in the numerical analysis of kinetic equations,

of which the RTE is a particular example, with an emphasis on “asymptotic preserving” schemes,

which retain accuracy as the scattering ratio σS/σ approaches unity. Interest in this question in

the deterministic case goes back a long way, e.g. [109], which has led to recent work on UQ in this

context (e.g. [213]). For further general discussion on the transport equation, see [52, 133].

The structure of this chapter is as follows. In Section 3.1, we introduce the model problem; the

Radiative Transport equation in the 1D slab geometry with spatially heterogeneous cross-sections,

and its discretisation. To set up the error analysis, Section 3.2 describes the classical integral
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equation reformulation of the RTE under very weak smoothness assumptions on the cross-sections.

From here we can prove results relating to the underlying operators and their regularity - that are

explicit in the cross-sections. In Section 3.3, the elements are brought together to prove (3.0.1) and

(3.0.2). Numerical results are presented alongside, which show that our error estimate is sharp.

Chapter 4 then extends this analysis to include a probabilistic error estimate (see ahead to (4.0.1))

and a rigorous analysis of the (multilevel) Monte Carlo method.

3.1 The Model Problem

We study the mono-energetic 1D slab geometry problem, for the angular flux ψ(x, µ):

µ
∂ψ

∂x
(x, µ) + σ(x)ψ(x, µ) = σS(x)φ(x) + f(x) , x ∈ (0, 1), µ ∈ [−1, 1], (3.1.1)

where φ(x) =
1

2

∫ 1

−1

ψ(x, µ′) dµ′ , (3.1.2)

denotes the scalar flux, subject to zero incoming flux:

ψ(0, µ) = 0, for µ > 0 and ψ(1, µ) = 0, for µ < 0 . (3.1.3)

The total cross-section σ(x) is given by σ = σS + σA. The problem (3.1.1) – (3.1.3) was shown

to be equivalent to (1.3.1) equipped with no-inflow boundary conditions, when the input data is

constant in two of the spatial dimensions (here assumed to be y and z), see Section 1.3. Note

that (3.1.1) degenerates at µ = 0, which corresponds to particles moving perpendicular to the

x-direction.

Notation 3.1.1 When working on the spatial domain (0, 1), for 1 ≤ p ≤ ∞, we will denote the

standard Lebesgue spaces as Lp with norm ‖ · ‖p, i.e. for 1 ≤ p <∞

Lp(0, 1) :=

{
g : (0, 1) 7→ R | ‖g‖pLp(0,1) :=

∫
(0,1)

|g(x)|p dx < ∞

}
.

When p = ∞, ‖g‖∞ := ess supx∈[0,1]|g(x)|. For any interval I ⊂ [0, 1], we denote by C(I) the

space of uniformly continuous functions on I, equipped with norm ‖ · ‖∞. For 0 < ξ ≤ 1, we let

Cξ(I) denote the space of Hölder continuous functions on I with Hölder exponent ξ ∈ (0, 1] and

with norm

‖g‖Cξ(I) := ‖g‖∞ + sup
x,y∈I
x6=y

|g(x)− g(y)|
|x− y|ξ

.

(The space C1(I), for ξ = 1, is also the space of Lipschitz continuous functions on I.) When

I = [0, 1] we write for short C = C(I), Cξ = Cξ(I) and ‖g‖ξ = ‖g‖Cξ(I). Finally, for any normed

spaces X and Y , we write ‖ · ‖X 7→Y to denote the operator norm of an operator mapping X 7→ Y .

In what follows, we will allow data which is piecewise continuous with respect to an apriori

defined partition

0 = c1 < · · · < cℵ = 1 , (3.1.4)

with ℵ ≥ 1. We denote the corresponding space of piecewise continuous functions by

Cpw :=
{
g ∈ L∞(0, 1) | g|(cj ,cj+1) ∈ C(cj , cj+1), for each j = 1, . . . ,ℵ − 1

}
.
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By the assumed uniform continuity, g then has well-defined left and right limits (which might be

different) at each cj . For definiteness we will assume that the value of g(cj) is taken to be the

limit from the right for j = 1, · · · ,ℵ − 1 and the limit from the left for j = ℵ. The space Cpw is

equipped with the usual uniform norm ‖ · ‖∞. Similarly, for any ξ ∈ (0, 1], let

Cξpw :=
{
g ∈ Cpw | g|(cj ,cj+1) ∈ Cξ(cj , cj+1), for each j = 1, . . . ,ℵ − 1

}
,

with norm ‖g‖ξ,pw := maxℵj=1 ‖g‖Cξ(cj ,cj+1).

We now make the following physically motivated assumptions on the input data.

Assumption 3.1.2 (Input Data)

1. The cross-sections σS and σA are strictly positive and bounded above. We write

σmin = min
x∈[0,1]

σ(x) , σmax = max
x∈[0,1]

σ(x) ,

(σS)min = min
x∈[0,1]

σS(x) and (σS)max = max
x∈[0,1]

σS(x) .

2. There exists a partition (3.1.4) and η ∈ (0, 1), such that σ, σS , f ∈ Cηpw.

3.1.1 Discretisation

To discretise (3.1.1) – (3.1.3) in angle, we use a 2N -point quadrature rule

∫ 1

−1

g(µ) dµ ≈
N∑
|k|=1

wkg(µk) , (3.1.5)

with nodes µk ∈ [−1, 1]\{0} and positive weights wk ∈ R+. We assume the (anti-)symmetry

properties µ−k = −µk and w−k = wk. To discretise in space, we introduce a mesh

0 = x0 < x1 < . . . < xM = 1 , (3.1.6)

which is assumed to resolve the break points {cj} introduced in (3.1.4) (which requires thatM ≥ ℵ).

Further assumptions on the quadrature rule and mesh will be added in Section 3.3.

Our discrete scheme for (3.1.1) – (3.1.3) is then: Find the family of continuous piecewise-linear

functions {ψh,Nk }2Nk=1 (with nodal values {ψh,Nk,j }) such that

µk
ψh,Nk,j − ψ

h,N
k,j−1

hj
+ σj−1/2

ψh,Nk,j + ψh,Nk,j−1

2
= σS,j−1/2φ

h,N
j−1/2 + fj−1/2 , (3.1.7)

for j = 1, ...,M, |k| = 1, . . . , N , where

φh,Nj−1/2 =
1

2

N∑
|k|=1

wk
ψh,Nk,j + ψh,Nk,j−1

2
, j = 1, ...,M , (3.1.8)

and with

ψh,Nk,0 = 0, for k > 0 and ψh,Nk,M = 0, for k < 0 . (3.1.9)

Here σj−1/2 denotes the value of σ at the mid-point of the interval Ij = (xj−1, xj), with the

analogous meaning for σS,j−1/2 and fj−1/2.
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Solution Methods for Slab Geometry Transport

If the right-hand side of (3.1.7) were known, then (3.1.7) could be solved simply by sweeping from

left to right (when k > 0) and from right to left (when k < 0). The appearance of φh,Nj−1/2 on the

right-hand side means that (3.1.7) and (3.1.8) constitute a coupled system, which can be written

in matrix form as (
T −ΣS

−W I

)(
Ψ

Φ

)
=

(
f

0

)
. (3.1.10)

Here, the vector Φ ∈ RM contains the approximations of the scalar flux at the M midpoints of

the spatial mesh. The matrix T is a block diagonal 2NM × 2NM matrix, representing the left

hand side of (3.1.7). The 2N diagonal blocks of T , one per angle, are themselves bi-diagonal. The

2NM×M matrix ΣS simply consists of 2N identical (since we assumed the scattering cross-section

was isotropic in angle) diagonal blocks, one per angle, with ΣSΦ representing the multiplication

of Φ by σS at the midpoints of the mesh. The M × 2NM matrix W (applied to Ψ) represents the

right hand side of (3.1.8), i.e. averaging at the midpoints and quadrature. The matrix I denotes

the M×M identity matrix. The vector f ∈ R2NM contains 2N copies of the source term evaluated

at the M midpoints of the spatial mesh.

3.1.2 Direct and Iterative Solvers

We now wish to find the (approximate) fluxes in the linear system (3.1.10). We note that the

matrix T is invertible and has a useful sparsity structure that allows its inverse to be calculated

in O(MN) operations. However, the bordered system (3.1.10) is not as easy to invert, due to the

presence of ΣS and W .

To exploit the sparsity of T , we do block elimination on (3.1.10) obtaining the Schur complement

system for the scalar flux, i.e.,

(
I −WT−1ΣS

)
Φ = WT−1f , (3.1.11)

which now requires the inversion of a smaller (dense) matrix. Note that (3.1.11) is a finite-

dimensional version of the reduction of the integro-differential equation (3.1.1), (3.1.2) to the in-

tegral form of the RTE (see ahead to (3.1.22)). In this case, the two dominant computations with

O(M2N) and O(M3) operations respectively, are the triple matrix product WT−1ΣS in the con-

struction of the Schur complement and the LU factorisation of the M×M matrix
(
I −WT−1ΣS

)
.

This leads to a total

theoretical cost of the direct solver ∼ O(M2(M + N)) . (3.1.12)

We note that for stability reasons (see [93, §3], also [163] in a simpler context), the number of

spatial and angular points should be related. A suitable choice could be M ∼ N , leading to a cost

of the direct solver of O(M3) in general.

The second approach for solving (3.1.10) is an iterative solver commonly referred to as source

iteration, cf. [32]. Re-writing (3.1.11) as

Φ = WT−1
(
WT−1ΣSΦ + f

)
,
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then naturally suggests the iteration

Φ(k) = WT−1
(

ΣSΦ(k−1) + f
)
, (3.1.13)

where Φ(k) is the approximation at the kth iteration, and where we assume Φ(0) = WT−1f . This

can be seen as a discrete version of an iterative method for the integral equation (3.1.22).

In practice, we truncate after K iterations. The dominant computations in the source iteration

are the K multiplications with WT−1ΣS . Exploiting the sparsity of all the matrices involved,

these multiplications cost O(MN) operations, leading to an overall

theoretical cost of source iteration ∼ O (M N K) . (3.1.14)

A proof of a similar result, for a spatially two-dimensional problem, is given in Section 5.2.3.

The numerical experiments in [93] show that, for 2N = M , the hidden constants in the two

estimates (3.1.12) and (3.1.14) are approximately the same. Hence, whether the iterative solver is

faster than the direct solver depends on whether the number of iterations K to obtain an accurate

enough solution is smaller or larger than M . This will motivate the introduction of a third ‘hybrid’

solver, which we discuss later in Section 4.2.

There are sharp theoretical results on the convergence of (a non-discrete version of) source

iteration for piecewise smooth cross-sections [32, Thm 2.20]. In particular, if φ(K) denotes the

approximation to φ after K iterations, then∥∥∥∥σ1/2
(
φ− φ(K)

)∥∥∥∥
2

≤ c′
(
c

∥∥∥∥σSσ
∥∥∥∥
∞

)K
, (3.1.15)

for some constants c′ > 0 and c ≤ 1. That is, the error decays geometrically with rate no slower

than the spatial maximum of σS/σ. For the case where the cross-sections are random (e.g. (2.2.2)

with zero fission), then (3.1.15) will hold pathwise for each ω - for some realisations the spatial

maximum of σS/σ will be close to 1. Using this result as a guide together with the assumption

0 < σA(x) <∞, for all x ∈ [0, 1], we assume that the convergence of the L2-error with respect to

K can be bounded by

‖φ − φ(K)‖2 ≤ c

∥∥∥∥σSσ
∥∥∥∥K
∞
, (3.1.16)

for some constant c > 0.

3.1.3 Abstract form of the problem

As preparation for analysing (3.1.1) – (3.1.3) and its discretisation, (3.1.7) – (3.1.9), consider

the pure transport problem (previously discussed in Section 1.3): For fixed µ ∈ [−1, 1], find u =

u(x), x ∈ (0, 1), such that

µ
du

dx
+ σu = g, with u(0) = 0, when µ > 0 and u(1) = 0 when µ < 0, (3.1.17)

with g ∈ L∞ a generic right-hand side. (Note that u depends on µ, but we suppress this in the

notation. When µ = 0 no boundary condition is needed.)

Following Appendix A.2, it is easy to show that a solution of this problem is u := Sµg, where
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we define

Sµg(x) :=


µ−1

∫ x
0

exp
(
µ−1τ(x, y)

)
g(y) dy , µ > 0

σ−1(x) g(x) , µ = 0

−µ−1
∫ 1

x
exp

(
µ−1τ(x, y)

)
g(y) dy , µ < 0

, (3.1.18)

and

τ(x, y) :=

∫ y

x

σ(s) ds . (3.1.19)

The quantity |τ(x, y)| is often called the ‘optical length’ or ‘optical path’ [27]. To mimic the

averaging process in (3.1.2) it is natural to also consider the integral operator:

Kg(x) :=
1

2

∫ 1

−1

Sµg(x) dµ =
1

2

∫ 1

0

E1(|τ(x, y)|)g(y) dy , (3.1.20)

where for z > 0, E1(z) is the exponential integral

E1(z) :=

∫ ∞
1

exp(−tz)dt

t
. (3.1.21)

The operators Sµ and K relate to (3.1.1) – (3.1.3) by the following proposition (and which is

analogous to Theorem A.2.1).

Proposition 3.1.3 Let ψ be a solution to (3.1.1) – (3.1.3). Then, ψ is uniquely determined by

ψ(x, µ) = Sµ (σSφ + f) (x) , (3.1.22)

and hence φ solves the integral equation

φ = K (σSφ + f) . (3.1.23)

We shall see later that (3.1.23) has a unique solution and this ensures that (3.1.1) – (3.1.3) has

a unique solution. We also discussed the uniqueness of the solution in Remark 1.1.3.

Analogously we can consider the discrete system (3.1.7) – (3.1.9). Let V h denote the space of

continuous piecewise-linear functions with respect to the mesh {xj}Mj=0, and for any v ∈ C, let Phv
denote the piecewise constant function which interpolates v at the mid-points of the subintervals

Ij = (xj−1, xj). Then consider the discretisation of (3.1.17) defined by seeking uh ∈ V h to satisfy∫
Ij

(
µ

duh

dx
+ Phσ uh

)
=

∫
Ij

g , for j = 1, . . . ,M , (3.1.24)

with uh(0) = 0 when µ > 0 and uh(1) = 0 when µ < 0. This has a unique solution (the proof of

which is given later during the proof of Theorem 3.3.5), which we write as uh = Shµg. Analogously

to (3.1.20) we also define

Kh,Ng =
1

2

N∑
|k|=1

wk Shµkg . (3.1.25)

Identifying any fully discrete solution ψh,Nk,j of (3.1.7) – (3.1.9) with the function ψh,Nk ∈ V h by

interpolation at the nodes {xj}, we can see that (3.1.7) – (3.1.9) is equivalent to seeking ψh,Nk ∈ V h,
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|k| = 1, ..., N , that satisfy

∫
Ij

(
µk

dψh,Nk
dx

+ Phσ ψh,Nk

)
=

∫
Ij

Ph
(
σSφ

h,N + f
)
, j = 1, . . . ,M , (3.1.26)

where

φh,N :=
1

2

N∑
|k|=1

wkψ
h,N
k , (3.1.27)

and

ψh,Nk (0) = 0 , when k > 0 and ψh,Nk (1) = 0 , when k < 0 . (3.1.28)

We then have the discrete analogue of Proposition 3.1.3:

Proposition 3.1.4 The system (3.1.26) – (3.1.28) is equivalent to (3.1.7) – (3.1.9), and its solu-

tion can be written:

ψh,Nk = ShµkP
h(σSφ

h,N + f) , for all |k| = 1, · · · , N . (3.1.29)

Moreover,

φh,N = Kh,NPh(σSφ
h,N + f) . (3.1.30)

Now to estimate the error in our approximation to φ, we write

φ− φh,N = K(σSφ+ f)−Kh,NPh(σSφ
h,N + f)

= K(σSφ+ f)−Kh,NPhσSφ+Kh,NPhσSφ−Kh,NPhσSφh,N −Kh,NPhf

=
(
K −Kh,NPh

)
(σSφ+ f) +Kh,NPhσS

(
φ− φh,N

)
= (I −Kh,NPhσS)−1(K −Kh,NPh)(σSφ+ f) , (3.1.31)

where we subtracted (3.1.30) from (3.1.23) to obtain the first equality and added (Kh,NPhσSφ−
Kh,NPhσSφ) = 0 for the second equality. The fourth equality holds by subtractingKh,NPhσS

(
φ− φh,N

)
from both sides to acquire

(
I −Kh,NPhσS

) (
φ− φh,N

)
=
(
K −Kh,NPh

)
(σSφ+ f) ,

and then assuming that (I − Kh,NPhσS)−1 is a bounded map on C (which is proven later in

(3.3.29)). Hence,

‖φ− φh,N‖∞ ≤ ‖(I −Kh,NPhσS)−1‖C7→C‖(K −Kh,NPh)(σSφ+ f)‖∞ . (3.1.32)

3.2 Properties of the Operators

In this section, we will prove a number of technical results which will lead to bounds on both terms

on the right hand side of (3.1.32) (stability and consistency) and will thus yield the deterministic

error estimate in (3.0.1) – (3.0.2).

Notation 3.2.1 To simplify presentation, for any a ∈ R, we will use the notation a := max{1, a}.
Also, from now on, we will use c to denote a constant that is positive, finite and independent of
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the cross-sections, mesh parameters and other relevant variables.

Throughout this section, we will make use of the following bounds, a consequence of Assump-

tions 3.1.2 and (3.1.19),

σmin|y − x| ≤ sgn(y − x)τ(x, y) ≤ σmax|y − x| , (3.2.1)

where sgn(·) = 1, when its argument is positive, and (−1) when negative.

Lemma 3.2.2 For µ ∈ [−1, 1], then ‖Sµ‖L∞ 7→L∞ ≤ σ−1
min .

Proof. Consider µ > 0 and a function g ∈ L∞. By definition,

|Sµg(x)| =

∣∣∣∣µ−1

∫ x

0

exp(µ−1τ(x, y))g(y) dy

∣∣∣∣
≤ ‖g‖∞µ−1

∫ x

0

exp(µ−1τ(x, y)) dy

≤ ‖g‖∞µ−1

∫ x

0

exp(µ−1σmin(y − x)) dy

≤ ‖g‖∞σ−1
min

[
exp(µ−1σmin(y − x))

]y=x

y=0

≤ ‖g‖∞σ−1
min ,

where we have used that y ∈ [0, x] implies τ(x, y) ≤ σmin(y − x) ≤ 0 and that the exponential

function is non-negative and monotonically increasing. The proof for µ < 0 holds similarly.

In the following two Lemmas we study the differentiability of Sµ with respect to x and µ.

Through (3.1.22), this relates directly to the differentiability of the angular flux ψ and hence will

be fundamental to the convergence rate of the deterministic error estimates in Section 3.3.

Lemma 3.2.3 ∥∥∥∥ ∂∂xSµ
∥∥∥∥
L∞ 7→L∞

≤ 2

(
σmax

σmin

)
|µ|−1 , for all µ ∈ [−1, 1]\{0} .

Moreover, Sµ : L∞ 7→ C with ‖Sµ‖L∞ 7→C ≤ σ−1
min, for µ ∈ [−1, 1]\{0}.

Proof. Consider µ > 0 and some function g ∈ L∞. By the definition of Sµ and the Leibniz

integral rule

∂

∂x
Sµg(x) = µ−1 ∂

∂x

{∫ x

0

exp(µ−1τ(x, y))g(y) dy

}
= µ−1

(
g(x)− µ−1σ(x)

∫ x

0

exp(µ−1τ(x, y))g(y) dy

)
.

Applying the absolute value and bounding then gives

|(Sµg)′(x)| ≤ µ−1

(
|g(x)|+ µ−1σmax

∫ x

0

exp(µ−1τ(x, y))|g(y)| dy
)

≤ µ−1‖g‖∞
(

1 + µ−1σmax

∫ x

0

exp(µ−1τ(x, y)) dy

)
≤ µ−1‖g‖∞

(
1 + σmaxσ

−1
min

)
,

where the integral is bounded as in Lemma 3.2.2. The proof for µ < 0 is similar.
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The proof that Sµ : L∞ 7→ C is a simple consequence of the fact that, given any g ∈ L∞,

the derivative of Sµg is bounded (except when µ = 0). The corresponding bound is as proven in

Lemma 3.2.2.

Lemma 3.2.4 For g ∈ L∞ and any β > 0, then

sup
x∈[0,1]

∫ 1

−1

|µ|β
∣∣∣∣ ∂∂µ (Sµg)(x)

∣∣∣∣ dµ ≤ 2β−1σ−1
min‖g‖∞ .

Proof. Consider µ > 0. By the product rule

∂

∂µ

(
µ−1 exp(µ−1τ(x, y))

)
= −µ−2 exp(µ−1τ(x, y))

(
1 + µ−1τ(x, y)

)
. (3.2.2)

Using (3.2.2), the definition of Sµg and the substitution t = µ−1τ(x, y) = µ−1τx(y), then

− ∂

∂µ
(Sµg)(x) = −

∫ x

0

∂

∂µ

(
µ−1 exp

(
µ−1τ(x, y)

))
g(y) dy

= µ−2

∫ x

0

[1 + µ−1τ(x, y)] exp[µ−1τ(x, y)]g(y) dy

= µ−1

∫ 0

µ−1τ(x,0)

(1 + t) exp(t)σ−1(τ−1
x (µt)) g(τ−1

x (µt)) dt .

The function τ−1
x exists because y ∈ (0, x), for fixed x, and therefore τx(y) < 0 - existence of τ−1

x

then follows by the inverse function theorem. Applying the absolute value and using the triangle

inequality (i.e. |1 + t| ≤ 1 + |t|),∣∣∣∣ ∂∂µ (Sµg)(x)

∣∣∣∣ ≤ µ−1‖g‖∞
∫ 0

µ−1τ(x,0)

(1 + |t|) exp(t)σ−1(τ−1
x (µt)) dt ,

which is an integral with a positive integrand. Hence, by bounding σ−1(·) ≤ σ−1
min we can acquire

an upper bound on the integral, by extending the domain of integration i.e.∣∣∣∣ ∂∂µ (Sµg)(x)

∣∣∣∣ ≤ µ−1σ−1
min‖g‖∞

∫ 0

−∞
(1 + |t|) exp(t) dt ≤ 2µ−1σ−1

min‖g‖∞ ,

where we note that
∫ 0

−∞(1 + |t|) exp(t) dt = 2. This implies that for any β > 0 and any x ∈ [0, 1]

∫ 1

0

|µβ |
∣∣∣∣ ∂∂µ (Sµg)

∣∣∣∣ dµ ≤ 2

∫ 1

0

µ−1+βσ−1
min‖g‖∞ dµ = 2β−1σ−1

min‖g‖∞ .

The proof holds similarly for µ ∈ [−1, 0), and µ = 0 is trivial.

The next few results will allow us to prove that

σS , σ, f ∈ Cηpw, for any η ∈ (0, 1) ⇒ φ ∈ Cξ, for all ξ ∈ (0, 1).

This result uses the smoothing property of the averaging operator K.

Lemma 3.2.5 On L2, the operator KσS is bounded and (I −KσS) is invertible with the bound

‖ (I −KσS)
−1 ‖L2 7→L2 ≤ (σmax/σmin)

1/2
(1− ‖σS/σ‖∞)

−1
. (3.2.3)
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Moreover, the scalar flux φ ∈ L2 and

‖φ‖2 ≤ (σmax/σmin) (σS)−1
min (1− ‖σS/σ‖∞)

−1 ‖f‖2 . (3.2.4)

Proof. Consider the weighted norm ‖g‖Lw2 := ‖σ1/2g‖2, for any g ∈ Lw2 . This is equivalent to the

usual L2-norm in the sense that

σ
1/2
min‖g‖2 ≤ ‖g‖Lw2 ≤ σ

1/2
max‖g‖2 , (3.2.5)

and hence any g ∈ Lw2 also belongs to L2. Using the result of [32, Thm 2.20], i.e.

‖KσS‖Lw2 7→Lw2 ≤ ‖σS/σ‖∞ < 1 , (3.2.6)

then KσS is bounded on Lw2 , and hence by (3.2.5),

‖KσS‖L2 7→L2
≤ (σmax/σmin)

1/2 ‖σS/σ‖∞ (3.2.7)

since, for g ∈ Lw2

σ
1/2
min‖KσSg‖2 ≤ ‖KσSg‖Lw2 ≤ ‖KσS‖Lw2 7→Lw2 ‖g‖Lw2 ≤ σ

1/2
max‖σS/σ‖∞‖g‖2 .

Moreover, by the Banach Lemma it follows that

‖ (I −KσS)
−1 ‖Lw2 7→Lw2 ≤

(
1− ‖KσS‖Lw2 7→Lw2

)−1 ≤ (1− ‖σS/σ‖∞)
−1

. (3.2.8)

The bound on ‖ (I −KσS)
−1 ‖L2 7→L2 follows from (3.2.5) and (3.2.8).

Re-writing the integral equation (3.1.23) as (I −KσS)φ = Kf and using (3.2.3), then

‖φ‖2 = ‖ (I −KσS)
−1Kf‖2 ≤ ‖ (I −KσS)

−1 ‖L2 7→L2
‖Kf‖2

≤ (σmax/σmin)
1/2

(1− ‖σS/σ‖∞)
−1 ‖Kf‖2 .

Moreover, using the aforementioned bound on ‖KσS‖L2
i.e. (3.2.7),

‖Kf‖2 ≤ ‖KσS‖L2 7→L2
‖ (σS)

−1
f‖2 ≤ (σmax/σmin)

1/2 ‖σS/σ‖∞(σS)−1
min‖f‖2 .

The bound (3.2.4) follows.

Before we continue with our results on the operator K, we must prove the following preliminary

results relating to its integrand E1(·).

Lemma 3.2.6 For any x ∈ (0, 1) let δ > 0 be such that x+ δ ∈ (0, 1]. For y ∈ [0, 1]\[x, x+ δ],∣∣∣∣E1(|τ(x+ δ, y)|) − E1(|τ(x, y)|)
∣∣∣∣ ≤ δ

(
σmax

σmin

)
1

min {|y − (x+ δ)|, |y − x|}
.

Proof. Using that −E′1(z) = E0(z) := exp(z)/z for z > 0 [1, eq.(5.1.26), pg.230] and the chain

rule, then for x 6= y,

d

dx
E1(|τ(x, y)|) = −exp(−|τ(x, y)|)

|τ(x, y)|
d

dx
|τ(x, y)| = σ(x)sgn(y − x)

exp(−|τ(x, y)|)
|τ(x, y)|

. (3.2.9)

By the Mean Value Theorem and since E1(·) is continuous on (0,∞), there exists c ∈ (x, x + δ)
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such that

E1(|τ(x+ δ, y)|)− E1(|τ(x, y)|) = δsgn(y − c)σ(c)
exp(−|τ(c, y)|)
|τ(c, y)|

.

Now when y > x+ δ, we have τ(c, y) =
∫ y
c
σ(z) dz ≥ σmin(y − x− δ) > 0, and hence∣∣∣∣E1|τ(x+ δ, y)| − E1|τ(x, y)|

∣∣∣∣ ≤ δ
σ(c)

σmin

exp(−|τ(c, y)|)
(y − x− δ)

≤ δ
σmax

σmin

1

(y − x− δ)
.

The result for y > x+ δ follows, and the result for y < x holds similarly.

In the next proof, we shall use the expansion (cf. [145, Eq. (1.8)], [1, Eq. (5.1.11)])

E1(z) = log(z) + Ein(z) + γE , (3.2.10)

where γE ≈ 0.5772 is Euler’s constant and

Ein(z) :=

∫ z

0

1

t
(1− exp(−t)) dt , for all z > 0 . (3.2.11)

Elementary calculus shows that Ein(z) ≤ z, for all z > 0 - a proof is given in Section E.1.

Theorem 3.2.7 The operator K maps L2 to L∞, and L∞ to Cξ, for all 0 < ξ < 1. Moreover,

the following bounds hold:

(i) ‖K‖L2 7→L∞ ≤ σ
−1/2
min ;

(ii) ‖K‖L∞ 7→Cξ ≤ c
σmax

σmin
.

Proof. (i) Let g ∈ L2 and x ∈ [0, 1]. Using (3.1.20) and the Cauchy-Schwarz inequality, we have

2|Kg(x)| =

∣∣∣∣ ∫ 1

0

E1(|τ(x, y)|)g(y) dy

∣∣∣∣ ≤ ‖g‖2(∫ 1

0

E2
1(|τ(x, y)|) dy

)1/2

.

Since E2
1 is strictly positive and monotonically decreasing on R+, we have (recalling (3.2.1))∫ 1

0

E2
1(|τ(x, y)|) dy ≤

∫ 1

0

E2
1(σmin|x−y|) dy =

∫ x

0

E2
1(σmin(x−y)) dy+

∫ 1

x

E2
1(σmin(y−x)) dy .

(3.2.12)

Applying the substitution r = x− y and using (3.1.21), the first integral on the right hand side

of (3.2.12) becomes∫ x

0

E2
1(σminr) dr =

∫ x

0

(∫ ∞
1

exp (−sσminr) s
−1 ds

)(∫ ∞
1

exp (−tσminr) t
−1 dt

)
dr

=

∫ ∞
1

s−1

∫ ∞
1

t−1

(∫ x

0

exp (−(t+ s)σminr) dr

)
dt ds

=

∫ ∞
1

s−1

∫ ∞
1

t−1

(
σ−1

min

1

t+ s
(1− exp (−(t+ s)σminx))

)
dt ds

≤ σ−1
min

∫ ∞
1

s−1

∫ ∞
1

1

t(t+ s)
dt ds = 2 log(2)σ−1

min ,

where the integrals can be interchanged by Fubini’s theorem and the final equality holds by using

partial fractions and integrating by parts. The result is also similar, up to a change in variables,

to [1, eq.(5.1.33)].

The second integral on the right hand side of (3.2.12) can be bounded analogously and hence

K : L2 7→ L∞, with ‖K‖L2 7→L∞ ≤ log(2)1/2σ
−1/2
min ≤ σ−1/2

min .
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(ii) Similarly, for any g ∈ L∞ and x ∈ [0, 1], then

2|Kg(x)| ≤ ‖g‖∞
∫ 1

0

E1(|τ(x, y)|) dy ≤ ‖g‖∞
∫ 1

0

E1(σmin|y − x|) dy ,

where we have used that the exponential integral is positive and monotonically decreasing. We

will focus on the integral for y ∈ [0, x] but the proof holds identically for the other case. Consider

the substitution r = x− y, then by Fubini’s theorem∫ x

0

E1(σmin|y − x|) dy =

∫ x

0

E1(σminr) dr

=

∫ x

0

(∫ ∞
1

s−1 exp(−sσminr) ds

)
dr

=

∫ ∞
1

s−1

∫ x

0

exp(−sσminr) dr ds

=

∫ ∞
1

s−1
[
s−1σ−1

min exp(−sσminr)
]r=x
r=0

ds

≤
∫ ∞

1

s−2σ−1
min ds = σ−1

min .

Hence,

‖Kg‖∞ ≤ σ−1
min‖g‖∞ . (3.2.13)

To bound the Hölder-seminorm, let ξ ∈ (0, 1) and consider

sup
x<z≤1

|Kg(z)−Kg(x)|
|z − x|ξ

= max

{
sup

0<δ<ε

|Kg(x+ δ)−Kg(x)|
δξ

, sup
ε≤δ≤1−x

|Kg(x+ δ)−Kg(x)|
δξ

}
,

(3.2.14)

where we have defined ε := (2σmax)−1 and δ = δ(x, z) := z − x.

Let us first consider the case δ ∈ [ε, 1 − x], i.e. the second term on the right hand side of

(3.2.14). In that case, it follows by a simple application of the triangle inequality and the bound

(3.2.13) that

|Kg(x+ δ)−Kg(x)|
δξ

≤ 2ε−ξ‖Kg‖∞ ≤ 2(2σmax)ξσ−1
min‖g‖∞ ≤ 4

σmax

σmin
‖g‖∞ . (3.2.15)

Now, let us consider the case δ ∈ (0, ε) and let Bδ(x) be the closed ball of radius δ around

x. To estimate the first term on the right hand side of (3.2.14), define Iδ(x) := [0, 1]\Bδ(x) and

Jδ(x) := Bδ(x) ∩ [0, 1]. Then,

2

∣∣∣∣Kg(x+ δ)−Kg(x)

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

F (x, y, δ)g(y) dy

∣∣∣∣
≤ ‖g‖∞

(∫
Iδ(x)

+

∫
Jδ(x)

)
|F (x, y, δ)| dy , (3.2.16)

where F (x, y, δ) := E1(|τ(x+ δ, y)|)− E1(|τ(x, y)|). Consider the integral over Iδ(x) in (3.2.16),

∫
Iδ(x)

|F (x, y, δ)| dy =

(∫ x−δ

0

+

∫ 1

x+δ

)
|F (x, y, δ)| dy , (3.2.17)

and assume the first (second) integral on the right hand side is null when x < δ (1− x < δ).
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In the case where x ≥ δ, the first integral to the right of (3.2.17) is bounded by∫ x−δ

0

|F (x, y, δ)| dy ≤
(
σmax

σmin

)
δ

∫ x−δ

0

(x− y)−1 dy

=

(
σmax

σmin

)
δ

(
log

(
1

δ

)
+ log x

)
≤
(
σmax

σmin

)
δ log

(
1

δ

)
≤ σmax

σmin
δξ ,

where we have used the result of Lemma 3.2.6 and the fact that δ log(1/δ) ≤ δξ, for all δ ≤ 1 and

ξ ∈ (0, 1). The second integral on the right of (3.2.17) has the same estimate, when δ ≤ 1 − x.

Hence, ∫
Iδ(x)

|F (x, y, δ)| dy ≤ 2

(
σmax

σmin

)
δξ . (3.2.18)

Now consider the integral over Jδ(x) in (3.2.16), then∫
Jδ(x)

|F (x, y, δ)| dy ≤
∫
Jδ(x)

|E1(|τ(x+ δ, y)|)| dy +

∫
Jδ(x)

|E1(|τ(x, y)|)| dy

≤
∫
B2δ(x+δ)

|E1(|τ(x+ δ, y)|)| dy +

∫
Bδ(x)

|E1(|τ(x, y)|)| dy , (3.2.19)

where we note the subtle change in the limits of integration, that do not necessarily require the

balls B2δ(x+ δ) and Bδ(x) to be contained in [0, 1].

Using the expansion (3.2.10) for E1(z), the second integral on the right hand side of (3.2.19)

can be re-written as∫
Bδ(x)

|E1(|τ(x, y)|)| dy ≤
∫
Bδ(x)

|log(|τ(x, y)|)| dy +

∫
Bδ(x)

|Ein(|τ(x, y)|)| dy + 2γEδ , (3.2.20)

Then, by (3.2.1) and using the fact that Ein(z) ∈ [0, z], for all z > 0, we can bound the second

integral on the right hand side of (3.2.20)∫
Bδ(x)

|Ein(|τ(x, y)|)| dy ≤
∫
Bδ(x)

|τ(x, y)| dy ≤ 2σmaxδ
2 ≤ δ , (3.2.21)

where in the last step we used δ < ε = (2σmax)−1. For the first integral on the right hand side of

(3.2.20), we use again (3.2.1) and the fact that |τ(x, y)| ≤ σmax|x− y| < εσmax ≤ 1/2 to bound

|log|τ(x, y)|| = − log|τ(x, y)| ≤ − log
(
σmin|y − x|

)
, (3.2.22)

since − log(x) = log(x−1) and |τ(x, y)| ≥ σmin|y−x|. Thus, the first integral to the right of (3.2.20)
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can be bounded by integrating the right hand side of (3.2.22), which gives∫
Bδ(x)

|log|τ(x, y)|| dy ≤ −2

∫ δ

0

log
(
σminr

)
dr (3.2.23)

≤ 2δ
(
1− log

(
σminδ

))
≤ 2δξσξ−1

min

1(
1

σminδ

)1−ξ

(
1 + log

(
1

σminδ

))

≤ c δξσξ−1
min , (3.2.24)

where the third line holds by multiplying by (δσmin)1−ξ/(δσmin)1−ξ and where the penultimate

line used that y−r
(
1 + log(y)

)
is bounded for any y ≥ 1 and r > 0. Substituting the bounds in

(3.2.21) and (3.2.24) into (3.2.20) we finally obtain∫
Bδ(x)

|E1(|τ(x, y)|)| dy ≤ c
(

1 + σξ−1
min

)
δξ . (3.2.25)

The first integral on the right hand side of (3.2.19) can be bounded analogously. Thus, com-

bining (3.2.16), (3.2.18), (3.2.19) and (3.2.25), we have shown that for δ ≤ ε,

|Kg(x+ δ)−Kg(x)|
δξ

≤ c
σmax

σmin
‖g‖∞ , (3.2.26)

uniformly in x, where we used that σξ−1
min ≤ (σmax/σmin)

1−ξ ≤ σmax/σmin. Finally, combining

(3.2.15) and (3.2.26) with the bound on ‖Kg‖∞ we have

‖Kg‖ξ = ‖Kg‖∞ + sup
x,z∈[0,1]

|Kg(z)−Kg(x)|
|z − x|ξ

≤ c
σmax

σmin
‖g‖∞ .

Lemma 3.2.8 The operator (I −KσS) is invertible on C with the bound

‖ (I −KσS)
−1 ‖C7→C ≤ 2σmax

1/2 σmax

σmin

(
1−

∥∥∥∥σSσ
∥∥∥∥
∞

)−1

=: R1(σ, σS) . (3.2.27)

Moreover, (I −KσS) is also invertible on Cpw, with the same bound as above.

Proof. Let g ∈ C and suppose that

(I −KσS) v = g, or equivalently that v = KσSv + g. (3.2.28)

This allows us to apply a bootstrapping argument. By Lemma 3.2.5, we have v = (I −KσS)
−1
g ∈

L2 and using (3.2.3)

‖v‖2 ≤
(σmax

σmin

)1/2 (
1−

∥∥∥σS
σ

∥∥∥
∞

)−1

‖g‖2 ≤
(σmax

σmin

)1/2 (
1−

∥∥∥σS
σ

∥∥∥
∞

)−1

‖g‖∞ . (3.2.29)

Using (3.2.28) again, this time together with Theorem 3.2.7(i) we get v ∈ L∞, with the following

bound

‖v‖∞ ≤ ‖KσSv‖∞+ ‖g‖∞ ≤ σ−1/2
min (σS)max‖v‖2 + ‖g‖∞ ≤ σ1/2

max

(σmax

σmin

)1/2

‖v‖2 + ‖g‖∞ . (3.2.30)
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Finally, using (3.2.28) with Theorem 3.2.7(ii) we conclude that v ∈ C and therefore, since the

supremum of a continuous function is the same as the essential supremum, the bound (3.2.30)

holds on C. The bound in (3.2.27) follows by combining (3.2.29) and (3.2.30).

Now suppose g ∈ Cpw. Then g ∈ L2 and the argument above holds verbatim to show that then

v ∈ Cpw and that the bounds in (3.2.29) and (3.2.30) hold again.

The final result of this section follows from Theorem 3.2.7 and Lemma 3.2.8.

Corollary 3.2.9 Let φ be the solution to (3.1.23), with f ∈ Cηpw, for some η ∈ (0, 1) (Assumption

3.1.2). Then φ ∈ Cξ, for any ξ ∈ (0, 1), and the following two bounds hold:

‖φ‖∞ ≤ c
σmax

σmin
R1(σ, σS)‖f‖∞ and ‖φ‖ξ ≤ R2(σ, σS)‖f‖∞ , (3.2.31)

where R1(σ, σS) is defined in (3.2.27) and

R2(σ, σS) := c
σmax

3

σ2
min

R1(σ, σS) . (3.2.32)

Proof. Since, Cηpw ⊂ Cpw and (I − KσS)φ = Kf the first bound in (3.2.31) follows directly from

Lemma 3.2.8 and Theorem 3.2.7(ii), i.e.

‖φ‖∞ ≤ ‖ (I −KσS)
−1 ‖C7→C‖Kf‖∞ ≤ R1(σ, σS)‖K‖L∞ 7→C‖f‖∞ ≤ R1(σ, σS)

(
c
σmax

σmin

)
‖f‖∞ .

To obtain the second bound, we use Theorem 3.2.7(ii) again to obtain, for ξ ≤ η,

‖φ‖ξ ≤ ‖K (σSφ+ f)‖ξ ≤ ‖K‖L∞ 7→Cξ ‖σSφ+ f‖∞ ≤ c
σmax

σmin

(
(σS)max‖φ‖∞ + ‖f‖∞

)
,

and then combine this with the first bound in (3.2.31). We used again that (σS)max ≤ σmax ≤ σmax.

3.3 Deterministic Error Estimate

We now return to estimating the error φ−φh,N using the formula (3.1.31). Introducing the operator

KNg(x) :=
1

2

N∑
|k|=1

wk (Sµkg) (x) =
1

2

∫ 1

0

EN1 (|τ(x, y)|)g(y) dy , (3.3.1)

with EN1 (z) :=
∑N
k=1 µ

−1
k wk exp(−µ−1

k z) denoting the N -point quadrature approximation of the

exponential integral (3.1.21), we can write (3.1.31) as

φ− φh,N =
(
I −Kh,NPhσS

)−1 (
eN + eh,N

)
, (3.3.2)

where

eN :=
(
K −KN

)
(σSφ+ f) and eh,N =

[(
KN −Kh,N

)
+Kh,N

(
I − Ph

)]
(σSφ+ f) . (3.3.3)

We note that for g ∈ L∞,

(
K −KN

)
g(x) =

1

2

∫ 1

−1

Sµg(x) dµ− 1

2

N∑
|k|=1

wkSµkg(x) . (3.3.4)
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Hence, by setting g = σSφ+ f , eN can then be written as

eN =
1

2

∫ 1

−1

ψ(x, µ) dµ− 1

2

N∑
|k|=1

wkψ(x, µk) ,

i.e. eN is the error in approximating φ(x) by quadrature in angle. Likewise we note that by (3.1.25)

and (3.3.1), (
KN −Kh,N

)
g =

1

2

N∑
|k|=1

wk
(
Sµk − Shµk

)
g , (3.3.5)

and

Kh,N
(
I − Ph

)
g =

1

2

N∑
|k|=1

wkShµk
(
g − Phg

)
. (3.3.6)

Finally, to obtain an error estimate we apply the supremum norm to (3.3.2), and by trivial

manipulation write

‖φ− φh,N‖∞ ≤ ‖
(
I −Kh,NPhσS

)−1 ‖C7→C

(
‖eN‖∞ + ‖eh,N‖∞

)
. (3.3.7)

Then the error estimate follows by showing that ‖eN‖∞ and ‖eh,N‖∞ both approach zero as h→ 0,

N → ∞ in an appropriate way and by finding a bound on ‖
(
I −Kh,NPhσS

)−1 ‖C7→C. The first

(the consistency) we do in Sections 3.3.1 and 3.3.2, while the second (the stability) is done in

Section 3.3.3.

3.3.1 Consistency under Angular Discretisation

The convergence of the (quadrature) error eN will rely on the regularity (in angle) of the solution

(Lemma 3.2.4) and the following result from De Vore and Scott [55] (see also [163, Prop. 3.2]):

Proposition 3.3.1 Consider the N -point Gauss-Legendre rule on [0, 1] and let m be a positive

integer with m ≤ 2N − 1. Then we have

∣∣∣∣ ∫ 1

0

g(µ) dµ−
N∑
k=1

wkg(µk)

∣∣∣∣ ≤ cN−m
∫ 1

0

[µ (1− µ)]
m/2 |g(m)(µ)| dµ ,

whenever the integral on the right hand side exists.

Notation 3.3.2 The double Gauss rule is the particular case of (3.1.5) where the N -point Gauss-

Legendre rule is used on [−1, 0] and on [0, 1].

We restrict the analysis to this rule from now on. We also note that the double Gauss rule satisfies

all assumptions made on the quadrature rule in this text, see [163].

Theorem 3.3.3 Let KN be defined by (3.3.1) using the double Gauss rule. Then,

‖K − KN‖L∞ 7→C ≤ c σ−1
minN

−1 . (3.3.8)

Proof. Using (3.3.4), the (anti-)symmetry properties of the double Gauss rule, Proposition 3.3.1
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(with m = 1) and Lemma 3.2.4 (with β = 1/2), we obtain for any g ∈ L∞,

|
(
K −KN

)
g(x)| =

1

2

∣∣∣∣ ∫ 1

0

(Sµ + S−µ) g(x) dµ−
N∑
k=1

(
wkSµk + w−kSµ−k

)
g(x)

∣∣∣∣
≤ 1

2

∣∣∣∣ ∫ 1

0

Sµg(x) dµ−
N∑
k=1

wkSµkg(x)

∣∣∣∣+
1

2

∣∣∣∣ ∫ 1

0

S−µg(x) dµ−
N∑
k=1

wkS−µkg(x)

∣∣∣∣
≤ c N−1

[∫ 1

0

µ1/2

∣∣∣∣ ∂∂µ (Sµg(x))

∣∣∣∣ dµ+

∫ 0

−1

(−µ)1/2

∣∣∣∣ ∂∂µ (Sµg(x))

∣∣∣∣ dµ]
≤ c N−1

∫ 1

−1

|µ|1/2
∣∣∣∣ ∂∂µ (Sµg(x))

∣∣∣∣ dµ
≤ c N−1σ−1

min‖g‖∞ .

Hence,
(
K −KN

)
: L∞ 7→ L∞ satisfies the bound in (3.3.8). The extension to C holds because Sµ

maps from L∞ to C, see Lemma 3.2.3.

Corollary 3.3.4 Under the conditions of Theorem 3.3.3, eN ∈ C with the bound

‖eN‖∞ ≤ c

(
σmax

σmin

)2

R1(σ, σS)N−1‖f‖∞ .

Proof. By Theorem 3.3.3, (3.3.3) and Corollary 3.2.9, we obtain

‖eN‖∞ ≤ cN−1σ−1
min (σmax‖φ‖∞ + ‖f‖∞)

≤ cN−1σ−1
min

(
σmax

σmax

σmin
R1(σ, σS) + 1

)
‖f‖∞

from which the estimate follows.

3.3.2 Consistency under Spatial Discretisation

We recall the operator Ph (defined in Section 3.1.3) and note that it maps Cpw to Cpw, and for

any g ∈ Cpw, ‖Phg‖∞ ≤ ‖g‖∞ . Moreover, for any g ∈ Cξpw with 0 < ξ ≤ 1,

‖(I − Ph)g‖∞ ≤ hξ‖g‖ξ,pw . (3.3.9)

The simple proof of (3.3.9) is given in Section E.3.

From now on we assume that our mesh {xj}Mj=0 is quasi-uniform, i.e., for some constant ρ ≥ 1,

the subinterval lengths hj := xj − xj−1 satisfy

max
j=1,...,M

hj =: h ≤ ρ min
j=1,...,M

hj . (3.3.10)

Lemma 3.3.5 Let µ ∈ [−1, 1]\{0}. For Shµ defined by (3.1.24), Shµ : L∞ 7→ V h ⊂ C, and

‖Shµ‖L∞ 7→V h ≤ 2ρσ−1
min

(
1 + σmax

h

|µ|

)
.

Proof. Without loss of generality, assume µ > 0 and let g ∈ L∞. Using the notation αj =

hjσj−1/2/(2µ), we can re-write (3.1.24) as

µ (1 + αj)Uj = µ (1− αj)Uj−1 +

∫
Ij

g , j = 1, · · · ,M , (3.3.11)
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because the solution to (3.1.24) has nodal values {Uj}, which can found using

µ
Uj − Uj−1

hj
+ σj−1/2

Uj + Uj−1

2
=

1

hj

∫
Ij

g ,

for all j = 1, · · · ,M , with analogous boundary conditions.

Then, using the notation pj = 1− αj , qj = 1 + αj and rj = pj/qj , (3.3.11) becomes

Uj = rjUj−1 +
1

µqj

∫
Ij

g .

We now iterate this formula to prove existence and uniqueness of the solution. Suppose there exist

r, q ≥ 0 such that

|rj | ≤ r < 1 ,

qj ≥ q ≥ 1 ,

}
for all 1 ≤ j ≤M . (3.3.12)

Then,

|Uj | ≤ r|Uj−1|+
h

µq
‖g‖∞

≤ r2|Uj−2|+ (r + 1)
h

µq
‖g‖∞

≤

(
j∑
i=1

rj−i

)
h

µq
‖g‖∞

≤ h

µq(1− r)
‖g‖∞ , (3.3.13)

where we have used the boundary condition U0 = 0 (for µ > 0). Since Shµg ∈ V h, we have

‖Shµg‖∞ ≤ max
j
|Uj | , (3.3.14)

and therefore in order to find an explicit bound of ‖Shµ‖L∞ 7→V h we must first find expressions for

the bounds r and q in (3.3.12). The second inequality is fairly simple

qj ≥ q := max

{
1, σmin

h

2ρµ

}
≥ 1 . (3.3.15)

For the first inequality in (3.3.12), we consider three separate cases: h ≤ 2µ/σmax (or equiv-

alently σmaxh/2µ ≤ 1); h ≥ 2ρµ/σmin; and 2µ/σmax ≤ h ≤ 2ρµ/σmin. Considering each of these

cases, it is possible to to find an r that satisfies the condition in (3.3.12) and one example is defined

as follows:

r =



(
1 + σminh

2ρµ

)−1

if h ≤ 2µ/σmax ,(
1 + 2µ

σmaxh

)−1

if h ≥ 2ρµ/σmin ,(
1− σmin

σmaxρ

)
/
(

1 + σmin

σmaxρ

)
otherwise .

(3.3.16)

To see this for the first two cases is fairly simple, by bounding αj and manipulating. For the third

case, note that h/2µ ≥ 1/σmax and hence 1 + σmaxh/2µ ≥ 1 + 1 > 1 + (σmin/σmaxρ), and then the

bound follows.

To finish the proof we show that

h

µq(1− r)
≤ 2ρ

σmin

(
1 + σmax

h

µ

)
. (3.3.17)
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Considering, for example, the case when 2µ/σmax ≤ h ≤ 2ρµ/σmin, then r is given by the third

equation in (3.3.16) and

1

q(1− r)
≤ 1

2

(
1 + ρ

σmax

σmin

)
=

ρ

σmin

(
σmin

2ρ
+
σmax

2

)
<

ρ

σmin

(µ
h

+
σmax

2

)
.

So
h

µq(1− r)
≤ ρ

σmin

(
1 +

σmax

2

h

µ

)
,

which yields (3.3.17). The proof of (3.3.17) for the other values of r is similar.

Lemma 3.3.6 Let u = Sµg and uh = Shµg, for some g ∈ L∞. Recall that σ ∈ Cηpw, for some

η ∈ (0, 1) (Assumption 3.1.2). Then, the piecewise linear interpolant û of u onto the mesh (3.1.6)

satisfies

‖uh − û‖∞ ≤ ‖Shµ‖L∞ 7→V h (σmax‖u− û‖∞ + hη‖σ‖η,pw‖u‖∞) .

Proof. Using (3.1.24) and (3.1.17),∫
Ij

µ
d

dx
uh + Phσ uh dx =

∫
Ij

µ
d

dx
u+ σu dx ,

and hence subtracting
∫
Ij
µ d
dx û+ (Phσ)û from both sides gives

∫
Ij

µ
d

dx
(uh − û) + Phσ (uh − û) =

∫
Ij

µ
d

dx
(u− û) + σu− Phσ û

=

∫
Ij

(
Phσ (u− û) + (σ − Phσ)u

)
, (3.3.18)

where the derivative term in (3.3.18) vanishes because u and û coincide at the mesh nodes. Hence,

by the definition of Shµ in (3.1.24),

uh − û = Shµ
[
Phσ (u− û) + (σ − Phσ)u

]
,

and therefore

‖uh − û‖∞ ≤ ‖Shµ‖L∞ 7→V h
[
‖Phσ‖∞‖u− û‖∞ + ‖σ − Phσ‖∞‖u‖∞

]
,

from which the result follows by (3.3.9) since σ ∈ Cηpw, for η ∈ (0, 1).

As mentioned in the introduction to this chapter, the main deterministic error estimate (The-

orem 3.3.11) will contain an h logN term. The next result is the first indication of this, showing

that ‖Sµ − Shµ‖L∞ 7→C can blow up as |µ| → 0 for fixed h.

Lemma 3.3.7 There is a constant c > 0, independent of all parameters, such that

‖Sµ − Shµ‖L∞ 7→C ≤ cρσ−2
min

(
σ2

max

h

|µ|
+ ‖σ‖η,pwhη

)
. (3.3.19)

Proof. Recall that, for any g ∈ L∞, u = Sµg ∈ C is the solution of (3.1.17) and uh = Shµg ∈ V h is

its continuous piecewise linear approximation, defined by (3.1.24). Then, with û as in Lemma 3.3.6,

‖
(
Sµ − Shµ

)
g‖∞ = ‖u− uh‖∞ ≤ ‖u− û‖∞ + ‖û− uh‖∞ . (3.3.20)
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Hence, by Lemmas 3.3.5 and 3.3.6 and noting that σmax‖Shµ‖L∞ 7→V h ≥ 1, we have

‖u− uh‖∞ ≤ 2ρσ−1
min

(
1 + σmax

h

|µ|

)(
3

2
σmax‖u− û‖∞ + ‖σ‖η,pwhη‖u‖∞

)
. (3.3.21)

Now since (by Lemma 3.2.3) we have u′ ∈ L∞, it follows that ‖u− û‖∞ ≤ ch‖u′‖∞. Combining

the result (3.3.21) with Lemmas 3.2.2 and 3.2.3, then

‖
(
Sµ − Shµ

)
g‖∞ ≤ cρσ−1

min

(
1 + σmax

h

|µ|

)
(σmaxh‖u′‖∞ + ‖σ‖η,pwhη‖u‖∞)

≤ cρσ−1
min

(
1 + σmax

h

|µ|

)(
σ2

max

σmin

h

|µ|
+
‖σ‖η,pw
σmin

hη
)
‖g‖∞ .

Assuming that σmaxh/|µ| ≤ 1, then we get the desired result. Otherwise σmaxh/|µ| > 1 and then

by the triangle inequality and Lemmas 3.2.2 and 3.3.5 we have

‖
(
Sµ − Shµ

)
g‖∞ ≤ ‖Sµg‖∞ + ‖Shµg‖∞

≤ σ−1
min‖g‖∞ + 2ρσ−1

min

(
1 + σmax

h

|µ|

)
‖g‖∞

≤ cρσ−1
min

(
1 + σmax

h

|µ|

)
‖g‖∞

≤ cρσ−1
min

σmax

σmin
σmax

h

|µ|
‖g‖∞

≤ cρσ−2
min

(
σ2

max

h

|µ|
+ ‖σ‖η,pwhη

)
‖g‖∞ ,

where we used ρ ≥ 1, σmax/σmin ≥ 1, σmaxh/|µ| > 1 and ‖σ‖η,pwhη ≥ 0.

The next result is analogous to Theorem 3.3.3.

Lemma 3.3.8 Let KN and Kh,N be defined by (3.3.1) and (3.1.25) respectively, with {µk} and

{wk} given by the double Gauss rule. Then, for N ≥ 2,

‖KN −Kh,N‖L∞ 7→C ≤ cρσ−2
min

[
σ2

maxh logN + ‖σ‖η,pwhη
]
.

Proof. Using (3.3.5) and theorem 3.3.7 for any g ∈ L∞, then we have,

‖
(
KN −Kh,N

)
g‖∞ ≤

N∑
|k|=1

wk‖Sµk − Shµk‖L∞ 7→L∞‖g‖∞

≤ cρσ−2
min‖g‖∞

N∑
|k|=1

wk

(
σ2

max

h

|µk|
+ ‖σ‖η,pwhη

)
. (3.3.22)

Now, since the Gauss rule is exact for constant functions, we have

N∑
|k|=1

wk = 2 . (3.3.23)

Moreover, from [163, Lemma 3.1] we know that for any quadrature rule satisfying the assumptions

of Section 3.1.1 and the additional assumption:

n∑
k=1

wk ≤ cµn , (3.3.24)
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where the (first N) angles are ordered such that 0 < µ1 < · · · < µN ≤ 1 (and recall that

−µk = µ−k) - which holds true for the double Gauss rule - then

N∑
|k|=1

wk|µk|−1 ≤ c (1 + | logµ1|) . (3.3.25)

For the case of a double Gauss rule, points near the origin are spaced O(N−2) and hence | logµ1| ∼
2 logN ≥ 1, for N ≥ 2.

Using (3.3.22), (3.3.23) and (3.3.25) gives the desired bound for (KN − Kh,N ) : L∞ 7→ L∞.

Similarly to Theorem 3.3.3, the extension to C then follows because Sµ, Shµ : L∞ 7→ C, by Lemma

3.2.3 and Lemma 3.3.5, respectively.

Theorem 3.3.9 Suppose the assumptions of Lemma 3.3.8 hold and assume that h ∈ (0, 1). Then

eh,N ∈ C with the bound

‖eh,N‖∞ ≤ cρσ−2
min‖σS‖η,pwR2(σ, σS)

(
σ2

maxh logN + ‖σ‖η,pwhη
)
‖f‖η,pw ,

where eh,N is defined in (3.3.3) and R2(σ, σS) is defined in Corollary 3.2.9.

Proof. Using (3.3.9) and Lemma 3.3.8 we have

‖eh,N‖∞ ≤
(
‖
(
KN −Kh,N

)
‖Cηpw 7→C + ‖Kh,N‖Cpw 7→C‖

(
I − Ph

)
‖Cηpw 7→Cpw

)
‖σSφ+ f‖η,pw

≤ cρσ−2
min

[(
σ2

maxh logN + ‖σ‖η,pwhη
)

+ σmin (1 + σmaxh logN)hη
]
‖σSφ+ f‖η,pw

≤ cρσ−2
min

(
σ2

maxh logN(1 + hη) + ‖σ‖η,pwhη
)
‖σSφ+ f‖η,pw

≤ cρσ−2
min

(
σ2

maxh logN + ‖σ‖η,pwhη
)
‖σSφ+ f‖η,pw ,

where σSφ+ f ∈ Cηpw, and we have used that

‖Kh,N‖L∞ 7→C ≤ cρσ−1
min (1 + σmaxh logN) , (3.3.26)

which can be shown by a similar sequence of steps to the proof of Lemma 3.3.8. The result then

follows by writing

‖σSφ+ f‖η,pw ≤ ‖σS‖η,pw‖φ‖η,pw + ‖f‖η,pw ≤
(
‖σS‖η,pwR2(σ, σS) + 1

)
‖f‖η,pw

≤ ‖σS‖η,pwR2(σ, σS)‖f‖η,pw ,

where we use Corollary 3.2.9 and that R2(σ, σS) ≥ 1.

3.3.3 Stability

Up to now we have shown ‖eN‖∞ and ‖eh,N‖∞ approach zero as h logN → 0 and N → ∞, see

Corollary 3.3.4 and Theorem 3.3.9 respectively. To prove a final bound on (3.3.7) we need to

show stability, i.e. show
(
I −Kh,NPhσS

)−1
exists and can be bounded in the ‖ · ‖C7→C norm,

independently of h and N . To do this it is useful to use the identity

(
I −Kh,NPhσS

)−1
= I + Kh,N

(
I − PhσSKh,N

)−1 PhσS . (3.3.27)
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A proof of the identity is given in Lemma E.2.1. We have already bounded ‖PhσS‖C7→Cpw in (3.3.9)

and ‖Kh,N‖Cpw 7→C in (3.3.26), (although the bounds are not independent of h or N). Therefore,

(
I −Kh,NPhσS

)−1
is bounded on C ⇐⇒

(
I − PhσSKh,N

)−1
is bounded on Cpw .

The identity (3.3.27) allows us to prove simpler results on Cpw ⊃ C, which allow us to bound

‖
(
I −Kh,NPhσS

)−1 ‖C7→C.

Theorem 3.3.10 If h and N−1 are sufficiently small, such that h logN ≤ 1 and

1

hη + h logN +N−1
≥ c

(
‖σS‖η,pw
(σS)min

)2

σ−1
min max{ σmax

2, ‖σ‖η,pw}R1(σ, σS) =: R3(σ, σS) ,

(3.3.28)

then
(
I −Kh,NPhσS

)−1
maps on C with the bound

‖
(
I −Kh,NPhσS

)−1 ‖C7→C ≤ cρ

(
(σS)max

(σS)min

)2

σmaxR1(σ, σS) =: R4(σ, σS) , (3.3.29)

where R1(σ, σS) is defined in Lemma 3.2.8.

Proof. Fix 0 < ε < 1 and set A(h,N) = I − (I − σSK)
−1 (

I − PhσSKh,N
)
. Suppose that there

exists a h and N−1, sufficiently small, such that

‖A(h,N)‖Cpw 7→Cpw ≤ ε . (3.3.30)

Then it would follow from the Banach Lemma that ‖ (I −A(h,N))
−1 ‖Cpw 7→Cpw ≤ 1/(1 − ε) and

so

‖
(
I − PhσSKh,N

)−1
(I − σSK) ‖Cpw 7→Cpw = ‖ (I −A(h,N))

−1 ‖Cpw 7→Cpw ≤
1

1− ε
. (3.3.31)

This would then imply,

‖
(
I − PhσSKh,N

)−1 ‖Cpw 7→Cpw = ‖
(
I − PhσSKh,N

)−1
(I − σSK) (I − σSK)

−1 ‖Cpw 7→Cpw

≤ 1

1− ε
‖ (I − σSK)

−1 ‖Cpw 7→Cpw ≤
1

1− ε
(σS)max

(σS)min
R1(σ, σS) ,

where we used the identity (I − σSK)
−1

= σS (I −KσS)
−1
σ−1
S and Lemma 3.2.8. Thus the desired

result follows, on the assumption that (3.3.30) holds.

To verify (3.3.30), we write

‖A(h,N)‖Cpw 7→Cpw = ‖ (I − σSK)
−1 [

(I − σSK)−
(
I − PhσSKh,N

)]
‖Cpw 7→Cpw

≤ ‖ (I − σSK)
−1 ‖Cpw 7→Cpw‖PhσSKh,N − σSK‖Cpw 7→Cpw

≤ (σS)max

(σS)min
‖ (I −KσS)

−1 ‖Cpw 7→Cpw‖σSK − PhσSKh,N‖Cpw 7→Cpw

≤ (σS)max

(σS)min
R1(σ, σS) ‖σSK − PhσSKh,N‖Cpw 7→Cpw , (3.3.32)

where we again used Lemma 3.2.8. To estimate the right hand side of (3.3.32) we write

‖σSK − PhσSKh,N‖Cpw 7→Cpw ≤ ‖
(
I − Ph

)
σSK‖Cpw 7→Cpw (3.3.33)

+ ‖PhσS‖C 7→Cpw

(
‖K − KN‖Cpw 7→C + ‖KN −Kh,N‖Cpw 7→C

)
.
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Then we can bound the second term on the right hand side of (3.3.33) by using the trivial bound

on ‖PhσS‖∞, Theorem 3.3.3 and Theorem 3.3.8. Moreover, by defining

ξ :=

η , if η < 1

1− δ , otherwise
,

for 0 < δ � 1, and using (3.3.9) and Theorem 3.2.7(ii), then we can show that for the first term

on the right hand side of (3.3.33)

‖(I − Ph)σSK‖Cpw 7→Cpw ≤ ‖σS‖ξ,pw‖K‖Cpw 7→Cξh
ξ ≤ c

(
σmax

σmin

)
‖σS‖η,pw

(
hη + h1−δ) ,

where we have used that ‖ · ‖ξ,pw ≤ ‖ · ‖η,pw, for all ξ ≤ η.

Bringing the results together gives

‖σSK − PhσSKh,N‖Cpw 7→Cpw (3.3.34)

≤ cρ
‖σS‖η,pw
σmin

max{ σmax, σ
−1
minσ

2
max, σ

−1
min‖σ‖η,pw}

(
hη + h logN +N−1

)
≤ cρ

‖σS‖η,pw
σ2

min

max{ σmax
2, ‖σ‖η,pw}

(
hη + h logN +N−1

)
.

Using (3.3.34) and (3.3.32) allows us to state the condition (3.3.28) - which ensures that(
I − PhσSKh,N

)−1
maps on Cpw and

∥∥∥(I − PhσSKh,N)−1
∥∥∥

Cpw 7→Cpw
≤ c

(σS)max

(σS)min
R1(σ, σS) .

It is then simple to prove (3.3.29) by (3.3.27).

3.3.4 The Error Estimate

We now have all the ingredients to prove the following error estimate, and one of the main results

of this thesis.

Theorem 3.3.11 Let φh,N denote the approximation to φ, using a double Gauss quadrature rule

and a Crank-Nicolson scheme. Then, for h and N−1 sufficiently small according to (3.3.28) and

h logN ≤ 1,

‖φ− φh,N‖∞ ≤ R(σ, σS)
(
N−1 + h logN + hη

)
‖f‖η,pw ,

where R(σ, σS) = cρR4(σ, σS)R2(σ, σS)σ−2
min‖σ‖η,pw

2
‖σS‖η,pw.

Proof. The proof follows by considering (3.3.7) and applying the bounds of the stability estimate

(in (3.3.29)), and the angular (Corollary 3.3.4) and spatial (Theorem 3.3.9) consistency conditions,

i.e.

‖φ− φh,N‖∞

≤ cρR4(σ, σS)

[(
σmax

σmin

)2

R1(σ, σS)N−1 +
‖σS‖η,pw
σ2

min

R2(σ, σS)
(
σ2

maxh logN + ‖σ‖η,pwhη
)]
‖f‖η,pw

≤ cρR4(σ, σS)R2(σ, σS)

(
‖σ‖η,pw
σmin

)2

‖σS‖η,pw
(
N−1 + h logN + hη

)
‖f‖η,pw ,
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Figure 3-1: The error of the approximation to the scalar flux. (Left) N = (2h)−1; (Right) N =
2dα−1h−αe, where α := min{1, η}.

where we used R1(σ, σS) ≤ R2(σ, σS).

3.4 Numerical Results

We now present numerical results to support the error estimate in Theorem 3.3.11.

For the input data, we assume the absorption cross-section and the fixed source term are

constant, i.e. σA ≡ exp(0.25) and f ≡ exp(1). Moreover, we consider four deterministic fields

for σS . The first is a constant coefficient case, with σS ≡ exp(0.75). The remaining fields are

(pointwise) η-Hölder continuous fields [183] (with parameters η = 0.1, 0.3, 0.5) defined by

σS(x) = |x− 0.4999|η sin

(
1

|x− 0.4999|2

)
. (3.4.1)

The total cross-section is then defined by σ = σA + σS .

For the discretisation, we choose a uniform spatial mesh with mesh width h and the double

Gauss quadrature rule with 2N points. We consider two spatial-angular relationships; N = (2h)−1

and N = 2d 1
min{1,η}h

−min{1,η}e. The approximation to the scalar flux is computed at different

resolutions, with h−1 = 4, 8, 16, ..., 512, and compared to a reference solution calculated when

h−1 = 1024 and N = 512. The error is estimated in the supremum norm.

The numerical results are presented in Figure 3-1. For h−1 ≤ 64 and for all choices of σS

and N , we observe O(h) convergence. This is in line with the constant coefficient result in [163].

For larger h−1 > 64 the convergence begins to slow, for the low regularity fields. We conjecture

that the convergence is O(hmin{1,η}), i.e. essentially the O(hη) convergence (when η < 1, or the

O(h logN) convergence when η ≥ 1) in Theorem 3.3.11 - implying the error estimate is sharp.
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Multilevel Monte Carlo Theory for
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In this chapter, we introduce uncertainty into the input data of the problem considered in

Chapter 3, i.e. the radiative transport equation in one spatial and one angular dimension dis-

cretised using the classical discrete ordinates method and a classical diamond differencing (or

Crank-Nicolson) scheme. We will extend the error estimate of Chapter 3 to a probabilistic er-

ror estimate (see ahead to (4.0.1)). The probabilistic error estimate then facilitates a rigorous

proof of the parameters α, β and γ, that arise in the computational ε-cost of a (multilevel) Monte

Carlo estimator, i.e. (2.4.13) and (2.4.34) (see ahead to (4.0.2) and (4.0.3)). Numerical results are

presented, where we use standard Monte Carlo, quasi-Monte Carlo and their multilevel variants

as estimators. As far as we know, these methods have not been applied to radiative transport

until now. In the numerical section, the cross-sections are assumed to be log-normal random fields

equipped with the Matérn class of covariances, and represented by a Karhunen-Loève expansion

(recall Section 2.3.2 and Section 2.3.1) - we note that the theoretical results are more general than

this case.

We now give an overview of the results of this chapter, without the detailed analysis. For this

introduction (to ensure that the spatial and angular errors are equal order) we set N = N(h) =

max{dch−ηe, 4}, for some constant c > 0 independent of h.

The first result in this Chapter is a probabilistic counterpart of (3.0.2). Here we have to deal

with the fact that the deterministic estimate (3.0.2) is subject to the “mesh resolution condition”

or “stability condition” (3.0.1), which in turn arises from the non-self-adjointness of the RTE. In

the case of coercive self-adjoint PDEs with random data and Galerkin discretisation (e.g. [48, 199])

one obtains a probabilistic error estimate by interpreting the deterministic error estimate pathwise

and then taking expectation. This does not work here because of the pathwise stability estimate

(3.0.1). To get around this problem, given a path independent mesh width h < 1, for each

realisation σ = σ(·, ω), σS = σS(·, ω), we let hω denote (the largest) mesh diameter which satisfies
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the path-dependent criterion (3.0.1) and finally set hω = min{h, hω}. Then the approximation to

φ = φ(·, ω) is taken to be Φh = φhω,N(hω). We prove in Theorem 4.1.3 that

‖φ− Φh‖Lp(Ω;L∞) ≤ c(p, r)hη ‖f‖Lr(Ω;Cηpw) . (4.0.1)

for any 1 ≤ p ≤ r, provided the norm on the right-hand side is finite and the cross sections σ, σS

have bounded moments of any finite order. Here, c(p, r) denotes an absolute constant depending

only on (p, r), and the norms are the usual Bochner norms with respect to the probability space Ω

(defined in Section 2.1). This result shows that the error in the Bochner norm on the left-hand side

decreases with deterministic rate hη, provided we are willing to use a finer mesh for any particular

sample where the resolution criterion (3.0.1) demands it. If we assume furthermore that the cost

C(·) to compute a single sample of Φh = φhω,N(hω) (e.g. measured in floating point operations)

satisfies

C(φhω,N(hω)) ≤ c′(ω)h−γω ,

for some γ > 0 and that the sample-dependent constant c′ ∈ Lp(Ω), for some p > 1, then the third

main result of this paper in Theorem 4.1.5 is that

E[C(Φh)] = O
(
h−γ

)
, (4.0.2)

where the hidden constant is independent of h. The important observation is that, on average,

the cost to compute a sample from Φh has the same cost growth rate (with respect to h) as the

sample-wise cost (with respect to hω), despite some samples Φh(ω, x) being computed on a mesh

with hω � h in order to satisfy the stability criterion.

Estimates, such as (4.0.1) and (4.0.2), play a crucial role in the complexity analysis of (mul-

tilevel) Monte Carlo methods for computing the expectation of (functionals of) the solution φ of

a randomised version of (3.1.1). Suppose L(φ) is such a functional - the quantity of interest -

and to simplify notation we write this as Q = L(φ) (a random variable). We approximate Q by

Qh := Q(Φh) with Φh described above and then approximate E[Q], by applying a sampling method

of choice to E[Qh] – we denote the result as Q̂h.

As we have already mentioned, finding an accurate and efficient estimator Q̂h of E[Q] is at the

heart of the forward problem of Uncertainty Quantification (UQ), and to compare such methods,

we consider the computational ε-cost Cε(Q̂h) of an estimator Q̂h. That is, if ε denotes a desired

accuracy (in the sense of root mean-squared error, see (2.4.2)), then Cε(Q̂h) is defined to be the

total cost for Q̂h to achieve an accuracy of ε.

By the general theory in [48], i.e. Theorem 2.4.4, the ε-cost of standard and multilevel Monte

Carlo methods can be computed in terms of the parameter η in (3.0.2) (related to the regularity

of the data), the parameter γ in (4.0.2) (related to the cost per sample), as well as another

parameter β that quantifies the speed of variance reduction (recall (2.4.33)) between levels of the

multilevel scheme and can also be derived from (4.0.1). In the fourth main result of this paper in

Theorem 4.1.8, we prove rigorously that

β ≥ 2η . (4.0.3)

To provide a bound on γ that only depends on the regularity of the data it is necessary to

fix the solution method. Two particular examples that were used in our numerical results are

given in Example 4.1.6 and have already been discussed in Section 3.1.2. In particular, for the

asymptotically cheaper one of the two methods, the so-called source iteration, we have γ ≤ 1+η (if
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certain assumptions on the relationship between h and N = N(h) are made). The general theory

in [48] then leads to the following respective upper bounds on the ε-costs of the standard and the

multilevel Monte Carlo estimators Q̂MC
h and Q̂MLMC

h :

E
[
Cε(Q̂MC

h )
]

= O
(
ε−(4+ 1−η

η )) and E
[
Cε(Q̂MLMC

h )
]

= O
(
ε−(2+ 1−η

η )) ,
i.e. a theoretical gain of up to two orders of magnitude in ε-cost. However, we will see in the

numerical section that this is overly optimistic, since the bound on the ε-cost of the standard

Monte Carlo estimator is not sharp. Nevertheless, we do observe gains of (at least) one order of

magnitude.

The structure of the remaining chapter is as follows. In Section 4.1.1, we assume certain sta-

tistical properties on our nuclear input data, which allows us to prove that the explicit coefficients

we found in the results of Chapter 3 (e.g. the R(σ, σS) in (3.0.2)) belong to certain probabilistic

Lebesgue space(s). Using this result allows a simple proof of the probabilistic counterpart to (3.0.2)

to be made - with one caveat - we have to deal with the fact that the deterministic estimate is

subject to the stability condition (3.0.1) and hence we define hω, the largest mesh diameter which

satisfies the stability condition. Then, we prove (4.0.2) under certain assumptions, which are satis-

fied for given examples. In Section 4.1.2, we use the results of Section 4.1.1 to rigorously estimate

the α and β parameters from (2.4.3) and (2.4.33), respectively (i.e. (4.0.3)) and then make rigorous

statements about the standard and multilevel Monte Carlo methods. Finally, in Section 4.2 we

present a hybrid direct-iterative solver which allows us to more efficiently estimate the scalar flux

on the hierarchy of discretisations that multilevel Monte Carlo introduces. Numerical results are

presented in support of the chapter.

4.1 Application in Uncertainty Quantification

In Theorem 3.3.11, in the previous chapter, we proved a deterministic error estimate that is explicit

in its dependence on the input data, through the appearance of the terms R(σ, σS) (for the cross-

sections) and ‖f‖η,pw (for the forcing). The explicit dependence will be very important as we turn

our attention to the original objective - an error estimate when the input data is random.

4.1.1 Random Input Data and Probabilistic Error Estimates

To formally describe the random model, recall that we use ω ∈ Ω to denote a random event from

the sample space Ω and P : Ω 7→ [0, 1] to denote an associated probability measure. Moreover, we

defined the Bochner space Lp(Ω;X) := {g : Ω 7→ X |
∫

Ω
‖g‖pXdP(ω) < ∞} with associated norm

‖g‖Lp(Ω;X) =
(
E [‖g‖pX ]

)1/p
, for some normed space (X, ‖ · ‖X) - see Section 2.2. Now we have the

framework to state the appropriate counterpart to Assumption 3.1.2, for random input data.

Assumption 4.1.1 (Random Input Data) Assume σS = σS(ω, ·), σ = σ(ω, ·) and f = f(ω, ·) are

(possibly dependent or correlated) random Cη fields, for η ∈ (0, 1), on each sub-interval of {cj}ℵj=1

(i.e. Cηpw random fields), such that

(a) σ, σS ∈ Lp(Ω; Cηpw) and (σS)−1
min, σ

−1
min ∈ Lp(Ω), for all p ∈ [1,∞);

(b) f ∈ Lp∗(Ω; Cηpw), for some p∗ ∈ (1,∞].

The set {cj}ℵj=1 is defined as in Assumption 3.1.2. Moreover, we will again assume that the value

of each function at cj is taken to be the right limit for j = 1, · · · ,ℵ−1, and the left limit for j = ℵ.

81



CHAPTER 4. MLMC THEORY FOR HETEROGENEOUS TRANSPORT

A class of suitable random fields that can be shown to satisfy Assumption 4.1.1, for some η >

0 and for all p∗ ∈ [1,∞), are log-normal random fields with an underlying Matérn covariance

(see Section 2.3.1), provided the means of log σS , log σ and log f belong to Cηpw and the Matérn

smoothness parameter ν is sufficiently big for each of the fields [199]. This will be discussed further

in Section 4.3.

Finally, for simplicity, we restrict ourselves to deterministic σA = σA(x) ∈ Cηpw with

0 < (σA)min ≤ σA(x) ≤ (σA)max < ∞ , for all x ∈ [0, 1] , (4.1.1)

i.e., the absorption does not vanish anywhere and it is known. This implies that the distributions

of σ = σS +σA and σS differ only in their mean. This is by no-means a necessary assumption, and

the results generalise also to σA(ω, ·) ∈ Lp(Ω; Cηpw), for all p ∈ [1,∞).

To achieve a probabilistic equivalent to Theorem 3.3.11, the main result in the earlier part of this

paper, we only need to show that R(σ, σS) ∈ Lp(Ω). Recall that we write a to denote max{1, a},
for any scalar value a, and we note that in the case of a scalar random variable a ∈ Lp(Ω) we also

have a ∈ Lp(Ω).

Lemma 4.1.2 Consider the auxiliary functions Ri(σ, σS), i = 1, . . . , 4, defined in (3.2.27), (3.2.32),

(3.3.28) and (3.3.29), respectively, where σS and σ are assumed to satisfy Assumption 4.1.1. Then,

for all p ∈ [1,∞),

Ri(σ, σS) ∈ Lp(Ω) , for all i = 1, · · · , 4, (4.1.2)

and hence, the constant in Theorem 3.3.11 also satisfies R(σ, σS) ∈ Lp(Ω), for all p ∈ [1,∞).

Proof. Consider Ri
(
σ(ω, ·), σS(ω, ·)

)
, for any i = 1, . . . , 4 and for any ω ∈ Ω. To simplify the

presentation, throughout this proof we will suppress the ω notation, i.e. we write σS = σS(ω, ·),
σ = σ(ω, ·). Note first that since σ = σS + σA we have σ−1

min ≤ (σA)−1
min, which we assumed to be a

constant independent of ω. Moreover, any of the terms

σmax, (σS)max, ‖σ‖η,pw, ‖σS‖η,pw, σmax, (σS)max and ‖σ‖η,pw

can be bounded by a constant c times ‖σS‖η,pw, where c may depend on (σA)max or ‖σA‖η,pw, but

is again independent of ω. From here it is easy to check that the functions Ri(σ, σS), i = 1, · · · , 4,
can be bounded by an expression of the form

c (σS)−r1min ‖σS‖η,pw
r2/2

(
1−

∥∥∥σS
σ

∥∥∥
∞

)−1

, (4.1.3)

for some r1 ∈ {0, 1, 2} and r2 ∈ N, where c > 0 is a constant independent of ω (but possibly

dependent on (σA)−1
min and ‖σA‖η,pw).

Let p ∈ [1,∞). To see that each of the functions Ri(σ, σS) is in Lp(Ω) let us first show that

(1− ‖σS/σ‖∞)
−1 ∈ Lp(Ω). Re-writing

0 <
σS
σ

=
σS

σS + σA
= 1− σA

σS + σA
≤ 1− (σA)min

(σS)max + (σA)max
< 1 ,

it follows that(
1−

∥∥∥∥σSσ
∥∥∥∥
∞

)−1

≤
(

1−
(

1− (σA)min

(σS)max + (σA)max

))−1

=
(σS)max + (σA)max

(σA)min
≤ c (σS)max ,

which is in Lp(Ω) due to Assumption 4.1.1.
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Substituting this bound into (4.1.3), we deduce that each of the functions Ri(σ, σS) is bounded

by a product of random variables that are in Lp(Ω), for all 1 ≤ p < ∞. Therefore, (4.1.2) is a

consequence of the Hölder and Minkowski inequalities and it follows that R(σ, σS) ∈ Lp(Ω), for all

1 ≤ p <∞.

We now establish a probabilistic counterpart of Theorem 3.3.11. To simplify the presentation,

let us suppose in the following that

N = N(h) = max
{
dch−ηe , 4

}
, (4.1.4)

for some constant c > 0 independent of h and ω and where η ∈ (0, 1) is given in Assumption 4.1.1.

The assumption N ≥ 4 guarantees that h logN > h and so

h ≤ N−1 + h logN + hη ≤ c′ hη , (4.1.5)

for some different constant c′ > 1 independent of h and ω.

From the definition ofR3(σ, σS) in (3.3.28) and Assumption 4.1.1, R3(σ, σS) does not in general

belong to L∞(Ω) and hence it is impossible to satisfy the stability constraint (3.3.28) uniformly

across all samples ω ∈ Ω, for any fixed mesh size h > 0. Instead, we will consider a sample-

dependent mesh size.

Let h > 0 be chosen arbitrarily, but independently of ω such that h logN(h) ≤ 1. For each

ω ∈ Ω, let hω be the largest possible value for the mesh width such that the stability constraint

(3.3.28) is satisfied with σS = σS(ω, x), σ = σ(ω, x) and N = N(hω). The stable numerical

approximation of the random field φ(ω, x) with maximum mesh width h is then defined to be the

field

Φh(ω, x) := φhω,N(hω)(ω, x) ,

where for each ω, the approximation φhω,N(hω)(ω, x) is computed as described in Section 3.1.1

above, with spatial mesh size

hω := min{h, hω} (4.1.6)

and with 2N(hω) quadrature points.

This choice of hω guarantees that (3.3.28) is satisfied for each realisation of σS(ω, x) and σ(ω, x).

However, since the random fields σS and σ are in general not uniformly bounded away from 0 or

infinity in Assumption 4.1.1, even if h is small there will be a set Ωbad ⊂ Ω (of non-zero measure)

such that hω < h, for ω ∈ Ωbad, i.e. a set of realisations where the numerical approximation with

mesh width h is not guaranteed to be stable. Due to Assumption 4.1.1(a) the measure of the set

Ωbad converges to 0 in the limit, as h→ 0 - we prove this in Section E.4.

Theorem 4.1.3 Let h ∈ (0, 1) be such that h logN(h) ≤ 1 and suppose that Assumption 4.1.1

holds for some η ∈ (0, 1) and for some p∗ ∈ (1,∞]. Then, Φh(ω, ·) exists for all ω ∈ Ω and for

any 1 ≤ p < r ≤ p∗, there exists a positive constant c(p, r) > 0 such that

‖φ− Φh‖Lp(Ω;L∞) ≤ c(p, r) ‖f‖Lr(Ω;Cηpw) h
η , (4.1.7)

Proof.

Using the definition of Φh, Theorem 3.3.11, (4.1.4) and (4.1.5) together with Hölder’s inequality
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we have

‖φ− Φh‖pLp(Ω;L∞) = E
[
‖φ− φhω,N(hω)‖p∞

]
≤ E

[(
R(σ, σS) c′ hηω ‖f(ω, ·)‖η,pw

)p]
≤ (c′ hη)

p (E [R(σ, σS)q]
)p/q (E [‖f(ω, ·)‖rη,pw

] )p/r
=
(
c(p, r) ‖f‖Lr(Ω;Cηpw) h

η
)p

,

where

q−1 + r−1 = p−1 , and c(p, r) := c′ ‖R(σ, σS)‖Lq(Ω) <∞

due to Lemma 4.1.2.

Remark 4.1.4 (Uniform Random Input Data) The cross sections σS and σ are not assumed

to be bounded away from 0 or infinity uniformly in Assumption 4.1.1(a). If we strengthen the

assumption to hold for p =∞ (i.e. uniformly bounded random fields) then we can choose p = r =

p∗ in (4.1.7). In particular, if p∗ =∞ then ‖φ−Φh‖L∞(Ω;L∞) converges with order hη. Moreover,

since p = ∞ in Assumption 4.1.1 ensures R3(σ, σS) ∈ L∞(Ω), there exists a hmax > 0, such that

hω ≥ hmax for all ω ∈ Ω. As a consequence, for all h ≤ hmax, Ωbad = ∅ and the stability constraint

(3.3.28) is satisfied with uniform mesh size hω ≡ h. As already outlined, this is not the case under

Assumption 4.1.1, in general.

For the general case of sample-dependent discretisations it is important to discuss the expected

computational cost per sample. Recall that for ω ∈ Ω, we choose hω according to (4.1.6) and

N(hω) according to (4.1.4). Let us assume that with those choices of discretisation parameters,

the cost to compute one sample is bounded by

C(φhω,N(hω)) ≤ c′(ω)h−γω , (4.1.8)

for some γ > 0. In Theorem 4.1.6 below, we give examples of solvers for (3.1.7)-(3.1.8) where

(4.1.8) holds with γ ∈ [1, 3] and c′ ∈ Lp(Ω), for some p > 1. In the following lemma, we will show

that the expected cost to compute a sample of Φh will be of order h−γ , even though some samples

Φh(ω, x) may need to be computed with a spatial mesh size hω � h. This result exploits the fact

that the measure of Ωbad goes to 0 as h→ 0.

Lemma 4.1.5 Let h ∈ (0, 1) such that h logN(h) ≤ 1 and suppose that Assumption 4.1.1 holds

for some η ∈ (0, 1). Furthermore, suppose that the computational cost C(Φh(ω, x)) for solving

(3.1.7)-(3.1.8), for a given ω ∈ Ω, satisfies (4.1.8) with c′ ∈ Lp(Ω) for some p > 1. Then,

E[C(Φh)] = O
(
h−γ

)
,

and the hidden constant is independent of h.

Proof. Using (4.1.8), the first inequality in (4.1.5) and the definition of hω, we get

C(Φh(ω, x)) ≤ c′(ω)h−γω

= c′(ω) max{h−γ , (hω)−γ}

≤ c′(ω)
(
h−γ +R3(σ(ω, ·), σS(ω, ·))γ

)
. (4.1.9)
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Now, taking the expectation of (4.1.9) and applying Hölders inequality

E
[
C(Φh(ω, x))

]
≤ E [c′(ω)]h−γ + E [c′(ω)R3(σ(ω, ·), σS(ω, ·))γ ]

≤ E [c′(ω)]h−γ +
(
E [c′(ω)p]

)1/p(
E [R3(σ(ω, ·), σS(ω, ·))γq]

)1/q

,

where 1 ≤ q ≤ ∞ is such that p−1+q−1 = 1. By Theorem 4.1.2 and Assumption 4.1.1,R3(σ, σS)γ ∈
Lq(Ω) and so the result follows, since h was assumed to be less than 1.

Example 4.1.6 We will now give examples of Lemma 4.1.5 in practice. In Section 3.1.2, two

methods for computing the solution to (3.1.7) – (3.1.8) are presented. The first method is a

direct solver where first ψ is eliminated from the coupled system (3.1.7) – (3.1.8) and then LU

factorisation is applied to the resulting Schur complement system (i.e. the direct solver (3.1.11)).

The cost for this method is of order h−2
ω

(
N(hω) + h−1

ω

)
(see (3.1.12)) with a constant independent

of ω [93]. Using (4.1.4) this implies that (4.1.8) holds with c′ independent of ω and γ = 3.

The second method is a type of Richardson iteration known as source iteration (i.e. the iterative

solver (3.1.13)). In that case, it can be shown that the cost is of order h−1
ω N(hω) (see (3.1.14))

with a constant proportional to − log
(
‖σS(ω, ·)/σ(ω, ·)‖∞

)−1
[32, 93]. Using again (4.1.4), this

implies that (4.1.8) holds with γ = 1 + η.

Corollary 4.1.7 Suppose the assumptions of Lemma 4.1.5 hold and system (3.1.7) – (3.1.8) is

solved with either of the Methods 1 or 2 in Example 4.1.6. Then, condition (4.1.8) holds with

c′(ω) ∈ L∞(Ω) (Method 1, (3.1.11)) and c′(ω) ∈ Lp(Ω), for all 1 ≤ p < ∞ (Method 2, (3.1.13)).

Hence,

E[C(Φh)] = O
(
h−3

)
and E[C(Φh)] = O

(
h−1−γ) , respectively,

and the hidden constants are independent of h.

Proof. For the direct solver, c′ is independent of ω, and hence trivially c′ ∈ L∞(Ω).

In the case of the iterative solver, c′(ω) is proportional to − log
(
‖σS(ω, ·)/σ(ω, ·)‖∞

)−1
[32].

Since ‖σS(ω, ·)/σ(ω, ·)‖∞ ∈ (0, 1), for almost all ω ∈ Ω, and since − log(1− y) =
∑∞
k=1 y

k/k > y,

for all y ∈ (0, 1), we have

c′(ω) ≤ −c log

(∥∥∥∥σS(ω, ·)
σ(ω, ·)

∥∥∥∥
∞

)−1

≤ c

(
1−

∥∥∥∥σS(ω, ·)
σ(ω, ·)

∥∥∥∥
∞

)−1

,

where c > 0 is a constant independent of ω. As we have seen in Lemma 4.1.2, this implies that

c′ ∈ Lp(Ω), for all 1 ≤ p <∞. The expected costs follow from Lemma 4.1.5.

4.1.2 Multilevel Monte Carlo Acceleration

From a practical point of view, we are interested in methods that allow us to accurately and

efficiently estimate the statistics of functionals of φ (or ψ). We focus on estimating E[Q], the

expected value of Q, where Q(ω) ∈ R denotes a functional L of φ representing some quantity we

are interested in. Here, we will consider the non-linear functional

Q(ω) = ‖φ‖q1 :=

(∫ 1

0

|φ(ω, x)| dx
)q

, for some integer 1 ≤ q <∞ , (4.1.10)

i.e. the qth moment of the spatial average of |φ| (over [0, 1]), but we note the methodology also

applies to many other functionals. For each ω ∈ Ω, we will approximate the random variable Q(ω)
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by

Qh(ω) =

h M∑
j=1

|Φh(ω, xj)|

q

, (4.1.11)

where Φh(ω, ·) is the approximation of φ(ω, ·) using a spatial discretisation with mesh size hω given

by (4.1.6) and a double Gauss rule with 2N(hω) angular points defined by (4.1.4). Note that the

cost of computing Qh is negligible compared to the cost of finding Φh itself.

From Section 2.4, we recall the (standard) Monte Carlo (MC) estimator

Q̂MC
h :=

1

NMC

NMC∑
n=1

Qh(Zn) , (4.1.12)

where NMC is the number of Monte Carlo points/samples and Zn := (σn, σnS , f
n)
T

, where (for

each n ∈ N) we assume σn, σnS , f
n denote, respectively, realisations of the random fields σ, σS and f

- they are assumed to satisfy Assumption 4.1.1.

Moreover, recall the assumptions (2.4.3), (2.4.4), i.e. there exist two constants α, γ > 0 such

that ∣∣∣E [Q−Qh]
∣∣∣ = O (hα) , (4.1.13)

E [C(Qh)] = O
(
h−γ

)
, (4.1.14)

which allowed us to prove (in (2.4.13)) that the mean ε-cost of the standard Monte Carlo estimator

is

E
[
Cε(Q̂MC

h )
]

= E

[
NMC∑
n=1

C(Qh(Zn))

]
= NMC E [C(Qh)] = O

(
ε−2− γα

)
. (4.1.15)

Likewise, recall the MLMC estimator

Q̂MLMC
h :=

L∑
`=0

ŶMC
` =

L∑
`=0

1

N`

N∑̀
n=1

Y`(Z
`,n) , (4.1.16)

where {Z`,n}N`n=1 denotes the set of i.i.d. samples on level `, of the random fields σ, σS , f , chosen

independently from the samples on the other levels. The optimal choice of N` is given in (2.4.32).

Using the assumption (2.4.33), i.e. that there exists β > 0 such that

V[Y`] = O
(
hβ`

)
, (4.1.17)

then it can be proven (see Theorem 2.4.4) that the mean ε-cost of the multilevel Monte Carlo

estimator is

E
[
Cε(Q̂MLMC

h )
]

= O
(
ε−2−max{0, (γ−β)/α}

)
, for β 6= γ , (4.1.18)

with a similar result when β = γ.

Given the clear importance of the parameters α, β, γ, we would now like to estimate them

theoretically. We have already estimated the parameter γ for two different solvers in Corollary

4.1.7 using the sample dependent mesh size. Let us now estimate α and β for the functional Q of φ

in (4.1.10). These estimates can be deduced directly from the general estimate for ‖φ−Φh‖Lp(Ω;L∞)

in Theorem 3.3.11, following the proof of [47, Prop. 4.2].

Theorem 4.1.8 Consider the quantity of interest Q with q ∈ [1,∞) and its approximation Qh

defined in (4.1.10) and in (4.1.11), respectively. Let h ∈ (0, 1) such that h logN(h) ≤ 1 and
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suppose that Assumption 4.1.1 holds for some η ∈ (0, 1) and for some p∗ > 2q. Then, the bounds

in (4.1.13) and (4.1.17) hold with

α = η and β = 2α ,

Proof. Let δ ∈ (0, 1) and α = min{η, 1 − δ}. Note first that it follows from (4.1.4), (4.1.5) and

the assumptions made on h that there exists a constant c > 0 such that, for any ω ∈ Ω,

N(hω)−1 + hω logN(hω) + hηω ≤ min{c hαω, 4} . (4.1.19)

Also note that
∣∣E[Q−Qh]

∣∣ ≤ E
[
|Q−Qh|

]
and that

V[Y`] ≤ E
[
Y 2
`

]
≤ 2

(
E
[
|Q−Qh` |

2
]

+ E
[ ∣∣Q−Qh`−1

∣∣2 ]) .
Thus, to establish bounds of the form (4.1.13) and (4.1.17) it suffices to bound the expected value

of |Q−Qh|k, for k = 1 and 2, in terms of h.

For each ω ∈ Ω, let the random variable Qh = Qhω (ω) denote the quantity of interest in

(4.1.11) computed using the sample dependent mesh size in (4.1.6) with Φh(ω, ·) = φhω,N(hω)(ω, ·).
By using the expansion aq − bq = (a− b)

∑q−1
j=0 a

q−1−jbj , we have

Q−Qh =

(∫ 1

0

|φ|dx
)q
−
(∫ 1

0

|Φh|dx
)q

=

(∫ 1

0

|φ| − |Φh|dx
) q−1∑
j=0

‖φ‖q−1−j
1 ‖Φh‖j1 .

Applying the absolute value and using the reverse and the standard triangle inequality, as well as

the fact that ‖φ‖1 ≤ ‖φ‖∞, we can deduce that

|Q−Qh| ≤ ‖φ− Φh‖1
q−1∑
j=0

‖φ‖q−1−j
1 ‖Φh‖j1

≤ ‖φ− Φh‖∞
q−1∑
j=0

‖φ‖q−1−j
∞

(
‖φ‖∞ + ‖φ− Φh‖∞

)j
. (4.1.20)

Now, using Corollary 3.2.9 and Theorem 3.3.11 together with (4.1.19) to bound ‖φ‖∞ and ‖φ −
Φh‖∞, respectively, it follows that

|Q−Qh| ≤ c‖φ− Φh‖∞
q−1∑
j=0

(
σmax

σmin
R1(σ, σS)‖f‖∞

)q−1−j

(σmax

σmin
R1(σ, σS)‖f‖∞ + 4R(σ, σS)‖f‖η,pw

)j
,

for some constant c > 0. Hence, using again Theorem 3.3.11, (4.1.19), as well as the inequalities

‖f‖∞ ≤ ‖f‖η,pw and R1(σ, σS) ≤ R(σ, σS), we get

|Q−Qh| ≤ c‖φ− Φh‖∞
(
σmax

σmin
R(σ, σS) ‖f‖η,pw

)q−1 q−1∑
j=0

5j

≤ c 5q

4

(
σmax

σmin

)q
R(σ, σS)q ‖f‖qη,pw hηω . (4.1.21)
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For simplicity in the remaining presentation, let us define

R5(σ, σS) :=
σmax

σmin
R(σ, σS) ,

from which it is easy to show R5(σ, σS) ∈ Lp(Ω), for all p ∈ [1,∞), following Theorem 4.1.2.

Finally, since f ∈ Lp∗(Ω; Cηpw) and R5(σ, σS) ∈ Lp(Ω), for all p ∈ [1,∞), it follows from (4.1.21)

together with Hölder’s inequality that, for k = 1, 2,

E
[
|Q−Qh|k

]
≤
(
c 5q

4

)k
‖R5(σ, σS)‖kqLr(Ω) ‖f‖

kq
Lp∗ (Ω;Cηpw)

hkη ≤ c′ hkη ,

where r ∈ [1,∞) is defined by r−1 + p−1
∗ = kq−1 and c′ > 0 is a constant independent of h. This

completes the proof.

Corollary 4.1.9 Suppose the assumptions of Theorem 4.1.8 hold and system (3.1.7)-(3.1.8) is

solved with Method 2 in Example 4.1.6, and let δ ∈ (0, 1) be arbitrary. Then, the ε-costs of the

Monte Carlo method and of the multilevel Monte Carlo method satisfy, respectively,

E
[
Cε(Q̂MC

h )
]

= O
(
ε−4−χ) and E

[
Cε(Q̂MLMC

h )
]

= O
(
ε−2−χ) ,

where χ := max

{
1− η
η

, δ

}
> 0.

Corollary 4.1.9 implies that, when χ = δ, the multilevel Monte Carlo method is optimal i.e.

the computational cost is O(ε−2) (recall from Section 2.4.3 that this is proportional to the cost

of a single standard Monte Carlo sample). This occurs when η ≥ 1 (which our analysis does not

cover, although we will numerically consider this case in the next section).

We will now introduce a more efficient way of computing an estimate of the scalar flux φ, when

using a sequence of discretisation parameters e.g. MLMC. We note that it is trivial to show that

the result of Corollary 4.1.9 extends to this new solver.

4.2 A Hybrid Direct-Iterative Solver

To compute samples of an estimate of the scalar flux, and thus of a quantity of interest, we propose

a hybrid version of the direct and the iterative solver for the Schur complement system (3.1.11)

described in Section 3.1.2.

The cost of the iterative solver depends on the number K of iterations that we take. For each

ω, we aim to choose K such that the L2-error ‖φ(ω, ·) − φ(K)(ω, ·)‖2 < ε. To estimate K we fix

h = 1/1024, N = (2h)−1 and d = 3600 and use the direct solver to compute φh = φh,N(h) for each

sample ω. Let %(ω) := ‖σS(·, ω)/σ(·, ω)‖∞. For a sufficiently large number of samples, we then

evaluate

log
(∥∥φh(ω, ·) − φh,(K)(ω, ·)

∥∥
2

)
K log

(
%(ω)

)
and find that this quotient is less than log(0.5) in more than 99% of the cases (at least in the

specific case considered in the numerical results in Section 4.3), for K = 1, . . . , 150, so that we can

choose c = 0.5 in (3.1.16). We repeat the experiment also for larger values of h and smaller values

of d to verify that this bound holds in at least 99% of the cases independently of the discretisation

parameter h and of the truncation dimensions d.
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Hence, a sufficient a-priori condition to achieve ‖φh(ω)−φh,(K)(ω)‖2 < ε in at least 99% of the

cases is

K = K(ε, ω) = max

{
1,

⌈
log (2ε)

log
(
%(ω)

)⌉ } , (4.2.1)

where d·e denotes the ceiling function. It is important to note that K is no longer a deterministic

parameter for the solver (like M or N). Instead, K is a random variable that depends on the

particular realisation of σS . It follows from (4.2.1), using the results in [47, §2], [89] as in Section

3.1, that E[K(ε, ·)] = O(log(ε)) and V[K(ε, ·)] = O
(
log(ε)2

)
, with more variability in the case of

the exponential field.

Recall from (3.1.12) and (3.1.14) that, in the case N = (2h)−1 = M/2, the costs for the direct

and iterative solvers are c1M
3 and c2KM

2, respectively, for two constants c1, c2 > 0. In our

numerical experiments, we found that in fact c1 ≈ c2, for this particular relationship between

M and N . This motivates a third “hybrid” solver, which we present in Algorithm 1, where the

iterative solver is chosen when K(ω) < M and the direct solver when K(ω) ≥ M . This allows us

to use the optimal solver for each particular sample - in the case of the hierarchies that appear in

MLMC, we adaptively adjust the solver dependent on the level and the sample.

We finish this section with a study of timings in seconds (here referred to as the cost) of the

three solvers (i.e. (3.1.11), (3.1.13) and Algorithm 1). In Fig. 4-1, we plot the average cost (over

16, 384 MC samples) divided by M3
` , against the level parameter `. We observe that, as expected,

the (scaled) expected cost of the direct solver is almost constant and the iterative solver is more

efficient for larger values of M`. Over the range of values of M` considered in our experiments, a

best fit for the rate of growth of the cost with respect to the discretisation parameter h` in (2.4.4)

is γ ≈ 2.1, for both fields (asymptotically this is the same as the source iteration method).

Algorithm 1: Hybrid direct-iterative solver of (3.1.10), for one realisation of the input

data
Data: Realisation of input data, σS and σ;

Data: A desired accuracy ε;

Result: An estimate of the scalar flux

1 Compute % := ‖σS/σ‖∞ and

K =

⌈
log(2ε)

log(%)

⌉
if K < M then

2 Compute Φ = Φ(K) in (3.1.10), using K (source) iterations of the method (3.1.13);

3 else

4 Compute Φ in (3.1.10), using the direct method (3.1.11);

5 end

4.3 Numerical Results

Until now, the random structure assumed in Assumption 4.1.1 has been unspecified. For our nu-

merical results, we assume log σS is a correlated zero mean Gaussian random field, with covariance

function defined by the Matérn class (recall Section 2.3.1)

Cν(x, y) = σ2
var

21−ν

Γ(ν)

(
2
√
ν
|x− y|
λC

)ν
Kν

(
2
√
ν
|x− y|
λC

)
. (4.3.1)
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Figure 4-1: Comparison of the average costs of the solvers (actual timings in seconds divided by
M3
` ) for the (Left) Matérn field and (Right) exponential field.

It is parametrised by the smoothness parameter ν ≥ 0.5; λC is the correlation length, σ2
var is the

variance, Γ is the gamma function and Kν is the modified Bessel function of the second kind.

To sample from σS we use the (d-truncated) Karhunen-Loève (KL) expansion of log σS , i.e.,

log σS(x, ω) =

d∑
i=1

√
ξi ηi(x) yi(ω) , (4.3.2)

where yi
iid∼N (0, 1) and the ξi and ηi are the eigenvalues and the L2(0, 1)-orthogonal eigenfunctions

of the covariance integral operator associated with kernel given by the covariance function. This

was discussed in more detail in Section 2.3.2.

For our specific examples we consider σS as two Matérn fields that belong to Cη, for some

η > 0. For the first case, we choose ν = η = 0.51. This corresponds to the exponential covariance

(i.e. (2.3.6)) and in the following will be referred to as the ‘exponential field’. For the second

case, denoted the ‘Matérn field’, we choose η = 1.5. The correlation length and variance for both

cases are λC = 1 and σ2
var = 1, respectively. As in Section 3.4, we assume σA ≡ exp(0.25) and

f ≡ exp(1).

For the discretisation, we choose the same uniform spatial mesh and quadrature rule as in

Section 3.4 and fix the number of angles by N = (2h)−1 for the Matérn field, and N = 2d2h−1/2e
for the exponential field. We empirically choose the (finite) number of KL terms as 8h−1 for the

Matérn field and 225h−1/2 for the exponential field. This is to ensure that the error due to the

truncation is negligible compared with other errors. We note that, even for such large number of

KL modes, the sampling cost of the KL expansion does not dominate because the randomness only

exists in the (one) spatial dimension.

We will consider two measurements of error in the mean, E[‖φ−φh,N(h)‖∞] and E[‖Q−Qh‖∞]

(where Q is defined in (4.1.10) and we take q = 1). We estimate φ by a reference solution with

h−1 = 512, N = 256, and we choose 2048 / 3600 KL modes for the Matérn and exponential fields,

respectively. The expectation is estimated using a standard Monte Carlo estimator (cf. (2.4.8) or

[93]) with 32, 768 samples.

In Figure 4-2, we present the numerical results which support the error estimate in Theo-

rem 4.1.3. For this error estimate, we observe O(h) convergence, for both random fields, despite

1we recall from Chapter 2, that a Gaussian random field equipped with a Matérn covariance function (with
smoothing parameter ν) is dνe − 1 times differentiable
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Figure 4-2: Convergence of the mean error(s) E[‖φ − φh,N(h)‖∞] and E[‖Q − Qh‖∞], with N =
(2h)−1 (Matérn) and N = 2d2h−1/2e (Exponential). In the image, ‘Mat’ and ‘Exp’ refer to the
Matérn and exponential random fields respectively, and φ and Q denote the mean error in φ and
Q respectively.
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Figure 4-3: Comparison of the variance of the quantity of interest on each level, Q`, and the
variance of the difference process Y` = Q` − Q`−1, for two random fields. (Left) Matérn and
(Right) exponential field.

η = 0.5 for the exponential random field. For deterministic or random fields, there exists a O(hη)

convergence part which would ensure our estimates are sharp. However, in practice we do not

always observe it. We also note the accelerated O(h2) convergence for the error E[‖Q − Qh‖∞],

which arises due to the additional smoothness Q has over φ.

We now wish to study the efficiency of the Monte Carlo method(s) and justify the underlyling

assumptions (2.4.3), (2.4.4) and (2.4.33) (and (2.4.24) for QMC), we numerically estimate the

parameters α, γ and β (and λ) in those assumptions. In Figure 4-2, we already observed that

E[‖Q − Qh‖∞] = O(h2) for both random fields, i.e. α = 2. Likewise, in Figure 4-1 we observed

that γ ≈ 2.1 (for N = N(h) = (2h)−1, for the Matérn field) - we also observed γ ≈ 1.5 for the

exponential field (where N = 2d2h−1/2e). Moreover, from Figure 4-3 we observe β ≈ 4.1 and

β ≈ 2.0, for the Matérn and exponential fields, respectively. These rates are summarised in Table

4.1.

To estimate the parameter λ in (2.4.38), we need to study the convergence rate of the QMC

method with respect to the number of samples NQMC . This study is illustrated in Fig. 4-4. As

expected, the sampling error of the standard MC estimator converges with O(N−1
MC). On the other

hand, we observe that the sampling error of the QMC estimator converges approximately with
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Figure 4-4: Sampling error plotted against the number of samples, for the standard Monte Carlo
and quasi-Monte Carlo estimators: (Left) Matérn and (Right) exponential field.

O(N−1.6
QMC) and O(N−1.4

QMC) (or λ = 0.62 and λ = 0.71) for the Matérn field and for the exponential

field, respectively. This estimate of λ is also summarised in Table 4.1.

Furthermore, in Figure 4-5 we present numerical results comparing the computational ε-cost of

the standard, quasi, multilevel and multilevel quasi-Monte Carlo methods, when estimating E[Q].

We observe r, where the computational cost is ε−r, to be: 3.3, 2.2, 2.1 and 1.3, for the Matérn field;

and 3.4, 2.8, 2.4, 2.3, for the exponential field; for the standard, quasi, multilevel and multilevel

quasi-Monte Carlo methods respectively. To help the unfamiliar reader with the computational

ε-cost plots presented in this thesis (e.g. Figure 4-5), we outline some important details of these

plots below in Remark 4.3.1.

Remark 4.3.1 Computational ε-cost plots, such as Figure 4-5, are taken on a log-log scale. They

measures the change in (log) cost (along the y-axis) compared with the change in (log) root-MSE

accuracy (see (2.4.2), along the x-axis).

The plots should be read right to left (for increasing accuracy) and from the bottom to the top

(for increasing cost). Initially it may seem unintuitive to read right to left, however the plot is

structured in this way as the ε > 0 is larger to the right and smaller to the left.

To estimate the rate of growth of the computational ε-cost of a particular estimator, we compute

the gradient of the curve. That is, if (ε1, C1) and (ε2, C2) each denote an accuracy and cost pair

(that lies on the line), such that ε1 > ε2 and C1 ≤ C2, then the rate r (where the computational

cost is ε−r) can be estimated by

r =
log
(
C2
C1

)
log
(
ε1
ε2

) .

For example, for the MLMC estimator in the left plot in Figure 4-5, we see that (approximately)

C1 = 10−2 cost corresponds to ε1 = 10−3 root-MSE accuracy and C2 = 10+2 cost corresponds to

ε2 = 10−5 root-MSE accuracy. Hence,

r =
log
(

10+2

10−2

)
log
(

10−3

10−5

) =
log (10, 000)

log (100)
= 2 .

In Table 4.1 we give compare the rates of: (i) the theoretically estimated ε-cost, using (2.4.13),

(2.4.27), Theorem 2.4.4 (also Corollary 4.1.9) and (2.4.39), along with the theoretically derived
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η αtheo βtheo γtheo Theoretical αobs βobs γobs λobs Estimated Observed
MC

1.5 ≈ 1.0 ≈ 2.0 2.0

4.0

2.0 4.1 2.1
-

3.1 3.3
MLMC 2.0 2.0 2.1
QMC

- 0.62
2.3 2.2

MLQMC 1.2 1.3
MC

0.5 0.5 1.0 1.5

5.0

2.0 2.0 1.5
-

2.8 3.4
MLMC 3.0 2.0 2.4
QMC

- 0.71
2.2 2.8

MLQMC 1.4 2.3

Table 4.1: Summary of computational ε-cost rates r, where for an estimator Q̂, E[C(Q̂)] = O(ε−r).
We estimate r in the following ways: ‘Theoretical’ uses the parameters in (4.3.3); ‘Estimated’ uses
the numerically observed αobs, βobs, γobs and λobs; ‘Observed’ uses the observed rates from Figure
4-5.

rates (4.3.3), i.e.2

αtheo = min{η, 1− δ} , βtheo = 2αtheo , γtheo = min{2, 1 + η} ; (4.3.3)

(ii) the numerically estimated ε-cost, using (2.4.13), (2.4.27), Theorem 2.4.4 and (2.4.39), along

with the numerically observed parameters αobs, βobs, γobs presented in the table; (iii) the numeri-

cally observed ε-cost, estimated from Figure 4-5 and already mentioned in the previous paragraph.

The discrepancy between αobs and βobs compared with the theoretical parameters in (4.3.3)

leads to the theoretically proved ε-cost rate(s) in Table 4.1 to be pessimistic. As noted above, this

is due to not always observing the O(hη) convergence part for certain problems, and because Q

is smoother than φ. However, we observe good agreement between the mean ε-cost of the Monte

Carlo estimator (4.1.15) and the multilevel Monte Carlo estimator (4.1.18), for the numerically

observed parameters.

We conclude that the multilevel Monte Carlo method gives us excellent gains over the Monte

Carlo method, with up to two orders of magnitude gain theoretically and over one order of magni-

tude gain numerically, for both random fields. The discrepancy between the theory and numerics

here arises because, for the two specific cases we consider, our error estimate is not sharp.

We note that we also observe substantial gains from the QMC methods. In particular, we

observe almost a full order of magnitude gain numerically for the quasi-Monte Carlo estimator

over the standard Monte Carlo estimator, and a similar gain for the multilevel quasi-Monte Carlo

estimator over the standard multilevel Monte Carlo estimator (for Matérn field). This is despite

using an “off the shelf” generating vector. It is left as future work to theoretically justify the

improvement that the QMC rules bring, and to find an optimal generating vector for this problem.

2for problems where we consider random fields with smoothness parameter η ≥ 1, we note that C1−δ
pw ⊂ Cηpw

(and similar). Hence, results such as Theorem 4.1.8 hold, when η is replaced by 1− δ.

93



CHAPTER 4. MLMC THEORY FOR HETEROGENEOUS TRANSPORT

10-6 10-4 10-2
10-4

10-2

100

102

104

C
os

t

MC
QMC
MLMC
MLQMC

10-6 10-4 10-2
10-4

10-2

100

102

104

C
os

t

MC
QMC
MLMC
MLQMC

Figure 4-5: Cost (in seconds) plotted against ε (accuracy) on level L for standard, quasi, multilevel
and multilevel quasi-Monte Carlo. (Left) Matérn field and (Right) exponential field. Details on
reading this plots is given in Remark 4.3.1.
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Practical Numerical Tests
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5.2.2 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Solution Methods for the Fixed Source Problem . . . . . . . . . . . . . 107

5.2.4 Random Model 1: Uniform C5-MOX . . . . . . . . . . . . . . . . . . . . 110

5.2.5 Random Model 2: Concrete Shielding . . . . . . . . . . . . . . . . . . . 114

In this chapter we will apply the Monte Carlo techniques for Uncertainty Quantification (pre-

viously discussed in Chapter 2) to more physically relevant problems in radiative transport (than

the mono-energetic 1D slab geometry fixed source problem considered in Chapter 3 – Chapter 4).

In particular, we will consider the criticality problem (Section 1.1.3) in the 1D slab geometry, and

we will also extend our previous 1D fixed source calculations to include problems in two spatial

dimensions.

For the criticality problem, the random model will be based on the (deterministic and homo-

geneous) Los Alamos benchmark (two) presented in [190]. We introduce uncertainty by adding

uniformly distributed random variable(s), representing measurement error for example, to the de-

terministic nuclear input data. To compute the eigenpair of interest, we propose an iterative

eigensolver which uses a single source iteration within each iteration of a shifted inverse iteration.

We also consider two fixed source problems in a 2D spatial domain. The first problem is a

simplified version of the C5-MOX problem presented in [43, 212]. The second problem mimics a

concrete shielding problem, with a source of particles to the left side of the domain (e.g. particles

leaving a reactor) and a detector on the right side of the domain. As part of the shielding problem,

we have designed a novel model for nuclear cross-sections within heterogeneous concrete - which

uses a realisation of a Gaussian random field, to ensure spatial correlation, combined with a

sequence of maps which enforce distinct interfaces between different material types (and hence

cross-sections) within the concrete.
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For each of the aforementioned problems, we will begin by discussing the relevant radiative

transport problem. We then define our chosen discretisation and present the methodology used to

estimate a solution. Only then will we discuss the specific model of uncertainty considered. We

finish by presenting numerical results which allow us to compare the efficiency of the variants of

Monte Carlo sampling.

5.1 Criticality Problem in One Spatial Dimension

5.1.1 Model Problem

The criticality problem considered in this section comes from the mono-energetic 1D slab geometry

problem, originally discussed in (1.3.6). We assume the cross-sections are isotropic in angle and

the (spatial) domain contains a single spatially homogeneous material. Then, given some random

input data

Z(ω, ·) = Z(ω) = [σS(ω), σA(ω), σF (ω), ν(ω)] .

For each realisation of the input data, we are interested in the eigenvalue problem: Find the

smallest eigenvalue λcrit(ω) ∈ R+ and the angular flux ψ(ω, x, µ) 6≡ 0 such that

µ
∂ψ

∂x
(ω, x, µ) + σ(ω)ψ(ω, x, µ) = [σS(ω) + λcrit(ω)ν(ω)σF (ω)]φ(ω, x) , (5.1.1)

where φ(ω, x) =
1

2

∫ 1

−1

ψ(ω, x, µ′) dµ′ , (5.1.2)

for x ∈ [0, L(LA)], µ ∈ [−1, 1] and for almost all ω ∈ Ω, where φ denotes the scalar flux and

L(LA) ∈ R+ denotes the width of the interval. The existence and uniqueness of λcrit was previously

discussed in Remark 1.1.2. We select the zero incoming flux boundary condition:

ψ(ω, 0, µ) = 0, for µ > 0 and ψ(ω,L(LA), µ) = 0, for µ < 0 , (5.1.3)

which hold for almost all ω ∈ Ω. We note that for the Los Alamos benchmark (two) [190] considered

in this section, L(LA) := 3.707444 centimetres.

5.1.2 Discretisation

For each realisation ω ∈ Ω, (5.1.1) – (5.1.3) represents an eigenvalue problem in two independent

variables, space and angle. For ease of presentation, let us suppress the dependence on ω for the

moment.

We consider the same discretisation of (5.1.1) – (5.1.3) that was previously used for the spatially

one-dimensional fixed source problem (see Chapter 3). That is, we discretise in angle using a double

Gauss quadrature rule, with 2N -points µk ∈ [−1, 1]\{0} and the corresponding weights wk ∈ R+.

We discretise in space by using a Crank Nicolson scheme on a uniform mesh 0 = x0 < x1 < . . . <

xM = L(LA). Subsequently, the discrete scheme for (5.1.1) – (5.1.3) is: Find the smallest λh,N > 0

and the family of (non-zero) continuous piecewise-linear functions {ψh,Nk }2Nk=1 (with nodal values

{ψh,Nk,j }) such that

µk
ψh,Nk,j − ψ

h,N
k,j−1

hj
+ σ

ψh,Nk,j + ψh,Nk,j−1

2
=
[
σS + λh,NνσF

]
φh,Nj−1/2 , (5.1.4)
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for j = 1, · · · ,M, |k| = 1, . . . , N , where

φh,Nj−1/2 =
1

2

N∑
|k|=1

wk
ψh,Nk,j + ψh,Nk,j−1

2
, for j = 1, ...,M , (5.1.5)

and with the no-inflow boundary conditions

ψh,Nk,0 = 0, for k > 0 and ψh,Nk,M = 0, for k < 0 . (5.1.6)

5.1.3 Solution Methods for the Criticality Problem

The criticality problem, previously discussed in (1.1.16), is an example of a generalised eigenvalue

problem [174, 178], so-called as it is a generalisation of a typical eigenvalue problem to the problem:

Find (λ, x) satisfying Ax = λBx, for given operators A and B.

In the context of (general) radiative transport before discretisation, the criticality problem

seeks the smallest (real and positive) eigenvalue λcrit (or the largest keff := (1/λcrit) ∈ R+) and its

corresponding eigenfunction ψ 6≡ 0, such that

(T − S)ψ = λcritFψ , (5.1.7)

where T , S and F are defined for the full radiative transport equation in (1.1.8) – (1.1.10) respec-

tively. The existence and uniqueness of the eigenpair was already discussed in Remark 1.1.2, for

problems with homogeneous cross-sections and no-inflow boundary conditions.

There are a vast array of techniques available to find approximations of the eigenpair (λcrit, ψ)

satisfying (5.1.7), we refer the reader to the books [15, 174, 201] for introductory material on some

of these methodologies. Broadly speaking the techniques can be separated into two categories;

direct eigensolvers, and iterative eigensolvers.

Direct eigensolvers, such as the the QR algorithm - which involves computing a full QR factori-

sation of an appropriate matrix - have the advantage of being able to compute the entire spectrum

at once, but they can be prohibitively expensive and in our problem we are only interested in the

eigenpair corresponding to the smallest positive real eigenvalue.

In comparison, iterative eigensolvers typically find only a subset of the spectrum. They consist

of an (outer) iteration, where for each iteration we must solve a fixed source problem. If we choose

an iterative solver, to estimate the solution of each fixed source problem, then we also have an

inner iteration. Such outer-inner iteration combinations for eigenvalue problems are known as

inexact iterative methods (assuming that the iterative solver does not compute the solution to the

inner source problem exactly). There is an extensive literature on the theory of inexact iterative

methods outside of radiative transport, see for example [71, 88, 126] and related references, but

only recent literature within radiative transport, e.g. [178].

Below we will discuss an iterative eigensolver for computing the eigenpair in (5.1.7) - the power

iteration and its variants. Whilst this is a popular deterministic method for finding eigenpairs

in radiative transport, there are also many other possibilities to choose from. For example, [206]

detail the application of a type of Krylov subspace method, and stochastic methods e.g. MONK®

(developed by the ANSWERS® software service) are commonplace in industry.

Remark 5.1.1 The statements made in the proceeding discussion will be general statements about

the power iteration method (and its variants). However, we illustrate the details of the power

iteration for the (specific) transport criticality problem (5.1.7) and in this case, simplifications to
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the aforementioned statements can be made. For example, the statement ‘the smallest eigenvalue

in absolute value’ - regarding (inverse) power iteration - is equivalent to the statement ‘the smallest

real and positive eigenvalue’ for the transport problem (5.1.7), because (5.1.7) only has positive real

eigenvalues (see Remark 1.1.2).

5.1.4 (Inverse) Power Iteration

One of the simplest and most well known methods for computing eigenpairs is the so-called power

iteration, which aims to find the largest eigenvalue (in absolute value) and its corresponding eigen-

function satisfying a given eigenproblem. However, we are interested in the smallest eigenvalue

(in absolute value). This leads us to one popular method known as the Inverse Power iteration

[15, 178, 206]. As the name suggests it is closely related to the power iteration - in fact, it is a

power iteration but the eigenproblem is re-written. To see why this gives us the smallest eigenvalue

(in absolute value), re-write (5.1.7) as

1

λcrit
ψ = (T − S)

−1 Fψ , (5.1.8)

and then apply the standard power iteration to this eigenproblem, i.e. iteratively apply (T − S)
−1 F

to the previous estimate (and normalise):

ψ(n+1) = cn (T − S)
−1 Fψ(n) , for n = 0, 1, · · · , (5.1.9)

where cn denotes a normalisation constant, e.g. ensuring ‖ψ(n+1)‖ = 1 in a chosen norm. Under

appropriate conditions, this gives us the largest keff = (1/λcrit) (in absolute value), and the corre-

sponding eigenfunction, satisfying (5.1.8). This is equivalent to acquiring the smallest (in absolute

value) eigenvalue λcrit, and the corresponding eigenfunction, satisfying (5.1.7). Note that for each

n, finding the next estimate ψ(n+1) in (5.1.9) is equivalent to solving a fixed source problem, with

fixed source Fψ(n) (and then normalising).

After each iteration of (5.1.9), λcrit can be estimated by the (generalised) Rayleigh quotient on

L2(D ×A), defined by

λ(n) :=
〈ψ(n), (T − S)ψ(n)〉L2(D×A)

〈ψ(n),Fψ(n)〉L2(D×A)

, (5.1.10)

where 〈·, ·〉L2(D×A) denotes the standard L2-inner product over space (D) and angle (A). To get

some intuition on where (5.1.10) comes from, consider (5.1.7), multiply it by ψ and integrate over

the domain of D ×A and then re-arrange:∫
D×A

ψ (T − S)ψ =

∫
D×A

λψFψ ⇐⇒ λ =
〈ψ, (T − S)ψ〉L2(D×A)

〈ψ,Fψ〉L2(D×A)
,

assuming the denominator does not vanish, and where we note that for two functions f , g ∈ L2(X),

for some space X, then 〈f, g〉X :=
∫
X
f g.

The (inverse) power iteration (5.1.9) combined with (5.1.10) is sometimes called the Rayleigh

quotient iteration.

Now consider the discretised version of (5.1.7), i.e. when the operators T , S and F are ap-

proximated by matrices (T , S and F respectively) and the eigenfunction ψ is approximated by

a vector of coefficients Ψ (applied to some set of basis functions). Then provided that: (i) the

smallest eigenvalue (in absolute value) is simple; (ii) the initial guess Ψ(0) (again applied to a set

of basis functions) is not orthogonal to the direction of the eigenfunction; it can be shown that the
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inverse power iteration converges to the smallest eigenvalue (in absolute value) [174]. Moreover, it

is well known (see [174, Theorem 4.1]) that the convergence of the inverse power iteration depends

on the so-called dominance ratio, |λ1/λ2|, where λ1, λ2 denote the smallest and second smallest

eigenvalues (in absolute value) respectively.

The problem, in the context of radiative transport, is that for many real-life reactors the

dominance ratio is close to 1 [158, 206], i.e. the inverse power iteration exhibits poor convergence.

In such cases, the paper [206] observed fewer iterations for its Krylov subspace method. Below

we will discuss a standard method for accelerating the convergence of the inverse power iteration,

known as shifted inverse iteration.

Shifted Inverse Iteration

Consider a scalar-valued shift ρ ∈ R, chosen such that

|λ1 − ρ| < |λ2 − ρ| ≤ |λ3 − ρ| ≤ · · · , (5.1.11)

where we assume λ1 6= λ2 denote the first and second smallest eigenvalues (in absolute value)

for the non-discrete problem (5.1.7). In the context of the transport problem (5.1.7), λ1 = λcrit.

Then, the shifted inverse iteration is simply the inverse power iteration applied to the following

eigenproblem

(T − S − ρF)ψ = (λcrit − ρ)Fψ , (5.1.12)

i.e. (5.1.7) with ρFψ subtracted from both sides (inverse power iteration and shifted inverse

iteration are equivalent when ρ ≡ 0). Subsequently, we know the convergence of the shifted inverse

iteration will depend on the (shifted) dominance ratio, i.e.

|λ1 − ρ|
|λ2 − ρ|

.

Therefore, if we choose ρ ≈ λ1 (and closer to λ1 than λ2) and the assumption (5.1.11) holds, then

the convergence of the shifted inverse iteration can be faster than standard inverse iteration.

For transport problems within reactor physics, acquiring a good choice for ρ is often simple.

This is because most reactors are designed to ensure that λcrit = 1 (or at least close to 1, with

some safety margin) and hence choosing a fixed shift ρ = 1 is often a good starting guess. The

shift ρ does not have to be fixed for all (outer) iterations, and can be updated at each iteration

(e.g. see ahead to the Rayleigh quotient shift (5.1.17)).

The shifted inverse iteration will be an important method for our computations and hence we

present an algorithmic representation of it in Algorithm 2. In this representation, we have assumed

the use of the source iteration method (see (3.1.13)) for the inner source problem, but the method

can easily be adapted to use another iterative, or a direct, solver. There are five main steps to

this algorithm for shifted inverse iteration: (i) a stopping criterion for the outer iteration; (ii) a

stopping criterion for the inner iteration; (iii) a choice of normalisation; (iv) an estimate of the

eigenvalue; (v) an update of the shift. There are many possibilities one may choose here, however

in Algorithm 2 we present the following suggestions (and in our later numerical computations we

will use the discretised version of Algorithm 2).

We define the outer stopping criterion as: For any n ∈ N, find λ(n) and ψ(n) such that

res
(n)
out =

∥∥∥∥(T − S − λ(n)F
)
ψ(n)

∥∥∥∥
I

≤ εout , (5.1.13)
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where we introduce the norm1 ‖ · ‖I := ‖WT −1 · ‖L2(D) and note that the operator W is defined in

(1.1.4). At the (n− 1)th outer iteration, with ρ(n−1) and Fψ(n−1) given and fixed, we can define

the inner stopping criterion as (however, in our computations we will follow a simpler approach,

as outlined later in Section 5.1.5): For any k ∈ N, find ψ̃(n−1,k) such that

res
(n−1,k)
inn :=

∥∥∥∥(T − S − ρ(n−1)F
)
ψ̃(n−1,k) −Fψ(n−1)

∥∥∥∥
I

≤ εin , (5.1.14)

where ψ̃(·,k) denotes the approximation to the angular flux ψ (given a fixed source Fψ·) at the kth

iteration of the inner solver (i.e. source iteration). Once k is sufficiently large such that (5.1.14) is

satisfied, then we define ψ̃(n) := ψ̃(n−1,k). Subsequently, we acquire the new eigenfunction estimate

ψ(n), by normalising ψ̃(n):

ψ(n) :=
ψ̃(n)

‖Wψ̃(n)‖L2(D)

, (5.1.15)

where we assume that the denominator is non-zero (we have observed this in our computations).

For the eigenvalue update, we use the (generalised) Rayleigh quotient, i.e.

λ(n) :=
〈ψ(n), (T − S)ψ(n)〉L2(D×A)

〈ψ(n),Fψ(n)〉L2(D×A)

, (5.1.16)

where 〈·, ·〉L2(D×A) denotes the L2-inner product over space (D) and angle (A). Finally, we choose

the Rayleigh quotient shift, i.e.

ρ(n) := λ(n) . (5.1.17)

Another option for the shift would be the ‘non-standard Rayleigh quotient shift’ given in [178],

which is proven to have better convergence properties than the standard Rayleigh quotient shift

(5.1.17). We do not consider this here.

1the ‖ · ‖I norm links the non self-adjoint eigenvalue problem (5.1.7), with an underlying self-adjoint eigenvalue
problem (related to the integral equation form of the RTE), see [178] for details
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Algorithm 2: Shifted Inverse Iteration with inner source iteration solve

Data: Initial estimate of the eigenfunction ψ(0) and an initial shift ρ(0);

Data: Desired accuracies for the outer iteration, εout, and the inner iteration, εin.

Result: Approximation of the eigenpair: λcrit ≈ λ(n+1) and ψ ≈ ψ(n+1);

1 Initialise n = 0;

2 while res
(n)
out > εout do

3 Compute Fψ(n) (in some sense, the new fixed source);

4 Initialise k = 0 and ψ̃(n,−1) ≡ 0;

5 while res
(n,k)
inn > εin do

6 Compute ψ̃(n,k) such that

ψ̃(n,k) = T −1
(
σSWψ̃(n,k−1) + Fψ(n)

)
Update the residual res

(n,k+1)
inn according to (5.1.14);

7 k = k + 1;

8 end

9 Set ψ̃(n+1) := ψ̃(n,k−1);

10 Acquire ψ(n+1) by normalising ψ̃(n+1) according to (5.1.15);

11 Update the eigenvalue estimate λ(n+1) according to (5.1.16);

12 Update the shift ρ(n+1) according to (5.1.17);

13 Update the residual res
(n+1)
out according to (5.1.13);

14 n = n+ 1;

15 end

5.1.5 One Inner Iteration

The shifted inverse iteration can lead to substantial gains over the standard inverse iteration

[158, 178, 206] - but it is not without its issues. The solution (ψ(n) at the nth outer iteration) to

the inner fixed source problem(
T − S − ρ(n)F

)
ψ(n) =

(
λcrit − ρ(n)

)
Fψ(n−1) , (5.1.18)

can be approximated by solving the linear system associated with the matrix discretisation of

(5.1.18). However, particularly when choosing the Rayleigh quotient shift ρ(n), defined in (5.1.17),

the matrix discretisation of
(
T − S − ρ(n)F

)
becomes nearly singular (for large n), and iterative

methods (such as source iteration) may struggle to converge (leading to a large, or potentially

infinite, number of required inner iterations to accurately estimate the solution to the inner fixed

source problem)2.

We now suggest an alternative that seeks to avoid this issue. Motivated by the analysis in [178,

§3.2], we see that finding even a very rough solution of the inner problem can lead the inexact

inverse iteration to converge - where it is shown that quadratic convergence of Algorithm 2 can

be achieved (under a fairly weak condition on εin). We omit any further details as it is beyond

the scope of thesis and refer the interested reader to [178]. Moreover, we find by experiment that

solving the (approximate) inner fixed source problem by one source iteration (in line 6 of Algorithm

2provided the matrix isn’t singular, this actually aids the outer iteration. This is because, and quoting [15, pg.629],
“any resulting large perturbations in the solution will be rich in the eigenvector [for the matrix discretisation of
(5.1.18)]”
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2) gives a reliable overall convergent approximate inverse iteration method for the problems we

have considered. For the remainder of this thesis this method is referred to as the one inner

iteration method.

Remark 5.1.2 The (quadratic) convergence result mentioned above is relevant when the shift in

Algorithm 2 is taken to be the non-standard Rayleigh quotient shift defined in [178, eq.(3.23)].

However, a similar result was also proven ([178, Corollary 3.6]) which shows linear convergence

of Algorithm 2 when a fixed shift is taken (but with a stronger condition on εin). Moreover, the

“convergence analysis ... is given only for the continuous problem”, i.e. (5.1.7). Nonetheless “it

provides a guide to how iterations behave in discrete cases” [178].

The use of ‘single inner solves’ appears in a number of other contexts. For example, the CACTUS

module within the WIMS code (developed by the ANSWERS® team) and the specific method of

perturbation technique discussed in [178], employ a similar strategy.

It is left for future work to analyse and compare the one inner iteration to the standard

shifted inverse iteration, and other eigensolvers. From our (limited) numerical results, the one

inner iteration method exhibits the same linear3 convergence (of a sequence, see Remark 5.1.3

for details) of λ(n) (with respect to iterations, see ahead to Figure 5-2) that is observed in [178]

for the standard inverse iteration. Moreover, in our numerical experiments the cost of the one

inner iteration is smaller than that of the shifted inverse iteration because, for the shifted inverse

iteration, the number of source iterations used to estimate the solution of the final (inner) source

problem reaches the maximum number of iterations that we allow in our code.

Remark 5.1.3 A sequence λ(1), λ(2), · · · is said to converge with order r if

lim
n→∞

|λcrit − λ(n+1)|
|λcrit − λ(n)|r

≤ c , (5.1.19)

for some constant c > 0. Linear convergence is a special case when r = 1, c ∈ (0, 1) and the in-

equality is replaced by equality. Practically, we can estimate r by using the following approximation

r =
log
(∣∣∣λ(n+1)−λ(n)

λ(n)−λ(n−1)

∣∣∣)
log
(∣∣∣ λ(n)−λ(n−1)

λ(n−1)−λ(n−2)

∣∣∣) . (5.1.20)

In the specific case below, i.e. Figure 5-2, the approximation (5.1.20) is not necessary as it is

easy to see that we have linear convergence. This is because for (almost) all iterations considered

the line is straight and therefore the ratio between |λ(n+1) − λ(n)| and |λ(n) − λ(n−1)| must remain

fixed for (almost) all n (the c in (5.1.19) is also approximated by the gradient of this line).

We will now discuss the random model, which will be used for our numerical results below.

5.1.6 Random Model: Uniform Los Alamos

We now consider a random variant of one of the benchmarks given in [190], and references therein.

Before we introduce the uncertainty, let us first give details of the deterministic problem.

The deterministic problem is given by the mono-energetic 1D slab geometry problem equipped

with no-inflow boundary conditions and defined on the 1D spatial interval [0, L(LA)], with L(LA) :=

3.70744 (in centimetres). The problem assumes that the cross-sections are isotropic in angle and

3theoretically we expect quadratic convergence. However because Crank Nicolson is not a symmetry preserving
scheme, the convergence is reduced. See [178] for further details
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L(LA) σA σS σF ν σ
3.707444 0.019584 0.225216 0.0816 3.24 0.3264

Table 5.1: The input data for problem 2 in the Los Alamos benchmark set [190].

0 1 2 3
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(a) σS
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0.078

0.08

0.082

0.084

0.086

(b) σF

Figure 5-1: Three realisations of the scattering (left) and fission (right) cross-sections, under
the random variation in (5.1.21). The colours green, blue and red denote realisations 1, 2 and
3 respectively. The corresponding cross-sections for the deterministic problem are given by the
dashed blue lines.

that the spatial domain contains a single homogeneous material. The nuclear input data for the

homogeneous material is given in Table 5.1. For this particular benchmark problem, it is known

(analytically) that the smallest positive real eigenvalue is λcrit = 1.

We will now introduce uncertainty into the nuclear input data of the aforementioned problem,

with details given in Problem 5.1.4. Subsequently, we present realisations of the scattering and

fission cross-section(s) in Figure 5-1.

Problem 5.1.4 Let z1, · · · , z4 ∼ U(1− ε, 1 + ε) denote uniform random variables, with ε := 0.05.

Then, the (random) uniform Los Alamos problem is defined by (5.1.1) – (5.1.3) with (random)

nuclear input data given by

σA = z1σ
(det)
A , σS = z2σ

(det)
S , σF = z3σ

(det)
F , ν = z4ν

(det) . (5.1.21)

Here σ
(det)
A , σ

(det)
S , σ

(det)
F , ν(det) denote the deterministic values (given in Table 5.1) for σA, σS,

σF and ν respectively.

We will be interested in estimating E[Q], where our quantity of interest is

Q(ω) := λcrit(ω) , (5.1.22)

for ω ∈ Ω, i.e. the smallest (positive real) eigenvalue for Problem 5.1.4.

Numerical Results

We will now present a number of numerical results relating to Problem 5.1.4. We consider the

discretisation outlined in Section 5.1.2, with a uniform spatial mesh of width h and the double

Gauss quadrature rule with 2N angles, chosen such that N = N(h) := (2h)−1. The eigenpair is

estimated using the one inner iteration method, introduced in Section 5.1.5, where we select the

(outer) stopping criterion, flux normalisation, eigenvalue estimate and shift according to discrete

approximations of (5.1.13), (5.1.15), (5.1.16) and (5.1.17) respectively. To estimate the solution
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(a) |λcrit − λ(n)|
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∥∥∥∥(T − S − λ(n)F
)
ψ(n)

∥∥∥∥
I

Figure 5-2: Two error metrics showing the convergence for each outer iteration, when using the
one inner iteration method (see Section 5.1.5) for the inner source problem. The λ(n) denotes
the approximation to λcrit at the nth outer iteration. We show the convergence at three different
resolutions M = h−1 = 32, 64, 128 (green, red and blue respectively).

αobs βobs γobs Estimated Observed
Monte Carlo

2.0 3.7 1.8
2.9 2.9

Multilevel 2.0 2.0

Table 5.2: Summary of computational ε-cost rates r, where for an estimator Q̂, E[C(Q̂)] = O(ε−r).
We estimate r in the following ways: ‘Estimated’ uses the numerically observed αobs, βobs, γobs;
‘Observed’ uses the observed rates from Figure 5-4.

to the inner fixed source problem, i.e. the discrete version of (5.1.18), we use the source iteration

method previously discussed in (3.1.13) and outlined in Algorithm 2.

We introduce a hierarchy of levels ` = 0, · · · , L corresponding to a sequence of discretisation

parameters h` = 2−`h0 with h0 = 1/4, and approximate the quantity of interest (5.1.22) by

Q` = Qh` = Qh`,N(h`) = λh`,N(h`) = λ` .

We compare {Q`} to a reference solution calculated using the standard inverse iteration with

h−1 = 256 and N = 128. We will estimate the error by computing E[|λcrit − λ`|], where the

expectation is estimated using a standard Monte Carlo estimator, (2.4.8), with 1, 024 samples.

We first study the convergence of the one inner iteration method (Section 5.1.5), with respect

to the number of outer iterations. The results are presented in Figure 5-2. We observe linear

convergence for both the eigenvalue estimate (at least up to machine precision) and the residual

(the discrete approximation to (5.1.13)), for a variety of mesh parameters.

To study the efficiency of the Monte Carlo methods, and their multilevel variants, and justify the

underlyling assumptions (2.4.3), (2.4.4) and (2.4.33), we numerically estimate the parameters α, γ

and β in those assumptions. In Figure 5-3 we present numerical results studying the behaviour of

the bias error and cost of the eigensolver - as the mesh is refined. The convergence of E
[
|λcrit − λ`|

]
is approximately4 O

(
h2
`

)
, and hence we estimate α ≈ 2. Likewise, we estimate γ ≈ 1.8. Moreover,

looking ahead to the left plot in Figure 5-4, we observe β ≈ 3.7. These rates are summarised in

Table 5.2.

Finally, on the right hand side of Figure 5-4 we present numerical results comparing the com-

putational ε-cost of the standard and multilevel Monte Carlo methods, when estimating E[λcrit].

4Note that this is twice the rate exhibited by the residual, i.e. in Figure 5-2(b). Moreover, this is consistent with
what we would expect for a self-adjoint eigenvalue problem (and hence justifies the use of the ‖ · ‖I norm earlier)
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Figure 5-3: Picture (a) (respectively (b)) represents an estimate of the bias error E
[
|λcrit − λ`|

]
(respectively E

[
‖φ− φh`,N(h`)‖∞

]
) of the one inner iteration method, as the mesh is refined.

Picture (c) is an estimate of the corresponding average cost in seconds to compute the eigenpair.

In Table 5.2 we compare the rates of; the numerically estimated ε-cost, using the numerically ob-

served parameters αobs, βobs, γobs (presented in Table 5.2) within (2.4.13) and Theorem 2.4.4, and

the numerically observed ε-cost, estimated from the plot on the right hand side of Figure 5-4. We

note very good agreement between the ‘estimated’ and ‘observed’ computational cost rates.

We conclude that for the given criticality problem, in one spatial dimension and one angu-

lar dimension (with the given discretisation), the multilevel Monte Carlo method gives us good

gains over the Monte Carlo method - with an order of magnitude improvement in the observed

computational ε-cost.

We will now turn our attention towards radiative transport (fixed source) problems in two

spatial dimensions.

0 1 2 3 4
10-15

10-10

10-5

100

V(Q)
V(Y)

10-5 10-4 10-3 10-2
10-4

10-2

100

102

104

MC
MLMC

Figure 5-4: (Left) Estimate of V[Q`] and V[Y`]; (Right) Actual cost (in seconds) of the standard
and multilevel Monte Carlo methods, plotted against the achieved root-MSE accuracy. Details of
the plot on the right are given in (4.3.1).
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5.2 Fixed Source Problem in Two Spatial Dimensions

5.2.1 Model Problem

For the fixed source problem(s) in this section we will consider the mono-energetic 2D-1D problem

in radiative transport, originally discussed in (1.3.5). This is an extension of the fixed source

problem in Chapter 3, to a problem with a two-dimensional spatial domain and the unit circle as

its angular domain. We assume that the cross-sections and source are isotropic in angle, and that

there is no fission. Hence, given some random input data

Z(ω, ·) = [σS(ω, ·), σA(ω, ·), f(ω, ·)] ,

we are interested in the fixed source problem: Find ψ(ω, r,Θ) such that

[Θ · ∇ + σ(ω, r)]ψ(ω, r,Θ) = σS(ω, r)φ(ω, r) + f(ω, r) , (5.2.1)

where φ(ω, r) =
1

2π

∫
S1
ψ(ω, r,Θ′) dΘ′ , (5.2.2)

for any r ∈ D = [0, 1]2, Θ ∈ S1 = {v ∈ R2 | |v| = 1} (the unit circle) and for almost all random

realisations ω in the sample space Ω. The boundary conditions are chosen problem-specific and

are given below.

We note that we previously discussed the existence and uniqueness of a solution to (5.2.1) –

(5.2.2) in Remark 1.1.3.

5.2.2 Discretisation

Similarly to Section 5.1.2, we note that (5.2.1)-(5.2.2) is an integro-differential equation which is

two-dimensional in space and one-dimensional in angle. Hence for ease of presentation, we suppress

the dependence on ω for the moment.

We will discretise in angle by using the discrete ordinates method (see Section 1.2.2), i.e. we

consider the solution of the transport equation along a finite set of N angles {Θk}Nk=1 on the unit

circle. We choose the angles to be uniformly spaced and define them by

Θk =

(
cos

2πk

N
, sin

2πk

N

)T
,

with the corresponding quadrature weight(s) wk = (2π/N), for all k = 1, · · · , N .

In space we use the Discontinuous Galerkin finite element method, previously detailed in Sec-

tion 1.2.3. We discretise the unit square [0, 1]2 by the tensor product of the 1D uniform meshes

0 = x0 < x1 < · · · < xMx
= 1 and 0 = y0 < · · · < yMy

= 1, i.e. xi = iM−1
x and yj = jM−1

y , for

i = 0, · · · ,Mx and j = 0, · · · ,My.

Let {Ch} denote a family of (disjoint and open) rectangles Dh (which are parallel to the axes)

such that D =
⋃
Dh∈Ch D

h, where h denotes the maximum diameter of any Dh. Also, define the

solution space

V h := {v ∈ L2([0, 1]2) | ∀Dh ∈ Ch, v
∣∣
Dh
∈ Q1(Dh)} ,

where we recallQ1(·) denotes the set of polynomials of separate degree 1, and a set of basis functions

(defined in (1.2.14) for 3D, with an analogous definition in 2D) {vj(r) ∈ V h | j = 1, · · · ,Mf} that

span the space V h, where Mf := 4MxMy denotes the number of spatial degrees of freedom.
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Furthermore, assume that the input data is piecewise constant on each element Dh, and use

σDh and (σS)Dh to denote the value of the (total and scattering) cross-sections on a given Dh ∈ Ch.

Finally, for the numerical flux Fk (recall (1.2.15)) we choose the so-called upwind numerical

flux [35, 96], i.e.

Fk(r) · n(r) := (Θk · n(r))ψh,N,+k (r) , for all r ∈ ∂Dh
− , (5.2.3)

for each k = 1, · · · , N , where we define

ψh,N,+k (r) := lim
ε→0

ψh,Nk (r + εΘk) , for all r ∈ ∂Dh
− , (5.2.4)

and the inflow boundary at each cell Dh as Dh
−, i.e. (recall (1.2.17))

∂Dh
− := {r ∈ ∂Dh | Θ(r) · n(r) < 0} .

Hence, the discretised version of the weak form of (5.2.1) is: Find ψh,Nk ∈ V h such that for all

Dh ∈ Ch and for all vj ∈ Q1(Dh) with support on Dh,

−
∫
Dh

(Θk · ∇vj)ψh,Nk dr + σDh

∫
Dh

ψh,Nk vj dr +

∫
∂Dh−

Fk · nvj dr

= (σS)Dh

∫
Dh

φh,Nvj dr +

∫
Dh

fvj dr (5.2.5)

for all k = 1, · · · , N , where (5.2.2) is approximated by

φh,N :=
1

2π

N∑
k′=1

wk′ψ
h,N
k′ . (5.2.6)

The problem specific boundary conditions will be weakly imposed (see (1.2.16) and the surrounding

discussion).

Remark 5.2.1 The existence and uniqueness of a solution to (5.2.5) – (5.2.6) with no-inflow

boundary conditions is given in [110], for a DG scheme with tetrahedral elements - assuming that

the cross-sections are constant and a given relation between h and N is satisfied.

An alternative existence and uniqueness result is given in [132, Thm. 4] but for the discrete

ordinates and DG approximation of the pure transport equation (with a generic right hand side and

the angle fixed, see Section 1.3). This is under the assumptions that: σ ∈ L∞(D); σ(r) > 0, for

almost all r ∈ D; and the (generic) right hand side is in L2(D).

We note that the generalisation of (5.2.5) – (5.2.6) to the pseudo-3D problem, previously

discussed in Section 1.3, is fairly straightforward.

5.2.3 Solution Methods for the Fixed Source Problem

We will now discuss how a solution to (5.2.5) – (5.2.6) can be computed. Let us begin by writing

ψh,Nk ∈ V h as a basis expansion, i.e.

ψh,Nk =

Mf∑
j=1

Ψj,kvj , for all k = 1, · · · , N , (5.2.7)
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where Ψ := [Ψ1,1, · · · ,ΨMf ,N ]T denotes the vector of coefficients for {ψh,Nk }Nk=1. Then, plugging

(5.2.7) into (5.2.6) we can also write φh,N as an expansion in the same basis, i.e.

φh,N =
1

2π

N∑
k=1

wkψ
h,N
k =

1

2π

N∑
k=1

wk

Mf∑
j=1

Ψj,kvj =

Mf∑
j=1

vj

N∑
k=1

1

2π
wkΨj,k =

Mf∑
j=1

Φjvj ,

where Φ = [Φ1, · · · ,ΦMf
]T is the vector of coefficients for φh,N , with each coefficient defined by

Φj = (2π)−1
∑N
k=1 wkΨj,k (for all j = 1, · · · ,Mf ).

Plugging in the basis expansion(s) for ψh,Nk and φh,N into (5.2.5), allows us to re-write (5.2.5)

as the following linear system: (
T −ΣS

−W I

)(
Ψ

Φ

)
=

(
f

0

)
. (5.2.8)

The matrix T is block diagonal, with the (i, j)th component of its kth diagonal block (each of size

Mf ×Mf ) given by −
∫
Dh

[Θk · ∇+ σDh ] vivj dx+
∫
∂Dh−
|Θk · n|v+

i vj , where the definition of v+
i

is analogous to (5.2.4), i.e.5

v+
i (r) := lim

ε→0
vi(r + εΘk) , for all r ∈ ∂Dh

− .

The MfN×Mf matrix ΣS contains N identical blocks (which are themselves block diagonal), with

the (i, j)th component of each block given by
∫
Dh

(σS)Dh vivj . The matrix W , of size Mf ×MfN ,

consists of N blocks, with the kth block containing (wk/2π) on its diagonal and zeroes everywhere

else. The matrix I denotes the Mf ×Mf identity matrix. Finally, f consists of N column vectors

each of size Mf × 1, where the jth component of each block is given by
∫
Dh

fvj .

The ordering of the (MxMy) cells is important to solve (5.2.8) efficiently. If we re-order the

spatial cells Dh lexicographically, based on each specific angle being considered, then we can design

each of the N -blocks on the diagonal of T to be block lower-diagonal themselves (allowing solves

with T to be calculated in O(MfN) operations). Let the notation (i, j) correspond to the unique

spatial cell Dh that is both in the ith column of cells in the x-direction and jth row of cells

in the y-direction. Then, for each individual angle Θ, we define an individual angle-dependent

lexicographic ordering (from first to last) by:

(i, j) , if Θ1 > 0,Θ2 > 0 ,

(Mx + 1− i, j) , if Θ1 < 0,Θ2 > 0 , (5.2.9)

(i,My + 1− j) , if Θ1 > 0,Θ2 < 0 ,

(Mx + 1− i,My + 1− j) , if Θ1 < 0,Θ2 < 0 .

for all i = 1, · · · ,Mx, for each j = 1, · · · ,My. Here we used Θ1 and Θ2 to denote the component

of Θ in the x and y-direction(s), respectively. A similar angle-dependent ordering is also discussed

in [32]. We give illustrative examples of the angle-dependent lexicographic ordering (5.2.9) are

given in Figure 5-5.

Now note the similarity between the linear system (5.2.8), which approximates the solution of

the (weak form of) 2D-1D transport equation, and the linear system (3.1.10), which approximates

the solution of the discretised 1D radiative transport equation. Hence, we can once again apply

the source iteration method, previously discussed in Section 3.1.2, to estimate Ψ and Φ in (5.2.8).

5strictly speaking v+i depends on the specific direction Θk, but for convenience we do not include this in the
notation
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(a) (Θk)1, (Θk)2 > 0 (b) (Θk)1 < 0, (Θk)2 > 0 (c) (Θk)1, (Θk)2 < 0

Figure 5-5: Angle-dependent lexicographic ordering of the (MxMy) cells, when Mx = 3 and
My = 2.

In particular, the estimate of Ψ at the qth iteration is given by

Ψ(q) = T−1
(

ΣSΦ(q−1) + f
)
, (5.2.10)

where we assume that Φ(0) = 0. Subsequently the estimate of Φ is given by

Φ(q) = WΨ(q) . (5.2.11)

Moreover, we can prove the following result on the total number of floating point operations used

in the source iteration method (5.2.10) – (5.2.11).

Lemma 5.2.2 Consider the source iteration method (5.2.10) – (5.2.11) for computing a solution

to the linear system (5.2.8). Assume the elements in the DG scheme are ordered according to the

angle-dependent lexicographic ordering (5.2.9). Then, after K iterations of (5.2.10) – (5.2.11), the

theoretical cost of source iteration ∼ O (Mf N K) .

Proof. Consider the qth iteration of (5.2.10) – (5.2.11). We illustrate below that each step requires

just O(MN) operations:

� Each of the N -blocks in ΣS corresponds to a Mf ×Mf block diagonal matrix, with 4 × 4

blocks on its diagonal. Hence, the cost of computing ΣSΦ(q−1) is O(MfN) operations;

� Adding MfN × 1 sized vectors, i.e. ΣSΦ(q−1) and f , costs O(MfN) operations;

� The matrix T is a block diagonal matrix of size O(MfN)×O(MfN) and each of the N -blocks

are block lower-diagonal themselves. Hence, solves with T (i.e. T−1(ΣSΦ(q−1) + f)) can be

calculated in O(MfN) operations;

� Each of the Mf rows in the matrix W contain only N terms. Hence, computing WΨ(q)

involves O(MfN) operations.

Therefore the cost for a single iteration of (5.2.10) – (5.2.11) requires O(MN) operations. The

result follows.

We considered implementing our novel hybrid algorithm, presented in Chapter 4, on this 2D

example. However, due to the extra degrees of freedom in the 2D spatial domain, the cost of solves

with the Schur complements vastly outweighed the cost of solves with source iteration in all but a

few extreme cases. Hence we proceed only with the source iteration method.

We will now discuss the details of two problems involving uncertainty, giving numerical results

for each.
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MOX U02 Homo. Concrete
σS 1.33203 1.30986 0.1913
σA 2.63673E-01 6.52870E-02 4.714E-03

Table 5.3: Assumed cross-sections for the three material types in the deterministic C5-MOX prob-
lem.
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Figure 5-6: Three realisations of scattering cross-sections, for Problem 5.2.3, sampled from using
the KL expansion. The MOX assemblies are denoted by ‘M’, and the U02 assemblies denoted by
‘U’. Also recall that the C5-MOX problem models a quarter of a reactor core.

5.2.4 Random Model 1: Uniform C5-MOX

The C5-MOX problem is a common benchmark used for spatially two (and three)-dimensional

neutron transport codes [43, 188, 212]. It is designed to mimic a small reactor with a heterogeneous

core, by modelling a quarter of the reactor and including reflective boundary conditions on the top

and left boundaries of the spatial domain (and no-inflow boundary conditions otherwise). The top

left corner of the spatial domain represents a block of fuel - a two-by-two alternating arrangement

of MOX and U02 fuel assemblies. The rest of the spatial domain (an L-shape) represents a shielding

material, here assumed to be homogeneous concrete. See [188, Fig.1], [43, configuration C5] or

Figure 5-6 for an illustration.

For the C5-MOX problem considered here, we make a number of simplifications. Firstly, as

already mentioned, the C5-MOX problem includes reflective boundary conditions (i.e. (1.1.13)) -

we will only consider the (vacuum) no-inflow boundary conditions, i.e.

ψ(r,Θ) = 0 , if Θ · n(r) < 0 , and r ∈ ∂D . (5.2.12)

Secondly, the C5-MOX problem is defined on the spatial domain [0, 64.26]2, whereas we consider

[0, 1]2. Finally, the C5-MOX problem also includes fuel assemblies with complex arrangements of

fission chambers, guide tubes and U02 and MOX fuel (of varying intensities), as illustrated in [212,

pg.15] and [188, Fig.3]. We simplify by ignoring the detail and instead consider a square cell of

fuel, for each individual assembly - the respective cross-sections are given in Table 5.3.

For the shielding material we consider a homogenised block of concrete and present the corre-

sponding cross-sections in Table 5.3. For details on how these cross-sections were computed, we

refer the reader ahead to Section 5.2.5.

We will now introduce uncertainty into this problem. The details are given in Problem 5.2.3.

Problem 5.2.3 Let z1, z2 ∼ U(−ε, ε) denote uniform random variables, with ε := 0.05. Define the
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spatial subdomains AMOX = AMOX(ω) and AU02
= AU02

(ω) by

AMOX := [0, 0.25 + 0.5z1]× [0.75− 0.5z2, 1] ∪ [0.25 + 0.5z1, 0.5 + z1]× [0.5− z2, 0.75− 0.5z2] ,

AU02
:= [0, 0.25 + 0.5z1]× [0.5− z2, 0.75− 0.5z2] ∪ [0.25 + 0.5z1, 0.5 + z1]× [0.75− 0.5z2, 1] .

Then, the (random) uniform C5-MOX problem is defined by (5.2.1), (5.2.2), (5.2.12) with: deter-

ministic absorption cross-section(s) for each sub-domain AMOX, AU02 and D\ (AMOX ∪AU02) (as

given by σA in Table 5.3); a (random) scattering cross-section given by a uniform random field

equipped with a Matérn covariance, with parameters λC = 1, σ2
var = 1 and η = 1.5 (and for each

sub-domain, the σS in Table 5.3 as its mean); and the (random) source term

f(r, ω) :=


1.5 , if r ∈ AMOX(ω)

1 , if r ∈ AU02(ω)

0 , otherwise

.

Three realisations of the scattering cross-section are given in Figure 5-6.

We will be interested in estimating E[Q], where Q is defined as

Q(ω) :=
1

|A(1)|

∫
A(1)

φ(ω, r) dr . (5.2.13)

That is, for each realisation ω ∈ Ω, Q is the spatial average of the scalar flux over the subdomain

A(1) := [0.75, 1]× [0, 0.25] ⊂ D.

Numerical Results

We will now present several numerical results on the application of Monte Carlo methods to

Problem 5.2.3. We consider the discretisation outlined in Section 5.2.2, with a uniform spatial mesh

(in each axes, with parameters Mx and My) and an N -point quadrature rule defined by (1.2.11).

We introduce a hierarchy of levels ` = 0, · · · , L corresponding to a sequence of discretisation

parameters defined by:

(Mx)` := 8
(
2`
)
, (My)` := 8

(
2`
)
, N` := 18 + 10` , d` = 2 ((Mx)` + (My)`) . (5.2.14)

Subsequently, we define the (spatial) mesh size for the DG method as h` :=
√

(Mx)−2
` + (My)−2

` ,

i.e. the (maximum) diameter of all (or any, because we assumed a uniform spatial mesh in the x and

y axes) rectangles Dh` ∈ Ch` , on the discretisation defined by level `. Moreover, to sample from the

uniform random field (for the scattering cross-section) in Problem 5.2.3, we use the KL expansion

(defined in Section 2.3.2) truncated to d` modes (the choice of d` is again chosen empirically). An

example of the resulting approximation of the scalar flux (for a single random realisation) is given

in Figure 5-7.

We approximate the quantity of interest (5.2.13) by

Q` =
1

|A|
∑

Dh`∈A

φ`Dh` , where A := {Dh` ∈ Ch` | Dh` ⊂ A(1)} ,

where φ`
Dh`

denotes the scalar flux approximation (computed using the discretisation parameters h`

and N`) averaged over the four evaluations for each cell Dh` ∈ Ch` , and |A| denotes the cardinality

(i.e. the number of cell elements contained within A(1)) of A(1). We recall that A(1) := [0.75, 1]×
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(a) Birds eye view (b) Side on view

Figure 5-7: An approximation to the scalar flux using Mx = My = 128 and N = 58, for a single
realisation of Problem 5.2.3. Shown at two different viewpoints.

αobs βobs γobs Estimated Observed
Monte Carlo

1.4 2.0 2.6
3.9 3.3

Multilevel 2.4 2.2

Table 5.4: Summary of computational ε-cost rates r, where for an estimator Q̂, E[C(Q̂)] = O(ε−r).
We estimate r in the following ways: ‘Estimated’ uses the numerically observed αobs, βobs, γobs;
‘Observed’ uses the observed rates from Figure 5-9.

[0, 0.25] ⊂ D.

We compare Q` to a reference solution calculated with Mx = My = 128 and N = 58. We

will measure the error E[|Q − Q`|], estimating the expectation using the standard Monte Carlo

estimator with 512 samples.

We will now study the efficiency of the various Monte Carlo methods we have discussed. We

start by numerically estimating the parameters α, γ and β from the assumptions (2.4.3), (2.4.4)

and (2.4.33) respectively. The corresponding numerical results are given in Figure 5-8. From here,

we observe that E [|Q−Q`|] = O(h1.4
` ), i.e. α ≈ 1.4. Likewise, we estimate β ≈ 2.0 and γ ≈ 2.6.

The rates are also summarised in Table 5.4.

Subsequently Table 5.4 gives details comparing the rates of; the numerically estimated ε-cost,

using the numerically observed parameters αobs, βobs, γobs within Theorem 2.4.4, and the nu-

merically observed ε-cost, estimated from Figure 5-9. We note reasonable agreement between the

‘estimated’ and ’observed’ computational cost rates.

Finally, in Figure 5-9 we present numerical results comparing the computational ε-cost of the

standard, quasi, multilevel and multilevel quasi-Monte Carlo methods, when estimating E[Q]. The

quasi-Monte Carlo samples are generated using an (extensible) randomised rank-1 lattice rule

(recall Section 2.4.2), equipped with the generating vector lattice-32001-1024-1048576.3600

(downloaded from [120]) and with S = 8 shifts.

We conclude that the multilevel methods (MLMC and MLQMC) and the quasi-Monte Carlo

method all outperform the standard Monte Carlo method by an order of magnitude in (observed)

computational ε-cost. However, we would generally expect the MLQMC method to outperform

QMC and MLMC and we do not observe that here. We note that this is not a surprise, as to

achieve (even the smallest) MSE accuracies presented in Figure 5-9, the number of QMC samples

on each level are small. We conjecture that, as ε→ 0, a further improvement for MLQMC will be

observed.

We will now consider a second spatially two-dimensional fixed source problem.

112



CHAPTER 5. PRACTICAL NUMERICAL TESTS

0 1 2 3 4
10-4

10-3

10-2

10-1

(a) E [|Q−Q`|]

0 1 2 3 4
10-8

10-7

10-6

10-5

V(Q)
V(Y)

(b) V [Q`] and V [Y`]

0 1 2 3 4
10-3

10-2

10-1

100

101

(c) E [C(Y`)]

Figure 5-8: Picture (a) represents an estimate of the bias error E [|Q−Q`|] for Problem 5.2.3.
Picture (b) represents the variance of Q` and the variance of the difference process Y` = Q`−Q`−1

(i.e. the variance reduction). Picture (c) is an estimate of the average cost, in seconds, to compute
a single realisation of Y`.
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Figure 5-9: Comparison of the computational cost of standard, quasi, multilevel and multilevel
quasi-Monte Carlo methods. Actual cost (in seconds) plotted against the achieved root-MSE
accuracy. Details for this plot are given in (4.3.1).
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Material Type Air Water Granite Cement
Volume Fraction 5% 4% 40% 51%

Table 5.5: The assumed composition of air, water, granite and cement in our model of concrete.

5.2.5 Random Model 2: Concrete Shielding

The second (fixed source) problem we consider is designed to mimic a concrete shielding problem,

on a 1 metre by 1 metre block of concrete. We assume there is a fixed source of particles defined

by

f(r) = exp (−5x) , for all r = (x, ·) ∈ D = [0, 1]2 ,

which for example, could be an artificial model for particles entering D from a nuclear reactor to

the left of D. The concrete is acting as a shield and contains a detector covering the subdomain

A(2) := [0.75, 1]× [0, 0.125] ⊂ D. Hence, our quantity of interest Q is defined by

Q(ω) :=
1

|A(2)|

∫
A(2)

φ(ω, r) dr , for ω ∈ Ω . (5.2.15)

We also assume no-inflow vacuum boundary conditions on all sides, i.e.

ψ(ω, r,Θ) = 0 , if Θ · n(r) < 0 , and r ∈ ∂D . (5.2.16)

for almost all realisations ω ∈ Ω, where n(r) denotes the outward facing normal vector at r.

The random cross-sections in this problem will come from a novel random and heterogeneous

model for the cross-sections in concrete. We discuss this below, but first let us give some details

on the microstructure of concrete.

Microstructure of Concrete

Concrete is a composite material that can be considered to be made up of three phases: a cement

paste (a binding agent made from a mixture of water and ordinary Portland cement); an aggregate

(often sand and rocks local to the reactor, such as granite or limestone); and an interfacial transition

zone (e.g. containing air pores and unreacted water) [4, 104, 182]. We will assume no supplementary

materials such as additives, admixtures or fly ash [4, 104], are added.

For our model of concrete we consider only components with length scales of nearly a centimetre

- such a model will consist of four main components; aggregate, air, cement and water. Initially,

and motivated by [14] and Figure 5-10, we assume that the concrete block has a composition

of 66.6̇% aggregate, 5% air, 8.3̇% cement and 20% water. We will adjust these percentages, for

reasons which are justified below. Our assumption on the final composition of the concrete is given

in Table 5.5.

The smallest of the components will be the pores of air present in the interfacial transition

zone. At the microstructure level there are many types of air void, see [104, Fig.11]. We will focus

on ‘entrapped air voids’ which have typical length scales of between 0.1-1cm [104, 146].

The ‘aggregate’ category is commonly split into two parts, coarse aggregates (e.g. granite or

limestone) and fine aggregates (e.g. sand). We will assume that the coarse aggregate is granite

and that the fine aggregate is sand, and we will also assume a 3:2 ratio between coarse and fine

[149]. Moreover, since both sand and cement are SiO2 (silicon dioxide) in the majority, we will

treat the fine aggregate as part of the total cement amount, as it should make little difference to

the overall concrete properties.
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Granite Dry Cement Wet Cement Water Air
σA 3.29E-03 5.66E-03 6.51E-03 7.37E-03 0.00
σS 7.88E-02 1.06E-01 4.09E-01 7.12E-01 0.00

Table 5.6: Assumed (absorption and scattering) cross-sections for the different components of
concrete. It is assumed that; granite has a 1% porosity, cement refers to Ordinary Portland
cement and the wet cement has a 1:1 ratio of water to dry cement.

The cement is assumed to be ordinary Portland cement [14]. Moreover, we assume that the

cement can vary in (water) saturation, from dry cement to wet (or saturated) cement (where we

assume saturated means the water-cement ratio is 1:1). We will assume that this requires 80% of

the water content (i.e. 16% out of the 20% total), which will be added to the total cement amount.

The assumptions outlined above leads us to our final assumed composition of concrete, as given

by Table 5.5.

Figure 5-10: A guide to the composition of concrete. Taken from [14].

In Table 5.6 we present typical values for the absorption and scattering cross-sections of air,

granite, cement and water.

Homogeneous Concrete

Given the assumed composition of our concrete in Table 5.5, we will now generate a model for

the nuclear cross-sections in a homogeneous slab of concrete. This model is used in the previously

discussed C5-MOX problem, see Section 5.2.4.

Considering (1.1.2) and observing the linear dependence of the (macroscopic) cross-sections

on the volume fraction of each nucleus type, we suggest the following model for the (scattering)

cross-section of homogeneous concrete:

σS(·) = w(air)σ
(air)
S + w(water)σ

(water)
S + w(granite)σ

(granite)
S + w(cement)σ

(cement)
S . (5.2.17)

For each material ‘m’ we use w(m) to denote its (percentage) volume within the concrete, as given

in Table 5.5, and use σ
(m)
S to denote its scattering cross-section, as given in Table 5.6. The value

of σ
(cement)
S is taken to be the average of the scattering cross-sections for dry and wet cement.

We apply a similar model to the absorption cross-section σA (with σ
(m)
S replaced by σ

(m)
A ), and

compute the total cross-section σ = σS + σA as usual.

Using the assumed material compositions in Table 5.5 and the given cross-sections in Table 5.6,

it is trivial to compute the cross-sections for the homogeneous concrete using (5.2.17) - they are

given in Table 5.3.
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Figure 5-11: Two realisations of the material distribution within the random concrete model. Each
uses a realisation of a Gaussian random field equipped with the artificial covariance (discussed in
Section 2.3.2) and the parameters λC = 0.025, σvar = 1, η = 0.5. We sample from the Gaussian
random field using the AC expansion, truncated to d = 3000 modes. The colours correspond to:
Dark Blue = Water; Light Blue = Air; Orange/Yellow = Wet/Dry Cement; Maroon = Coarse
Aggregate.

Modelling Heterogeneity in Concrete

In the literature, the structure (and cross-sections) of concrete is often assumed to be homogeneous

[6, 161, 182]. This assumption is even used in concrete mix design analysis [161], where the primary

goal is to find compositions of concrete that are efficient for some purpose (e.g. shielding).

The homogeneous concrete assumption is rather surprising since concrete is a highly heteroge-

neous material [182]. Moreover, the spatial position and even the exact quantities of each material

component can be unknown (they can even change over time [146, 182]). Within the literature

on heterogeneous models for concrete, some papers model the aggregate as ‘hard’ spherical grains

embedded within the cement [22]. Other papers use the SLD method developed in [184] which

disperses the materials in the concrete uniformly, and generates the cross-sections by homogenisa-

tion. Methods that rely on some level of homogenisation, such as the SLD method, are reported

to give large errors, see [211].

One other possibility is to model the heterogeneity as a realisation of a Gaussian random field,

with some chosen underlying covariance function. We previously discussed this in Chapter 2, where

the Karhunen-Loéve and Artificial Covariance6 expansions were suggested as methods to sample

from the (Gaussian) random field. Within the scope of concrete modelling, Gaussian fields have

gained increasing popularity in the last decade, see [6, 147, 173, 214].

More generally, random fields with an underlying covariance function have been commonly used

within the Uncertainty Quantification literature to represent random coefficients in a PDE, see for

example [48, 123, 181]. However, each realisation of these coefficients varies continuously across

the domain on which it is defined. In the context of concrete modelling, this means there are no

clear interfaces between ‘material of type A’ and ‘material of type B’, i.e. water and granite.

Therefore, we propose a novel alternative which aims to generate realisations of a random

field with clear and distinctive interfaces between material types (and hence cross-sections), but

where the material dispersion is spatially correlated (rather than the simpler method of uniformly

distributing each material type with no correlation). Simply put, this is achieved by the following

6we recall that this assumed our random field was equipped with some unknown (artificial covariance) with
eigenvalues ξi and eigenfunctions ηi(r) = cos

(
2πρ1i r1

)
cos
(
2πρ2i r2

)
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Υ(g) ∈ [0, 0.1) [0.1, 0.1125) [0.1125, 0.3675) [0.3675, 0.38) [0.38, 0.48) [0.48, 0.50]
Material Granite Air Cement Air Granite Water

Table 5.7: Chosen split of the domain of the standard normal distribution (for g ≤ 0) which defines
the map Mm, where Υ(·) denotes the cumulative standard normal distribution.

sequence of maps Mc ◦Mm ◦G(·, r) : Ω 7→ R, for all r ∈ D:

G(·, r) : Ω 7→ R , Mm : R 7→M , Mc : M 7→ R .

Gaussian RV, Gaussian RV to Material Type, Material Type to Cross-Section.

Simply put this means at each spatial point r, we sample from a Gaussian random variable (G),

associate this value with a material within the concrete (Mm), and then map the material type to

a deterministic cross-section (Mc). We will now give details on each of these steps.

We begin by generating a realisation of a Gaussian random field, equipped with some covariance

function, G(·, r) : Ω 7→ R, for all r ∈ D (or at least finitely many points in D prescribed by some

mesh). This gives us a notion of spatial correlation in the model. The remaining steps consider

a specific spatial point r ∈ D, where we use g = G(ω, r) to denote a realisation of the random

variable G(·, r), for ω ∈ Ω.

The second step converts the (realisation of a) random variable g to the set M ⊂ R+, where

each element of the set corresponds to a particular material type within the concrete - we note

that it is important to retain the underlying spatial correlation in this step. Intuitively, this is

achieved by assigning the material type based on where g lands on the domain of a univariate

standard normal distribution, as illustrated in Figure 5-12 and Table 5.7. More formally this is

given by the mapping Mm : R 7→ M, defined below in (5.2.18), which maps g ∈ R onto the set

M := {[0, 1], 2, 3, 4}. The elements of the set M each denote a material type within the concrete.

The integers {2, 3, 4} correspond to the spatial point being of {air,water, granite} type, respectively.

Whereas the interval [0, 1] corresponds to the spatial point being of cement type, withMm(g) = 0

corresponding to dry cement, Mm(g) = 1 corresponding to saturated cement and Mm(g) ∈ (0, 1)

corresponding to a combination of Mm(g) dry cement and (1−Mm(g)) saturated cement.

When g ≤ Υ−1(0.5) = 0, we define the map Mm by:

Mm(g) =



g−Υ−1(0.1125)
Υ−1(0.3675)−Υ−1(0.1125) , if g ∈

[
Υ−1(0.1125),Υ−1(0.3675)

)
2 , if g ∈

[
Υ−1(0.1),Υ−1(0.1125)

)
∪
[
Υ−1(0.3675),Υ−1(0.38)

)
3 , if g ∈

[
Υ−1(0.48),Υ−1(0.5)

]
,

4 , if g ∈
(
−∞,Υ−1(0.1)

)
∪
[
Υ−1(0.38),Υ−1(0.48)

)
,

(5.2.18)

where Υ−1(·) denotes the inverse cumulative normal distribution, with zero mean and unit variance

(recall that we use non-standard notation for the standard normal cumulative distribution function

(usually Φ), denoting it here by Υ, see Section 2.4.2). The definition is taken analogously for g > 0.

The particular split (also in Table 5.7) used in (5.2.18) is chosen so that: there is a small interfacial

transition zone of air pockets where cement paste does not bind properly with granite; the water

is trapped by clusters of granite rocks; the final interval g ∈
(
−∞,Υ−1(0.1)

)
allows the shape of

granite to become more rounded.

The final step is to assign the cross-sections at each spatial point, by assigning the value of

Mm(g) to the cross-section of that material. Formally this is given by the map Mc, but it is a
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Figure 5-12: An illustration of the connection between the split of the domain of a univariate
standard normal distribution and its assignment to a material type. Details are given in Table 5.7.
The colours correspond to: Dark Blue = Water; Light Blue = Air; Orange = Cement (of varying
saturation); Maroon = Coarse Aggregate.

simple assignment7 from material type to cross-section(s), as given in Table 5.6.

We emphasise that the composition in Table 5.5 will now be on average, as (5.2.18) and Table

5.7 allow for fluctuations in the percentage of each material in the concrete.

Numerical Results

We will now present numerical results relating to the concrete model discussed in this Section.

We will begin by describing the realisations of the concrete model, given in Figure 5-11, before

considering the effectiveness of Monte Carlo sampling method for the Uncertainty Quantification

problem.

Consider Figure 5-11 and recall that the colours correspond to: Dark Blue = Water; Light Blue

= Air; Orange/Yellow = Wet/Dry Cement; Maroon = Coarse Aggregate. We begin by noting that

the domain primarily consists of a cement mixture binding blocks of aggregate (of varying sizes).

The aggregate is well-distributed, non-spherical and takes a variety of sizes; from small pieces of

aggregate up to larger (or at least groups of small pieces) pieces. Moreover, there are a few small

air pores distributed throughout the cement, and a number of small pockets of water trapped

within larger blocks of the aggregate - where we recall that other non-trapped water is absorbed

into the cement. We note that, whilst it is not clear in the figure, the cement varies in saturation

of water (i.e. the orange/yellow colour is non-uniform).

To finish we now present numerical results on the application of Monte Carlo methods to the

concrete shielding problem discussed in Section 5.2.5. Unfortunately, the microscale detail (e.g.

air pores of size 0.1-1cm) on the modelled 1 metre by 1 metre domain for the concrete means

that our solver struggles to converge on the meshes available to us. To illustrate the Monte Carlo

algorithms on a similar problem we consider the following instead.

Problem 5.2.4 Consider a block of concrete containing air, water, granite and cement, with the

(average) percentage composition of each material given by Table 5.5. Moreover, define their re-

spective (deterministic) cross-sections by Table 5.6.

Then, the (random) concrete shielding problem is defined by (5.2.5), (5.2.6), (5.2.16), where

the (absorption, scattering and total) cross-sections are given by the sequence of maps Mc ◦Mm ◦
G(·, r) : Ω 7→ R (defined in Section 5.2.5), for all r ∈ D. We assume that the Gaussian random

field G(·, r), for all r ∈ D, is equipped with the artificial covariance (discussed in Section 2.3.2)

and uses the parameters; λC = 1, σvar = 1 and η = 0.5.

7strictly speaking, we should have separate notation (forMc) to distinguish between the assignment of scattering
and absorption cross-sections, but we avoid this technicality.
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Figure 5-13: Three realisations (left to right) of the scattering cross-sections from Problem 5.2.4,
presented on two spatial meshes; (Top) Mx = My = 128, (Bottom) Mx = My = 16. The colours
correspond approximately to: Yellow = Water; Dark Blue = Air; Lighter Blue = Dry/Wet Cement;
Blue = Coarse Aggregate.

To sample from the Gaussian random field we use the AC expansion (see Section 2.3.2). The

truncation parameter in the AC expansion is defined in (5.2.14).

That is, we use the same parameters to define the random field that were also used to generate

the realisations in Figure 5-11, except the correlation length is changed from λC = 0.025 to λC = 1.

Intuitively, this corresponds to ‘zooming in’ on a smaller part of the 1 metre by 1 metre spatial

domain (although formally we still define (5.2.1) – (5.2.2) over D := [0, 1]2). Three realisations, on

two different meshes, of the random field for the scattering cross-section are shown in Figure 5-13.

We consider the same discretisation outlined in Section 5.2.2, and also used in the numerical

results of Section 5.2.4 - with spatial parameters (Mx, My) and N angles. Moreover, we introduce

a hierarchy of levels ` = 0, · · · , L corresponding to a sequence of discretisation parameters defined

in (5.2.14) (and the spatial mesh size h` defined below). In Figure 5-14 we present an example of

an approximation to the scalar flux, for a single realisation of Problem 5.2.4.

The quantity of interest (5.2.15) is approximated by

Q` =
1

|A|
∑

Dh`∈A

φ`Dh` , where A := {Dh` ∈ Ch` | Dh` ⊂ A(2)} ,

where φ`
Dh`

denotes the scalar flux approximation (computed using the discretisation parameters h`

and N`) averaged over the four evaluations on each cell Dh` ∈ Ch` , and |A| denotes the cardinality

of A. We recall that A(2) := [0.75, 1]× [0, 0.125] ⊂ D.

We will compare {Q`} to a reference solution calculated with Mx = My = 128 and N = 58.

We measure the error E[|Q − Q`|] and estimate the expectation using the standard Monte Carlo

estimator with 256 samples.

We will now numerically estimate the parameters α, γ and β in the assumptions (2.4.3), (2.4.4)
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(a) Birds eye view (b) Side on view

Figure 5-14: An approximation to the scalar flux for a single random realisation of Problem
prob:conc. Shown at two different viewpoints.

αobs βobs γobs Estimated Observed
Monte Carlo

1.3 2.1 2.6
4.0 3.9

Multilevel 2.4 2.5

Table 5.8: Summary of computational ε-cost rates r, where for an estimator Q̂, E[C(Q̂)] = O(ε−r).
We estimate r in the following ways: ‘Estimated’ uses the numerically observed αobs, βobs, γobs;
‘Observed’ uses the observed rates from Figure 5-16.

and (2.4.33) respectively. The corresponding numerical results are given in Figure 5-15. From

here, we estimate α ≈ 1.3, β ≈ 2.1 and γ ≈ 2.6, with these rates also summarised in Table 5.8.

Furthermore, we give details in Table 5.8 comparing the rates of; the numerically estimated

ε-cost, using αobs, βobs, γobs and Theorem 2.4.4, and the numerically observed ε-cost, estimated

from Figure 5-16. We again note excellent agreement between the ‘estimated’ and ’observed’

computational cost rates.

Finally, we present numerical results in Figure 5-16 which compare the computational ε-cost

of the standard, quasi, multilevel and multilevel quasi-Monte Carlo methods, when estimating

E[Q]. Again, the quasi-Monte Carlo samples are generated using an (extensible) randomised rank-

1 lattice rule equipped with the generating vector lattice-32001-1024-1048576.3600 [120], and

S = 8 shifts.

We conclude that the multilevel methods outperform the single level methods (standard Monte

Carlo and quasi-Monte Carlo) by an order (and a half) of magnitude in (observed) computational

ε-cost. Moreover, the QMC rules do not appear to give us any gains over standard Monte Carlo

(although we again note that the number of QMC samples required to achieve the MSE accuracies

presented in Figure 5-16 were small and we may observe gains in the asymptotic limit ε→ 0).

As an aside, we now make the following remark regarding the use of the Multi-Index Monte

Carlo methods (which is discussed in Appendix D) to the Uncertainty Quantification problems

considered here.

Remark 5.2.5 In Figure 5-17 we present numerical results relating to the assumptions we made

for MIMC, i.e. Assumption D.0.1. We introduce a multi-index ` = [`1, `2, `3] ∈ I(L), the full

tensor set (D.0.1), corresponding to a sequence of discretisation parameters defined by:

(Mx)`1 := 8
(
2`1
)
, (My)`2 := 8

(
2`2
)
, N`3 := 18 + 10`3 ,
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Figure 5-15: Picture (a) represents an estimate of the bias error E [|Q−Q`|] for Problem 5.2.4.
Picture (b) represents the variance of Q` and the variance of the difference process Y` = Q`−Q`−1

(i.e. the variance reduction). Picture (c) is an estimate of the average cost, in seconds, to compute
a single realisation of Y`.
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Figure 5-16: Comparison of the computational cost of standard, quasi, multilevel and multilevel
quasi-Monte Carlo. Actual cost (in seconds) plotted against the achieved root-MSE accuracy.
Details for this plot are given in (4.3.1).
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Figure 5-17: Estimates of the bias error, variance reduction and cost growth with increasing levels
MIMC, for the C5-MOX problem from Section 5.2.4. `3 = 3 corresponds to N = 48.

and where we subsequently define the number of KL modes by

d`1,`2 = 2 ((Mx)`1 + (My)`2) .

The plots given in Figure 5-17 estimate the bias error, variance reduction and cost growth

with respect to the multi-index `. Increasing ‘levels’ in the x-axis corresponds to increasing the `1

parameter (i.e. Mx), whilst keeping all others fixed. Likewise, the y-axis corresponds to increasing

`2 (i.e. (My)). For these figures, we have fixed the number of angles to N = 48 (i.e. `3 = 3).

We note that we considered fixed angles here, because there is an additional difficulty when N

varies also - due to the stability link between the number of angles and the spatial mesh (e.g. recall

Theorem 3.3.11 in the spatially one-dimensional problem).

We observe that the bias error and cost plots behave as we perhaps might expect - with the bias

error hinting towards the optimal choice of I being either the total degree set, i.e. (D.0.14), or the

hyperbolic cross set, i.e. (D.0.3). However, the variance reduction does not exhibit the same clear

convergence rate.

This is perhaps not surprising since MIMC requires more regularity than MLMC and it is well

known that the scalar flux has limited regularity, regardless of the smoothness of the coefficients

[162]. For example, even for infinitely-differentiable cross-sections on D ⊂ R2, φ ∈ H3/2−ε(D),

for 0 < ε� 1, where we define

Hr(D) :=

{
q : D 7→ R | max

|i|∞≤r

∥∥∥∥ ∂q|i|1

∂yi11 ∂y
i2
2

∥∥∥∥
∞
<∞

}
, (5.2.19)

for some r ≥ 0. We note that the paper [162] proves a more general regularity result than φ ∈
H3/2−ε (i.e. for the radiative transport equation) - with its results extending to solution(s) of
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Fredholm integral equation(s) of the second kind, with at most a weakly singular kernel.

It is left as future work to analyse the MIMC variance reduction assumption (D.0.11) in the

context of radiative transport, and more generally in the context of hyperbolic integro-differential

equations.

123



CHAPTER 5. PRACTICAL NUMERICAL TESTS

124



Appendices

125





Appendix A

The Transport Equation

A.1 Weak Form of the Pure Transport Equation

We now prove why the weak form of (1.2.12) is given by (1.2.13). We recall that we consider the

problem: Find ψ(r,Θ) such that

[Θ · ∇+ σ(r)]ψ(r,Θ) = f(r,Θ) , (A.1.1)

for all r ∈ D, and for a given parameter Θ.

Throughout this section, we will use the notation set out in Section 1.2.3. We begin by mul-

tiplying (A.1.1) by a test function v (defined over a cuboid Dh), and integrating the resulting

expression over the support (Dh) of v. Hence, we can write∫
Dh

fv dr−
∫
Dh

σψv dr =

∫
Dh

[Θ · ∇ψ] v dr

=

∫
Dh

v [∇ ·Θψ] dr

=

∫
∂Dh

v ((Θψ) · n) dr−
∫
Dh

[(Θψ) · ∇v] dr ,

where the second equality holds because [Θ · ∇ψ] v = v [Θ · ∇ψ] = v [∇ ·Θψ], and the third

equality follows by Green’s first identity.

Therefore, we can construct the weak form of (A.1.1): Find ψ(r,Θ), such that for each Dh

−
∫
Dh

(Θ · ∇v)ψ dr +

∫
Dh

σψv dr +

∫
∂Dh

(F · n) v dr =

∫
Dh

fv dr ,

for all v defined on Dh. We note that we have introduced the numerical flux F in place of (Θψ).

A natural choice of F would be the upwind flux, defined in (5.2.3), however many other choice can

be considered. This is discussed further in Section 1.2.3.

A.2 Analytic Solution of Pure Transport equation

Consider: Find u(r) such that

[Θ · ∇+ σ(r)]u(r) = g(r) , (A.2.1)
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subject to the no-inflow boundary condition

u(r) = 0 , if Θ · n(r) < 0 ,

where Θ is a given parameter. This is analogous to the no-inflow boundary condition (1.1.11),

under the time-independent and mono-energetic assumptions. We present a derivation of the

analytic expression for the solution below, although it is also given in [32].

To find an expression for the solution to (A.2.1) with these boundary conditions, we will use

the method of characteristics. Let us re-write (A.2.1) as[
Θx

∂

∂x
+ Θy

∂

∂y
+ Θz

∂

∂z

]
u(r) = g(r)− σ(r)u(r) ,

which we consider along characteristics (where we abuse notation by writing g(s) = g(r(s)), and

similarly for σ(s) and u(s)) as[
∂x

∂s

∂

∂x
+
∂y

∂s

∂

∂y
+
∂z

∂s

∂

∂z

]
u(s) =

du

ds
= g(s)− σ(s)u(s) , (A.2.2)

with r = r(s) = [x(s), y(s), z(s)], where s denotes the length along the characteristic and where we

assume that 
∂x
∂s (s) = Θx

∂y
∂s (s) = Θy

∂z
∂s (s) = Θz

⇒


x(s) = x0 + sΘx

y(s) = y0 + sΘy

z(s) = z0 + sΘz

⇒ r(s) = r0 + sΘ , (A.2.3)

with r0 := (x0, y0, z0) ∈ ∂D. The equation r(s) = r0 + sΘ in (A.2.3) implies the characteristics

are straight lines in the direction Θ. Now, using (A.2.2) we can also write

du

ds
+ σ(s)u(s) = g(s) ,

which is a simple first-order ODE that can be solved using the integrating factor method. The

integrating factor can be computed as

Is = exp (τ(r0, r(s))) , (A.2.4)

where we define

τ(r(s1), r(s2)) :=

∫ s2−s1

0

σ(r(s1) + sΘ) ds , (A.2.5)

i.e. the integral is defined along the path of the characteristic. The quantity |τ(r(s1), r(s2))| is

often called the ‘optical length’ or ‘optical path’ [27].

Hence, using the integrating factor Is in (A.2.4), we can write

u(r(s)) = exp [−τ(r0, r(s))]

∫ d(r,Θ)

0

exp [τ(r0, r(s′))] g(r(s′)) ds′

=

∫ d(r,Θ)

0

exp [−τ(r(s′), r(s))] g(r(s′)) ds′ ,

where we define

d(r,Θ) := inf{s > 0 | r− sΘ = r0 ∈ ∂D} , (A.2.6)
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Figure A-1: A representation of the distance d(r,Θ), defined in (A.2.6).

as the distance from a point r with a direction Θ, to the boundary in the opposite direction (i.e.

−Θ). This is illustrated in Figure A-1. More explicitly, in 3D we can write d(r,Θ) as

d(r,Θ) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 ,

where at least one of x0, y0 and z0 will be zero, dependent on r0 ∈ ∂D.

Finally, we note that for problems where, in general, |Θ| 6= 1 (such as the 1D slab geometry

where µ ∈ [−1, 1]), then we can write

u(r(s)) = SΘg(r(s)) := |Θ|−1

∫ d(r,Θ)

0

exp
[
−Θ−1τ(r(s′), r(s))

]
g(r(s′)) ds′ , (A.2.7)

where the definition of d(r,Θ) in (A.2.6) changes to

d(r,Θ) := inf{s > 0 | r− s(Θ/|Θ|) = r0 ∈ ∂D} ,

and we have introduced the solution operator SΘ. The solution operator SΘ is at the heart of

why the pure transport problem (1.3.8) is useful in radiative transport. It provides a closed-form

solution for the angular flux (for each given angle), as illustrated by the following Proposition.

Proposition A.2.1 Let ψ be a solution to (1.3.1), (1.1.11). Then, ψ is uniquely determined by

ψ(r,Θ) = SΘ ((σS + νσF )φ+ f) (r) , (A.2.8)

where φ is the scalar flux, defined in (1.3.2).
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Appendix B

Fundamentals of Monte Carlo

The following results can be found in any graduate text or lectures notes, but since they are at

the heart of Monte Carlo sampling we outline them below for completeness. For clarity, we will

alter the notation used in the main body of this thesis. In particular, we replace the notation

Q̂h for the estimator of E[Q] by Q̂N , i.e. we remove the notion of approximating Q (removing

the discretisation parameter h) and emphasise the dependence of the estimator on the number of

samples N . Such a notation change ensures that the (N -sample) MC estimator (the sample mean)

given in (2.4.8), becomes

Q̂N :=
1

N

N∑
n=1

Q(Z(n)) ,

where {Z(n)}Nn=1 denotes a sequence of (possibly random fields corresponding to) i.i.d. MC samples.

Below, we outline the theoretical justification of why the Monte Carlo estimator converges.

Primarily, the convergence occurs because of the law of large numbers, although the Central Limit

Theorem allows us to state stronger statements under the additional assumption that Q ∈ L2(Ω),

defined in (2.1.3). We recall that we have a complete probability space (Ω,G,P), with sample space

Ω, probability measure P : G 7→ [0, 1].

B.1 Monte Carlo Convergence

Theorem B.1.1 ((Weak and Strong) Law of Large Numbers) Assume that {Q(Z(n))}Nn=1

are independent and identically distributed, with finite mean E
[
Q(Z(n))

]
= µ, for all n = 1, · · · , N .

Then,

Q̂N → µ , as N →∞ .

The weak law states that the convergence Q̂N → µ is in probability, i.e. for all ε > 0,

lim
N→∞

P
[
|Q̂N − µ| < ε

]
= 1 . (B.1.1)

A stronger statement, that the convergence is almost surely, i.e.

P
[

lim
N→∞

Q̂N = µ
]

= 1 , (B.1.2)

is given by the strong law.

Whilst the statements for the strong and weak law are slightly different, provided the random

variables have finite mean then the general statement is:
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� the distribution of Q̂N gets closer to the deterministic value E[Q] = µ, as N →∞.

The Central Limit Theorem, which we present next, takes the above statement further - stating

that, under the additional assumption that the random variables have finite variance:

� Q̂N is normally distributed around µ;

� with standard deviation
√
N .

The last of these motivates the Monte Carlo convergence result, presented in (2.4.10).

Theorem B.1.2 (Central Limit Theorem) Assume that {Q(Z(n))}Nn=1 are independent and

identically distributed, with finite mean E
[
Q(Z(n))

]
= µ and finite variance V

[
Q(Z(n))

]
= σ2, for

n = 1, · · · , N . Then,
√
N

Q̂N − µ
σ

d−→ N (0, 1) ,

where
d−→ denotes convergence in distribution. That is, if FN denotes the cumulative distribution

of Q̂N , then for every x such that Υ is continuous at x,

lim
N→∞

FN (x) = Υ(x) , (B.1.3)

where Υ denotes the cumulative standard normal distribution, defined in (2.4.16). Recall that we

use non-standard notation for the cumulative standard normal distribution (usually Φ), denoting

it here by Υ.

B.2 Unbiased Estimators

Now that we know the Monte Carlo estimator (2.4.8) converges to E[Q], we will prove that the

estimator is unbiased, i.e. E
[
Q̂N
]

= E[Q]. We also prove that the sample variance, introduced in

(2.4.12), is an unbiased estimator of V
[
Q̂N
]
.

As above, we assume that {Q(Z(n))}Nn=1 are independent and identically distributed, with finite

mean E
[
Q(Z(n))

]
= µ and finite variance V

[
Q(Z(n))

]
= σ2, for all n = 1, · · · , N .

Sample Mean

The proof that the MC estimator is unbiased is simple, by the linearity of the expectation and the

independence of Z(n), for all n = 1, · · · , N :

E
[
Q̂N
]

= E

[
1

N

N∑
n=1

Q(Z(n))

]
=

1

N

N∑
n=1

E
[
Q(Z(n))

]
=

N

N
µ = µ .

Sample Variance

Recall the definition of the sample variance in (2.4.12), i.e.

v̂N :=
1

N(N − 1)

N∑
n=1

(
Q(Z(n))− Q̂N

)2

,
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To see that v̂N is an unbiased estimator of V
[
Q̂N
]
, i.e. E

[
v̂N
]

= V
[
Q̂N
]

= σ2/N , write

N(N − 1)v̂N =

N∑
n=1

(
Q(Z(n))− Q̂N

)2

=

N∑
n=1

((
Q(Z(n))− µ

)
−
(
Q̂N − µ

))2

=

N∑
n=1

(
Q(Z(n))− µ

)2

− 2
(
Q(Z(n))− µ

)(
Q̂N − µ

)
+
(
Q̂N − µ

)2

=

(
N∑
n=1

(
Q(Z(n))− µ

)2
)
− 2

(
Q̂N − µ

) N∑
n=1

(
Q(Z(n))− µ

)
+N

(
Q̂N − µ

)2

=

(
N∑
n=1

(
Q(Z(n))− µ

)2
)
− 2N

(
Q̂N − µ

)2

+N
(
Q̂N − µ

)2

=

(
N∑
n=1

(
Q(Z(n))− µ

)2
)
−N

(
Q̂N − µ

)2

=

N∑
n=1

(
Q(Z(n))− µ

)2

−
(
Q̂N − µ

)2

,

where the fifth equality holds because
∑N
n=1Q(Z(n)) = NQ̂N , by (2.4.8). Then, applying the

expectation operator, we have

E[v̂N ] =
1

N(N − 1)
E

[
N∑
n=1

(
Q(Z(n))− µ

)2

−
(
Q̂N − µ

)2
]

=
1

N(N − 1)

(
N∑
n=1

E
[(
Q(Z(n))− µ

)2
]
− E

[(
Q̂N − µ

)2
])

=
1

N(N − 1)

(
N∑
n=1

V
[
Q(Z(n))− µ

]
− V

[
Q̂N − µ

])

=
1

N(N − 1)

(
N∑
n=1

V
[
Q(Z(n))

]
− V

[
Q̂N
])

=
1

N(N − 1)

N∑
n=1

(
σ2 − σ2

N

)
=

σ2

N
,

by the linearity of E[·] and since E
[
X2
]

= V[X] +E[X]2 = V[X], for a zero-mean random variable

X.
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Appendix C

Key Proofs within Multilevel

Monte Carlo

We will now present a proof (and a sketch of a proof) for two key results at the heart of multilevel

Monte Carlo - previously discussed in Section 2.4.3.

C.0.1 Proof of Theorem 2.4.2

We begin by proving the optimal (in the sense of minimising the cost of the estimator, whilst

achieving a given accuracy) distribution of the samples N` across the levels ` = 0, · · · , L, i.e.

the result of Theorem 2.4.2. We then present a sketch of the proof of the complexity theory for

multilevel Monte Carlo, i.e. Theorem 2.4.4.

Proof of Theorem 2.4.2. The statement in the lemma is equivalent to the following constrained

optimisation problem:

Minimize

L∑
`=0

N`C` , (C.0.1)

subject to

L∑
`=0

N−1
` V[Y`] =

1

2
ε2 . (C.0.2)

since the overall cost of the MLMC estimator is
∑L
`=0N`C` (i.e. the number of samples multiplied

by the cost of each, summed over all levels) and the variance of the MLMC estimator was given in

(2.4.30).

To find the optimal {N`} we use the method of Lagrange multipliers. We begin by defining the

Lagrangian L , with an associated Lagrange multiplier µ2, as:

L ({N`};µ) :=

L∑
`=0

N`C` + µ2

(
L∑
`=0

N−1
` V[Y`]−

1

2
ε2

)
.

We seek the µ and the {N`} that minimise L ({N`};µ).

Consider the derivative of L with respect to N`, for each ` = 0, · · · , L, and set it to zero, i.e.

0 =
∂L

∂N`
= C` − µ2V[Y`]N

−2
` ,
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then simple algebra implies that, for all ` = 0, · · · , L,

N` = µ

√
V[Y`]

C`
. (C.0.3)

Similarly, consider the derivative of L with respect to µ and set it to zero, i.e.

0 =
∂L

∂µ
= 2µ

(
L∑
`=0

N−1
` V[Y`]

)
− µε2 = 2

(
L∑
`=0

√
C`V[Y`]

)
− µε2 ,

where we have used (C.0.3). This implies that

µ = 2ε−2
L∑
`=0

√
C`V[Y`] . (C.0.4)

The proof finishes by combining (C.0.3) with (C.0.4) and taking the ceiling function of the

subsequent N`. The ceiling function ensures that the number of samples is an integer and also

ensures that the sampling error is sufficient small, i.e.
∑L
`=0N

−1
` V[Y`] ≤ 1

2ε
2.

We also note that it is simple to see this choice of N` is a minimum, rather than a maximum,

by considering the second derivative of L with respect to each N` - and then observing that µ,

V[Y`], N` > 0, for all ` = 0, · · · , L.

C.0.2 Sketch of the Proof of Theorem 2.4.4

The following proof is a sketch of those outlined in [80, 48].

Sketch of the Proof of Theorem 2.4.4. Assume for simplicity that h0 = 1 and that there

exists a c ∈ N \ {1} such that

h` = c−1h`−1 , for all ` = 1, · · · , L .

We note that this condition is not restrictive to this proof, and the results above generalise provided

that {h`}L`=1 satisfies c1 ≤ (h`−1/h`) ≤ c2, for all ` = 1, · · · , L and some constants 1 < c1 ≤ c2 <∞
[197].

There are two main parts to the proof. Firstly, we show that there exists an L which ensures

the squared bias error is less than ε2/2. Let us define

L :=
⌈
α−1 logc

(√
2c3ε

−1
)⌉

, (C.0.5)

where d·e denotes the ceiling function and c3 denotes the hidden constant in (2.4.3). Moreover,

let Q̂MLMC
h denote the MLMC estimator defined in (2.4.29). Then, by noting that (C.0.5) implies

c3h
α
L = c3c

Lα ≤ (1/
√

2)ε, as well as using E
[
Q̂MLMC
h

]
= E[Qh] and the assumption (2.4.3), we

can write (
E
[
Q̂MLMC
h

]
− E[Q]

)2

= (E [Qh]− E[Q])
2

= c23h
2α
L ≤ ε2

2
.

The second steps involves the consideration of three possible cases: β > γ; β = γ; and β < γ.

For each case, we compute the optimal N` by using (2.4.32), from which it follows that the sampling

error V
[
Q̂MLMC
h

]
≤ ε2/2 (see e.g. the proof of Lemma 2.4.2). Moreover, recalling (2.4.32) and
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using the assumptions (2.4.4) and (2.4.33), we can write

N` − 1 = ε−2

(
L∑
`=0

√
V[Y`]C`

)√
V[Y`]

C`
≤ cε−2

(
L∑
`=0

h
1
2 (β−γ)

`

)
h

1
2 (β+γ)

` , (C.0.6)

for some constant c > 0. Therefore, the total cost of the MLMC estimator is
∑
`N`C` ≤

cε−2
(∑

` h
1
2 (β−γ)

`

)2

and

∑
`

h
1
2 (β−γ)

` ≤


(L+ 1)h

1
2 (β−γ)
0 = (L+ 1)cLh

1
2 (β−γ)

L , if β > γ

(L+ 1) , if β = γ

(L+ 1)h
1
2 (β−γ)

L , if β < γ

.

Then the resulting bound on the computational cost, i.e. (2.4.34), follows by using hL ∼ ε1/α and

the assumptions α ≥ 1
2 min{β, γ} and ε < exp(−1).
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Appendix D

Further Variance Reduction:

Multi-Index Monte Carlo

For MLMC we considered first-order differences Y` = Q`−Q`−1, with the levels parameterised by

a scalar ` ∈ N. The differencing allowed cheap and inaccurate estimates of E[Qh] to be corrected

by estimators of decreasing variance (as ` increases). Multi-Index Monte Carlo (MIMC) aims to

extend this idea, by considering higher-order differences across multi-dimensional levels (formally

a multi-index) with the aim of achieving improved variance reduction over MLMC.

The theoretical foundations of MIMC were only very recently introduced in [99]. Since then,

the method has been successfully applied to problems concerning elliptic PDEs [172] and stochastic

differential equations [101]. Also, like MLMC, the ideas are complimentary to QMC estimators

[172] and stochastic collocation [98].

As MIMC uses a hierarchy of discretisations, in much the same way as MLMC, it is perhaps

easiest to explain MIMC by comparing it to MLMC and noting the two key differences. The

remaining formulae within MIMC are clear extensions of those in MLMC. For simplicity (see ahead

to Remark D.0.6), let s = sdet denote the dimensionality of the deterministic model (e.g. PDE)1. In

the case of the full time-dependent RTE (1.1.5), which is defined on a subset of R3×S2×R+×R+,

then s = sdet = 7.

The first difference arises from the choice of levels. In MLMC we considered a hierarchy of

scalar-valued levels N 3 ` = 0, · · · , L, corresponding to a decreasing sequence of discretisation

parameters h0 > · · · > hL, with h` ∈ R for all ` = 0, · · · , L. For example, in the context of a

mesh-based solver, this could correspond to a h−1
` ×· · ·×h

−1
` mesh. Hence, if we increase the level

(i.e. ` → ` + 1) the corresponding mesh is typically h−1
`+1 × · · · × h

−1
`+1, for h−1

` < h−1
`+1, i.e. the

mesh is refined for all s dimensions.

On the other hand, MIMC defines levels by a multi-index, i.e. a vector ` = [`1, · · · , `s] ∈ Ns.
That is, the levels ` are s-dimensional and correspond to a set of discretisation parameters h` ∈ Rs.
The additional flexibility of h` ∈ Rs (over h` ∈ R) allows us to selectively choose which directions

we want to refine in, without needing to refine elsewhere. For the example of a mesh-based method

(and assuming s = 2), the discretisation parameter h` corresponds to a h−1
`1
× h−1

`2
mesh. Then,

when refining we can consider the meshes h−1
`1
× h−1

`2
and h−1

`1+1 × h
−1
`2

(i.e. `1 → `1 + 1 only),

without needing to consider h−1
`1+1 × h

−1
`2+1 (i.e. both `1 → `1 + 1 and `2 → `2 + 1).

Of course, there is an upper limit for the possible discretisation in each dimension. In MLMC

this was given by the scalar L = LMLMC ∈ N. For MIMC we consider another multi-index

1The s here is not to be confused with the number of shifts S for randomised QMC estimators
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L = [L1, · · · , Ls] ∈ Ns which, along with some given rule, subsequently defines an index set I(L).

We are then restricted to levels (i.e. multi-indices) ` ∈ I(L). For simplicity in the remaining

discussion, we will only consider the case where Li = L ∈ N, for a given L ∈ N, for all i = 1, · · · , s.
Hence, we replace the notation L ∈ Ns and I(L) in MIMC, with L and I(L).

The choice of I = I(L) is fundamental to the effectiveness of MIMC. For now, let us consider

perhaps the simplest I, the full tensor index set defined by

I(L) := { ` ∈ Ns0 | `i ≤ L , for all i = 1, · · · , s } . (D.0.1)

Other common examples of index set include: the (weighted) total degree index set [99]

I(L) := { ` ∈ Ns0 | ` · δ ≤ L } , (D.0.2)

where δ = [δ1, · · · , δs] ∈ (0, 1]s denotes a vector of given weights satisfying δ · 1 = 1; and the

(weighted) hyperbolic cross index set [19, 172]

I(L) :=

{
` ∈ Ns0 |

s∏
i=1

max{1, δi`i} ≤ L

}
, (D.0.3)

where δ = [δ1, · · · , δs] denotes a vector of given weights satisfying
∏s
i=1 δi = 1 and δi > 0, for all

i = 1, · · · , s. There is also scope for algorithms that adaptively build index set(s), e.g. [171] which

is based on an adaptive algorithm in the field of sparse grids [77]. Hence we have a plethora of

possibilities for I - and the only requirement is that I is a downward closed set [172]. That is, if

` ∈ I , and k ≤ ` ⇒ k ∈ I ,

where here k ≤ ` denotes elementwise inequality, i.e. ki ≤ `i, for all i = 1, · · · , s.

The second difference between MLMC and MIMC lies in the choice of differencing. For MLMC,

we considered a first order difference between neighbouring levels ` and (`−1), i.e. Q`−Q`−1. For

MIMC we also consider first-order differences between neighbouring levels but, due to the multi-

dimensional structure of the index set I, this has a different meaning. In particular, we use the

first-order mixed difference operator ∆ := ⊗si=1∆i, defined as the tensor product of the first-order

differences ∆i, i.e.

∆iQ` :=

Q` −Q`−ei , if `i ≥ 1

Q` , if `i = 0
, (D.0.4)

where ei denotes a vector of zeroes, with a single one at the ith component. For an example of

∆Q` when s = 2, see [99, pg.4] or [172, pg.5]. An example for s = 3 is given below:

∆Q[`1,`2,`3] = ∆3∆2∆1Q[`1,`2,`3] = ∆3∆2

(
Q[`1,`2,`3] −Q[`1−1,`2,`3]

)
= ∆3

[(
Q[`1,`2,`3] −Q[`1−1,`2,`3]

)
−
(
Q[`1,`2−1,`3] −Q[`1−1,`2−1,`3]

)]
=
[(
Q[`1,`2,`3] −Q[`1−1,`2,`3]

)
−
(
Q[`1,`2−1,`3] −Q[`1−1,`2−1,`3]

)]
−
[(
Q[`1,`2,`3−1] −Q[`1−1,`2,`3−1]

)
−
(
Q[`1,`2−1,`3−1] −Q[`1−1,`2−1,`3−1]

)]
.

Note that we now require (up to) 2s estimates of Q, over a variety of meshes.

Once these changes in levels and differencing have been established, the methodology follows

MLMC. Consider the full tensor index set I, defined in (D.0.1), then we can take advantage of
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(a) Full Tensor (b) Total Degree with equal weights

Figure D-1: The allowed s = 2 dimensional meshes for two types of index sets I. The selected
meshes for increasing L are those to the bottom left of the green, red and blue dotted lines,
respectively.

linearity of the expectation by writing

E[Qh] =
∑
`∈I

E[Y`] , with Y` := ∆Q` , (D.0.5)

and Q` := 0 when `i = −1, for any i = 1, · · · , s. Each E[Y`] is then estimated individually. For

example, using a standard MC estimator with N` samples to estimate E[Y`], leads to the MIMC

estimator

Q̂MIMC
h :=

∑
`∈I

ŶMC
` =

∑
`∈I

1

N`

N∑̀
n=1

Y`

(
Z(`,n)

)
, (D.0.6)

where {Z(`,n)}N`
n=1 denote samples of the random field corresponding to i.i.d. MC samples at ` ∈ I,

chosen independently from samples on other levels. As with (2.4.31), the independence allows us

to re-write the MSE (2.4.2) for the MIMC estimator (D.0.6) as:

e(Q̂MIMC
h )2 = (E [Q−Qh])

2
+
∑
`∈I

N−1
` V[Y`] . (D.0.7)

Moreover, we can again use the method of Lagrange Multipliers to show the sequence {N`}, defined

by [99, eq.(10)]

N` =

⌈
2ε−2

(∑
`∈I

√
V[Y`]C(Y`)

)√
V[Y`]

C(Y`)

⌉
, for all ` ∈ I , (D.0.8)

minimises the cost of (D.0.6) whilst ensuring the sampling error
∑

`∈I N
−1
` V[∆Q`] ≤ ε2/2. The

proof is analogous to (2.4.32). Furthermore, as in the MLMC case, we note that each of the terms

in Y` are computed using the same realisation(s) Z(`,n), for n = 1, · · · , N`.

To bound the computational ε-cost for the MIMC estimator, we make the following assumptions

(Assumption D.0.1) on the expectation, variance and cost of the difference process Y` = ∆Q`. We

note that, for simplicity in the presentation, we will assume that

h`i =

(
1

2

)`i
, for all `i = 0, · · · , L , and for all i = 1, · · · , s . (D.0.9)
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Assumption D.0.1 Assume there exists vectors α,β,γ ∈ (R+)
s

and βi ≤ 2αi, for all i =

1, · · · , s, such that

|E[∆Q`]| = O

(
s∏
i=1

(
1

2

)`iαi)
, (D.0.10)

V[∆Q`] = O

(
s∏
i=1

(
1

2

)`iβi)
, (D.0.11)

C(∆Q`) = O

(
s∏
i=1

(
1

2

)−`iγi)
. (D.0.12)

These assumptions are analogous to (2.4.3), (2.4.33) and (2.4.4), although we emphasise that

the multi-index parameters α, β, γ are different to the corresponding α, β, γ parameters in MLMC.

Moreover, note that Assumption D.0.1 implies that MIMC requires mixed regularity of a certain

order, whereas MLMC requires only ordinary regularity of the same order [99].

Under the assumptions (D.0.10) – (D.0.12), and with I taken as the full tensor index set

(D.0.1), [99, Thm 2.1] proved the following theoretical complexity estimate. We also note that

the proceeding theory also applies to the more general case where Assumptions D.0.1 hold for an

unbiased estimator of ∆Q`.

Theorem D.0.2 Consider Assumption D.0.1 for parameters α, β, γ and ` ∈ I(L), the full tensor

index set defined in (D.0.1). Further assume that

s∑
i=1

min{βi, γi}
αi

< 2 .

Then, for any ε > 0, there exists an L ∼ log(ε−1) and a sequence {N`}`∈I such that e
(
Q̂MIMC
h

)
≤

ε2 and

E
[
Cε(Q̂MIMC

h )
]

= O
(
ε−2−

∑s
i=1 ri

)
, (D.0.13)

where for each i = 1, · · · , s we define

ri :=

0 , if βi ≥ γi
γi−βi
αi

, if βi < γi
.

For each i ∈ {1, · · · , s} such that βi = γi, there is an additional log(ε−1)2 factor on the right hand

side of (D.0.13).

As we have already mentioned, the choice of index set I is fundamental to the efficiency of

MIMC. In general the full tensor index set is not the optimal index set, and the cost in (D.0.13)

can be higher than the cost of the MLMC estimator. Subsequently, the paper [99] analytically

computes a (quasi)-optimal index set (following the knapsack methodology in [153]), under the

assumptions (D.0.10) – (D.0.12). They show that a (quasi)-optimal index set is of (weighted) total

degree type ((D.0.2)), i.e.

I(L) :=

{
` ∈ Ns0

∣∣∣∣ δ · ` ≤ L } , (D.0.14)

where δ = [δ1, · · · , δs] ∈ (0, 1]s denotes a vector of (quasi-optimal and positive) weights, defined

by

δi := cδ log(2)

(
αi +

γi − βi
2

)
, for i = 1, · · · , s , (D.0.15)
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where cδ denotes a normalisation constant to ensure
∑s
i=1 δi = 1. The weights are positive and

normalisable due to the assumption that γi > 0 and βi ≤ 2αi (from Assumption D.0.1), for all

i = 1, · · · , s.
For simplicity of presentation in the remaining chapter, we will assume that the set {i ∈

{1, · · · , s} | δ−1
i αi = minj δ

−1
j αj} contains only a single element, i.e. e = 1 (using the e notation

as defined in [99, eq.(34a)]). We refer the reader to [99, eq.(34) and eq.(36)] for further details.

Remark D.0.3 The L = LMIMC−QO used in (D.0.14) is only proportional to the L = LMLMC

used in MLMC (and MIMC equipped with full tensor set (D.0.1)). In particular, LMIMC−QO ∼
κLMLMC , where we define

κ := max
i∈{1,··· ,s}

δi (log(2)αi)
−1

.

For the case αi = αj, βi = βj and γi = γj, for all i, j = 1, · · · , s (the so-called isotropic case),

then LMIMC−QO ∼ s−1LMLMC .

In [99, Lemma 2.2], a theoretical complexity estimate is proven using total degree sets for

arbitrary choices of δ, i.e. (D.0.2), but we do not give details here. Subsequently, a complexity

estimate for the (quasi)-optimal index set (D.0.14) is proven in [99, Thm 2.2] and we present it

below.

Theorem D.0.4 Consider Assumption D.0.1 for parameters α, β, γ and ` ∈ I(L), the particular

weighted total degree index set defined in (D.0.14). Then, for any ε > 0, there exists an L ∼
κ log(ε−1) (with κ defined in Remark D.0.3) and a sequence {N`}`∈I such that e

(
Q̂MIMC
h

)
≤ ε2

and

E
[
Cε(Q̂MIMC

h )
]

= O
(
ε−2−2 max{0,χ} log(ε−1)p

)
, (D.0.16)

where we define

χ :=
1

2
max

i∈{1,··· ,s}

(
γi − βi
αi

)
,

and where p is given in Table D.1 - which uses the following parameters x, y and z:

x := | {i ∈ {1, · · · , s} | (2αi)
−1(γi − βi) = χ} | ,

y := | {i ∈ {1, · · · , s} | βi = γi} | , z := min
i∈{1,··· ,s}

γ−1
i (2αi − βi) ≥ 0 .

χ χ < 0 χ = 0 χ > 0

z z ∈ R+ z = 0 z > 0 z = 0 z > 0

s s ∈ N s ≤ 2 s > 2 s ∈ N s ∈ N s ∈ N
p 2y 2y 2y + s− 3 2y s− 1 + 2(x− 1)(χ+ 1) 2(x− 1)(χ+ 1)

Table D.1: The value of p, given s and the parameters χ, x, y and z defined in Theorem D.0.4.

We can immediately see the benefit of using (D.0.14) over the full tensor set (D.0.1). Specifically,

the rate of the computational ε-cost for the full tensor set grows additively for each i = 1, · · · , s
where γi−βi ≥ 0 (see the sum in the exponent in (D.0.13)). In comparison, the rate for the quasi-

optimal set (D.0.14) is only affected by the ‘worst direction’, i.e. arg maxi∈{1,··· ,s}(γi − βi)/αi.
However, there are a number of subtleties to the use of the quasi-optimal index set (D.0.14)

within a MIMC estimator. The first was previously discussed in Remark D.0.3 and we discuss a

second in Remark D.0.5.
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Remark D.0.5 The equality in (D.0.5) no longer holds for I = IQO, the quasi-optimal set

(D.0.14). This means that the MIMC estimator associated with IQO is a biased estimator.

For example, consider the case where L = LMIMC−QO = LMLMC and let IFT denote the

full-tensor set (D.0.1). Then, the additional error is given by∑
`∈(IFT(L)\IQO(L))

E [Y`] ≈
∑

`∈(IFT(L)\IQO(L))

ŶMC
` .

Therefore, we must choose L = LMIMC−QO ≥ LMLMC sufficiently large to ensure that the bias

constraint (E[Q−QL])
2 ≤ ε2/2 is satisfied for IQO. The required LMIMC−QO, for general total

degree sets (D.0.2), is proven in [99, Lemma 2.2] (this is where the definition of κ in Remark D.0.3

comes from).

However, LMIMC−QO is difficult to estimate in practice and hence [99, pg.23] proposes a heuris-

tic way (for a MIMC estimator associated with any index set I) of ensuring that the bias is suffi-

ciently small - by estimating

|E [Q−QL]| ≈
∣∣∣∣ ∑

`∈∂I(L)

ŶMC
`

∣∣∣∣ =

∣∣∣∣ ∑
`∈∂I(L)

1

N`

N∑̀
n=1

Y`

(
Z(`,n)

) ∣∣∣∣ , (D.0.17)

and iteratively increasing L (by one) until the bias constraint is satisfied (for a given ε). Here ∂I
denotes the upper2 boundary of the index set.

The lack of equality in (D.0.5) and the sparsity of IQO compared with IFT, could lead one

to worry that we require LMIMC−QO � LMLMC and that no real cost gains can be achieved.

However, it is reasonable (under certain assumptions on Q) to expect otherwise, if we study the

theoretical foundations of sparse grids [189, 76, 39]. We will briefly explain below, in the context

of interpolating some function Q.

The initial theory into sparse grids compared the standard tensor product construction (e.g.

see [39, eq.(3.17)] and the surrounding discussion) with the Smolyak sparse grid construction [189]

(e.g. [39, eq.(3.61)]3).

The standard tensor product selects ` such that |`|∞ := max{|`i|}si=1 ≤ L - that is, it is

comparable to the full tensor set (D.0.1). This comparison can be also be made intuitively by

comparing the left plot in Figure D-1 with [39, Fig. 3.4]. It can easily be shown that the associated

cost with this set grows exponentially with s, i.e. O(Ls) if we consider the isotropic case with O(L)

terms in each direction. Moreover, provided the function Q has integrable mixed derivatives (with

respect to its argument) up to order r, then the convergence of the error can be shown to be

O(L−r) [76] (see also [39] for a simpler proof when r = 2).

On the other hand, the standard sparse grid construction selects ` such that |`|1 :=
∑s
i=1 |`i| ≤

(L+ s) - that is, it is comparable to the total degree set (D.0.14) with equal weights. This compar-

ison can be also be made intuitively by comparing the right plot in Figure D-1 with [39, Fig. 3.5].

In this case, it can be shown that the associated cost is O
(
L log(L)(d−1)(r−1)

)
, that is, the cost is

almost dimension-independent (except for a logarithmic term). Furthermore, despite the substan-

tial cost reduction (for large d), it can be shown that the convergence of the error, with respect

to L, is only affected by a dimension-dependent logarithmic term, i.e. O
(
L−r log(L)(d−1)(r−1)

)
.

These results are given in [189, 76], and proven for the case r = 2 in [39].

2[99] refer to it as the ‘outer boundary’, which we feel is misleading, e.g. it does not generally include ` ∈ I,
where `i = 0, for any i = 1, · · · , s

3we will alter the notation in [39] to make it comparable to our notation, i.e. d→ s and n→ L+ 1
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Therefore, for our problem of estimating E[Q] for some random variable Q, it would be reason-

able to expect substantial cost gains when using the total degree set (D.0.14) instead of the full

tensor set (D.0.1), provided Q has bounded mixed derivatives of a certain order. This forms part

of Assumption D.0.1.

Remark D.0.6 Strictly speaking, s denotes a chosen dimensionality for MIMC, where s can take

any value between 1 and sdet, the dimension of the deterministic model (e.g. PDE). For the

preceding discussion we assumed s = sdet. For the case s < sdet, we must select dimensions within

the deterministic model for which we want the mesh refinement to be coupled. An extreme example

involves the coupling of all sdet dimensions (i.e. s = 1), this is simply multilevel Monte Carlo.

Standard Monte Carlo is then a further extension where the ‘differencing’ operator is replaced by

the identity operator.
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Appendix E

Numerical Analysis of the

Transport Equation

In this appendix, we will prove the results that were stated without proof in Chapters 3 and 4. In

particular, we prove the bound on the function Ein(·) used in Theorem 3.2.7, we prove that the

left and right sides of (3.3.27) are equivalent, we prove a simple bound on a norm of the operator(
I − Ph

)
i.e. (3.3.9), and finally that the measure of the set of ‘bad’ samples Ωbad goes to zero as

the mesh size h goes to zero - which is discussed in Section 4.1.1.

E.1 Upper bound on Ein(.)

Lemma E.1.1 For Ein(·) defined by (3.2.11) and [1, footnote on pg.228], i.e.

Ein(z) =

∫ z

0

1

t
(1− exp(−t)) dt , for all z > 0 ,

then,

0 ≤ Ein(z) ≤ z .

Proof. By the Leibniz integral rule, the first two derivatives of Ein are

Ein′(z) = z−1(1− exp(−z)) , and Ein′′(z) = z−2 exp(−z) (z − exp(z) + 1) ,

which are differentiable functions on (0,∞). Moreover, since

lim
z→0

Ein′(z) = 1 ,

where for small z, we use exp(−z) ≈ 1− z, and

lim
z→∞

Ein′(z) = 0 ,

and Ein′′(z) < 0, for all z > 0, then Ein′ must be non-vanishing on (0,∞). Hence,

0 ≤ Ein′(z) ≤ 1 , for all z ∈ (0,∞) .
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Therefore by the Mean Value Theorem then, for all z > 0 there exists c ∈ (0, z) such that

Ein(z)− Ein(0) = zEin′(c) .

The desired result follows since Ein(0) = 0 and Ein′(c) ∈ [0, 1], for all c > 0.

E.2 Equivalence of the Stability Operator

Lemma E.2.1 Let Kh,N and Ph be the operators defined in Chapter 3. Then, the following

equality holds

(
I −Kh,NPhσS

)−1
= I + Kh,N

(
I − PhσSKh,N

)−1 PhσS . (E.2.1)

Proof. Consider the following trivial statement, and then manipulate:

Kh,N −Kh,NPhσSKh,N = Kh,N −Kh,NPhσSKh,N

⇒ Kh,N
(
I − PhσSKh,N

)
=
(
I −Kh,NPhσS

)
Kh,N

⇒ Kh,N =
(
I −Kh,NPhσS

)
Kh,N

(
I − PhσSKh,N

)−1

⇒ Kh,NPhσS =
(
I −Kh,NPhσS

)
Kh,N

(
I − PhσSKh,N

)−1 PhσS

⇒
(
I −Kh,NPhσS

)
− I = −

(
I −Kh,NPhσS

)
Kh,N

(
I − PhσSKh,N

)−1 PhσS

⇒ I −
(
I −Kh,NPhσS

)−1
= −Kh,N

(
I − PhσSKh,N

)−1 PhσS

⇒
(
I −Kh,NPhσS

)−1
= I +Kh,N

(
I − PhσSKh,N

)−1 PhσS ,

which is the result.

E.3 Upper bound on (I − Ph)

Lemma E.3.1 Recall the definition of Ph from Section 3.1.3. Then,
(
I − Ph

)
: Cξpw 7→ Cpw with

bound

‖(I − Ph)g‖∞ ≤ hξ‖g‖ξ,pw ,

for any g ∈ Cξpw, with 0 < ξ ≤ 1.

Proof. Re-write

‖(I − Ph)g‖∞ ≤ max
j

sup
x∈Ij
|g(x)− g(xj−1/2)|

≤ max
j

sup
x∈Ij
|x− xj−1/2|ξ

|g(x)− g(xj−1/2)|
|x− xj−1/2|ξ

≤ hξ‖g‖ξ,pw ,

where h := maxj hj and we define the piecewise Hölder norm, ‖ · ‖ξ,pw, in Section 3.1. The proof

that (I − Ph) maps into Cpw follows since Ph : Cξpw 7→ Cpw.
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E.4 Measure of Ωbad, with respect to h

We will now justify the comment we made, just above Theorem 4.1.3, that “Due to Theo-

rem 4.1.1(a) the measure of the set Ωbad converges to 0 in the limit, as h → 0”. That is: Show

that

lim
h→0

P(Ωbad(h)) → 0 , (E.4.1)

where we note that we can partition our sample space Ω by

Ω = {ω ∈ Ω | R3 (σ(ω, ·), σS(ω, ·)) ≤ h−η} ∪ {ω ∈ Ω | R3 (σ(ω, ·), σS(ω, ·)) > h−η}︸ ︷︷ ︸
=: Ωbad(h)

.

The R3(σ, σS) is defined in (3.3.28) and we have proven that R3(σ, σS) ∈ Lp(Ω), for all p ∈ [1,∞),

in Theorem 4.1.2. Moreover, for simplicity we again assume (4.1.4), i.e.

N = N(h) = max
{
dch−min{1,η}e , 4

}
,

for some constant c > 0 independent of h and ω. See also (4.1.5).

Let us consider the more general problem, where we have a non-empty set X, an associated

measure µ and a function f ∈ L1(X). Consider the following problem: Show that

lim
H→∞

µ ({x ∈ X | f(x) > H}) → 0 , (E.4.2)

which is equivalent to showing that

lim
H→∞

µ ({x ∈ X | f(x) ≤ H}) → µ(X) . (E.4.3)

Then, the problem (E.4.1) is a specific case of problem (E.4.3), where X = Ω, µ = P, f = R3(σ, σS)

and H = h−η. We will now prove (E.4.3) holds.

Since f ∈ L1(X), the function f must be almost surely finite. That is, there exists a constant

M <∞ and a set F ⊂ X with zero-measure, i.e. µ(F ) = 0, such that

f(x) ≤

M , for all x ∈ (X \ F ) ,

∞ , otherwise .
(E.4.4)

Hence, we have the trivial result that

µ(X \ F ) = µ ({x ∈ X | f(x) ≤M})

≤ lim
H→0

µ ({x ∈ X | f(x) ≤ H}) (E.4.5)

≤ µ(X) ,

since the set is non-decreasing. Moreover,

µ(X \ F ) = µ(X ∩ F c) = µ(F c) = µ(X)− µ(F ) = µ(X) ,

and therefore using the bounds either side of (E.4.5),

µ(X) ≤ lim
H→0

µ ({x ∈ X | f(x) ≤ H}) ≤ µ(X) .
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Hence, we have proven that (E.4.3) holds - and therefore (E.4.1).
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[4] T. Akçaoğlu, M. Tokyay, and T. Çelik. Effect of coarse aggregate size and matrix quality on

ITZ and failure behavior of concrete under uniaxial compression. Cement Concrete Comp.,

26(6):633–638, 2004.

[5] R.E. Alcouffe. Diffusion synthetic acceleration methods for the diamond-differenced discrete-

ordinates equations. Nucl. Sci. Eng, 64(2):344–355, 1977.

[6] D.L. Allaix and V.I. Carbone. Discretization of 2d random fields: A genetic algorithm

approach. Eng. Struct., 31(5):1111–1119, 2009.

[7] E.J. Allen, H.D. Victory Jr, and K. Ganguly. On the convergence of finite-differenced multi-

group, discrete-ordinates methods for anisotropically scattered slab media. SIAM J. Numer.

Anal., 26(1):88–106, 1989.

[8] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous

Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

[9] M. Asadzadeh. Analysis of a fully discrete scheme for neutron transport in two-dimensional

geometry. SIAM J. Numer. Anal., 23(3):543–561, 1986.

[10] M. Asadzadeh. Lp and eigenvalue error estimates for the discrete ordinates method for

two-dimensional neutron transport. SIAM J. Numer. Anal., 26(1):66–87, 1989.

[11] M. Asadzadeh. A finite element method for the neutron transport equation in an infinite

cylindrical domain. SIAM J. Numer. Anal., 35(4):1299–1314, 1998.

[12] M. Asadzadeh and L. Thevenot. On discontinuous Galerkin and discrete ordinates approx-

imations for neutron transport equation and the critical eigenvalue. Department of Mathe-

matical Sciences, Chalmers University of Technology, University of Gothenburg, 2009.

[13] J.R. Askew. A characteristics formulation of the neutron transport equation in complicated

geometries. Technical report, United Kingdom Atomic Energy Authority, 1972.

[14] Portland Cement Association. Portland cement association. www.cement.org. Accessed:

2017-12-21.

151



BIBLIOGRAPHY

[15] K.E. Atkinson. An introduction to numerical analysis. John Wiley & Sons, 2008.

[16] D. Ayres and M.D. Eaton. Uncertainty quantification in nuclear criticality modelling using

a high dimensional model representation. Ann. Nucl. Energy, 80:379–402, 2015.

[17] D. Ayres, S. Park, and M.D. Eaton. Propagation of input model uncertainties with different

marginal distributions using a hybrid polynomial chaos expansion. Ann. Nucl. Energy, 66:1–

4, 2014.

[18] D.A.F. Ayres, M.D. Eaton, A.W. Hagues, and M.M.R. Williams. Uncertainty quantification

in neutron transport with generalized polynomial chaos using the method of characteristics.

Ann. Nucl. Energy, 45:14–28, 2012.

[19] K.I. Babenko. Approximation by trigonometric polynomials in a certain class of periodic

functions of several variables. In Dokl. Akad. Nauk, volume 132, pages 982–985. Russian

Academy of Sciences, 1960.
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[181] C. Schwab and R.A. Todor. Karhunen–Loève approximation of random fields by generalized

fast multipole methods. J. Comput. Phys., 217(1):100–122, 2006.

[182] K.L. Scrivener. The microstructure of concrete. Mat. Sci. Series, 1989.
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