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Abstract 

 

Evolutionary processes leave footprints across the genome. In its several forms, 

natural selection favours or removes mutations based on their fitness effects, which 

has consequences to patterns of standing variation, linkage disequilibrium, and rates 

of evolution. Genomic tools have allowed for a revolution in how we can study 

these problems, leading to great progress from the understanding of co-evolutionary 

dynamics in nature to the design of parasite-targeted drugs in medical sciences. 

However, despite the inarguable importance of selection, patterns across the 

genome are not necessarily a result of selection, even when selection might appear 

as the best explanation. In fact, in many cases, the patterns we observe emerge 

precisely because selection is not strong enough to overcome the effect of stochastic 

processes of mutation and genetic drift. Genomic signatures left by weak selection 

can mimic the footprints of adaptive evolution in several ways – from accumulation 

of intraspecific variation and accelerated divergence between species to strong 

biases in usage of alternative codons and amino acids. A detailed investigation of 

these sources of molecular information can, however, disentangle patterns 

emerging from adaptive and non-adaptive processes. Here, we use the social 

amoeba Dictyostelium discoideum as a model system to investigate fundamental 

evolutionary questions, with a special focus on disentangling the contribution of 

adaptive from non-adaptive forces shaping molecular variation. Chapter 1 provides 

a brief overview of the main points to be discussed throughout this work. In chapter 

2, we integrate evolutionary theory with large-scale expression and genomic data 

from natural populations to understand evolutionary processes shaping genes 

associated with social behaviour. In chapter 3, we investigate implications of a 

strongly AT-biased genome for usage of alternative codons. In chapter 4 we address 

the often overlooked impact of overall processes shaping genome and cell 

economics on amino acid content and evolution of proteins. Finally, chapter 5 

provides a short general discussion of the main findings of this work.  
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1 Introduction 

 

1.1 A brief historical overview on the development of molecular 

evolution theories 

Theoretical work developed by the Modern Synthesis laid the foundations 

of population genetics. Despite the inability to directly assay molecular variation, 

population genetics models from ‘classical’ and ‘balancing’ schools made different 

predictions on the amount of genetic variation present in nature. The former posited 

that most mutations are deleterious and rapidly removed, therefore polymorphism 

is expected to be low and transient; the latter posited that variation in nature would 

be high and caused by overdominant or frequency-dependent selection (reviewed 

in Nei 2013). Both schools agreed, however, that the main force driving evolution 

was natural selection (Page and Holmes 1998). 

During the 1950-60s, the first insights into molecular variation emerged 

from studies of protein polymorphism (allozymes), which found levels of molecular 

variation to be very high, supporting predictions of the balancing hypothesis 

(reviewed in Page and Holmes 1998). However, these findings also posed a 

problem to this theory: if natural selection is the main force shaping genetic 

variation, there must be a great ‘selective death’ to remove all unfit individuals with 

inferior combinations of alleles (‘cost of natural selection’ (Haldane 1957)), which 

could, indeed, drive populations to extinction. These findings led Kimura (1968, 

1985) to develop an alternative explanation. Because genetic variation is so high, a 

large fraction of it must be selectively neutral, and its levels reflect the net balance 

between mutation creating and genetic drift extinguishing neutral variation (Kimura 

and Ohta 1971). This means that polymorphism is transient: it is a ‘momentary 

picture’ of mutations captured in a certain point of space and time going through 

their journey to fixation or extinction by genetic drift. Consequently, evolutionary 
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rates reflect levels of intraspecific variation, and are solely determined by the rate 

of emergence of neutral mutations (Kimura and Ohta 1971). 

Kimura’s neutral theory (or ‘simple neutral theory’1) (Kimura and Ohta 

1971) revolutionized the field of population genetics because it was the first clear 

statement of a single mechanism for protein variation both within and between 

species, bringing together elements that were previously only weakly connected 

(Gillespie 1994). The simple neutral theory also provided the theoretical 

background for explaining the existence of a molecular clock (Kimura 1969), first 

anticipated by studies of protein polymorphism (Zuckerkandl and Pauling 1962). 

The reasoning is that, because rates of molecular evolution should reflect the rate 

of neutral mutations, which were considered to be constant over evolutionary time 

and across different lineages, the elapsed time since divergence of two lineages 

could be estimated in ‘calendar time’ (years) from the amount of genetic differences 

accumulated between them. However, evidences from experimental work 

challenged this view. First, estimates of evolutionary rates from DNA hybridization 

techniques (Laird et al. 1969) revealed a discrepancy between rates of nucleotide 

and amino acid substitutions, with only the former following the generation-time 

effect predicted by the simple neutral theory. This finding suggests that classes of 

nonsynonymous and synonymous substitutions do not respond to evolutionary 

forces of the same type and magnitude (Ohta and Gillespie 1996). Second, simple 

neutral theory predicts that the amount of intraspecific variation (polymorphism) 

scales with effective population size (Ne)
2 (Kimura 1968), but there is no apparent 

evidence of this. In fact, although population sizes differ by orders of magnitude 

across species, levels of genetic variation vary in a narrower range (Lewontin 1974). 

Finally, the assumption that most mutations are selectively neutral was difficult to 

                                                 
1 Hereon, we adopt the nomenclature from (Ohta 1992) and refer to Kimura’s Neutral Theory as 

‘simple neutral theory’ as to distinguish from the ‘nearly neutral theory’. Although they can be often 

referred to under the single term ‘neutral theory’ (Gillespie 1994), there are important distinctions 

between them that are focus of discussion throughout this chapter, thus the need to keep them as 

separate theories. 
2 Effective population size (Ne) is a central concept in population genetics, and it is often different 

from the census population size (N). Ne is the translation of N in a real population into the size of an 

idealized population showing the same rate of diversity loss as the real population under study 

(Wright 1931; Husemann et al. 2016). For simplicity, it can be interpreted as the number of 

individuals that actually contribute to the gene pool. 
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reconcile with growing evidence that amino acid substitutions result in 

microadaptations in different proteins and organisms (e.g. haemoglobin adaptations 

to different life styles and environments; this and other examples are compiled and 

discussed in (Gillespie 1994)). 

Recognizing that Kimura’s model was potentially oversimplified by 

classifying mutations as ‘deleterious, neutral and advantageous’ (Ohta 2012) 

(Figure 1.1A), Ohta extended simple neutral theory to account for the contribution 

of ‘borderline’ mutations (Ohta 1973, 1992): “natural selection cannot be so simple 

as to be ‘all or nothing’” (Ohta 1992). Although developed as an extension to 

Kimura’s neutral theory, some properties of the ‘nearly neutral theory’3 are in sharp 

contrast to the former. Namely, most mutations are considered to be slightly 

deleterious, instead of strongly deleterious or selectively neutral (Figure 1.1A). The 

destiny of these borderline mutations is categorically different from strictly neutral 

ones – it depends on the product of the effective population size (Ne) and selection 

strength (s), behaving as neutral when Nes is close to 0 (Figure 1.1B). Consequently, 

evolutionary rates are expected to decrease with effective population size, since 

selection is more efficient at removing slightly deleterious mutations (Ohta 1992; 

Ohta and Gillespie 1996; Akashi et al. 2012), precisely the opposite predicted by 

simple neutral theory (Kimura 1968). 

 

                                                 
3 Nearly neutral theory and ‘weak selection theory’ (Akashi et al. 2012) are used interchangeably 

throughout this work. 
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Figure 1.1 The neutral theories of molecular evolution. 

A) Schematic plots showing the relative proportion of different classes of mutations 

under the two neutral theories. Deleterious mutants are definitely deleterious, and 

neutral mutants are strictly neutral. Most selected mutants are deleterious (selected 

against), but the group also includes advantageous alleles (selected for). Nearly 

neutral mutants comprise an intermediate class between neutral and selected 

mutants. B) The probability of fixation of a mutation (u) under the nearly neutral 

theory is a function of the product of the population size (Ne) and selection strength 

(s) (Nes), whereas under the simple neutral theory it is the same across different 

values of Nes (p, the initial frequency). Figures in this panel were adapted (A) and 

redrawn (B) from (Ohta 1992). 

 

Development of the nearly neutral theory had profound effects on 

evolutionary biology. One reason is that it provided a theoretical framework that 

integrates two competing evolutionary forces. Selection and genetic drift are no 

longer two categorical processes, but interplay on shaping genetic variation, where 

their relative contributions are ruled by the product of population size and strength 

of selection. Furthermore, whereas Kimura considered protein evolution to be 

governed by random processes independent of generation time, living conditions, 

and even morphological evolution (Kimura 1969), the nearly neutral theory 

provided the grounds to connect the stochastic view of sequence evolution to 

aspects of organismal biology. Ohta recognized that physiological conditions might 

influence weak selection, since constraints experienced by a protein can vary from 
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a biological system to another (Ohta 1992). Her theory also provided explanations 

for inconsistencies from molecular variation patterns to the neutral theory. For 

example, the apparent discrepancy between the relative constant rates of protein 

evolution and the variance on polymorphism levels at the DNA sequence (Laird et 

al. 1969), and the lower number of fixed differences in species with larger effective 

population sizes (Aquadro et al. 1988). 

 

1.2 Weak selection and synonymous variation 

In protein coding sequences, the effect of differences in selective constraints 

are often considered only at nonsynonymous sites, with synonymous sites generally 

considered to evolve neutrally (Kimura 1968; King and Jukes 1969). However, 

increasing evidence suggest that mutations at these sites are not as ‘silent’ as 

previously assumed. Although coding for the same amino acid, synonymous codons 

may differ in the availability of isoaccepting tRNAs carrying their particular 

anticodon (Ikemura 1981), which can, in turn, affect efficiency/accuracy of 

translation (Kurland 1992; Gingold and Pilpel 2011) or minimize protein 

misfolding (Drummond and Wilke 2009; Drummond et al. 2005). These signatures 

are magnified in highly and broadly expressed genes (Akashi and Eyre-Walker 

1998) since they experience stronger selective constraints to optimize 

transcriptional/translational processes. Consistent with predictions from nearly 

neutral theory, synonymous codon optimization is broadly found in organisms with 

large effective population sizes (bacteria, yeast, bacteriophage and flies) (reviewed 

in Akashi and Eyre-Walker 1998), whereas biases in codon usage patterns are more 

influenced by base composition in organisms with smaller population sizes, such as 

vertebrates (Ikemura 1985). 

But simple departures from equal usage of synonymous codons are not 

necessarily a sign of ‘preference’. Patterns of codon usage bias across species can 

be strongly predicted by GC content from intergenic regions and local base 

composition (Chen et al. 2004). Similarly, in mammals, where GC content varies 
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widely across chromosome regions due to the presence of isochores (>>300 kb 

stretches of DNA with homogeneous base composition), synonymous codon usage 

is largely influenced by GC from surrounding regions (Bernardi et al. 1985; 

Bernardi 2000). Because GC content is often assumed to be determined by 

mutational pressures (Sueoka 1988, but see Rocha and Feil 2010), these findings 

suggest that strong patterns of codon usage bias can emerge due solely to 

background processes shaping the genome. 

Building on nearly neutral theory, the question of how usage of alternative 

codons evolves seems to require an investigation not of which force generally 

predominates, but how different forces interplay in shaping variation at 

synonymous sites. 

 

1.3 ‘Extended evolutionary null hypotheses’ 

Evolution under near neutrality is essentially dictated by the product Nes, 

which turns this model into a fundamental null hypothesis for studying evolution in 

different lineages. In social systems characterized by division of labour, where 

reproduction can be bottlenecked to one or a few mating pairs, the effective 

population size is expected to be markedly reduced, since only reproducing 

individuals will pass their alleles to the offspring. In this regard, a comparative 

study revealed faster evolutionary rates associated with reduced efficiency of 

selection in social spiders of the genus Stegodyphus in comparison to sub-social 

conspecifics (Settepani et al. 2016). Sociality in spiders (including social species of 

the genus in that study) is associated with inbreeding, strong female biased sex 

ratios and reproductive skews (Lubin and Bilde 2007) – all factors that reduce 

effective population size (Wright 1931, 1932; Settepani et al. 2016). 

Because expectations under the neutral and nearly neutral theories depend 

on effective population size to assess the role of drift in the evolutionary process, 

implications of these theories are often studied in the context of different groups 

(species or populations) or to understand demographic dynamics (e.g. population 
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expansions, bottlenecks, founder effects, etc.). But as revealed by a growing body 

of theoretical work, there are other ramifications of weak selection theory, 

accounting for differences in selective constraints across chromosomes (or 

chromosomal regions) and genes within the same genome. 

Sex-biased or sex-exclusive inheritance of genome regions, as it is the case 

for animals with chromosomal sex determination, results in reduced effective 

population size in these regions compared to autosomal ones (Sayres 2018). In XY 

genetic systems, there are four copies of autosomes in a mating pair, but only three 

X and one Y chromosome. Thus, all else being equal, the reduced effective 

population size of sex chromosomes would result in faster evolutionary rates 

compared to autosomes (predicted to be even faster at the Y chromosome), only 

due to fixation of slightly deleterious mutations by genetic drift (Johnson and 

Lachance 2012). But all else is often not equal as far as sex chromosomes are 

concerned, and other factors are known to influence their evolution. When new 

(semi-) recessive mutations emerge on autosomes, they are often combined with 

the ancestral allele in a heterozygous genotype (because they are rare), so their 

effects are masked. However, when these types of mutations emerge on the X 

chromosome they are exposed to selection in the heterogametic sex (males) (Vicoso 

and Charlesworth 2006; Charlesworth, Coyne, and Barton 1987). As a result, 

selection on the X chromosome is predicted to be more effective than in autosomes 

(and evidence support this hypothesis (Mank et al. 2007; Lu and Wu 2005)), which 

is another reason to expect faster evolutionary rates on this chromosome, but now 

due to positive selection. Although this second scenario is not an evolutionary null 

hypothesis in a strict sense (neutral versus adaptive processes), it highlights the 

importance of considering factors that impact the efficiency of selection when 

investigating signatures of molecular evolution, particularly when other more 

complex scenarios are also plausible (such as sexual selection and sexual conflict). 

Factors that decrease the phenotype-genotype association decrease, in 

general, the strength of selection, potentially resulting in elevated levels of 

segregating variation (Linksvayer and Wade 2009). For example, genes with 

indirect genetic effects (IGE), where fitness effects of a gene are not expressed in 

the focal individual carrying the gene, but in the phenotype of a different 
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conspecific individual (Wolf et al. 1998), can have a weaker genotype-phenotype 

relationship and therefore may experience weaker selection. For this reason, the 

expected consequences of this weaker association for the nucleotide sequence has 

been modelled in different groups of genes with IGE, such as those with maternal 

(Demuth and Wade 2007) and social (Linksvayer and Wade 2009) effects. 

A potentially widespread source of IGEs arise from maternal effect genes, 

where genes carried by a mother have a causal influence in the offspring phenotype, 

irrespective of its genotype (Wolf and Wade 2009). Although post-natal influences 

such as the provision of food and choice of nesting sites in mammals and birds are 

the stereotypes of maternal effects, these effects can also arise from provision of 

nutrients and molecules that are pre-loaded in unfertilized eggs (Wolf and Wade 

2009). For example, nutrients and mRNA molecules that are fundamental to early 

embryo development in flies are synthesized in the mother’s nurse cells and 

transported to the oocyte during oogenesis (Schupbach and Wieschaus 1986; 

Spradling 1993). In Drosophila, this maternal provision includes transcription and 

transport of the major regulator of development of the anterior region: the gene 

bicoid (bcd) (Berleth et al. 1988). This maternal gene is only present in a derived 

group of flies (Cyclorrhapha) that includes Drosophila, and originated from an 

event of gene duplication of a Hox3 gene (Stauber et al. 1999). In basal flies, Hox3 

has a maternal effect, just as bcd, but is also expressed later by the embryo genome. 

After the duplication event in the basis of Cyclorrhapha, each paralog assumed one 

of the functions previously performed by Hox3 in lower Diptera (Stauber et al. 

2002): bcd assumed the maternal role (indirect effect), whereas its paralog, zerknült 

(zen), assumed the zygotic role (direct effect). Taking advantage of this system, 

Demuth and Wade (2007) modelled the expected consequences of the indirect 

effect of maternally provided genes, such as bcd, in comparison to zygotic genes 

with direct effects, such as zen, and found that they are expected to evolve faster 

due to relaxed constraints. Elevated intraspecific variation and faster evolutionary 

rates of bcd in comparison to zen without departures from neutrality provide strong 

evidence to this hypothesis (Barker et al. 2005; Demuth and Wade 2007). 

Genes with social effects form a particular class of genes with IGE, since 

they are both the targets and the agents of selection (Moore et al. 1997). Despite 
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their potentiality for a rapid adaptive evolution by reinforcement of some 

behavioural traits (e.g. aggression4), selection on genes involved with altruism 

experience selection only by kin selection (Hamilton 1964a, 1964b). This can be 

exemplified by insect societies where the workers provide care for the larvae, food 

and defence for the colony against intruders, but the role of reproduction is played 

out only by the queen. In such instances, genes from workers are not directly 

assessed by selection – because their fitness effects are expressed by individuals 

other than themselves –, but only indirectly, as a function of relatedness between 

these two classes of individuals. Consequently, genes underlying social traits are 

expected to harbour more intraspecific variation left behind by selection, and also 

to evolve faster due to fixation by genetic drift, in comparison to genes with direct 

effects (Linksvayer and Wade 2009). 

This work on IGEs has been extended in a broader framework that has 

shown that selection can be weakened in a wider range of systems whenever the 

effect of a gene is conditional to a fraction of generations or to a subset of 

individuals within the same generation (Van Dyken and Wade 2010). In these cases, 

selection is expected to be weakened by a factor of 1/ϕ, where ϕ is the frequency of 

trait expression. This is even more critical if both cases occur at the same time in a 

system – i.e. if a trait is conditional to another condition. For example, assuming 

that, in the facultatively sexual species Caenorhabditis elegans, males appear once 

in every five generations and represent only 5% of the population, selection on a 

gene with male-limited expression is expected to be 1/100 of that experienced by a 

constitutively expressed gene (Van Dyken and Wade 2010). Pea aphids show a 

similar pattern, where females can reproduce asexually and males appear around 

once in each 10 or 20 generations. Following predictions from the theoretical 

model, investigation in this system has found signatures of weaker constraints in 

male-biased genes (Brisson and Nuzhdin 2008; Purandare et al. 2014). 

These models provide adjusted evolutionary null hypotheses to account for 

peculiarities in modes of inheritance, genetic effects and frequency of expression 

                                                 
4 Individuals carrying genes for aggressive behaviour turn the social environment more aggressive, 

which in turn may increase the selective pressure for more aggressiveness, and so forth. 
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by different groups of genes. Moreover, they highlight how, by weakening the 

strength of selection, these factors may leave signatures at the nucleotide sequence 

that resemble those left by different forms of selection (e.g. high polymorphism and 

rapid divergence by balancing and positive selection, respectively). This is 

particularly important when investigating evolutionary processes underlying the 

evolution of complex traits – such as many of those involved in social interactions 

–, since selective narratives are often suggested, but not contrasted against proper 

evolutionary null hypotheses (Nei 2005; Hughes 2008; Nei et al. 2010; Van Dyken 

and Wade 2012). 

 

1.4 Sociogenomics: addressing social evolution at the molecular 

level 

The genomics era inaugurated a new chapter in evolutionary biology, 

providing reliable large scale data to investigate long standing questions in 

population genetics, such as the determinants of standing polymorphism (Leffler et 

al. 2012; Ellegren and Galtier 2016) and the relationship between adaptive 

evolution and effective population size (Galtier 2016). Similarly, it has now 

provided the opportunity to understand the molecular mechanisms involved with 

expression of complex traits, such as social behaviour, as well as to assess the 

signatures of evolutionary processes recorded at the nucleotide sequences of genes 

underlying these traits. As a result, the social evolution literature has seen the 

emergence of a new field: Sociogenomics (Robinson 1999, 2002; Robinson et al. 

2005).  

Sociogenomic studies have the potential to integrate mechanistic and 

evolutionary analyses, in order to understand the molecular basis and evolution of 

social behaviours (Robinson 1999). For example, recent sociogenomic works have 

applied population genetics theory and molecular evolution tools to assess the 

evolutionary signatures of genes potentially involved with social behaviour, and 

concluded that they show signatures of conflict-driven evolution (Ostrowski et al. 
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2015; Noh et al. 2018). Although this framework can be very powerful to identify 

signatures of selection, it should be used with caution for several reasons. First, 

comparative studies have shown that evolutionary transitions – including a change 

from solitary to social life – are often addressed by changes in expression and 

network rearrangement of pre-existing genes (Kapheim et al. 2015; Glöckner et al. 

2016). These findings suggest that the degree of pleiotropy in genes underlying 

social interactions is potentially high, so variation in these genes is likely shaped by 

factors other than their social role. Second, evolutionary tests may reveal patterns 

consistent with multiple evolutionary scenarios, thus requiring contrasts between 

multiple hypotheses, preferentially by performing tests that rely on different 

assumptions and uses different sources of data. For example, McDonald-Kreitman 

test (MKT) (McDonald and Kreitman 1991), which compares the proportion of 

segregating and fixed nonsynonymous and synonymous variation, may reveal a 

signature of balancing selection from an excess of nonsynonymous polymorphism, 

but it is very sensitive to slightly deleterious variation segregating under weak 

selection (Parsch et al. 2009). Similarly, Tajima’s D, which compares the 

proportion of variation segregating at low and intermediate frequencies, can 

identify departures from neutrality by selection, but it is also largely influenced by 

demographic changes (Tajima 1989). Finally, but potentially more importantly, 

these complex evolutionary scenarios must be contrasted against appropriate 

evolutionary null hypotheses, considering the complexity and particularities of the 

system and genes under study. 

Theoretical and experimental work on different social systems – from 

bacteria to ants – have revealed the importance of considering theoretical 

predictions from appropriate models as an evolutionary null hypothesis (Van Dyken 

and Wade 2012; Warner et al. 2017). In bacteria, quorum sensing genes are a well 

characterized group of genes involved with social traits (e.g. biofilm formation and 

bioluminescence), by producing signals that can be used by focal and surrounding 

cells (Miller and Bassler 2001). As a cooperative system characterized by joint 

production of a ‘shared good’, populations are constantly threatened by the 

emergence of cheaters (i.e. individuals that do not pay their fair cost but take 

advantage of the shared good). To understand the evolution of cheaters in this 
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system, Van Dyken and Wade (2012) first modelled theoretical expectations under 

the evolutionary null scenario that cheaters are transient because they emerge by 

recurrent mutation and are removed by purifying selection; and then, measured the 

intra- and interspecific levels of genetic variation on quorum sensing genes. Using 

this approach, they found high levels of variation both within and between species, 

following predictions of the null model, without the need to invoke the adaptive 

alternative hypothesis that cheaters are maintained by frequency-dependent 

balancing selection. Similarly, worker-biased genes, that are predicted to evolve 

under weaker constraints because they have indirect genetic effects (Linksvayer and 

Wade 2009), indeed show signatures of relaxed selection in ants (Warner et al. 

2017). In fact, non-adaptive evolution seems to have even shaped genes on the onset 

of the transition from solitary to social life (Kapheim et al. 2015). 

These contrasting results show how little we know about the evolution of 

genes underlying social traits so far, but also the diversity of scenarios that can be 

expected to shape these genes. 

 

1.5 Identifying dynamics of social evolution from molecular 

evolutionary signatures 

Cooperative social interactions typically require individuals to pay some 

cost, but the system is constantly threatened by invasion of cheaters that do not pay 

their fair share while reaping the benefits. Similar to interspecific conflicts 

(Brockhurst et al. 2014), such antagonistic interactions and symmetry in the 

strength of selection between interacting parties makes Red Queen (RQ) dynamics 

a likely process in the evolution of social interactions. One possibility is that there 

is an evolutionary cycle between cheating and resistance to cheating, which  is 

analogous to the ‘Escalatory Red Queen’ (ERQ) process (Brockhurst et al. 2014), 

proceeding as a series of selective sweeps. Alternatively, the success conferred by 

a genetic variant may not be generalized across social contexts, but rather, may 

depend on the properties of the opponent or the specific context in which 
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competition occurs. Such non-transitivity can generate ‘Fluctuating Red Queen 

dynamics’ (FRQ) (Brockhurst et al. 2014), where frequency dependent selection 

maintains genetic variation and is manifested phenotypically as ‘alternative 

strategies’. However, while considerations of social evolution often focus on the 

dynamic processes like the ERQ and FRQ, optimality approaches, such as game 

theory, predict a brake on the RQ processes: the appearance of a single unbeatable 

strategy (the ‘evolutionarily stable strategy’ – ESS) (Maynard-Smith and Price 

1973). After such equilibrium arises, a period of evolutionary stasis is established, 

where variants that result in the emergence of new strategies are expected to be 

subject to purifying selection.  

Factors other than conflict could also cause social genes to manifest 

different signatures of selection than other classes of genes. For example, social 

genes could actually be more dispensable if socially incompetent individuals 

suffered only a moderate loss of fitness. Such a scenario could arise because, in 

many systems, social genes might only be expected to experience natural selection 

or social selection some fraction of the time. Indeed, in organisms that are 

facultatively social, genes expressed only in social interactions may evolve under 

weak selection, since periods between social cycles should dilute the influence of 

selection arising from social interactions (Linksvayer and Wade 2009; Van Dyken 

and Wade 2010). These sorts of scenarios should lead to signatures of relaxed 

selection or potentially diminish any signatures from conflict (Linksvayer and 

Wade 2009; Van Dyken and Wade 2010; Linksvayer and Wade 2016). As a result, 

conditionally expressed social genes might be expected to harbour more variation 

or diverge faster than other genes simply because they experience weaker selection 

and hence are more subject to random drift (Linksvayer and Wade 2009; Van 

Dyken and Wade 2010; Linksvayer and Wade 2016).  

Molecular population genetics tools can be applied to genes underlying 

social traits to distinguish competing hypotheses. Here, we compile a list of 

evolutionary tests that can be applied to disentangle the four social evolutionary 

dynamics discussed above (Table 1.1). 
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Table 1.1 Evolutionary signatures of genes underlying social interactions under different social dynamics 

 ERQ FRQ ESS RK 

Main form of selection Positive selection Balancing selection Purifying selection Relaxed (diluted) selection 

Polymorphism 

(SNP/site and π/site) 

Low (new strategies are 

quickly selected and fixed by 

recurrent selective sweeps) 

High and functional 

(nonsynonymous variation 

resulting in alternative 

strategies are maintained) 

Low (variation is 

constantly removed by 

purifying selection) 

High and include deleterious 

variation (variation accumulate 

as a result of poor/infrequent 

selection) 

Range of excess of 

variation in the site 

frequency spectrum 

(e.g. Tajima’s D testa) 

Lower and upper tails 

(segregating sites are either 

very close to fixation – when 

linked to a selected site –, or 

found at low frequencies – 

newly arising mutations); 

negative D 

Intermediate (segregating 

variation is maintained at 

intermediate frequencies, 

inflating overall 

heterozygosity); positive D 

Low (mutations are 

removed by selection 

before reaching higher 

frequencies); negative 

D 

Distribution is closer to the 

neutral expectation (allele 

frequency decay with number of 

segregating sites); values of D 

into the range of neutrality, 

closer to 0. 

Nonsynonymous 

polymorphism (Pn) 

relative to divergence 

(Dn) (MKTb, Direction 

of Selection statisticsc) 

Pn < Dn (mutations resulting 

in new strategies are quickly 

fixed by selection, so they do 

not contribute much to 

polymorphism); positive DoS. 

Pn > Dn (variation is 

favoured when rare, but 

opposed when common, 

accumulating 

polymorphism that never 

gets fixed); negative DoS. 

Although both Pn and 

Dn are usually low, the 

latter is always lower 

(depending on the 

strength of selection, 

mutations can segregate 

at lower frequencies, 

but is removed before 

getting fixed); negative 

DoS. 

Both Pn and Dn are elevated, but 

the latter is usually lower 

(slightly deleterious mutations 

accumulate as polymorphism, 

and a fraction of it can be 

eventually fixed by drift; this 

fraction increases with dilution 

of selection); negative DoS, 

approaching 0 the more 

selection is weakened. 
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Rates of 

nonsynonymous 

substitutions (Ka
d) 

Fast (mutations resulting in 

new strategies are quickly 

fixed by selection); Ka/Ks > 1. 

Potentially slower 

(alternative alleles are 

maintained, but not fixed); 

Ka/Ks < 1. 

Slow (new strategies 

are removed and do not 

spread in the 

population); Ka/Ks << 1. 

Fast (mutations are fixed by drift 

more often); Ka/Ks ~ 1, if 

synonymous sites evolve 

neutrally. 

Synonymous codon 

optimization (if there 

is evidence of it in the 

species under study) 

No specific pattern No specific pattern No specific pattern 

Higher segregation of non-

optimal codons, increasing both 

polymorphism and divergence 

variation at synonymous sites. 

a Tajima 1989 
b McDonald and Kreitman 1991 
c Stoletzki and Eyre-Walker 2011 
d Nei and Gojobori 1986
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1.6 Dictyostelium discoideum as a model system to understand 

evolutionary processes at the molecular level 

Social behaviour in insects, birds and mammals has long called the attention 

not only of biologists, but also of other curious observers. This is presumably 

because such behaviours are very apparent to us: workers taking care of the brood 

and the hive, birds helping each other to wipe out parasites from the top of their 

heads, monkeys confabulating to ambush their prey. However, sociality goes 

beyond these classic examples, and even beyond organisms without anything 

resembling a brain, being described, for example, in a variety of microorganisms, 

such as viruses (Turner and Chao 1999), bacteria (Muñoz-Dorado and Arias 1995; 

Kirkup and Riley 2004) and amoebae (Strassmann et al. 2000). In fact, social 

microorganisms have emerged as important biological models in sociogenomic 

studies since their much simpler systems can help us identify genes underlying 

social interactions, as well as observe emergent dynamics of social evolution 

(Foster 2010). 

The social amoeba D. discoideum lives as single-celled individuals feeding 

on bacteria in the soil, undergoing asexual vegetative growth like most microbes. 

However, when food is depleted, individuals aggregate in groups of about ~105 

cells and go through a developmental cycle that ends with culmination of a fruiting 

body (Chisholm and Firtel 2004). Because of its peculiar life cycle, this amoeba has 

been widely used as an experimental model for investigations of cell signalling, 

morphogenesis and multicellular development (Kessin 2001; Chisholm and Firtel 

2004; Eichinger et al. 2005; Rosengarten et al. 2015; Parikh et al. 2010), and to 

understand the transition from a uni- to multicellular lifestyle (Glöckner et al. 

2016). More recently, interest on this system has also reached sociobiology 

(Strassmann, et al. 2000; Shaulsky and Kessin 2007; Li and Purugganan 2011). This 

is because aggregates may contain cells of different genotypes, resulting in a 

chimeric fruiting body, setting the stage for cheating: cheaters can exploit others 

strains and allocate more cells to the spore head than the fair proportion, without 
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contributing to form the sterile stalk (Strassmann et al. 2000). Besides the biological 

system itself, availability of a reference genome (Eichinger et al. 2005) and large 

scale expression data (Nasser et al. 2013; Parikh et al. 2010; Rosengarten et al. 

2015), as well as a rich platform for genomic and experimental research (Fey et al. 

2013), explain the emergence of this amoeba as a model species to dissect social 

evolution in a molecular level. 

Investigations in this system have provided evidence for fundamental 

predictions of social evolution theory. For example, kin selection theory predicts 

that individuals cooperate as a function of relatedness, which can be addressed by 

population viscosity (leading to a high local concentration of closely related 

individuals) and/or development of a ‘greenbeard’, by which individuals carrying 

the same gene can be recognized by each other (Hamilton 1964a, 1964b). 

Relatedness is high among co-occurring natural strains, with estimates ranging from 

0.52 in soil samples (Fortunato et al. 2003) to 0.86 in fruiting bodies (Gilbert et al. 

2007). Evidence suggest that this can be due to growing as large clonal patches 

(Gilbert et al. 2009), but it is unlikely to be the only reason because not only 

population structure is considerably low in this system (Flowers et al. 2010), but to 

be a successful strategy in microbes, a strong population structure would require 

also selection to act simultaneously in multiple biological levels (Travisano and 

Velicer 2004). Instead, individuals developed mechanisms for genetic kin 

discrimination (Ostrowski et al. 2008), which is carried out by the pair of adhesion 

proteins tgrB1 and tgrC15 (Benabentos et al. 2009) acting in a greenbeard-like 

manner (Gruenheit et al. 2017). Besides these two loci, several genes were 

identified as implicated in cooperation, either because disruption of these genes 

results in a cheating behaviour (Santorelli et al. 2008), or are differentially 

expressed during chimeric development (Li et al. 2014), or yet because they impose 

trade-offs by pleiotropic effects, stabilizing cooperation (Foster et al. 2004). 

As a powerful social microbe model, recent works have also attempted to 

assess the evolutionary signatures of social dynamics in this system, and suggested 

a role for Red Queen processes (Ostrowski et al. 2015; Noh et al. 2018). However, 

                                                 
5 Previously named lagB1 and lagC1, respectively. 
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these studies used limited set of strains and tests, a few small groups of genes and, 

more importantly, lack a full consideration of appropriate evolutionary null 

hypothesis. As discussed on the previous sections, these factors can undermine our 

understanding of the real processes shaping genes underlying social behaviour, so 

studies incorporating these nuances are needed. 

 

1.7 Aims and approaches 

This study has the main aim of identifying the contribution of adaptive and 

stochastic processes on genome evolution in the social amoeba Dictyostelium 

discoideum. We start our work by characterizing evolutionary signatures of genes 

underlying social traits, by using large scale genome and transcriptome data, and 

contrasting competing evolutionary hypotheses. This is followed by an 

investigation of the processes shaping synonymous codon usage in this organism, 

under the null hypothesis that patterns can emerge from overall processes shaping 

the strongly AT-biased genome. Finally, we investigate the influence of 

background processes shaping genome and cell economics on amino acid content 

and protein evolution in this system, an effect that is often overlooked. 
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2.1 Abstract 

Social interactions are typically characterised by conflict and competition. This 

antagonism can play a critical role in evolutionary processes, such as promoting 

diversity through maintenance of alternative strategies or driving accelerated 

evolution through arms-race like escalation. However, despite our sophisticated 

understanding of how conflict shapes social traits, we still have limited knowledge 

of how it impacts molecular evolution across the underlying ‘social genes’. To 

address this problem, we analysed the genome wide impact of social interactions in 

a microbe. Using genome sequences from 67 Dictyostelium discoideum strains, we 

find that social genes often exhibit enhanced polymorphism and accelerated 

evolution. However, these patterns are not consistent with the expectation of 

conflict driven processes, but instead reflect relatively relaxed purifying selection. 

This pattern reflects the fact that social interactions are conditional, and therefore 

selection on genes expressed in social interactions is diluted by generations of 

inactivity. This results in the ‘Red King’ process, wherein dilution of selection by 

inactivity enhances the role of drift, resulting in increased polymorphism and 

accelerated evolution. 
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2.2 Introduction 

The social environment can have profound effects on fitness and, 

consequently, constitutes an important source of selection (Moore et al. 1997). It is 

generally thought that the social environment provides its most significant force of 

selection when interactions are characterised by conflict and competition. This is 

because antagonism can potentially generate a persistent, constantly changing 

source of selection, where social traits evolve in response to selection, and in turn 

change the nature of selection itself acting upon the genes underlying social traits 

(i.e., ‘social genes’) (Rice and Holland 1997). To date, however, research has 

largely focused on understanding how conflict driven selection affects the evolution 

of social traits, with the implied assumption that the underlying social genes would 

show similar patterns and processes. Thus, despite our sophisticated understanding 

of social trait evolution, we still have a limited understanding of how conflict 

ultimately impacts the social genes themselves (Robinson 1999; Robinson et al. 

2005; Foster 2006). This is perhaps surprising given that the patterns of molecular 

evolution at social genes could help us better understand the key genes behind social 

traits, the nature of selection arising from social interactions, and the relative 

importance of different conflict driven processes in shaping social evolution. 

The relentless selection resulting from social conflict is analogous to the 

Red Queen process, where competition in the ecological environment generates 

persistent counter-evolutionary change in interacting parties (Rice and Holland 

1997; Brockhurst et al. 2014). The role of the Red Queen process in social evolution 

depends on the relationship between the selection imposed by social traits (where 

they are the agents of selection) and the corresponding selection experienced by 

social traits (where they are the targets of selection) (Moore et al. 1997). Hence, the 

consequences that these processes have on molecular evolution will, likewise, 

depend on the relationship between sequence variation at social genes and the 

properties of the social traits. One possibility is that selection favours constant 

evolutionary change in social traits, with reciprocal counter-evolution of 

competitive strategies akin to the ‘Escalatory Red Queen’ (Brockhurst et al. 2014). 

This process would presumably proceed as a series of selective sweeps of 
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advantageous mutations at the associated social genes, reducing levels of 

polymorphism and increasing the rate of evolutionary divergence. Alternatively, 

success in social interactions may depend on the specific properties of the opponent 

or context in which competition occurs, which could result in a scenario where 

different social traits, and hence genetic variants at associated social genes, are 

favoured in different social contexts. Such non-transitivity is akin to the 

‘Fluctuating Red Queen’ process (Brockhurst et al. 2014), where frequency 

dependent selection maintains genetic variation that underlies alternative strategies, 

which would be manifested as a signature of balancing selection (Harris et al. 2008). 

While conflict could potentially lead to the relentless Red Queen processes, 

with dramatic consequences for patterns of trait and molecular evolution, it can also 

potentially result in the opposite scenario, where evolutionary change is halted by 

the emergence an evolutionarily stable strategy (ESS) (Maynard-Smith and Price 

1973). Populations at the ESS would experience optimizing selection to remain at 

the ESS, resulting in evolutionary stasis with purifying selection on associated 

social genes. Importantly, this purifying selection is expected to lead to low levels 

of polymorphism and divergence, which are at direct odds with the predictions of 

the Fluctuating and Escalatory Red Queen processes (Brockhurst et al. 2014). It is 

therefore possible to differentiate between contradictory predictions of conflict 

driven selection by evaluating signatures of selection on social genes, thus 

providing important insights into the nature and consequences of selection arising 

from social interactions. 

Investigations into the form and consequences of selection generated by 

conflict must necessarily also consider the potentially confounding role of the 

random processes of drift and mutation (Linksvayer and Wade 2009; Van Dyken 

and Wade 2010, 2012). While this is true for all types of genes, it is particularly 

critical for social genes in organisms that are facultatively social or those that 

otherwise only rarely encounter conflict. Such ‘conditionality’ could dilute the 

impact of selection and enhance the role of drift (Linksvayer and Wade 2009; Van 

Dyken and Wade 2010). We refer to this scenario as the ‘Red King’ (RK) process. 

Unlike the Red Queen, who was constantly running, the Red King was mostly 

asleep in Lewis Carroll’s “Through the looking glass”, and hence the RK refers to 
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the impact of diluted selection owing to inactivity (or more generally, a lack of 

selection) under some conditions. Importantly, while both RK and Fluctuating Red 

Queen processes can potentially have similar consequences, such as elevated 

polymorphism in social genes, they typically differ in the specific signatures they 

predict. For example, the RK predicts an overall shift towards neutrality 

(manifested as an accumulation of slightly deleterious mutations) (Van Dyken and 

Wade 2010). In contrast, Fluctuating Red Queen is predicted to result in elevated 

functional variation (i.e., amino acid polymorphism) underlying adaptive 

alternatives (Brockhurst et al. 2014). Likewise, the RK process is expected to result 

in an elevated rate of fixation of slightly deleterious mutations by drift. Because 

most slightly deleterious mutations are nonsynonymous, greater fixation of 

nonsynonymous variation may resemble the positive selection favouring new 

strategies predicted for the Escalatory Red Queen. However, diluted selection under 

the RK process should allow for elevated levels of segregating deleterious 

polymorphism (Van Dyken and Wade 2010), while the selective sweeps of the 

Escalatory Red Queen would lead to lower levels of polymorphism (Brockhurst et 

al. 2014). Thus, in order to differentiate the impacts of different processes on 

molecular evolution, to ultimately understand how social interactions impact the 

genome, we need to consider the joint impacts of selection and drift on patterns of 

divergence and polymorphism at social genes. 

Dictyostelium discoideum provides a powerful model system for studying 

the evolutionary consequences of social conflict (Strassmann et al. 2000) and for 

evaluating its impact on molecular evolution at social genes. D. discoideum live as 

single celled individuals in the soil, but aggregate together in response to starvation 

to form a multicellular slug that eventually forms a fruiting body that aids spore 

dispersal (Chisholm and Firtel 2004). Construction of a functioning fruiting body 

requires cooperation among cells, with some cells sacrificed to form the stalk, 

whilst others form viable spores. When multiple genotypes co-aggregate, this 

differentiation into stalk and spores is expected to be generate conflict over 

representation in spores (Strassmann et al. 2000). Previous analyses of social traits 

in this system have demonstrated enormous phenotypic diversity in traits associated 

with the social stage, including variation in relative representation in the sporehead, 
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spore size, and spore numbers (Buttery et al. 2009; Buttery et al. 2010; Wolf et al. 

2015). This degree of phenotypic diversity suggests that evolutionary processes 

promote variation at social genes. However, a detailed analysis of social strategies 

suggests that there is potentially a single ESS, with facultative cooperation and 

cheating based on relatedness (Madgwick et al. 2018). Previous attempts to 

characterise patterns of molecular evolution at genes in D. discoideum did not 

reveal clear differential signatures of selection at social genes or were unable to 

distinguish between alternative hypotheses (Ostrowski et al. 2015; Noh et al. 2018). 

Therefore, to understand how social interactions have shaped gene sequence 

evolution, we have implemented an integrative approach using large-scale gene 

expression, functional genomics, and genome sequence data from 67 natural strains. 

By applying this approach to multiple sets of social genes identified through 

different complementary methods, we have been able to overcome past challenges 

to develop a clear picture of the evolutionary processes shaping signatures of 

selection at social genes. Our analyses provide strong support for a unified 

perspective, with all evidence consistent with the conclusion that social genes 

experience a similar overall pattern of selection as other classes of genes. However, 

because the expression of some social genes is restricted to the social stage, the 

patterns of molecular evolution manifest a signature of diluted selection owing to 

the Red King process.  

 

2.3 Results 

2.3.1 Identification of social genes 

To understand broad-scale processes shaping molecular evolution at social 

genes we have used four different, but complementary, approaches to identify sets 

of social genes. For ease, we have named these sets ‘sociality’, ‘chimerism’, 

‘antagonism’ and ‘cheater’ genes. For comparison, we have also identified 

appropriate sets of control genes. 
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2.3.1.1 Sociality genes 

Sociality genes are defined as those with expression restricted to the social 

stage (which corresponds to the period of aggregation and multicellular 

development). Because sociality genes are only expressed in social stages, their 

evolutionary signatures should reflect the overall selective impact of social 

interactions. To identify sociality genes, we used large-scale transcriptome data 

from vegetative growth on bacteria or in liquid culture (Rosengarten et al. 2015; 

Nasser et al. 2013; Parikh et al. 2010) and high resolution transcriptome data from 

multiple stages of the social cycle, from starvation to the formation of mature 

fruiting bodies (Rosengarten et al. 2015). We calculated the Index of Social 

Expression (ISE) (Sucgang et al. 2011) for each gene by comparing the expression 

at ‘social’ stages (hour 1 to hour 24) to the expression of both social and single 

celled vegetative stages (hour 0). As expected, we find a clear discontinuity in the 

distribution of ISE values (Figure S2.1A). Importantly, 1650 genes exhibited a high 

bias in expression to social stages (ISE > 0.9; i.e. more than 90% of its expression 

concentrated in social stages), which we consider to be the set of sociality genes. 

Signatures of selection in sociality genes were compared against all genes with 

some level of expression in the full transcriptome dataset (i.e., all genes with some 

measured level of expression at any timepoint in development or in the vegetative 

stages). 

Sociality genes were found to be expressed at remarkably low levels at the 

vegetative stage (median = −0.64 log10TPM, Figure S2.1B), demonstrating that they 

are effectively conditional to social development, and not simply up-regulated at 

this stage. Although not expressed in every generation, sociality genes are generally 

required at very high levels when expressed in the social cycle (Figure S2.1C). 

These genes are also overrepresented for GO categories related to development, 

such as culmination and sporulation (Table S2.1). Interestingly, this set is also 

enriched for genes without biological process annotation, which may reflect their 

lack of conservation and orthology with characterized genes, potentially reflecting 

rapid evolution.  
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2.3.1.2 Chimerism genes 

 Chimerism genes are defined as those up-regulated in chimeric aggregations 

in comparison to clonal aggregations. This is based on the logic that chimeric 

development will be characterised by conflict, and hence these genes will show the 

signatures of conflict driven evolution (Noh et al. 2018). To identify chimerism 

genes, RNA was extracted from aggregations composed from pairwise mixes of 

three wild strains after fourteen hours (corresponding to the slug stage) of clonal 

and chimeric development. RNA-seq revealed 190 genes showing significant up-

regulation during chimeric development. These chimerism genes are enriched in 

GO categories mostly related to functions that are associated with vegetative 

growth, such as metabolic and biosynthetic processes (Table S2.2). Because these 

chimerism genes were identified from expression in clonal versus chimeric 

development, their evolutionary patterns were compared against all genes 

expressed in these contexts (i.e., all genes showing some level of expression under 

either condition). 

2.3.1.3 Antagonism genes 

Antagonism genes are defined as those genes that are preferentially 

expressed in cells destined to become the stalk or spores. These genes are candidates 

for those being shaped by antagonistic selection driven by conflict because cell fate 

choice in D. discoideum determines which cells end up having zero direct fitness 

by providing the dead stalk and which get the direct benefit by producing spores 

(Parkinson et al. 2011; Foster et al. 2004; Chattwood et al. 2013). Antagonism genes 

were identified as those that show differential expression in the cell populations in 

slugs that lead to the formation of the stalk (‘prestalk’ genes) and the spores 

(‘prespore’ genes) (Parikh et al. 2010; Noh et al. 2018). A total of 1901 genes show 

significant differential expression in either of these regions (prespore = 903 and 

prestalk = 998) (Noh et al. 2018). Antagonism genes are enriched in GO categories 

related to cell membrane, extracellular region and cytoskeleton (Table S2.3), which 

are potentially important to cell communication, cell sorting or morphogenesis. 

Signatures of selection in these genes were compared to the background of all genes 

expressed in prespore and prestalk cells (Parikh et al. 2010). 
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2.3.1.4 Cheater genes 

A set of 99 cheater genes have previously been identified experimentally 

because they result in a ‘cheater’ phenotype (i.e. producing more than their fair 

share of spores) when mutated and mixed with wild type cells (Santorelli et al. 

2008). Validation of these mutants in a fine scale was performed by recapitulating 

10 insertional events by homologous recombination in wild-type cells. Phenotypes 

of these 11 mutants were identical with those of the original mutants in all cases. 

Because cheater genes were not identified by their expression profile, their 

evolutionary signatures can be compared to the rest of the protein coding genes in 

the genome. GO term analysis revealed that cheater genes are overrepresented in 

only one category of biological process: social behaviour (Table S2.4). However, 

this categorization appears to be tautological because it reflects genome annotation 

based on the mutagenesis screen used to identify these genes. 

2.3.1.5 Overlap of social gene sets  

Interestingly, there is little overlap between the sociality, cheater and 

chimerism sets of social genes (Table 2.1). Chimerism genes are not a subset of the 

sociality genes (see Table 2.1), and their mean ISE value is not significantly 

different from the rest of the genome (ISEChimerism = 0.51, ISEBackground = 0.54; t-test: 

FDR-corrected P = 0.084). In fact, we find that chimerism genes are actually 

significantly enriched for genes with the peak of maximum expression during 

vegetative growth (expected: 79; observed: 104; Chi-square test: P < 0.0003) and 

are enriched in GO categories mostly related to functions that are associated with 

vegetative growth (Table S2.2). Moreover, there is no significant overlap between 

cheater and sociality genes (Table 2.1). Although eight of the 99 cheater genes are 

expressed at such low levels during vegetative and developmental stages (across all 

sequenced RNA pools) that we cannot characterize their expression profile, the 

mean ISE for the remaining 91 genes is 0.53, which is not significantly different 

than all other genes (ISECheater = 0.54, ISEBackground = 0.53; t-test: FDR-corrected P 

= 0.740). We also do not find an overlap between cheater and chimerism genes 

(Table 2.1). 
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Table 2.1 Social genes in the social amoeba D. discoideum 

Sociality genes are effectively expressed in the social cycle, as measured by an 

index of social expression (see Methods). Chimerism genes are those differentially 

expressed in chimeras compared to clonal development, specifically at the slug 

stage. Antagonism is a group formed by previously identified genes differentially 

expressed in prespore and prestalk cells (Noh et al. 2018; Parikh et al. 2010). 

Cheater genes were previously characterized from mutagenesis screenings to 

identify mutants with defective behaviour (Santorelli et al. 2008). Significance for 

the overlaps between each pair of gene categories was obtained by chi-square tests. 

Observed and expected (in parenthesis) values are shown above the diagonal, and 

significant overlaps after FDR correction (P < 0.05) are highlighted in bold. These 

corrected P-values are shown below the diagonal. 

 

 Sociality Chimerism Antagonism Cheater 

Sociality ─ 22 (26) 507 (261) 9 (13) 

Chimerism 0.543 ─ 44 (30) 2 (1) 

Antagonism < 10-70 0.015 ─  

Cheater 0.543 0.773 0.858 ─ 

 

In contrast to the lack of overlap between the sociality, cheater and 

chimerism sets, we find that there is a significant enrichment in the overlap between 

antagonism genes and both sociality and chimerism genes (Table 2.1). This 

enrichment presumably reflects the fact that the antagonism genes were identified 

based on differential expression in slugs, and hence should show temporal overlap 

in expression with the sociality and chimerism genes (both identified from 

expression in social stages). This idea is supported by the fact that the antagonism 

genes show a significantly higher ISE than their respective background genes 

(ISEAntagonism = 0.63, ISEBackground = 0.53; t-test: FDR-corrected P < 10-48). This 

difference appears in both the prespore (ISEPrespore = 0.66, ISEBackground = 0.53; t-

test: FDR-corrected P < 10-44) and prestalk (ISEPrestalk = 0.59, ISEBackground = 0.54; 

t-test: FDR-corrected P < 10-8) subsets, with a significantly higher index in the 

prespore set compared to prestalk (t-test: FDR-corrected P < 10-7). Overall, these 
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patterns highlight the importance of taking multiple approaches to identify social 

genes. 

 

Figure 2.1 Polymorphism in social genes 

Average estimates of nucleotide diversity per site (π/site) for CDS (A), 

nonsynonymous (B), and synonymous (C) sites for each group of genes (points) 

were compared to randomization distributions (boxplots). The middle line, bottom 

and top of the box show the expected mean, 25th and 75th percentiles respectively; 

whiskers present the 95% confidence interval of the distributions. Randomization 

distributions were generated for each group of social genes by generating a set of 

10,000 random groups of genes of size N (where N corresponds to the number of 

genes in the particular group of social genes being tested). Randomization was done 

separately for each group of social genes by sampling from a set that contains that 

group of social genes and its corresponding background set of genes. Two-tailed P-

values are defined as the probability of obtaining a mean as extreme as the observed 

only due to chance. Significance after FDR correction: P < 0.05 *; P < 0.01 **; P 

< 0.001 ***. 

  

2.3.2 Only sociality genes harbour increased sequence diversity 

To compare patterns of polymorphism in the four sets of social genes to 

their respective background gene pools, we generated genome sequence data from 

a set of 47 strains derived from the wild and combined these with sequence data 

from 20 published genomes (Gruenheit et al. 2017). Sequence information was 

obtained for 12,809 protein coding sequences. We find that only sociality genes 

differ in the levels of polymorphism from their background expectation, harbouring 

significantly more variation, whether estimated by average nucleotide diversity per 

site (π/site; Figure 2.1) or the number of SNPs per site (SNP/site; Table S2.5). 

Variation at sociality genes is greater across the entire CDS, including both 
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nonsynonymous and also synonymous sites. This pattern is consistent with the RK 

process, where signatures of relaxed selection are manifested at both synonymous 

and nonsynonymous sites, and inconsistent with the Fluctuating Red Queen 

process, where we expect signatures of balancing selection at nonsynonymous sites 

but not synonymous sites. 

 

 

Table 2.2 Tajima’s D for social genes 

Expected values and the respective two-tailed P-values were obtained by a 

randomization process. For each group of social genes, we generated a set of 10,000 

random groups of size N (where N is the number of genes in that particular group) 

sampled from a set that contains that group of social genes and its corresponding 

background set of genes. Two-tailed P-values are defined as the probability of 

obtaining a mean as extreme as the observed only due to chance after FDR 

correction for multiple tests. 

 

Sites Group Expected Observed P (FDR) 

CDS Sociality −0.629 −0.659 0.416 

 Chimerism −0.626 −0.654 0.914 

 Antagonism −0.628 −0.650 0.490 

 Cheater −0.628 −0.801 0.416 

Nonsynonymous Sociality −0.614 −0.646 0.416 

 Chimerism −0.613 −0.633 0.914 

 Antagonism −0.614 −0.646 0.416 

 Cheater −0.613 −0.779 0.416 

Synonymous Sociality −0.455 −0.451 0.914 

 Chimerism −0.456 −0.501 0.824 

 Antagonism −0.453 −0.450 0.924 

 Cheater −0.453 −0.591 0.416 
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2.3.3 Elevated variation in sociality genes reflects weak selection 

To differentiate between alternative explanations for the pattern of elevated 

variation at sociality genes, we next examined the distribution of variation (i.e., the 

relative frequencies of polymorphisms) and the type of variation present (i.e., the 

relative frequency of deleterious variation, manifested as premature stop codons 

and partial gene deletions). For this we calculated average Tajima’s D values 

(Tajima 1989) for each set of social genes, where negative values indicate an excess 

of low frequency variants (presumably reflecting erosion of variation by purifying 

selection or selective sweeps), and positive values an excess of intermediate 

frequency variants (reflecting maintenance of variation by balancing selection). The 

average D for sociality genes is negative for the whole coding sequence, as well as 

at nonsynonymous and synonymous sites when they are considered separately, but 

is not significantly different from that expected from the background genes (Table 

2.2). This pattern is inconsistent with that expected under balancing selection and 

consistent with the expectation under either purifying selection or recent selective 

sweeps. This finding is supported by results from other neutrality tests, either using 

information from the site frequency spectrum (Fu & Li’s F* and D*) or linkage 

disequilibrium statistics (Wall’s Q and B) (Table S2.6).  

To address the possibility that a subset of sociality genes experiences 

balancing selection, inflating the average polymorphism level for the group, we 

used two approaches. First, we tested whether sociality genes are enriched for genes 

evolving under balancing selection, using three different thresholds of D to define 

a signature of balancing selection (D = 2, D = 1.5 and D = 1). We find no evidence 

of such overrepresentation (Table S2.7). Regardless, there is a possibility that a 

small subset of sociality genes actually evolves under balancing selection and are 

responsible for the overall pattern of elevated nucleotide diversity within this group 

due to their hyper-variability. To evaluate this possibility, we identified 13 sociality 

genes evolving under balancing selection (D > 2), and removed them from the 

analysis of polymorphism. After this censoring, we still find that sociality genes 

exhibit significant higher levels of polymorphism (Table S2.8), supporting the 
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conclusion that the overall signature of selection on sociality genes is not a result 

of potential outliers under balancing selection. 

To further differentiate between explanations for the elevated 

polymorphism at sociality genes, we focused on classes of segregating variation 

that are presumably deleterious. For this we examined the presence of two special 

types of mutations: SNPs that introduce a stop codon, and mutations that correspond 

to complete or partial gene deletion (which is characterised by presence-absence 

variation; PAV). We find that sociality genes are enriched for genes with both types 

of deleterious mutations (Table 2.3), which is consistent with relaxed purifying 

selection, thus providing further support for the RK. Interestingly, we also find that 

antagonism genes have a significant dearth of presence/absence variation, 

suggesting that they may be enriched for essential genes. 
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Table 2.3 Enrichment analysis of the number of social genes carrying deleterious 

mutations 

We used a randomization procedure to test whether each of the five groups of genes 

contained an excess of genes carrying these types of deleterious mutations. For each 

group of genes, we generated a set of 10,000 random groups of size N (where N is 

the number of genes in that particular group) sampled from a set that contains that 

group of social genes and its corresponding background set of genes. In each 

randomization we counted the number of genes that contained each type of 

deleterious mutation and used the distribution of the counts across randomizations 

to calculate the confidence intervals (2.5th to 97.5th percentiles) and P-values. 

Significant P-values after FDR correction for multiple tests are highlighted in bold 

(FDR < 0.05). 

 

2.3.4 All classes of social genes primarily evolve under purifying selection 

Analyses of the patterns of polymorphism provide only a partial picture of 

the nature of selection because different evolutionary processes can potentially 

result in similar levels of standing variation. For example, genes that show patterns 

of polymorphism that indicate purifying selection may also have recently 

experienced selective sweeps driven by the Escalatory Red Queen, since both 

processes erode variation. Therefore, we complemented our analyses of segregating 

polymorphism with two analyses that draw on patterns of evolutionary substitution 

to capture patterns of selection in deeper evolutionary time. Firstly, we compared 

levels of polymorphism to fixed differences in a highly divergent D. discoideum 

strain from Mexico (OT3A). Secondly, we characterized the rate of protein 

Class of mutations Group Observed CI P (FDR) 

Stop codon gain Sociality 79 46 72 0.022 

 Chimerism 5 2 11 > 0.05 

 Antagonism 11 4 15 > 0.05 

 Cheater 9 1 8 > 0.05 

Presence/Absence Sociality 12 2 10 0.042 

 Chimerism 0 0 2 > 0.05 

 Antagonism 0 9 24 0.002 

 Cheater 1 0 3 > 0.05 
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sequence evolution by comparing the reference genome (Eichinger et al. 2005) to 

this divergent strain. 

Using polymorphism data from the 67 natural D. discoideum strains and the 

divergent OT3A, we compared the number of segregating and fixed differences at 

each gene using the McDonald-Kreitman test (MKT) (McDonald and Kreitman 

1991). The MKT identifies genes that have a significant excess of either 

nonsynonymous polymorphism (which could reflect either weak purifying or 

balancing selection) or nonsynonymous substitutions (reflecting positive selection 

for adaptive mutations). We found 47 genes that harbour a significant excess of 

nonsynonymous substitutions (Dn) and 94 showing an excess of nonsynonymous 

polymorphism (Pn). We next tested whether either of these classes of genes is 

enriched in any of the four groups of social genes in comparison to that expected 

for their comparable set of background genes. In sociality genes, we observe an 

underrepresentation of genes evolving under positive selection, suggesting a 

restricted role of adaptive evolution in this group (Table S2.9). For all other classes 

of genes, we find no significant overrepresentation of genes evolving under positive 

or balancing/purifying selection.  

The MKT, which is based on a significant excess of either Pn or Dn, provides 

a conservative analysis and may not reveal subtle quantitative differences in 

evolutionary signatures. Therefore, we complemented the MKT with the Direction 

of Selection statistic: DoS = Dn/(Dn + Ds) − Pn/(Pn + Ps) (Stoletzki and Eyre-Walker 

2011). This approach provides a quantitative measure of the pattern of substitution 

relative to polymorphism, with zero indicating neutrality, positive values indicating 

adaptive evolution, and negative values indicating balancing selection or 

segregation of slightly deleterious variation. The average DoS value for sociality 

genes is negative, but not significantly different than expected compared to its 

background (Figure 2.2). However, the averages for both components of DoS – the 

proportion of substitutions (Dn/(Dn + Ds)) and polymorphisms (Pn/(Pn + Ps)) that 

are nonsynonymous – are higher in these genes, indicating both elevated variation 

and divergence. This pattern is inconsistent with the hypothesis that balancing 

selection maintains polymorphism. Instead, the overall pattern suggests weaker 

purifying selection on these genes, which leaves more deleterious mutational 
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variation segregating in the population and results in an increased probability of 

mutations eventually reaching fixation. For chimerism genes, the average DoS and 

the proportion of substitutions that are nonsynonymous are not significantly 

different from the background. However, they show a significant decrease in the 

proportion of polymorphisms that are nonsynonymous. For both the cheater and 

antagonism genes, the average DoS values, as well as the averages of both its 

constituents, are not significantly different from the background values. Taken 

together, quantitative DoS data suggests that all classes of social genes 

predominantly show patterns consistent with purifying selection, but vary in the 

relative intensity of selection. 

 

 

Figure 2.2 The Direction of Selection (DoS) statistics for social genes 

Given is the DoS value (A), where DoS = (Dn/(Dn+Ds))−(Pn/(Pn+Ps)), and the value 

of each of its component parts: the proportion of polymorphisms (Pn/(Pn+Ps)) (B) 

and substitutions (Dn/(Dn+Ds)) (C) that are nonsynonymous. Average estimates for 

each group of genes (points) were compared to randomization distributions 

(boxplots). The middle line, bottom and top of the box show the expected mean, 

25th and 75th percentiles respectively; whiskers present the 95% confidence interval 

of the distributions. Randomization distributions were generated for each group of 

social genes by generating a set of 10,000 random groups of genes of size N (where 

N corresponds to the number of genes in the particular group of social genes being 

tested). Randomization was done separately for each group of social genes by 

sampling from a set that contains that group of social genes and its corresponding 

background set of genes. Two-tailed P-values are defined as the probability of 

obtaining a mean as extreme as the observed only due to chance. Significance after 

FDR correction: P < 0.05 *; P < 0.01 **; P < 0.001 ***. 

 

Rates of protein evolution were calculated from pairwise gene alignments 

using the reference genome (Eichinger et al. 2005) and OT3A. The number of 
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nonsynonymous substitutions per nonsynonymous site (Ka) was compared to the 

number of synonymous substitutions per synonymous site (Ks) to identify 

signatures of selection. The ratio Ka/Ks is expected to be ~1 if nonsynonymous sites 

are nearly neutral, > 1 if they are under positive selection, and < 1 if they are under 

purifying selection (Hurst 2002). We identified 11,901 protein coding orthologues 

between this pair of lineages, and estimated Ka and Ks. We next removed all 

orthologues where the ratio could not be calculated (for example, when 

synonymous sites are saturated). Using the remaining 5509 genes, we then tested 

whether the four classes of social genes differed from their respective backgrounds. 

For all sets of social genes, the average Ka/Ks is < 1, but patterns varied across the 

classes (Figure 2.3). Cheater and antagonism genes do not differ from their 

respective backgrounds for any parameter (Ka, Ks or Ka/Ks). For chimerism genes, 

however, both Ka and Ks are significantly lower than expected, while Ka/Ks is not 

different from expected (Figure 2.3). In contrast, sociality genes show increased 

substitution rates at both nonsynonymous and synonymous sites. However, because 

both classes of substitutions change in the same direction, the overall rate of 

evolution (Ka/Ks) does not differ from the background rate. Although we would 

expect the Escalatory Red Queen process to lead to accelerated rates of evolution 

at protein coding genes, these results are not consistent with the Escalatory Red 

Queen expectations because we would not expect the observed corresponding rates 

of evolution at both synonymous and nonsynonymous sites. Hence, these findings 

support the initial hypothesis that both synonymous and nonsynonymous sites in 

social genes evolve under purifying selection, but with the RK process reducing the 

strength of selection that results in an increased rate of sequence evolution. Thus, 

we find that all classes of social genes appear to evolve under a similar overall 

pattern of purifying selection, but with chimerism genes experiencing the strongest 

selection, cheater and antagonism genes an intermediate value, and sociality genes 

the weakest selection. 
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Figure 2.3 Evolutionary rates at social genes 

Given is the evolutionary rates (A), and rates of substitution at nonsynonymous (Ka) 

B) and synonymous (Ks) sites (C). Substitutions represent changes compared to the 

sequence of a divergent strain, OT3A, from Mexico. Average estimates for each 

group of genes (points) were compared to randomization distributions (boxplots). 

The middle line, bottom and top of the box show the expected mean, 25th and 75th 

percentiles respectively; whiskers present the 95% confidence interval of the 

distributions. Randomization distributions were generated for each group of social 

genes by generating a set of 10,000 random groups of genes of size N (where N 

corresponds to the number of genes in the particular group of social genes being 

tested). Randomization was done separately for each group of social genes by 

sampling from a set that contains that group of social genes and its corresponding 

background set of genes. Two-tailed P-values are defined as the probability of 

obtaining a mean as extreme as the observed only due to chance. Significance after 

FDR correction: P < 0.05 *; P < 0.01 **; P < 0.001 ***. 

 

2.3.5 The RK process as a unifying explanation for patterns of molecular 

evolution 

The patterns of polymorphism and divergence are all consistent with the 

hypothesis that each class of social genes evolves primarily under purifying 

selection, with differences being explained by the degree of conditionality leading 

to the RK process. To test whether the RK process provides an overall explanation 

for patterns of molecular evolution, we examined the relationship between the 

overall degree of conditionality for a gene class (i.e., the proportion of sociality 

genes in the class) and either the levels of polymorphism or divergence. To improve 

the power and resolution of the analysis, we added five more classes of genes to 

increase sample size and expand the coverage of different degrees of conditionality: 

non-sociality (which show some level of expression in the transcriptome dataset 
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used to identify sociality genes, but which are not conditional to the social stage), 

non-chimerism (genes expressed in clonal and/or chimeric slugs, but which are not 

up-regulated in chimeric slugs), non-antagonism (genes expressed in prestalk and 

prespore cells and show no differential expression in these two cell types), and two 

classes of antagonism genes showing differing degrees of differential expression in 

prestalk versus prespore cells (representing expression biases of 0.8 and 0.9 

corresponding to 480 and 105 genes, respectively). We do not include the non-

cheater genes since that set essentially represents all protein coding genes. Using a 

weighted regression to account for the variation in the sizes of the gene classes 

(based on the √𝑁 for genes included in the calculation of the relevant statistic), we 

find that the degree of conditionality accounts for the vast majority of the variation 

in patterns of polymorphism in terms of π/site (R2 = 0.93, 0.90 and 0.85 for the full 

CDS, nonsynonymous and synonymous sites respectively, with P < 0.001 in all 

cases; Figure 2.4). Conditionality also accounts for the majority of the variation in 

the rate of synonymous (Ks, R
2 = 0.90, P < 0.001) and nonsynonymous (Ka, R

2 = 

0.67, P < 0.01) divergence, but does not explain variation in the rate of 

nonsynonymous relative to synonymous divergence (Ka/Ks, R
2 = 0.24, P = 0.12).  

This pattern suggests that conditionality is facilitating the fixation by drift of 

slightly deleterious mutations, which appears as a constant proportional rate of both 

synonymous and nonsynonymous substitution. The resulting linear models that 

relate proportion of conditionally expressed genes to the various evolutionary 

parameters (Figure 2.4) provide a means of predicting the evolutionary signatures 

at a group of genes based solely on the proportion of member genes that are 

conditionally expressed. Hence, they account for variation in the importance of 

nearly neutral processes and, therefore, provide a null expectation for each set of 

genes, which corresponds to the RK prediction. As a result, for any category to be 

considered as having patterns that are inconsistent with this null hypothesis, they 

would have to differ significantly from the expectation from the regression. In the 

case of the classes of genes we have analysed, none differ significantly from the 

RK prediction, strongly suggesting that the variation in evolutionary signatures 

observed in other studies (Ostrowski et al. 2015; Noh et al. 2018) are artefacts 

introduced by not accounting for the RK as the appropriate null hypothesis. 
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Figure 2.4 The impact of Red King processes on polymorphism and divergence 

The top row of panels shows the relationship between nucleotide diversity in social 

genes at the CDS (A), nonsynonymous (B) and synonymous sites (C) as a function 

of the proportion on conditionally expressed (sociality) genes within that group. 

Similarly, the bottom row of panels shows the relationship between the rates of 

nonsynonymous (E), synonymous substitutions (F), and the rate of protein 

evolution (D) in a group of genes as a function of the proportion of sociality genes 

in each group. 

 

2.4 Discussion 

Social environments differ from other environments because they are 

created by interactions between individuals and hence are a property of the 

population. Therefore the social traits that form the social environment can be both 

the agents and the targets of selection (Moore et al. 1997). Theory has shown that 

this phenomenon can lead to very different evolutionary dynamics for social traits, 

and hence at their underlying genes, compared to other types of traits. From a 

genetic perspective, this reciprocal relationship between the source and targets of 

selection means that genes can generate selection on one another (including 
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themselves), leading to the potential for concerted coevolution (or counter-

evolution) of genes with the sources of selection they experience (Moore et al. 1997; 

Rice and Holland 1997). For example, concerted evolution of traits and the social 

environment could lead to a runaway process that results in exaggeration of social 

traits, such as those involved in elaborate displays (Moore et al. 1997; West-

Eberhard 1979). While studies at the phenotypic level have demonstrated broad 

support for theoretical expectations of how social traits evolve (Dugatkin 1998; 

Turner and Chao 1999; Foster 2010; Bijma et al. 2007), we still have a surprisingly 

limited empirical understanding of how evolution plays out at the underlying ‘social 

genes’ (Robinson 1999; Robinson, Grozinger, and Whitfield 2005; Foster 2006). 

Because the ultimate evolutionary impact of social interactions at the level of the 

genome should be recorded in the nucleotide sequence of underlying ‘social genes’, 

the evidence manifested in the signatures of selection on gene sequences can 

potentially reveal the fundamental properties and impact of the social interactions 

driving selection. 

By implementing a broad set of analyses of molecular evolution across 

several complementary sets of social genes in the social amoeba D. discoideum, our 

study provides strong support for a unified evolutionary picture. Overall, social 

genes appear to experience a similar pattern of selection as other genes, which is 

primarily characterised by purifying selection. However, where we do find 

differences in their evolutionary patterns, these are consistent with a scenario in 

which conditional expression and the relative use and disuse of genes plays a critical 

role in shaping evolutionary patterns, which we term the Red King process. For 

example, chimerism genes show a significantly lower proportion of polymorphisms 

that are nonsynonymous (Figure 2.2B), even though levels of overall polymorphism 

are similar to control groups of genes (Figure 2.1B). This signature of relative 

stronger evolutionary constraints at these genes (in comparison to their comparable 

background genes) is also manifested in the lower rate of both nonsynonymous 

(Figure 2.3B) and synonymous (Figure 2.3C) divergence. The apparent constraint 

on chimerism genes likely reflects the fact that they are enriched for genes with 

their maximal expression during vegetative growth and have a small number of 

conditionally expressed genes. In fact, their average ISE is very close to 0.5 
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(indicating that they are, on average, expressed at similar levels in both the 

vegetative and developmental stages). In contrast, for sociality genes, which have 

expression that is essentially restricted to the social stage, we see a very clear picture 

of relatively weaker purifying selection (compared to their background genes), both 

in the level of polymorphism and divergence (Figures 2.1 to 2.3). Thus, while 

overall patterns primarily reflect purifying selection, the likely explanation for why 

sets of genes still differ in their manifested molecular signatures of selection is that 

they experience selection with varying frequencies (i.e., they have different degrees 

of conditionality).  It is interesting to note that this conclusion bears some 

similarities to the finding that breadth of expression is a good predictor of the 

strength of purifying selection on mammalian genes (Duret and Mouchiroud 2000). 

However, there is a critical difference between how breadth of expression and the 

RK process impact molecular evolution. Breadth of expression is likely to reflect 

the extent of pleiotropy for a gene, with higher pleiotropy (associated with broader 

expression) generally leading to stronger selection owing to the accumulated effects 

of selection across tissues or traits. In contrast, when expression is restricted to a 

subset of generations, selection is diluted by conditionality, irrespective of the 

strength of selection during the generations where expression occurs. Hence, 

breadth of expression impacts molecular evolution because it is a determinant of 

the strength of selection, whereas the RK process impacts molecular evolution by 

shifting the overall distribution of selection coefficients towards zero.   

These results highlight that, when testing evolutionary hypotheses, it is 

critical to consider the impact of the RK process and identify the correct null 

hypothesis for why genes might show different signatures of selection. Besides 

conditionality, expression level is another variable to be taken into account before 

interpreting signatures of molecular evolution, since highly expressed genes in 

general evolve slower (Drummond et al. 2005). However, the weaker selection 

experienced by sociality genes seems to result from conditionality rather than lower 

expression, since although restricted to a fraction of generations, expression of these 

genes is generally high when required (Figure S2.1C). Moreover, our analyses 

emphasize the importance of evaluating the full body of evidence when interpreting 

patterns of molecular evolution, since incorrect conclusions can be drawn from the 
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results of any single test. For example, we see elevated polymorphism at sociality 

genes, which could be misclassified as evidence for balancing selection. However, 

the fact that we see commensurate increases in both nonsynonymous and 

synonymous polymorphism, including different classes of deleterious mutations, 

and no significant difference from the background genes in the value of Tajima’s D 

strongly supports the conclusion that the increased polymorphism reflects weaker 

purifying selection, not balancing selection.   

A key challenge for studies aimed at understanding the molecular evolution 

of social genes is in first identifying representative social genes (Robinson et al. 

2005; Robinson et al. 2008; Foster et al. 2007). This is exacerbated by the fact that 

different methods can all potentially introduce biases. To solve these problems, we 

have utilised tractability of microbial systems for the discovery of social genes. 

Moreover, we used four different approaches to identify largely independent groups 

of genes. Remarkably, despite the fact that the groups of social genes were 

independently identified as being associated with social interactions, no gene was 

identified by all four methods, and for the chimerism, sociality and cheater genes, 

there is no significant overlap between these classes (i.e., no significant enrichment, 

see Table 2.1). Antagonism genes show significant enrichment in their overlap with 

sociality and chimerism genes, presumably because they must be expressed during 

the slug stage (which is the same developmental timepoint at which chimerism 

genes were identified). However, despite the significant enrichment, these classes 

still only contain a relatively small proportion of shared genes (Table 2.1).  

Although the groups differ in some of their evolutionary signatures, they all fit 

cleanly into the unified predictions under the RK process. This conclusion is clearly 

captured in Figure 2.4, which demonstrates that different categories of genes all fall 

in the overall patterns of polymorphism (Figures 2.4A-C) and divergence (Figures 

2.4D-F) predicted based on their degree of conditionality (i.e., the proportion of 

their genes that are conditionally expressed only in social stages). Most remarkably, 

the degree of conditionality explains the large majority of variation across gene 

classes in the levels of polymorphism and divergence, with no group appearing as 

a significant outlier in this overall pattern. Thus, despite the fact that previous 

studies of variation at social genes in this species have suggested that social genes 
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show signatures consistent with patterns driven by social interactions (Ostrowski et 

al. 2015; Noh et al. 2018), we see no evidence in support of this conclusion.  

 Many molecular evolution studies begin with the a priori assumption that 

synonymous substitutions are neutral. However, throughout our analyses we see 

strong evidence that variation at synonymous sites is under selection. Consequently, 

synonymous sites provide a critical additional body of evidence for evaluating the 

relative strength of selection, which clarifies the evolutionary picture. Importantly, 

synonymous sites are unlikely to be sources of functional (and potentially adaptive) 

variation, such as that underlying different social strategies (which presumably 

arises primarily from nonsynonymous differences in genes). Therefore, 

synonymous variation is unlikely to be maintained by balancing selection, and 

hence is most likely to reflect inefficient purifying selection driven by codon use or 

other processes in transcription and translation (such as splice control). Thus, the 

fact that we typically see differences among groups of genes in their evolutionary 

signatures (for both polymorphism and divergence) at both synonymous and 

nonsynonymous sites suggests the same phenomenon is affecting the strength of 

selection at all sites in the CDS. This result is most clear in Figure 2.4, where we 

see a similar dependence of the levels of polymorphism and divergence at both 

nonsynonymous (Figures 2.4B and 2.4E, respectively) and synonymous sites 

(Figures 2.4C and 2.4F, respectively) on the degree of conditionality. The fact that 

all of these values change in the same way strongly suggests that they all reflect the 

dilution of selection on conditionally expressed genes.  

Although we have focused on the impact of direct selection shaping 

variation and divergence at social genes, other analyses of how social interactions 

impact molecular evolution have considered the impact of kin selection (Noh et al. 

2018). In the case of D. discoideum, the impact of kin selection could potentially 

be seen in differences in selection acting on genes expressed in cells destined to 

become stalk (which potentially experience kin selection) or spores (which 

presumably experience direct selection). It has previously been suggested that this 

scenario results in the dilution of selection on prestalk genes owing to the indirect 

nature of kin selection relative to prespore genes (Noh et al. 2018), and thus 

consistent with kin selection. However, our analyses, which are based on a much 
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larger set of genome sequences, provide several lines of evidence that strongly 

counter the conclusion that kin selection has left a signature in the patterns of 

molecular evolution at these genes. Most importantly, we find no evidence that the 

two sets of genes differ in their patterns of sequence evolution (hence our 

combining them here), nor do they differ from the relevant background genes 

(Tables S2.5-7, S2.9-11). This is perhaps unsurprising since we find no evidence 

that genes expressed in either of these cell populations show exclusive expression 

in either of these conditions. Moreover, most of these genes are also expressed 

across different stages. Therefore, despite their significant expression bias in the 

prestalk and prespore regions, these genes are not expected to differ in the relative 

importance of direct and kin selection.   

In summary, we find that the Red King process, wherein the relative use and 

disuse of social genes across generations modulates the relative strength of selection 

they experience, provides a unifying explanation for large-scale evolutionary 

patterns. This conclusion does not rule out a role for other evolutionary processes, 

like the RQ, at some genes, but the impact is likely restricted to a relatively small 

collection of genes or sites. In the context of social conflict, the overall pattern of 

purifying selection at genes associated with the social stage (regardless of how they 

were identified) is consistent with there being an overall optimum, as expected 

under an ESS, but that selection is diluted due to conditionality. Given that 

phenotypic studies have identified conspicuous differences between naturally 

occurring strains in all traits measured (Buttery et al. 2009; Buttery et al. 2010; 

Wolf et al. 2015), our results suggest that the observed variation potentially reflects 

the inefficiency of selection to remove variation, rather than selection maintaining 

a diversity of alternative strategies. 
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2.5 Methods 

2.5.1 Genomic DNA sequencing 

Genomic DNA was extracted and sequenced from 58 D. discoideum strains 

and one divergent Mexican Dictyostelium strain (OT3A, which is characterised as 

D. discoideum, but could represent a close congener), all obtained from the Dicty 

Stock Center (Fey et al. 2013). For DNA extraction, 109 cells were collected after 

growth on nutrient media that contained Klebsiella aerogenes. Cells were re-

suspended in KK2 and washed at least three times by centrifugation at 2200 rpm 

for 2 minutes to remove remaining bacteria. Nuclei were extracted from the pellet 

containing amoeba, followed by genomic DNA extraction as described elsewhere 

(Gruenheit et al. 2017). gDNA quality was assessed by agarose gel electrophoresis 

and a NanoDrop spectrophotometer (Thermo scientific). gDNA was quantified 

using a Qubit® fluorometer (Thermo scientific) before genomic libraries were 

prepared using Illumina TruSeq kit. Paired-end sequencing for reads ranging from 

75-100 bp were obtained on an Illumina HISeq sequencer. A second round of 

library sequencing was performed for strains NC105.1, DD185, K10, S109, QS102, 

NC85.2 and NC60.1 in order to increase the number of reads. To complement our 

de novo sequencing we also downloaded raw reads from NCBI Sequence Read 

Archive (SRP071575) of published genome sequence data from another 20 D. 

discoideum natural strains (Gruenheit et al. 2017) (Table S2.12). 

 

2.5.2 Mapping and SNP calling  

Reads where cleaned for adapters and quality trimmed using Trimmomatic 

(Bolger et al. 2014) allowing maximally 2 mismatches in seed alignments and 

extending and clipping if a score of 30 is reached. Leading and trailing bases with 

a quality less than 3 where removed, before scanning the reads with a 4-base sliding 

window and cutting if the average quality per base drops below 15. Reads with a 

length of less than 36 bases after this process where then dropped. In order to 

separate D. discoideum reads from those derived from possible contaminants, 
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trimmed reads where binned by simultaneously mapping them to the reference 

genome of D. discoideum, Paraburkholderia xenovorans lb400, Burkholderia 

ubonensis, Paraburkholderia fungorum and Klebsiella pneumoniae; and assigning 

them according to the best mapping score using BBSplit, part of the BBMap 

package (Bushnell 2016). Genomes from the aforementioned bacterial species 

where downloaded from Ensembl Bacteria database (Kersey et al. 2016). Reads 

binned with D. discoideum or not mapped in the previous step where pooled 

together and mapped to the D. discoideum reference genome using NextGenMap 

(Sedlazeck et al. 2013). 

SNP calling was performed by comparison with the reference genome 

(Eichinger et al. 2005) using the Genome Analysis Toolkit GATK (McKenna et al. 

2010), following Best Practices recommendations for standard hard filtering 

parameters (DePristo et al. 2011; Van der Auwera et al. 2013). Briefly, alignments 

where sorted and PCR duplicates marked using Picard tools (Wysoker et al. 2016). 

Base quality score recalibration (BQSR) was performed by calling SNPs in each 

strain, filtering out sites with a Quality lower than 30, depth of coverage lower than 

2, quality by depth (QD) less than 2, Fisher strand bias (FS) over 60 or Mean 

Mapping Quality (MQ) less than 40. Remaining SNPs where then used to perform 

BQSR using GATK. Variants where then jointly called on the 79 strains using 

GATK HaplotypeCaller and GenotypeGVCFs functions. Resulting SNPs where 

filtered with a static threshold of QD < 2.0 || FS > 60.0 || MQ < 30.0. As to maximise 

the number of informative sites for posterior analysis, while reducing the amount 

of noise introduced by missing genotypes in strains with low genome coverage or 

high diversity, we removed any strain with a missing call rate higher than 0.3, any 

site called in less than 90% of the remaining strains (i.e. in less than 60 out of 67 

strains), as well as any multiallelic site or indel. This results in a dataset of 279,807 

SNPs across 67 strains. 

 

2.5.3 Intraspecific evolutionary statistics 

Parameters of genetic diversity (number of SNPs and the average nucleotide 

diversity, π) and Tajima’s D where estimated for genes with an average mapping of 
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more than 50%, using the R package PopGenome (Pfeifer et al. 2014). The two 

diversity measures were estimated for coding regions, nonsynonymous and 

synonymous sites, and then scaled to the mapped CDS length to obtain per site 

measures. Characterization of SNPs that introduce premature stop codons was 

performed by using SnpEff (Cingolani et al. 2012). Genes with an average mapping 

≤ 50% were considered to hold a presence/absence variation (PAV) and were 

analysed separately to assess if this type of structural genetic variation is more 

frequent among any group of social genes. 

 

2.5.4 Interspecific divergence 

SNPs were further characterized as nonsynonymous (n) or synonymous (s) 

and segregating (P) or fixed (D) differences by comparison to a Mexican 

Dictyostelium isolate OT3A. While this strain is annotated as D. discoideum in 

dictyBase (Fey et al. 2013), the low mapping rate of our sequencing reads and the 

high divergence of this strain with respect to all other isolates suggest that this strain 

belongs to a different species, or at the very least, is an outgroup to the strains used 

in this study. We used this information to perform the McDonald-Kreitman test 

using the R Package PopGenome (Pfeifer et al. 2014). These counts were also 

included in the calculation of the Direction of Selection (DoS) statistic (Stoletzki 

and Eyre-Walker 2011). In both cases, the analysis was conducted for each gene 

individually, not by pooling all SNPs from genes pertaining to the same group. 

To calculate rates of protein evolution we compared the reference genome 

of D. discoideum (Eichinger et al. 2005) to OT3A. We first built the pseudo genome 

of OT3A by inserting SNPs for this strain (with comparison to the reference 

genome) into the reference genome, by using VCFtools software package (Danecek 

et al. 2011). CDSs for all genes from both genomes where extracted using gffread 

(Pertea 2017) and rates of synonymous (Ks) and nonsynonymous substitutions (Ka) 

where estimated using R package seqinR (Charif and Lobry 2007). The rate of 

protein evolution Ka/Ks was calculated for each CDS and averaged for alternative 

transcripts of the same gene. 
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2.5.5 Identification of social genes 

2.5.5.1 Sociality genes 

To identify genes biased to the social (developmental) cycle of D. 

discoideum, we used data from several published RNA-seq experiments sampled 

from vegetative growth (Rosengarten et al. 2015; Nasser et al. 2013; Parikh et al. 

2010) and from the developmental transcriptome (Rosengarten et al. 2015; filter 

experiment). In total, we used data from seven vegetative conditions (15 replicates) 

and 18 developmental time points during the social stage sampled at every 1-2h 

(from hour 1 to hour 24, 2 replicates each) (Rosengarten et al. 2015). Reads were 

downloaded from NCBI Gene expression Omnibus (GEO: GSE61914), trimmed 

with skewer package (Jiang et al. 2014) and filtered for a minimum length of 20bp 

and a mean Phred Quality score of 20. Remaining reads where pseudo-aligned to 

transcripts of the D. discoideum reference genome (Eichinger et al. 2005) 

downloaded from Ensembl Protists database release 36 (Kersey et al. 2016) and 

further quantified using Kallisto (Bray et al. 2016). One hundred bootstrap samples 

were generated for each replicate to compute uncertainty estimates for the 

expression levels. Normalisation was performed using the TMM method (Robinson 

and Oshlack 2010) implemented in edgeR (Robinson et al. 2010) and scaled to 

coding sequence length, after discarding genes with less than two reads in less than 

two libraries. 

Our analyses of differential expression across time points (Figure S2.2) 

agreed with previous findings that genes up-regulated one hour following starvation 

have GO categories consistent with a shift to multicellular social development 

(Rosengarten et al. 2015). We also find that the tgr genes, which are known to play 

an important role in social interactions (Benabentos et al. 2009; Gruenheit et al. 

2017) are up-regulated at this stage (Figure S2.3). Consequently, we considered the 

social stage to begin at the first hour. Therefore, data from hour 1 to hour 24 are 

considered to be part of the ‘social library’, while data hour zero and from all 

vegetative conditions are considered to be part of the ‘vegetative libraries’. 
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In order to define sociality genes, we averaged values for replicates and 

calculated an index of social expression (ISE), defined as the proportion of the total 

expression that appears in the social libraries (Sucgang et al. 2011): 

𝐼𝑆𝐸 =  
𝑆𝑜𝑐𝑖𝑎𝑙 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑣𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑆𝑜𝑐𝑖𝑎𝑙 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

Sociality genes were defined as those with an index higher than 0.9. 

2.5.5.2 Chimerism genes 

To identify genes showing differential expression under chimeric conditions 

we experimentally created clonal and all pair-wise chimeric aggregations using 

three strains originating from the same geographical location (NC34.2, NC57.1 and 

NC87.1). Cells of each strain were grown in association with Klebsiella aerogenes, 

before washing by centrifugation in KK2 buffer. Washed cells were then plated on 

non-nutrient L28 purified agar (agar) at a density of x cells/cm2. For chimeric 

combinations we mixed equal numbers of cells from each strain. Aggregations were 

harvested after fourteen hours of development, when slugs had formed. This stage 

was chosen because previous work has demonstrated that the effects of chimeric 

development can be seen at this stage (Foster et al. 2002; Castillo et al. 2005; Jack 

et al. 2015; Gruenheit et al. 2017). Development of each clone and chimeric 

combination was carried out in duplicate. For each replicate, slugs from ten agar 

plates were pooled for RNA extraction using Trizol. RNA pools were sequenced 

on an Illumina TruSeq with 100 bp paired-end reads following standard protocols. 

This yielded between ~107 to 2 x 107 (mean ~1.5 x 107) reads per RNA pool.  

Preprocessing and mapping was performed as described above for the 

identification of sociality genes. Briefly, reads were trimmed and filtered using the 

skewer package (Jiang et al. 2014) (min. length of 20bp, mean Quality score of 20). 

They were then pseudo-aligned to D. discoideum transcripts (Eichinger et al. 2005) 

obtained from Ensembl Protists database release 36 (Kersey et al. 2016) and 

quantified using Kallisto (Bray et al. 2016). One hundred bootstrap samples were 

generated for each replicate to compute uncertainty estimates for the expression 

levels. Genes with less than 5 reads in at least 47% of the libraries were discarded. 
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Estimates of expression were then summarized to gene level and Wald test for 

differential expression was performed for chimeras and clonal samples by using 

sleuth (Pimentel et al. 2017). Chimerism genes are then defined as those that are 

significantly up-regulated in chimeric slugs (FDR adjusted P-value < 0.05).  

2.5.5.3 Antagonism genes 

A list of 903 prespore and 998 prestalk genes was obtained from ref. (Noh 

et al. 2018), which derived from an RNA-seq experiment identifying genes 

differentially expressed in these two cell subtypes (Parikh et al. 2010). For 

evolutionary analyses, these genes were compared against all genes in the 

expression data provided in ref. (Parikh et al. 2010). One prespore and four prestalk 

genes in the prespore/prestalk list were not present in the original data, but were 

included in our analysis in both: the background and the specific groups of genes. 

For the regression analysis of the impact of Red King processes on 

polymorphism, we included two extra sets of antagonism genes based on their 

expression bias between prestalk and prespore regions of the slug (corresponding 

to biases of ≥ 0.8 and  ≥ 0.9 in either cell type).  For this, we combined the data 

from ref. (Parikh et al. 2010) with an additional set of data, which was generated as 

follows. D. discoideum cells transformed with either ecmAO-RFP or pspA-RFP 

reporter genes (Parkinson et al. 2009) were developed to the slug stage. Slugs were 

collected in dissociation buffer (KK2, 10mM EDTA) and dissociated through a G21 

needle. Cells were resuspended at 108 cells/ml and cell clumps removed by 

filtration. RFP expressing cells were purified using a BD FACSaria flow sorter. 

Total RNA was extracted using TRI Reagent, before rRNA depletion using 

RibminusTM Eukaryotic kit (Invitrogen). 200-500ng of rRNA depleted RNA was 

reverse transcribed, fragmented and size selected for 150-250 bp cDNA fragments. 

cDNA was amplified using strand specific primers and sequenced using a SOLiD 

4 system. Expression biases were calculated separately for each dataset as the 

proportion of the total expression that appears in the prestalk libraries compared to 

prespore libraries, and vice-versa, as follows:  
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𝑃𝑟𝑒𝑠𝑡𝑎𝑙𝑘 𝑏𝑖𝑎𝑠 =  
𝑃𝑟𝑒𝑠𝑡𝑎𝑙𝑘 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑃𝑟𝑒𝑠𝑡𝑎𝑙𝑘 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑃𝑟𝑒𝑠𝑝𝑜𝑟𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

𝑃𝑟𝑒𝑠𝑝𝑜𝑟𝑒 𝑏𝑖𝑎𝑠 =  
𝑃𝑟𝑒𝑠𝑝𝑜𝑟𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃𝑟𝑒𝑠𝑡𝑎𝑙𝑘 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑃𝑟𝑒𝑠𝑝𝑜𝑟𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

Genes were included in each set if the two datasets agreed on the degree of bias 

(e.g., if the bias calculated from both sets was ≥ 0.8 the gene would have been 

included in the 0.8 bias set).  

2.5.5.4 Cheater genes 

Previous work has identified mutations that result in a facultative reduction 

of cooperative behaviour when D. discoideum strains grown in chimeras with a 

different strain (Santorelli et al. 2008). These genes where identified by screening 

of insertional mutagenesis (REMI) libraries, and a subset of mutants was validated 

at a finer scale by recapitulating 11 insertional events (10 intra- and 1 intergenic 

mutations) by homologous recombination in wild-type cells. Phenotypes of these 

11 mutants were identical with those of the original mutants in all cases. A fraction 

of these mutations, occurring in intergenic regions, were discarded. The remaining 

mutations affect a total of 99 genes, which we referred to as ‘cheater’ genes. 

 

2.5.6 GO enrichment 

GO terms for biological process, cellular component and molecular 

processes were obtained from Dictybase (Fey et al. 2013). Enrichment analyses of 

GO categories in sociality, chimerism, antagonism and cheater genes were 

performed in R and statistical significance was assessed after FDR adjustment of 

one tail P-values from Monte Carlo sampling (see below). 
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2.5.7 Randomization procedure for significance testing 

All statistical analyses and data manipulation were performed in R version 

3.3.0 and RStudio version 0.99.902, using built-in functions and the package 

ggplot2 (Wickham 2016) for plotting. Unless otherwise explicitly stated in the text, 

significance was assessed by randomization tests. For each evolutionary analysis, 

10,000 samples (s) of the same size of the group of genes being tested (sociality, 

chimerism, antagonism or cheater genes) were taken. Each sample was averaged 

(continuous variables) or the number of genes showing a particular feature was 

computed (categorical variables) – both cases resulting in a distribution of 10,000 

random samples. Expected values were provided as the mean of this random 

distribution. Significance of categorical variables were first assessed by comparing 

observed values to the 95% confidence interval (CI). When these values lie outside 

the CI, numeric two tail P-values were calculated as twice the number of times that 

the observed count for the particular group of genes did not exceed the one in the 

randomly generated subset divided by 10,000. Two tail P-values for continuous 

variables were obtained similarly, but using averages values instead of counts. For 

every statistical test, an FDR (Benjamini-Hochberg) correction for multiple tests 

was performed. 

2.5.8 Data availability 

All data generated or used in the current study are publicly available. The 

list of genetic variants used in all analyses are available from the EMBL-EBI 

European Variation Archive (EVA) (IDs pending and available on request). The 

transcriptome data used in the analysis of sociality genes were downloaded from 

NCBI Gene expression Omnibus (GEO: GSE61914). The list of prespore and 

prestalk genes used in the analysis of antagonism genes was obtained from Noh et 

al. (2018), which was combined with a list of all genes included in the original 

RNA-seq experiment from Parikh et al. (2010). The list of cheater genes is available 

from Santorelli et al. (2008). The RNA-seq (transcriptome) data sets from the 

comparison of clonal and chimeric slugs (used in the analysis of conflict genes) and 

from the comparison of prestalk and prespore regions (used to identify genes with 

biased expression in these regions for the linear model testing the effect of 
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proportion of sociality genes) are available from the NCBI Gene Expression 

Omnibus (both IDs pending and available upon request). 
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2.6 Supplementary material 

Figures 

  

Figure S2.1 Identification and characterization of sociality genes 

A) Distribution of values for the Index of Social Expression (ISE). The dashed line 

represents the cutoff of ISE = 0.9 used to define sociality (ISE > 0.9) and non-

sociality (ISE ≤ 0.9) genes. B) Sociality genes have little or no expression during 

vegetative growth (Kolmogorov-Smirnov test: P < 10-15), suggesting that they are 

conditional to the social stage. C) Although conditional to a fraction of generations, 

sociality genes are usually required at high levels when expressed (Kolmogorov-

Smirnov test: P < 10-15). 
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Figure S2.2 Sliding widow analysis of differential expression 

By computing the number of differentially expressed genes between a given time 

point and the subsequent one (t versus t+1), an analysis of the developmental 

transcriptome reveals three major points of global changes in expression patterns. 

The first step marks the beginning of development (00-01h), suggesting that 

conditional expression of developmental genes is observed as early as within the 

first hour of starvation. The second and third peaks are related to switches from 

loose aggregates to multicellularity (11-12h) and beginning of culmination (16-

18h), respectively (see also Rosengarten et al. (2015)). 
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Figure S2.3 Differential expression of tgr genes through development 

The pair of developmental genes tgrB1 and tgrC1 is up-regulated (filled symbols, 

positive fold change) on the onset of development, between the vegetative stage 

and the first hour of starvation. They are further down-regulated between hours 1 

and 2, and again at the beginning of culmination (hours 16 and 18) (filled symbols, 

negative fold change). In other time points, transcripts of these genes are 

accumulated and increase levels, but are not differentially expressed (empty 

symbols). 
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Tables 

Table S2.1 GO enrichment analysis for sociality genes 

We used a randomization procedure to test whether this group of genes is enriched 

for GO terms of biological process, cellular component and molecular function. For 

each GO term, we generated a set of 10,000 random groups of size N (where N is 

the number of sociality genes) sampled from a set that contains sociality genes and 

its corresponding background set of genes. In each randomization we computed the 

number of genes associated to the GO term being tested and used the distribution 

of the counts across randomizations to calculate the one-tail P-values. Only terms 

overrepresented among sociality genes after FDR correction are shown. 

GOID GO Term Obs Exp P FDR P 

 Biological Process     

GO:0030198 
extracellular matrix 

organization 
29 4.6 <10-4 <10-4 

GO:0030435 

sporulation resulting in 

formation of a cellular 

spore 

24 10.26 <10-4 <10-4 

GO:0031154 
culmination involved in 

sorocarp development 
28 12.71 <10-4 <10-4 

GO:1902168 response to catechin 7 1.38 <10-4 <10-4 

GO:0008150 biological_process 411 263.12 <10-4 <10-4 

GO:000NABP 
no biological process 

annotation 
803 695.64 <10-4 <10-4 

      

 Cellular Component 

GO:0005576 extracellular region 83 26.82 <10-4 <10-4 

GO:0016021 
integral component of 

membrane 
369 308.21 <10-4 <10-4 

GO:0031012 extracellular matrix 30 4.84 <10-4 <10-4 

GO:0005575 cellular_component 438 318.09 <10-4 <10-4 

GO:000NACC 
no cellular component 

annotation 
702 630.71 0.0002 0.0264 

      

 Molecular Function 

GO:0004497 monooxygenase activity 27 8.62 <10-4 <10-4 

GO:0004553 

hydrolase activity, 

hydrolyzing O-glycosyl 

compounds 

25 9.18 <10-4 <10-4 

GO:0005201 
extracellular matrix 

structural constituent 
27 4.41 <10-4 <10-4 

GO:0005506 iron ion binding 23 9.73 <10-4 <10-4 

GO:0016705 

oxidoreductase activity, 

acting on paired donors, 

with incorporation or 

21 6.96 <10-4 <10-4 
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reduction of molecular 

oxygen 

GO:0020037 heme binding 26 10.02 <10-4 <10-4 

GO:0030246 carbohydrate binding 43 14.42 <10-4 <10-4 

GO:0001646 cAMP receptor activity 6 1.11 0.0001 0.0159 

GO:0030248 cellulose binding 28 14.05 0.0003 0.0433 

GO:0003674 molecular_function 370 268.91 <10-4 <10-4 

GO:000NAMF 
no molecular function 

annotation 
786 669.99 <10-4 <10-4 

 

 

Table S2.2 GO enrichment analysis for chimerism genes 

We used a randomization procedure to test whether this group of genes is enriched 

for GO terms of biological process, cellular component and molecular function. For 

each GO term, we generated a set of 10,000 random groups of size N (where N is 

the number of chimerism genes) sampled from a set that contains chimerism genes 

and its corresponding background set of genes. In each randomization we computed 

the number of genes associated to the GO term being tested and used the distribution 

of the counts across randomizations to calculate the one-tail P-values. Only terms 

overrepresented among chimerism genes after FDR correction are shown. 

GOID GO Term Obs Exp P FDR P 

 Biological Process     

GO:0006096 glycolytic process 6 0.29 <10-4 <10-4 

GO:0006099 tricarboxylic acid cycle 7 0.40 <10-4 <10-4 

GO:0006108 malate metabolic process 4 0.10 <10-4 <10-4 

GO:0006164 
purine nucleotide 

biosynthetic process 
5 0.18 <10-4 <10-4 

GO:0006338 chromatin remodelling 4 0.28 <10-4 <10-4 

GO:0006457 protein folding 12 1.21 <10-4 <10-4 

GO:0006458 'de novo' protein folding 5 0.29 <10-4 <10-4 

GO:0006471 protein ADP-ribosylation 3 0.09 <10-4 <10-4 

GO:0006520 
cellular amino acid 

metabolic process 
5 0.18 <10-4 <10-4 

GO:0006531 aspartate metabolic process 2 0.03 <10-4 <10-4 

GO:0006532 
aspartate biosynthetic 

process 
3 0.05 <10-4 <10-4 

GO:0006536 glutamate metabolic process 3 0.09 <10-4 <10-4 

GO:0008152 metabolic process 24 5.67 <10-4 <10-4 

GO:0009408 response to heat 4 0.15 <10-4 <10-4 

GO:0031589 cell-substrate adhesion 5 0.46 <10-4 <10-4 

GO:0046689 response to mercury ion 6 0.76 <10-4 <10-4 

GO:0055114 oxidation-reduction process 22 6.70 <10-4 <10-4 

GO:0061077 
chaperone-mediated protein 

folding 
5 0.44 <10-4 <10-4 
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GO:0000492 box C/D snoRNP assembly 2 0.03 0.0001 0.0092 

GO:0006189 
'de novo' IMP biosynthetic 

process 
3 0.11 0.0001 0.0092 

GO:0030435 
sporulation resulting in 

formation of a cellular spore 
7 1.18 0.0001 0.0092 

GO:0070212 
protein poly-ADP-

ribosylation 
2 0.03 0.0001 0.0092 

GO:0008652 
cellular amino acid 

biosynthetic process 
4 0.32 0.0002 0.0168 

GO:0019752 
carboxylic acid metabolic 

process 
3 0.17 0.0002 0.0168 

GO:0006807 
nitrogen compound 

metabolic process 
3 0.18 0.0003 0.0216 

GO:0010421 

hydrogen peroxide-

mediated programmed cell 

death 

3 0.14 0.0003 0.0216 

GO:0010918 

positive regulation of 

mitochondrial membrane 

potential 

3 0.14 0.0003 0.0216 

GO:0019538 protein metabolic process 2 0.03 0.0003 0.0216 

GO:0006094 Gluconeogenesis 3 0.16 0.0004 0.0269 

GO:0009617 response to bacterium 6 0.99 0.0004 0.0269 

GO:0000398 
mRNA splicing, via 

spliceosome 
6 1.04 0.0005 0.0315 

GO:0046956 positive phototaxis 3 0.17 0.0005 0.0315 

GO:0006538 glutamate catabolic process 2 0.05 0.0007 0.0415 

GO:0046847 filopodium assembly 3 0.21 0.0007 0.0415 

GO:0006734 NADH metabolic process 2 0.05 0.0008 0.0448 

GO:0051103 
DNA ligation involved in 

DNA repair 
3 0.17 0.0008 0.0448 

GO:0006273 lagging strand elongation 3 0.19 0.0009 0.0491 

  
 Cellular Component 

GO:0005634 Nucleus 33 
16.6

5 
<10-4 <10-4 

GO:0005681 spliceosomal complex 6 0.94 <10-4 <10-4 

GO:0005737 Cytoplasm 61 
19.6

6 
<10-4 <10-4 

GO:0005739 Mitochondrion 19 6.13 <10-4 <10-4 

GO:0005759 mitochondrial matrix 7 1.05 <10-4 <10-4 

GO:0005829 Cytosol 21 5.27 <10-4 <10-4 

GO:0045335 phagocytic vesicle 34 4.87 <10-4 <10-4 

GO:0097255 R2TP complex 2 0.03 <10-4 <10-4 

GO:0005832 
chaperonin-containing T-

complex 
5 0.21 0.0001 0.0073 

GO:0000812 Swr1 complex 2 0.05 0.0004 0.0264 

GO:0008540 
proteasome regulatory 

particle, base subcomplex 
3 0.17 0.0006 0.0330 
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GO:0044613 
nuclear pore central 

transport channel 
2 0.05 0.0006 0.0330 

  
 Molecular Function 

GO:0000166 nucleotide binding 41 
16.9

3 
<10-4 <10-4 

GO:0003824 catalytic activity 32 6.88 <10-4 <10-4 

GO:0004069 
L-aspartate:2-oxoglutarate 

aminotransferase activity 
2 0.03 <10-4 <10-4 

GO:0004352 
glutamate dehydrogenase 

(NAD+) activity 
2 0.03 <10-4 <10-4 

GO:0005524 ATP binding 44 
13.5

1 
<10-4 <10-4 

GO:0016491 oxidoreductase activity 22 6.78 <10-4 <10-4 

GO:0016874 ligase activity 9 1.46 <10-4 <10-4 

GO:0030170 pyridoxal phosphate binding 6 0.67 <10-4 <10-4 

GO:0044183 
protein binding involved in 

protein folding 
5 0.31 <10-4 <10-4 

GO:0051082 unfolded protein binding 12 0.81 <10-4 <10-4 

GO:0031072 heat shock protein binding 3 0.08 0.0001 0.0144 

GO:0004386 helicase activity 6 1.09 0.0003 0.0340 

GO:0008483 transaminase activity 4 0.25 0.0003 0.0340 

GO:0016620 

oxidoreductase activity, 

acting on the aldehyde or 

oxo group of donors, NAD 

or NADP as acceptor 

4 0.23 0.0003 0.0340 

 

 

Table S2.3 GO enrichment analysis for antagonism genes 

We used a randomization procedure to test whether this group of genes is enriched 

for GO terms of biological process, cellular component and molecular function. For 

each GO term, we generated a set of 10,000 random groups of size N (where N is 

the number of antagonism genes) sampled from a set that contains antagonism 

genes and its corresponding background set of genes. In each randomization we 

computed the number of genes associated to the GO term being tested and used the 

distribution of the counts across randomizations to calculate the one-tail P-values. 

Only terms overrepresented among antagonism genes after FDR correction are 

shown. 

GOID GO Term Obs Exp P FDR P 

 Biological Process     

GO:0008299 
isoprenoid biosynthetic 

process 
9 2.22 <10-4 <10-4 

GO:0008150 biological_process 382 300.70 <10-4 <10-4 
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 Cellular Component 

GO:0005856 Cytoskeleton 42 22.85 <10-4 <10-4 

GO:0005938 cell cortex 34 16.96 <10-4 <10-4 

GO:0016020 Membrane 473 400.65 <10-4 <10-4 

GO:0016021 
integral component of 

membrane 
427 352.00 <10-4 <10-4 

GO:0005576 extracellular region 57 30.58 0.0001 0.0082 

GO:0005615 extracellular space 87 59.78 0.0001 0.0082 

GO:0042995 cell projection 12 3.97 0.0001 0.0082 

GO:0005575 cellular_component 441 363.13 <10-4 <10-4 

  
 Molecular Function 

GO:0003779 actin binding 42 19.60 <10-4 <10-4 

GO:0005515 protein binding 67 42.59 <10-4 <10-4 

GO:0003674 molecular_function 375 307.12 <10-4 <10-4 

 

 

Table S2.4 GO enrichment analysis for cheater genes 

We used a randomization procedure to test whether this group of genes is enriched 

for GO terms of biological process, cellular component and molecular function. For 

each GO term, we generated a set of 10,000 random groups of size N (where N is 

the number of cheater genes) sampled from a set that contains cheater genes and its 

corresponding background set of genes. In each randomization we computed the 

number of genes associated to the GO term being tested and used the distribution 

of the counts across randomizations to calculate the one-tail P-values. Only terms 

overrepresented among cheater genes after FDR correction are shown. 

GOID GO Term Obs Exp P FDR P 

 Biological Process     

GO:0035176 social behaviour 24 0.23 <10-4 <10-4 

  
 Cellular Component 

GO:0005575 cellular_component 35 17.55 <10-4 <10-4 

  
 Molecular Function 

GO:0016301 kinase activity 11 2.58 <10-4 <10-4 
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Table S2.5 Average number of SNPs (SNP/site) for social genes 

Expected values and the respective two-tailed P-values were obtained from 

randomization distributions. For each group of social genes, we generated a set of 

10,000 random groups of size N (where N is the number of genes in that particular 

group) sampled from a set that contains that group of social genes and its 

corresponding background set of genes. Two-tailed P-values are defined as the 

probability of obtaining a mean as extreme as the observed only due to chance. 

Significant p-values after FDR correction for multiple tests are highlighted in bold 

(P < 0.05). 

 

 

 

 

 

 

 

Sites Group 
Expected 

(x10-3) 

Observed 

(x10-3) 
P (FDR) 

CDS Sociality 4.758 7.310 < 0.0014 
Chimerism 4.647 4.321 0.961 

Antagonism 5.252 5.294 0.961 

     Prespore 5.252 5.388 0.961 

     Prestalk 5.250 5.209 0.961 

     Presp-Prest 2.809 x10-3 1.784 x10-1 0.961 

Cheater 5.087 4.924 0.961 

Non- 

synonymous 

Sociality 3.002 4.999 < 0.0014 
Chimerism 2.861 2.354 0.288 

Antagonism 3.395 3.368 0.961 

     Prespore 3.393 3.359 0.961 

     Prestalk 3.397 3.376 0.961 

     Presp-Prest −3.563 x10-3 −1.703 x10-2 0.961 

Cheater 3.280 3.282 0.961 

Synonymous Sociality 1.756 2.311 < 0.0014 
Chimerism 1.780 1.967 0.560 

Antagonism 1.856 1.926 0.551 

     Prespore 1.857 2.029 0.184 

     Prestalk 1.858 1.833 0.961 

     Presp-Prest −2.918 x10-4 1.954 x10-1 0.288 

Cheater 1.799 1.642 0.961 



63 

  

Table S2.6 Complementary neutrality tests for social genes 

Fu & Li’s statistics compare external and internal branches of a genealogical tree. 

Under circumstances were variation is removed (purifying selection or recent 

selective sweeps), it is expected an excess of mutations in external branches 

(mutations segregating at low frequencies), resulting in negative values. 

Conversely, balancing selection maintains old alleles (inflating mutations in 

internal branches), resulting in positive values. Wall’s B and Q statistics use linkage 

disequilibrium information to test whether a pair of segregating sites share the same 

genealogy – which would be inflated (larger values) under balancing selection. 

Expected values and the respective two-tailed P-values were obtained by a 

randomization process. For each group of social genes, we generated a set of 10,000 

random groups of size N (where N is the number of genes in that particular group) 

sampled from a set that contains that group of social genes and its corresponding 

background set of genes. Two-tailed P-values are defined as the probability of 

obtaining a mean as extreme as the observed only due to chance after FDR 

correction for multiple tests 

Test Group Expected Observed P (FDR) 

Fu & Li's 

F* 

Sociality −0.703 −0.707 0.898 
 Chimerism −0.708 −0.703 0.957 

 Antagonism −0.700 −0.722 0.630 

      Prespore −0.701 −0.762 0.490 

      Prestalk −0.700 −0.685 0.815 

      Presp-Prest 0.000 −0.077 0.545 

 Cheater −0.700 −0.850 0.545 

Fu & Li's 

D* 

Sociality −0.611 −0.602 0.857 
 Chimerism −0.617 −0.594 0.878 

 Antagonism −0.608 −0.623 0.703 

      Prespore −0.608 −0.657 0.545 

      Prestalk −0.607 −0.592 0.824 

      Presp-Prest −0.001 −0.064 0.545 

 Cheater −0.606 −0.717 0.630 

Wall's B Sociality 0.087 0.094 0.490 
 Chimerism 0.085 0.072 0.545 

 Antagonism 0.089 0.082 0.482 

      Prespore 0.089 0.078 0.482 

      Prestalk 0.090 0.085 0.647 

      Presp-Prest 0.000 −0.007 0.642 

 Cheater 0.089 0.112 0.545 

Wall’s Q Sociality 0.116 0.124 0.490 
 Chimerism 0.115 0.094 0.545 

 Antagonism 0.119 0.109 0.482 

      Prespore 0.119 0.105 0.482 

      Prestalk 0.119 0.114 0.643 

      Presp-Prest 0.000 −0.009 0.630 

 Cheater 0.119 0.145 0.545 
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Table S2.7 Enrichment analysis of social genes evolving under balancing selection 

as defined by different cutoffs of Tajima’s D 

We used a randomization procedure to test whether each of the groups of social 

genes contained an excess of genes evolving under balancing selection. For each 

group of social genes, we generated a set of 10,000 random groups of size N (where 

N is the number of genes in that particular group) sampled from a set that contains 

that group of social genes and its corresponding background set of genes. In each 

randomization we counted the number of genes evolving under balancing selection 

and used the distribution of the counts across randomizations to calculate the 

confidence intervals (2.5th to 97.5th percentiles). 

Tajima’s D > 2 
Sites Group Observed             CI P (FDR) 

CDS Sociality 13 5 16 > 0.05 
 Chimerism 1 0 4 > 0.05 

 Antagonism 12 7 20 > 0.05 

      Prespore 5 2 12 > 0.05 

      Prestalk 7 3 12 > 0.05 

 Cheater 1 0 3 > 0.05 

Nonsynonymous Sociality 14 5 16 > 0.05 
 Chimerism 1 0 4 > 0.05 

 Antagonism 7 7 20 > 0.05 

      Prespore 2 2 12 > 0.05 

      Prestalk 5 3 12 > 0.05 

 Cheater 1 0 3 > 0.05 

Synonymous Sociality 11 5 16 > 0.05 
 Chimerism 0 0 4 > 0.05 

 Antagonism 12 8 21 > 0.05 

      Prespore 8 3 12 > 0.05 

      Prestalk 4 2 12 > 0.05 

 Cheater 1 0 3 > 0.05 

Tajima’s D > 1.5 

CDS Sociality 40 26 47 > 0.05 
 Chimerism 2 1 9 > 0.05 

 Antagonism 47 36 60 > 0.05 

      Prespore 22 15 32 > 0.05 

      Prestalk 25 16 34 > 0.05 

 Cheater 1 0 6 > 0.05 

Nonsynonymous Sociality 40 28 50 > 0.05 
 Chimerism 3 1 10 > 0.05 

 Antagonism 42 38 62 > 0.05 

      Prespore 14 15 33 > 0.05 

      Prestalk 28 17 35 > 0.05 

 Cheater 1 0 6 > 0.05 

Synonymous Sociality 51 36 60 > 0.05 
 Chimerism 8 3 13 > 0.05 

 Antagonism 68 52 80 > 0.05 
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Table S2.8 Intraspecific variation in sociality genes excluding 13 genes evolving 

under balancing selection 

Expected values and the respective two-tailed P-values were obtained from 

randomization distributions. We generated a set of 10,000 random groups of size N 

(where N is the number of genes in that particular group) sampled from a set that 

contains that sociality genes and its corresponding background set of genes. 

Significant P-values after FDR correction for multiple tests are highlighted in bold 

(FDR < 0.05). 

 

 

      Prespore 32 23 44 > 0.05 

      Prestalk 36 23 44 > 0.05 

 Cheater 1 0 7 > 0.05 

Tajima’s D > 1  

CDS Sociality 72 61 93 > 0.05 
 Chimerism 6 5 17 > 0.05 

 Antagonism 94 83 117 > 0.05 

      Prespore 45 36 61 > 0.05 

      Prestalk 49 39 66 > 0.05 

 Cheater 1 1 9 > 0.05 

Nonsynonymous Sociality 71 62 93 > 0.05 
 Chimerism 10 5 17 > 0.05 

 Antagonism 91 81 116 > 0.05 

      Prespore 34 35 60 > 0.05 

      Prestalk 57 38 64 > 0.05 

 Cheater 3 1 10 > 0.05 

Synonymous Sociality 111 76 109 > 0.05 
 Chimerism 13 8 22 > 0.05 

 Antagonism 131 108 146 > 0.05 

      Prespore 62 50 78 > 0.05 

      Prestalk 69 49 77 > 0.05 

 Cheater 3 2 11 > 0.05 

Sites Estimator Expected (x10-3) Observed (x10-3) P (FDR) 

CDS π/site 0.770 1.152 < 10−3 
 SNP/site 4.743 7.231 < 10−3 

Nonsynonymous π/site 0.477 0.772 < 10−3 
 SNP/site 2.992 4.952 < 10−3 

Synonymous π/site 0.289 0.378 < 10−3 
 SNP/site 1.752 2.278 < 10−3 
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Table S2.9 Enrichment analysis of social genes showing strong signatures of 

selection 

We used a randomization procedure to test whether each of the five groups of social 

genes contained an excess of genes from these two categories. For each group of 

social genes, we generated a set of 10,000 random groups of size N (where N is the 

number of genes in that particular group) sampled from a set that contains that group 

of social genes and its corresponding background set of genes. In each 

randomization we counted the number of genes evolving under these forms of 

selection and used the distribution of the counts across randomizations to calculate 

the confidence intervals (2.5th to 97.5th percentiles). Significant P-values after FDR 

correction for multiple tests are highlighted in bold (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

Type of selection Group Observed          CI P (FDR) 

Purifying/Balancing 

Sociality 13 6 18 > 0.05 
Chimerism 0 0 3 > 0.05 

Antagonism 10 4 15 > 0.05 

     Prespore 8 1 9 > 0.05 

     Prestalk 8 1 9 > 0.05 

Cheater 2 0 2 > 0.05 

Positive 

Sociality 1 2 11 0.031 
Chimerism 2 0 3 > 0.05 

Antagonism 9 3 13 > 0.05 

     Prespore 6 1 8 > 0.05 

     Prestalk 6 1 8 > 0.05 

Cheater 1 0 2 > 0.05 



67 

  

Table S2.10 Evolutionary statistics for prespore and prestalk genes 

Expected values and the respective two-tailed P-values were obtained from 

randomization distributions. For each group of genes, we generated a set of 10,000 

random groups of size N (where N is the number of genes in that particular group) 

sampled from a set that contains that group of prespore or prestalk genes and its 

corresponding background set of genes. Two-tailed P-values are defined as the 

probability of obtaining a mean as extreme as the observed only due to chance. 

Significant P-values after familywise FDR correction for multiple tests are 

highlighted in bold (FDR < 0.05). 

Parameter Group Expected Observed P (FDR) 

π/site 
Prespore 0.853 x10-3 0.866 x10-3 0.945 
Prestalk 0.855 x10-3 0.872 x10-3 0.945 

     Presp-Prest -0.001 x10-3 -0.006 x10-3 0.945 

πa/site 
Prespore 0.543 x10-3 0.530 x10-3 0.945 
Prestalk 0.542 x10-3 0.571 x10-3 0.919 

     Presp-Prest 0.001 x10-3 -0.041 x10-3 0.919 

πs/site 
Prespore 0.306 x10-3 0.339 0.616 

Prestalk 0.306 x10-3 0.303 0.945 

     Presp-Prest 0.000 x10-3 0.036 0.616 

Tajima’s 

D 

CDS 

Prespore -0.628 -0.683 0.214 
Prestalk -0.628 -0.619 0.738 

     Presp-Prest 0.000 -0.064 0.263 

Tajima’s 

D 

Nsyn 

Prespore -0.615 -0.696 0.108 
Prestalk -0.614 -0.599 0.698 

     Presp-Prest -0.001 -0.097 0.130 

Tajima’s 

D 

Syn 

Prespore -0.453 -0.470 0.698 
Prestalk -0.452 -0.430 0.698 

     Presp-Prest -0.001 -0.040 0.698 

DoS 
Prespore -0.016 -0.041 0.638 
Prestalk -0.017 -0.015 0.901 

     Presp-Prest 0.000 -0.026 0.638 

Pn/(Pn+Ps) 
Prespore 0.594 0.591 0.901 
Prestalk 0.594 0.596 0.901 

     Presp-Prest 0.000 -0.005 0.901 

Dn/(Dn+Ds

) 

Prespore 0.567 0.547 0.638 
Prestalk 0.567 0.564 0.901 

     Presp-Prest 0.000 -0.017 0.873 

Ka/Ks 
Prespore 0.214 0.222 0.722 
Prestalk 0.215 0.169 0.020 

     Presp-Prest -0.001 0.053 0.107 

Ka 
Prespore 0.001 0.001 0.998 
Prestalk 0.001 0.001 0.320 

     Presp-Prest 0.000 0.000 0.430 

Ks 
Prespore 0.009 0.008 0.337 
Prestalk 0.009 0.009 0.722 

     Presp-Prest 0.000 -0.001 0.337 
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Table S2.11 Enrichment analysis of the number of prespore and prestalk genes 

carrying at least one mutation that introduces a stop codon or results in a partial 

deletion (presence/absence variation) 

We used a randomization procedure to test whether each of the two groups of genes 

contained an excess of genes carrying these types of deleterious mutations. For each 

group of genes, we generated a set of 10,000 random groups of size N (where N is 

the number of genes in that particular group) sampled from a set that contains that 

group of social genes and its corresponding background set of genes. In each 

randomization we counted the number of genes that contained each type of 

deleterious mutation and used the distribution of the counts across randomizations 

to calculate the confidence intervals (2.5th to 97.5th percentiles) and P-values. 

Significant P-values after FDR correction for multiple tests are highlighted in bold 

(P < 0.05). 

 

  

Class of mutations Group Observed      CI P (FDR) 

Stop codon gain Prespore 1 1 8 > 0.05 
Prestalk 5 2 10 > 0.05 

Presence/Absence Prespore 0 3 13 < 10-3 
Prestalk 0 4 14 < 10-3 
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3.1 Abstract 

Despite their apparent equivalence, synonymous codons are not typically used 

uniformly in different species and at different genes within the same genome. 

Deviations from equal synonymous codon usage can reflect selection to optimize 

expression or simply ‘background’ processes shaping nucleotide composition. The 

relative contribution of these adaptive and non-adaptive processes is contentious, 

with evidence of both processes having been reported. Here, we disentangle the 

effects of nucleotide composition bias and selection by modelling the expected 

distributions of synonymous codons under mutation-drift balance in a highly AT-

biased eukaryotic genome. We find that mutation bias explains a striking 88% of 

variation in codon usage bias. Only after accounting for this effect can we identified 

‘preferred’ codons shaped by selection, whose usage increases with expression 

levels and among genes evolving under stronger selective constraints. Optimization 

of expression seems to be addressed mostly (but weakly) by shaping levels of 

transcript stability, addressed by both usage of preferred codons and increasing 

overall GC content in coding sequences. This pattern suggests a role of selection to 

counterpoise the strong mutational bias towards AT accumulation in coding 

sequences. In light of these findings, the need to differentiate ‘codon bias’ from 

‘codon preference’ is also discussed. 
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3.2 Introduction 

Alternative codons for the same amino acid have been historically regarded 

as ‘synonymous’, as a result of degeneracy of the genetic code and their presumed 

interchangeability (Crick et al. 1961; Nirenberg et al. 1966). However, even with 

scarce sequence data, early comparative studies suggested that synonymous codons 

are not used in equal frequencies, with biases varying according to general 

properties of a lineage’s genome (the ‘genome hypothesis’ (Grantham 1980)). Two 

competing hypotheses have been put forward to explain evolution of synonymous 

codon use: mutation-drift balance (Kimura 1968; King and Jukes 1969; Sueoka 

1988) and natural selection (Ikemura 1985; Akashi and Eyre-Walker 1998; Gingold 

and Pilpel 2011; Chamary et al. 2006). 

Frequently summarized as the proportion of Guanine and Cytosine (GC 

content), overall base composition is mostly determined by mutational pressures 

(Sueoka 1962; but see also Rocha and Feil 2010). Although GC content is most 

often around 50% (with Adenine and Thymine, AT, accounting for the remaining 

~50%), strong overall biases are found in both prokaryotes (16.5-75% GC (Muto 

and Osawa 1987; Nakabachi et al. 2006)) and eukaryotes (19.4-64% GC (Gardner 

et al. 2002; Merchant et al. 2007)). Supporting the neutral hypothesis of 

synonymous codon usage as a result of mutation and drift, GC content from the 

presumably neutrally evolving intergenic regions is a strong predictor of codon 

usage bias (CUB) across species (Chen et al. 2004). Nucleotide composition may 

also vary locally within the same genome. The stereotypic example of such 

phenomenon are the isochores of warm-blooded vertebrates, characterized by large 

stretches of homogeneous base composition DNA (Bernardi et al. 1985). Similarly 

to the overall genome scenario, the relative usage of synonymous codons in a gene 

is largely influenced by base composition of the local region within which the gene 

finds itself (Bernardi 2000; Urrutia and Hurst 2001). 

There is growing evidence that mutations at synonymous sites are not so 

‘silent’ and sets of ‘optimal’ codons are actually favoured because are 

advantageous. Although coding for the same amino acid, alternative codons may 
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differ in the availability of isoaccepting tRNAs carrying their particular anticodon 

(Ikemura 1981). This variation can, in turn, affect efficiency (rate) and accuracy 

(fidelity) of translation (Kurland 1992; Gingold and Pilpel 2011). The arrangement 

of synonymous codons in a gene can also influence transcript stability, because 

interactions between base pairs (A:T and G:C) may form secondary structures that 

increases stability and mRNA steady-state levels (Chamary and Hurst 2005; Wan 

et al. 2012). More stable transcripts persist longer in the cell, which can result in 

more translational events per mRNA, increasing the concentration of the final 

protein  (Kudla et al. 2006; Trotta 2013). Therefore, selection to tune expression 

can act at both translational and transcriptional levels. Moreover, consistent with 

predictions of evolutionary theory, optimal codons are more broadly used among 

genes evolving under strong pressures to optimize expression (highly and broadly 

expressed genes) (Akashi and Eyre-Walker 1998; Akashi 2001) and species with 

large effective population sizes, such as microorganisms (Ikemura 1985). 

In eukaryotes, investigation is often focused on model organisms with ~50% 

GC, such as mammals (Lander et al. 2001) and flies (dos Santos et al. 2015). This 

turns the task of quantifying the relative contribution of stochastic processes and 

selection on CUB particularly challenging. An alternative is to investigate patterns 

of codon usage bias in organisms with strong nucleotide composition bias, where 

the presumable effect of background process can be more easily accounted for, 

before identifying potential signatures of selection. 

The free-living social amoeba Dictyostelium discoideum has one of the most 

extreme base composition biases recorded for eukaryotes to date (~22.4% GC 

(Eichinger et al. 2005)), behind only the human malaria parasite Paramecium 

falciparum (~19.4% GC (Gardner et al. 2002)). Pre-genomic investigation in D. 

discoideum has suggested an influence of base composition in patterns of CUB, 

with AT-richer synonymous codons being used more frequently but decreasing 

with expression levels (Sharp and Devine 1989). However, the actual extent to 

which background processes and selection shapes synonymous codon usage 

remains unknown. 
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Here, we integrate large scale genomic and expression data to investigate 

patterns of CUB and examine the evolutionary processes that have shaped it. By 

analysing patterns of nucleotide substitution (transitions, transversions and inter-

GC class), we first estimated the expected nucleotide composition under mutational 

equilibrium and used this information to model synonymous codon probabilities 

under mutation-drift balance. After accounting for a large fraction of variation in 

CUB explained by neutral processes, we were able to identify sets of ‘preferred’ 

and ‘unpreferred’ codons and analyse their usage in context of gene expression and 

different selective constraints. Our results show that, although CUB mostly emerges 

in a passive manner as a result of background processes shaping overall base 

composition, there is also weak selection to optimize expression features. Usage of 

optimal codons modulates transcript stability, which can be an important form of 

optimization of expression in AT-biased genomes, where AT accumulation 

presumably decreases transcript stability and steady-state levels. 

3.3 Results 

Evolutionary forces shaping absolute codon usage (i.e. all codons) can act 

both at the level of nucleotide and protein sequence. Selection favouring protein 

sequence shapes the use of amino acids, rather than codons, and may be influenced 

by processes such as selection to reduce biosynthetic costs (Akashi and Gojobori 

2002). Selection at the level of amino acid use can potentially blur signatures of 

evolutionary processes shaping codon usage, particularly given that proteins 

usually differ in amino acid content. To understand how selection shapes codon use, 

rather than protein sequences, we focus on processes involved with differential 

usage of alternative (synonymous) codons for the same amino acid. Consequently, 

unless otherwise stated, we exclude Methionine and Tryptophan because they only 

have one codon, and stop codons because they are not directly comparable to amino 

acids, since their usage is constrained and also cannot be evaluated in terms of some 

translational optimization processes (such as use of abundant tRNAs). We consider 

the evolution of protein sequences as a separate (but related) process and analyse 

processes shaping protein evolution elsewhere (de Oliveira et al. in prep.a). 
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3.3.1 AT-richer codons are used more frequently 

To investigate the potential influence of background nucleotide composition 

on synonymous codon usage, we assessed the observed relative frequency of 

synonymous codons and their GC content. Remarkably, the more frequent codon 

for every amino acid and stop signal is always one of the AT-richest alternatives 

(Figure 3.1A). This pattern is even stronger when alternative codons with the same 

GC content are considered as a single category: the AT-richer codons are used up 

to 96% of the time, with an average use of 86% across all amino acids (Figure 3.1B). 

 

Figure 3.1 Relative codon frequencies and GC content. 

A) Proportional use of each codon for each amino acid and stop signal, with points 

representing the individual codons and the colours their GC content. B) The pooled 

proportional use of codons per amino acid grouped by their GC content. 

 

Because codon usage can be influenced not only by overall base 

composition in the genome, but also by the local composition around a given gene 

(Urrutia and Hurst 2001), we performed a sliding window analysis to assess the 

distribution of GC across the genome. Apart from a few peaks that appear to be 

related to an enrichment of transposable elements (TEs), GC content is evenly 

distributed across all chromosomes (Figure S3.1). Moreover, processes underlying 
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base composition in surrounding non-coding regions (introns and intergenic 

regions) explain only a small fraction of GC in coding regions (R² = 0.0189, P < 

0.0002). This weak correlation is no longer significant after removing outlier peaks 

of GC due to an overrepresentation of TEs in chromosomes 1 (bases 1-200Kb) and 

6 (bases 850-900Kb) (R² = 0.0023, P < 0.1105). These results suggest that processes 

shaping overall, rather than local, base composition influence GC content and 

synonymous codon usage in coding sequences. 

3.3.2 Mutation bias explains a large proportion of synonymous codon use 

To quantify the extent to which synonymous codon usage simply reflects 

background processes shaping nucleotide content in the genome, we model the 

expected distribution of alternative codons under the null hypothesis that it is driven 

by base composition under equilibrium (GCeq). The equilibrium base composition 

can be modelled using direct estimates of mutation rates obtained, for example, 

from mutation accumulation experiments, or from indirect estimates such as those 

based on rare segregating variants from regions evolving under neutrality or close 

to neutrality. Although previous work on mutation accumulation lines have 

investigated mutational patterns in this system (Saxer et al. 2012), conclusions were 

drawn from a single mutation that emerged throughout the experiment, and thus 

provides only a very rough approximation of the mutation rate and no measure of 

the differential mutation rate between the four nucleotides. Here we use SNP data 

from non-coding regions of 67 natural strains (de Oliveira et al. in review) to extract 

information about the underlying mutation process and compute the nucleotide 

substitution matrix (Figure 3.2; Figure S3.2). 
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Figure 3.2 Nucleotide substitution matrix. 

For each SNP, variants where classified as ancestral (the nucleotide segregating at 

higher frequency) and derived (the nucleotide segregating at lower frequency). 

Derived variants were considered mutations from the ancestral allele, and the 

proportion of all mutations from one nucleotide to each other nucleotide was 

estimated. Values are proportions of mutations that belong to each category. For 

example, 3.11% of all mutations are A to C transversions.  

 

The analysis of mutations reveals that mutations at an A or T have roughly 

the same chance of being a transition (A → G and T → C) as they do of being a 

transversion towards the alternative AT nucleotide (A → T and T → A), while 

mutations only rarely constitute a transversion away from AT (A → C and T → G). 

In contrast, mutations at a G or C are primarily transitions towards AT (G → A and 

C → T), followed by transversions towards AT (G → T and C → A), and only 

rarely do mutations oppose this flow, staying in the same GC class (G → C and C 

→ G). Although transitions (which always change GC class) towards and away 

from AT occur roughly in the same proportion, transversions towards AT are more 

common than towards GC. More remarkably, intra-class mutations are much more 

common in the AT than in the GC category. An intuitive outcome of this pattern is 

a ‘loss’ of GC content, mostly because mutations at G and C rarely conserves the 

nucleotide in the GC category, whereas mutation in A and T often conserves the 

nucleotide in the AT category. 
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To predict the equilibrium GC content of the genome (GCeq) under our 

estimated pattern of mutation we extended a previous model (Sueoka 1962) to 

account for the proportion of mutations that retain the same GC class (A → T, T → 

A, G → C, C → G). This extension is necessary because the probability of staying 

in the same GC class differs between GC and AT pairs (Figure 3.3), influencing 

equilibrium estimates. By applying this method, we predict GCeq to be around 16%, 

which is remarkably close to the observed in non-coding regions (14%). This figure 

is at odds with the considerably higher GC content in coding regions (~27%), which 

may reflect a selective process opposing the strong bias towards AT accumulation 

in coding sequences. 

If usage of alternative codons is random and driven by background 

processes shaping base composition, we would expect observed relative 

synonymous codon frequencies to be very close to that expected under GCeq. To 

test for this possibility, we modelled expected synonymous codon frequencies 

under neutrality using a scenario in which codon use is simply a product of base 

composition probabilities at each position of a codon, rescaled for each amino acid 

(see Methods). This expected distribution of synonymous relative frequencies 

explains a remarkable 88% of variation in observed codon frequencies (R2 = 0.88, 

P < 10-15; Figure 3.3A). 

The random codon use model may be an oversimplification of the neutral 

expectation if complex patterns of trinucleotide mutations occur, making the 

probability of a given triplet more than the simple ‘sum of its parts’. Such a scenario 

can potentially be more likely at repeat-rich DNA sequences, because the repeats 

increase the chances of polymerase slippage during DNA replication (Ellegren 

2004). Because D. discoideum has a repeat-rich genome (Eichinger et al. 2005), we 

tested whether the random occurrence of triplets deviates from that predicted from 

the product of nucleotide frequencies. Occurrence of triplets under neutrality was 

estimated by computing the number of triplets in non-coding regions in all possible 

three frames. These counts were then treated as regular codons to obtain relative 

synonymous codon frequencies, should these triplets be actually translated into 

amino acids. A linear regression analysis reveals that relative synonymous codon 

frequencies of these neutrally evolving triplets is strongly predicted from nucleotide 
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composition under equilibrium (R² = 0.92, P < 10-15), suggesting that base 

frequencies alone can be used to estimate expected synonymous codon distribution 

under neutrality. 

We also considered the alternative hypothesis that observed relative 

frequencies can be best explained by coevolution between codons and available 

isoaccepting tRNAs (Ikemura 1981; Ikemura 1985). Because tRNA gene copy 

number is strongly and positively correlated to tRNA levels in a cell, it can be used 

as a reliable proxy of the later (dos Reis et al 2003). dos Reis et al.’s (2003; 2004) 

relative codon adaptiveness (wi) is defined as the number of tRNA copies that 

recognize a particular codon after accounting for wobble pairings – the absolute 

codon adaptiveness (Wi) – weighted by the maximum absolute codon adaptiveness 

among all codons (Wmax). However, because our interest is on usage of alternative 

codons for the same amino acid (and wi is defined relatively to all codons), we 

derived a new parameter: the relative synonymous codon adaptiveness, wij. Here, 

the absolute adaptiveness of a codon i is defined in context of amino acid j, and 

weighted by the maximum absolute adaptiveness among codons for amino acid j 

(Wjmax) (see Methods). We find that only a small fraction of observed relative 

frequencies is explained by wij (R² = 0.14, P < 0.002; Figure 3.3B). 
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Figure 3.3 Contribution of neutral and adaptive processes to observed synonymous 

codon frequencies. 

A) Observed frequencies can be strongly predicted by the distribution expected 

under neutrality, derived from base frequencies under GCeq. B) Analysed as a 

continuous variable, synonymous relative codon adaptiveness (wij) explains only a 

fraction of observed frequencies. 

 

An extended model to explain observed relative frequencies that includes 

both expected frequencies under neutrality and wij, although significantly better (in 

comparison to the model that includes only expected frequencies, ANOVA P < 

0.004), explains only a marginal extra 1% of the variation (R² = 0.89, P < 10-15). 

These results suggest that a large proportion of the observed frequencies that is 

explained by wij is also explained by background processes, with biases in 

synonymous codon frequencies mostly arising from a passive process, under the 

influence of random forces shaping base composition towards AT accumulation. 

 

3.3.3 CUB is also shaped by selection to optimize expression 

A strong influence of base composition in CUB does not necessarily reflect 

an absence of selection, but suggests that putative signatures of selection can be 

obscured by the large impact of neutral processes. Moreover, the potential impact 

of neutral and adaptive processes shaping CUB can be widely diverse across 

individual genes. ‘Preferred’ and ‘unpreferred’ codons can be identified by over 
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and under usage compared to the neutral expectation (this nomenclature is adopted 

to avoid confusion with ‘optimal’ and ‘non-optimal’ codons arising from co-

evolution with tRNA pools). If these deviations reflect differential fitness of 

alternative codons on transcriptional/translational features, we would expect two 

patterns. First, the relative usage of preferred codons should increase with 

expression, since genes required at higher and broader expression evolve under 

stronger selective pressures. Second, genes evolving under different selective 

constraints would show differences on their distribution of preferred codons to 

optimize expression. 

We used a collection of publicly available transcriptomes of the vegetative 

and developmental cycles of D. discoideum (Nasser et al. 2013; Parikh et al. 2010; 

Rosengarten et al. 2015) to obtain gene expression levels, and found a positive 

correlation between maximum expression and usage of preferred codons (r = 0.40, 

P < 10-15; Figure 3.4A). Moreover, we compared these patterns between two groups 

of genes (Sociality and Non-sociality) previously identified to evolve under 

different selective constraints (de Oliveira et al. in review). Evolution at the set of 

Sociality genes reflects the Red King process, where the strength of selection is 

diluted due to conditional expression (as a result of expression being restricted to 

the social cycle), whereas genes expressed in every generation (Non-sociality 

genes) do not show this signature. Interestingly, we found that, across the whole 

coding sequence, Sociality genes tend to show lower usage of preferred 

synonymous codons in comparison to Non-sociality genes (Figure 3.4B). 

Furthermore, both Sociality and Non-sociality genes show a positive correlation 

between usage of preferred codons and expression (Non-sociality: r = 0.43, P < 10-

15; Sociality: r = 0.38; P < 10-15; Figure 4C), but the latter group shows a 

significantly weaker relationship (zNon-sociality − zSociality = 2.27, P = 0.023). These 

findings suggest that selection plays an important role in shaping CUB in this 

system in order to optimize expression. 
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Figure 3.4 Patterns of inferred selection on codon usage bias. 

A) Usage of preferred codons increases with expression levels, as expected under 

translational/transcriptional selection. B) Genes with conditional expression 

(Sociality genes), which evolve under diluted selective constraints, show a reduced 

overall usage of preferred codons compared to genes that experience selection in 

all generations (Non-sociality genes). C) Codon usage bias and expression levels 

are positively correlated in both groups of genes evolving under different selective 

constraints, but this correlation is weaker in genes evolving under diluted selection. 

 

3.3.4. Expression optimization is accomplished by modulating transcript 

stability 

Optimization of expression is often achieved by coevolution with tRNA 

availability, but we have shown that relative synonymous codon adaptiveness is 

very weakly correlated to relative synonymous codon frequencies. Yet, we see a 

positive correlation between codon bias and expression levels, and with stronger 

selective constraints (Figures 3.4A and 3.4C). So, which mechanism explains the 

apparently adaptive relationship between usage of preferred codons and 

expression? One possibility is that this is indeed achieved by co-evolution with 

tRNA abundance, but that this signature was not captured by our initial analysis 

because it can be only revealed when analysed at individual transcripts. A second 

possibility is that selection acts in another form, such as by increasing stability and 

mRNA steady-state levels (Trotta 2013; Chamary and Hurst 2005), which we refer 

to as transcriptional selection. 

To gain insights as to why some codons are preferred (favoured by 

selection), we integrate expression levels with factors potentially related to 

translational and transcriptional selection, and investigate their influence on 
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differential usage of synonymous codons. As a mechanism of translational 

selection, we defined a gene’s synonymous tRNA adaptation index (StAI), adapted 

from dos Reis et al’s (2003; 2004) tRNA adaptation index (tAI). Accordingly, StAI 

is intended to measure the relationship between overall codon usage in a gene and 

the available tRNA pool (using tRNA copy numbers as a proxy). However, StAI is 

calculated as the geometric mean of wij (codon fitness relative to synonymous 

codons for the same amino acid) across a gene, not wi (codon fitness relative to all 

codons; see Methods). As a mechanism of transcriptional selection, we estimated a 

measure of stability per site (for short, hereafter referred simply as ‘stability’), 

defined as the opposite (negative) of Gibb’s free energy (i.e. −ΔGº) divided by 

transcript length. 

Consistent with the analysis of individual codons, the usage of 

preferred/unpreferred codons (codon preference) by a gene is very weakly 

correlated with usage of synonymous codons with more available isoaccepting 

tRNAs (StAI) (r = 0.05, P < 10-5; Figure 3.5A). Conversely, usage of 

preferred/unpreferred codons is positively correlated to stability of a transcript (r = 

0.34, P < 10-15; Figure 3.5B). These findings suggest that although weak, selection 

to optimize expression by usage of differential codons is mostly achieved at the 

transcript level by increasing transcript stability. 

 

 

Figure 3.5 Relationship between codon preference and expression optimization 

parameters. 
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A) Correlation between codon bias and usage of synonymous codons by 

isoaccepting tRNA availability (StAI). B) Correlation between codon usage bias 

and transcript stability (−∆Gº). 

  

Preferred codons identified by our analysis are corrected for GC content 

bias, since the underlying mutational process is taken into account in the calculation 

of expected synonymous codon frequencies. However, we hypothesized that, if 

transcript stability is a general trait under selection to optimize expression, then 

selection could also shape base composition in coding sequences by increasing 

overall GC content, since G:C bonds are more stable than A:T. The GC content of 

a coding sequence is indeed positively correlated with transcript stability (r = 0.57, 

P < 10-15; Figure S3.3). We further analysed the GC content of a coding sequence 

to test for an effect of expression and a difference between groups evolving under 

different selective constraints (Figure 3.6) following an approach that is similar to 

our analysis of codon bias and expression (Figure 3.4). As predicted, we find that 

GC content shows a very strong positive relationship with expression level (r = 

0.68, P < 10-15; Figure 3.6A) and is slightly higher in genes evolving under stronger 

selective constraints (Average GCNon-sociality = 0.28, Average GCSociality = 0.27, P < 

10-15; Figure 3.6B). Moreover, while GC content increases with expression in both 

Sociality (r = 0.67, P < 10-15; Figure 3.6C) and Non-sociality genes (r = 0.71, P < 

10-15; Figure 3.6C), the relationship is weaker in the former (zNon-sociality − zSociality = 

2.97, P = 0.003). 
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Figure 3.6 Selection on overall GC content in coding regions. 

A) GC content is strongly and positively correlated with expression levels. B) 

Genes evolving under diluted selective constraints (Sociality genes) show a shift in 

the distribution of GC content towards the neutral expectation of low GC. C) GC 

content and expression levels are positively correlated in both groups of genes 

evolving under different selective constraints, but this correlation is weaker in genes 

evolving under diluted selection (Sociality genes). 

 

3.4 Discussion 

The relative contribution of adaptive and non-adaptive processes is one of 

the most debated topics in molecular evolution. Accordingly, observation that 

synonymous codons are not used in equal frequencies has motivated several 

competing hypotheses, which can be largely separated into two categories: those 

postulating that codon usage bias emerges passively as a result of background 

(neutral) processes (Kimura 1968; King and Jukes 1969; Sueoka 1988), and those 

suggesting an active role of selection favouring codons that optimize expression 

(Ikemura 1985; Akashi and Eyre-Walker 1998; Trotta 2013). We used a model 

system with a highly AT-biased genome, the social amoeba D. discoideum, to 

quantify the potential effects of base composition and selection to optimize 

expression. Analysis of relative synonymous codon frequencies reveals a clear 

trend towards usage of AT-richer codons (Figure 3.1), as previously indicated by 

pre-genomic investigation in this system (Sharp and Devine 1989) and reports from 

the reference genome (Eichinger et al. 2005). A large fraction of codon usage bias 

can be explained solely by mutational biases towards AT accumulation in this 

genome (Figure 3.2). Specifically, expected frequencies under neutral evolution 
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explains a remarkable 88% of variation in observed synonymous codon usage, 

which is around six times higher than the fraction explained by co-evolution with 

the tRNA pool (Figure 3.3). 

These findings do not exclude the possibility of a role of selection to 

optimize expression features. Signatures of translational/transcriptional selection 

are often revealed in the context of gene expression, since broadly and highly 

expressed genes evolve under stronger constraints to optimize expression (Akashi 

and Eyre-Walker 1998; Akashi 2001). Moreover, the strong effect of mutational 

bias can potentially obscure signatures of selection, since the latter is expected to 

be weak at synonymous codons (Akashi 1995). After removing the strong effect of 

base composition on synonymous codon bias, usage of preferred codons (used more 

often than the neutral expectation) increases with expression and among genes 

evolving under stronger selective constraints (Figure 3.4). 

Favouring of preferred codons by selection does not appear to be caused by 

a strong adaptation to use abundant synonymous tRNAs, but to a weak tuning of 

transcript stability through modulation of mRNA secondary structure (Figure 3.5) 

– similarly to results reported from mammals (Chamary and Hurst 2005). Stability 

increases mRNA steady-state levels, and has been implied as an important 

mechanism of optimization of expression (Kudla et al. 2006; Trotta 2013; Chamary 

and Hurst 2005). In eukaryotes, regulation of gene expression by varying levels of 

mRNA stability involves the proper processing of the transcript by addition of a cap 

and a poly(A)-tail at the 5’ and 3’ ends, respectively, which protect the transcript 

from exonucleases attack (Garneau et al. 2007). Moreover, secondary structures 

formed at 5’ and 3’ UTRs have been experimentally demonstrated to modulate 

levels of gene expression, either by influencing translation initiation (Dvir et al. 

2013) or mRNA stability (Moqtaderi et al. 2014). However, regulatory mechanisms 

at the transcript are not limited to features of untranslated regions and structures 

added at the transcript ends (cap and poly(A)-tail). In yeasts, it has been 

experimentally demonstrated that transcript melting temperature (Tm, used as a 

measure of transcript structure stability) and progressive inclusion of hairpins 

influence rates of RNA decay by the exosome (Wan et al. 2012), proving evidence 

for the role of secondary structures in transcript stability. 
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Considering that D. discoideum evolves under a strong trend towards AT 

accumulation (Figure 3.2) – and A:T forms weaker bonds than G:C – we speculate 

that mechanisms that increases mRNA stability are favoured by selection. 

Accordingly, both usage of preferred codons and overall GC content (Figures 3.5 

and 3.6), which both increase transcript stability, are positively correlated with 

expression levels, and more common among genes evolving under stronger 

selective constraints. Future experimental work comparing stability and expression 

of alleles coding for the same protein but with different proportions of 

preferred/unpreferred codons, as well as different overall GC contents, might 

provide interesting insights on this hypothesis. 

Codon bias can emerge by both passive and active processes. In genomes 

with strong base composition bias, departures from equal usage of synonymous 

codons can emerge passively, by simply drifting towards the genome-wide base 

composition. This is the case in D. discoideum, where usage of AT-richer codons 

is strongly influenced by background processes shaping nucleotide composition. 

However, once this effect is accounted for, an active role of selection is clear, with 

preferred codons being effectively favoured by selection because they confer a 

selective advantage at the translational and/or transcriptional level. Because the 

overall pattern of codon bias emerges from a passive process driven by mutational 

bias, it does not truly reflect what we would consider ‘codon preference’, unlike in 

most systems where commonly used codons are those ‘preferred’ (i.e. favoured by 

selection).  We see that a pattern of truly preferred codons emerges when we 

consider how relative use of codons changes in relation to inferred sources of 

selection. Thus, we suggest that the term ‘codon preference’ should be reserved for 

departures of codon usage from the neutral expectation (presumably driven by 

mutational processes) caused by an active role of selection arising from different 

codon fitness, whereas ‘codon bias’ can be used to describe any deviations from 

equal usage of synonymous codons emerging from either passive or adaptive 

processes. 
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3.5 Methods 

3.5.1 Synonymous codon frequencies and GC distribution across the genome 

Relative synonymous codon frequencies (i.e. relative to each amino acid) 

were estimated from the reference genome (Eichinger et al. 2005) downloaded from 

Ensembl (Aken et al. 2016; Kersey et al. 2016) and using the R package seqinR 

(Charif and Lobry 2007). Before computing this codon table, we excluded all non-

protein coding sequences, genes from the mitochondrial genome and from a 

duplication in chromosome 2, present only in the strain AX4 (reference genome, 

Eichinger et al. 2005). This censoring was necessary because the codon unity is 

meaningful only when translated into amino acids, and because genes in these other 

regions (mitochondrion and duplication) can evolve under different dynamics in 

comparison to the rest of the genome. 

GC content was computed in coding and non-coding regions of all six 

chromosomes of D. discoideum, in windows of 50Kb separated by step sizes of 

1Kb. In each window, we used coordinates from Ensembl (Aken et al. 2016; Kersey 

et al. 2016) to characterize chromosome regions as coding or non-coding DNA. We 

also used these coordinates to localize a list of genes annotated as transposable 

elements in Dictybase (Fey et al. 2013), to test the hypothesis that peaks of elevated 

GC could be associated to the presence of such elements. Peaks of both lower and 

higher GC (< 5th and > 95th percentiles of GC distribution in the 50Kb windows) 

were identified from non-coding regions, under the assumption that non-coding 

DNA evolve close no neutrality (whereas base composition could be potentially 

under selection in coding sequences). 

3.5.2 Nucleotide substitution matrix and GCeq 

Overall nucleotide composition is mostly a result of mutational biases 

(Sueoka 1962; but see also Rocha and Feil 2010), so understanding the evolution 

of such an AT-biased genome as in D. discoideum must include a detailed 

investigation of mutational processes. Because experimental work on mutational 

patterns in this system resulted in conclusions drawn from a single SNP (Saxer et 



88 

  

al. 2012), we used information from segregating variation to derive general 

patterns. This dataset includes 67 natural strains, and details on the geographical 

distribution of the strains, sequencing reports, mapping and SNP calling are 

provided elsewhere (de Oliveira et al. in review). SNPs were filtered to include only 

those from non-coding regions, since these must reflect evolution close to mutation-

drift balance. Directionality was inferred from polarization of rare alleles in 

comparison to the common alleles, resulting in a nucleotide substitution matrix with 

proportion of substitutions in all directions of mutational space. 

This information was used to derive the expected GC under equilibrium. 

Sueoka’s (1962) original equation does not distinct AT → TA and GC → CG. 

However, because the chances of staying in the same GC class differs between AT 

and GC categories (see Figure 3.2), and this can presumably affect estimates of 

equilibrium, we extended his equation as follows: 

𝐺𝐶𝑒𝑞

=
(AT →  GC) − (AT →  TA)

(AT →  GC) − (AT →  TA) − (GC →  CG) + (GC →  AT)
                              (1) 

 

3.5.3 Expected relative synonymous frequencies and identification of 

preferred codons 

The estimated value of GCeq (~16%) from equation (1) was first used to 

calculate the expected absolute codon frequencies, which were later weighted by 

the expected amino acid frequencies to obtain relative codon frequencies. For 

instance, consider the codon AAA, one of the two codons (besides AAG) that code 

the amino acid Lysine. The relative frequency of AAA can be defined as:  

𝑓(𝐴𝐴𝐴)

=
𝑓(𝐴)3

𝑓(𝐿𝑦𝑠)
                                                                                                                  (2) 

 

where f(Lys) is defined as: 
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𝑓(𝐿𝑦𝑠) = 𝑓(𝐴𝐴𝐴) + 𝑓(𝐴𝐴𝐺)

= 𝑓(𝐴)3 + (𝑓(𝐴)2 × 𝑓(𝐺))                                          (3) 

 

The alternative method of estimating expected relative frequencies by 

computing the emergence of triplets under neutrality was performed as follows. 

Non-coding regions of all six chromosomes were concatenated in a single linear 

sequence, which was divided in triplets on frames 1, 2 and 3. Relative frequency of 

a triplet was defined as the sum of counts of the triplet in all 3 frames, divided by 

the total number of triplets for the same ‘amino acid’ (if they were from coding 

sequences). Because estimate using this method is very close to the one based on 

the product of base frequencies, we used the simpler method to calculate expected 

relative synonymous frequencies. 

To account for base composition bias, we identified sets of preferred and 

unpreferred codons by subtracting the observed relative synonymous codon 

frequencies from the relative synonymous codon frequencies expected under 

equilibrium. This method assumes that codons used more often than predicted 

under neutrality (Obsf > Expf) must confer an advantage and are favoured by 

selection. Conversely, codons used less frequently than expected by neutral 

evolution (Obsf < Expf) are assumed to confer a disadvantage and are therefore 

unpreferred/avoided. These residuals are averaged across the whole coding 

sequence, to give a gene’s overall index of codon usage preference. 

3.5.4 Parameters of translational and transcriptional selection 

Co-evolution of codons with the pool of isoaccepting tRNAs is one of the 

more widespread mechanisms of optimization of expression in nature. One classical 

analysis to test this hypothesis is based on two related measures: the relative codon 

adaptiveness (wi), and a gene’s index of tRNA adaptation, tAI (dos Reis, Wernisch, 

and Savva 2003; dos Reis, Savva, and Wernisch 2004). The first gives a measure 

of fitness assigned to each codon, whereas the second uses wi across the whole 

coding sequence to assign an adaptiveness value for a gene. A limitation of this 

method is that wi (and, consequently, tAI) is defined relatively to the maximum 
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adaptiveness value across all codons (Wmax), including codons for different amino 

acids. This means that it may not be an appropriate measure for understanding the 

usage of alternative codons, particularly at the gene level, since different indices of 

tRNA adaptiveness may be due to differences in amino acid content rather than 

differences on the strength of selection on synonymous codons to optimize 

expression. 

To convert this analysis to one that is appropriate for the study of 

synonymous codons, we re-scaled both the measure of codon adaptiveness and the 

gene’s index of tRNA adaptation to such that they measure the relative values for 

different synonymous codons for each individual amino acid. Thus, the relative 

synonymous codon adaptiveness of a particular codon (wij) is defined as: 

𝑤𝑖𝑗

=
𝑊𝑖

𝑊𝑗𝑚𝑎𝑥
                                                                                                                                 (4) 

where Wi is the absolute codon adaptiveness (tRNA gene copy numbers after 

accounting for wobble pairings), and Wjmax is the maximum absolute adaptiveness 

among codons of amino acid j. 

The synonymous tRNA adaptation index (StRNA) is defined as the 

geometric mean of wij in all positions of a gene: 

𝑆𝑡𝐴𝐼

= (∏ 𝑤𝑖𝑗

𝐿

𝑖=1

)

1
𝐿⁄

                                                                                                                  (5) 

where L is the sequence length after removing codons for Methionine, Tryptophan 

(both with a single codon) and stop signal. Both parameters (wij and StAI) where 

estimated by adapting R scripts from dos Reis et al (2003; 2004). 

As a measure of transcriptional selection, we estimated levels of transcript 

stability based on Gibbs free energy (ΔGo), using ViennaRNA package (Lorenz et 

al. 2011). Given the same transcript length, transcripts with lower (more negative) 

ΔGo are more stable. Thus, we divided this measure by CDS length and multiplied 
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the ratio by −1, converting the original parameter into a weighted and more intuitive 

measure of transcript stability. 

To understand the relationship between overall GC and expression 

optimization, we also estimated GC content for the whole coding sequence using 

seqinR (Charif and Lobry 2007). 

3.5.5 Expression levels and genes evolving under different selective 

constraints 

Expression levels were defined as the peak of maximum expression after 

normalization of vegetative and developmental RNAseq libraries (Parikh et al. 

2010; Nasser et al. 2013; Rosengarten et al. 2015). Details of the analysis are 

provided by Oliveira et al (in review) and only briefly outlined here. Libraries were 

normalized using the TMM method (Robinson and Oshlack 2010) implemented in 

edgeR (Robinson, et al. 2010), after removing genes with low counts, following 

author’s specifications. Maximum instead of average or breadth of expression was 

used because the developmental (social) cycle of these species is conditional – i.e. 

it only occurs if/when the amoebae starve. Thus, defining an expression parameter 

for genes with a single high peak on late development based in comparison to all 

libraries may blur putative signatures of selection to optimize expression features, 

because this gene would presumably have a low average and breadth of expression. 

Conditionality of the social cycle has been shown to have an important 

impact on evolution of the genes expressed only in the social cycle because it dilutes 

selection, resulting in the Red King process in which genes show signatures that are 

closer to the neutral expectation compared to non-conditionally expressed genes (de 

Oliveira et al. in review). These conditionally expressed ‘Sociality genes’ were 

compared to ‘Non-sociality genes’, which are expressed in every generation to test 

specific hypotheses on the influence of selection under different selective 

constraints. 
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3.6 Supplementary material 

 

Figure S3.1: Sliding window analysis of genomic GC content. 

GC content was estimated for coding (solid lines) and non-coding (dashed lines) 

sequences in 50Kb windows in 1Kb step sizes across all six chromosomes of D. 

discoideum. Regions with lowest (< 5th percentile) and highest (> 95th percentile) 

GC contents in non-coding sequences are highlighted in red and blue bars, 

respectively. Peaks of greatest GC (mostly on chromosomes 1 and 6) are associated 

with an overrepresentation of transposable elements (green dots). 
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Figure S3.2: Relative nucleotide substitution matrix. 

Numbers indicate the fraction of substitutions (minor SNP class) towards each 

direction of the mutational space. Mutations are categorised as transitions, 

transversions and either following or against the overall bias towards AT 

accumulation (see text for more details). 

 

 

Figure S3.1 Overall GC and transcript stability. 

Correlation between overall coding sequence’s GC and transcript stability (−∆Gº).  
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4.1 Abstract 

Natural selection shapes the sequence of amino acids in proteins to optimize protein 

function in the face of constraints (e.g., relative costs or availability of different 

amino acids, transcription efficiency, translation speed etc). These adaptive 

processes interact with random background processes (mutation and random drift) 

to yield the observed patterns of amino acid use we observe in the genome. 

Understanding the relative importance of these adaptive and non-adaptive factors 

can provide important insights into the composition of proteins. However, in many 

systems it can be difficult to disentangle their influence. Here we exploit the 

extremely biased nucleotide composition of the Dictyostelium discoideum genome 

to reveal the relative importance of these factors. We find that mutational bias is the 

largest driver of amino acid composition, but once accounted for, we uncover the 

underlying influence of metabolic costs. The impact of mutational bias declines 

rapidly with the level of gene expression, presumably reflecting the increased 

importance of protein optimization (with amino acid composition depending on the 

distinct peculiarities of individual proteins), while the importance of cost 

minimization increases. These findings highlight the importance of including 

contextual information on the study of protein evolution, rather than viewing a 

protein as an isolated entity.  
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Assessing information from molecular variation was a remarkable step in 

testing validity of theoretical population genetics models. From the debate over the 

relative importance of neutral and adaptive processes (Gillespie 1994) to 

fundamental questions on levels of variation in natural populations (Lewontin and 

Hubby 1966), information harboured by proteins became an essential source of 

information. Even with advent of DNA sequencing, information carried at the 

protein level remains crucial, since most evolutionary tests rely either on estimates 

of rates of amino acid substitutions (Nei and Gojobori 1986; McDonald and 

Kreitman 1991) or their functional/structural effects (Woolley et al. 2003; Kelley 

et al. 2015). Thus, site-specific information from proteins (and underlying coding 

sequences) is a fundamental component of molecular evolution analyses, which can 

reveal signatures of the form and strength of selection. 

Although we can infer a lot about the evolutionary history of individual 

proteins, they are not isolated entities. Proteins are embedded in pathways, which 

can constrain their ‘freedom’ to evolve (Fisher 1930) or create coevolutionary 

dynamics between interacting parts (Fraser et al. 2002). Moreover, the coding 

sequence of a protein can reflect the specific properties of the genome, rather than 

just the factors shaping the protein itself (D’Onofrio et al. 1991). For example, 

amino acids coded by AT-richer codons may appear more often than those coded 

by GC-richer codons in AT-biased genomes solely as a consequence of mutational 

bias (rather than as a consequence of protein function optimization). Furthermore, 

protein evolution can be constrained by selection to optimize usage of resources, 

measured in the currency of energetic costs (Akashi and Gojobori 2002). Therefore, 

selective pressures to reduce biosynthetic costs (which can limit usage of costly 

amino acids) can oppose selection to optimize protein function, resulting in proteins 

that reflect the outcome of this evolutionary compromise between function and cost 

(Swire 2007). Whereas recent studies have investigated the influence of protein 

networks on evolution of focal proteins (Fraser et al. 2002), the influence of broader 

processes shaping metabolic costs and genome composition are still poorly 

investigated. 

Microbial eukaryotes provide powerful systems to investigate fundamental 

problems on molecular evolution. They share conserved pathways with more 
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complex eukaryotes, but with dimensionality reduced to one or a few cell subtypes 

(Bozzaro 2013). These organisms may have a strong potential for adaptive 

evolution, due to their large effective population sizes (Ohta 1992), at the same time 

that can have strongly biased base composition genomes, due to mutational bias 

(Sueoka 1988). The amoeba Dictyostelium discoideum is a model organism to 

understand mechanisms of cell signalling, motility, differentiation and de-

differentiation, due to its simplicity and conservation of pathways across complex 

eukaryotes (Kessin 2001; Chisholm and Firtel 2004; Katoh et al. 2004; Bozzaro 

2013). Its low complexity genome is characterized by very low GC content (~24%) 

and long stretches of amino acid repeats (Eichinger et al. 2005). This system also 

offers large scale gene expression data from various conditions (Parikh et al. 2010; 

Nasser et al. 2013; Rosengarten et al. 2015), as well as a collection of intra- and 

interspecific evolutionary parameters estimated from fully sequenced genomes (de 

Oliveira et al. in review). Thus, D. discoideum provides both an interesting 

biological system and a wide range of large-scale data. 

At least three factors can, in principle, influence amino acid usage across 

the genome: number of codons, base composition, and metabolic costs. The number 

of synonymous codons may determine amino acid usage simply because more 

codons could result in a given amino acid appearing more frequently by random 

chance. Likewise, considering the base composition of the genome, some codons 

might be expected to be more common as a result of mutational biases. We tested 

this hypothesis by calculating the expected frequencies of codons under GC 

equilibrium (GCeq), which provides an estimate of the neutral expectation under the 

assumption that codon frequencies are determined solely by mutational processes 

shaping base composition (for short, hereon referred simply as ‘base composition’). 

Finally, costs of amino acid biosynthesis may impose constraints to amino acid 

usage, which could reduce usage of metabolically costly amino acids and favour 

usage of metabolically cheaper alternatives (Akashi and Gojobori 2002; Wagner 

2005; Zhang et al. 2018). As many heterotrophs, however, D. discoideum obtains 

certain amino acids from their food and has lost the ability to synthesise 11 

‘essential’ amino acids (namely, Arg, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp 
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and Val; (Payne and Loomis 2006)) – a feature that must be taken into account 

when analysing the influence metabolic costs on amino acid usage. 

Using the reference genome of D. discoideum (Eichinger et al. 2005) to 

estimate amino acid frequencies, we fit linear models to understand factors 

influencing overall amino acid usage. A model considering these four factors plus 

an interaction between costs and the ability to synthesise an amino acid (model 

MN+B+C+S+(C×S), Table 4.1) reveals that there is no significant effect of the number 

of codons (P = 0.685), or the ability of synthesise an amino acid (P = 0.722) or the 

interaction between this variable and metabolic cost (P = 0.911) on amino acid 

usage. Therefore, these predictors were excluded from further analysis. 

Interestingly, however, significance of metabolic costs with a lack of significance 

for both terms ‘synthesis’ and the interaction of this variable with costs suggests 

that the influence of metabolic cost in amino acid usage is generalized across both 

essential and non-essential amino acids. 

A model including base composition and cost explains ~75% of overall 

amino acid usage (MB+C, Table 4.1), increasing to ~87% with the addition of an 

interaction term between these two variables (MB+C(B×C), Table 4.1). Although base 

composition alone explains a large variation of amino acid usage (MB, Table 4.1), 

the model that includes both base composition and costs (MB+C(B×C)) fits 

significantly better than either MB and a model that includes only costs (MC, Table 

4.1; ANOVA MB versus MB+C(B×C): F = 27.17, P < 10-4; MC versus MB+C(B×C): F = 

49.36, P < 10-6). This model fits significantly for both groups of essential and non-

essential amino acids, explaining 85% (R² = 0.846, P = 0.007) and 94% (R² = 0.938, 

P = 0.002) of variation in amino acid usage, respectively, supporting the hypothesis 

that cost is an important feature even for amino acids that are not synthesised, but 

obtained from food. This finding is consistent to general reports from heterotrophs 

(Swire 2007), where amino acid bioavailability constrains usage of metabolically 

expensive essential amino acids, because their synthesis is limited in the autotroph 

prey (bacteria, yeast) due to biosynthesis costs (Akashi and Gojobori 2002). 
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Table 4.1 Linear models explaining amino acid use across the genome. 

Models with combinations of factors – number of alternative codons, base 

composition (expected frequencies under GC equilibrium (GCeq), metabolic cost of 

amino acid biosynthesis, ability of synthesise the amino acid and interactions – were 

fitted to explain amino acid frequencies. Slope estimates of each variable included 

in the model are indicated, with significant values highlighted in bold. 

Model N B C S C×S B×C R2 P 

M 

N+B+C+S+(C×S)  
−0.001 0.531 −0.088 −0.018 0.005 --- 0.766 < 10-3 

MB+C --- 0.537 −0.073   --- 0.746 < 10-4 

MB+C+(B×C) --- 2.408 −0.033   −1.214 0.874 < 10-6 

MB --- 0.363 ---   --- 0.415 0.003 

MC --- --- −0.023   --- 0.041 0.406 

N: number of codons; B: base composition; C: metabolic costs; S: synthesised 

(Yes/No). 

 

Because the D. discoideum genome is very AT-rich due to mutational bias 

(de Oliveira et al. in prep.b), these results suggest that amino acids coded by AT-

richer codons are both predicted and observed to be used more often. Metabolic 

costs also explain a fraction of overall amino acid usage, but its effect could only 

be identified after accounting for the strong influence of base composition (compare 

models MC and MB+C in Table 1). Significance of an interaction term suggests that 

metabolic costs modulates the proportion of observed amino acid frequencies that 

can be explained by base composition. In fact, the influence of base composition 

on amino acid usage is maximum for metabolically ‘cheaper’ amino acids, but 

decreases with metabolic costs (Figure 4.1). Conversely, the relationship between 

observed frequencies and cost is stronger for amino acids predicted to be used very 

often, but decreases on those predicted to be rare from base composition (Figure 

4.1). This pattern suggests that amino acids that are both metabolically cheaper and 

expected to be common from base composition (in this case, AT-richer codons) are 

in general used more often than costly and/or predicted to be rare from the 

underlying mutational process. 
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Figure 4.1 Visualisation of the influence of base composition and metabolic cost 

on the use of amino acids. 

Overall amino acid usage can be mostly predicted by underlying processes shaping 

base composition (represented by the expected amino acid frequencies under GCeq) 

and metabolic costs of amino acid biosynthesis (log10 scale, obtained from (Wagner 

2005)). This landscape derives from fitted values of the model MB+C+(B×C) (see Table 

4.1), which explains ~87% of amino acid usage. The interaction term reflects that 

the relationship between processes shaping base composition and observed amino 

acid frequencies (colour scale) is modulated by metabolic cost. 

 

Although base composition and metabolic costs explain a large proportion 

of the frequency with which different amino acids are used across the genome, their 

impact on individual proteins can be highly variable. Individual proteins vary 

widely in their specific properties and associated constraints, such as requiring 

specific amino acids for appropriate folding and function (Carugo 2008) or avoiding 

certain deleterious compositions, such as those that lead to formation of prion-like 

structures (Du 2011). To test to which extent amino acid composition of individual 

proteins conform to the overall pattern we see across the genome, we fitted the 

extended model of amino acid use predicted by base composition and cost (model 

MB+C+(B×C) from Table 4.1) to each protein. Remarkably, this model fits 

significantly for 9764 proteins out of 12903, with a median R2 = 0.598 (Figure 

S4.1). 
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It is possible that the proportion of amino acid composition predicted by 

base composition is driven by selection to match background processes shaping the 

nucleotide composition of the genome, but it is also possible that it emerges as a 

by-product of mutational biases. These two scenarios are expected to leave 

contrasting molecular evolutionary signatures. If amino acid use emerges passively 

as a by-product of mutational bias, we expect that genes where the use of amino 

acids more closely matches the pattern predicted by GCeq should be under weaker 

selective constraint, and hence should show evolutionary signatures closer to the 

neutral expectation. Conversely, if patterns are driven by selection, we would 

expect these genes to reflect stronger evolutionary constraint, either with positive 

selection favouring mutations that result in amino acid use that conforms to the 

genome-wide pattern, or purifying selection removing variation that does not 

conform. To understand this problem, we categorized groups of genes with different 

levels of relative importance of base composition, cost, and the interaction term on 

the fit to the model MB+C+(B×C), and estimated their median evolutionary rates and 

levels of polymorphism. Using information from 5509 orthologues, we find that all 

groups of genes evolve under purifying selection (Ka/Ks < 1), but both evolutionary 

rates (Ka/Ks) and rates of nonsynonymous substitutions (Ka) increase with stronger 

influence of base composition on amino acid usage (R² = 0.779, P < 10-3 and R² = 

0.842, P < 10-3; Figures 4.2A and 4.2B). Moreover, intraspecific information from 

12,809 coding sequences reveals that both the median nonsynonymous 

polymorphism and proportion of genes carrying at least one nonsense mutation are 

positively correlated to levels of relative importance of base composition on 

predicting amino acid composition (R² = 0.797, P < 10-3 and R² = 0.822, P < 10-3; 

Figures 4.2C and 4.2D). Conversely, signatures of stronger purifying selection 

increases with the relative importance of costs in explaining overall amino acid 

frequencies (Figures 4.2E-H and 4.2I-L), with the interaction term showing less 

clear patterns (Figure 4.2). These results suggest that the ability of our genome-

level model to explain amino acid content in individual genes arises from a passive 

process, particularly those evolving under weak selection. 
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Figure 4.2 Evolutionary signatures of genes with different levels of relative 

importance of base composition, cost and the interaction factor on overall amino 

acid usage. 

Proteins (Figure S4.1B) were divided in 10 bins (representing deciles) based on the 

relative importance of base composition (A-D), cost (E-H) and the interaction 

between these factors (I-L) on fit of the MB+N+(B×N) model to individual proteins. 

Shown are the medians for evolutionary rates (A, E and I), rates of nonsynonymous 

substitutions (B, F and J), nonsynonymous average nucleotide diversity (C, G and 

K) and proportion of genes with at least one mutation introducing a premature stop 

codon (D, H and L). Lines represent fit to weighted regression models, where the 

weights are given by the squared root of the number of genes in the group. 
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A clear predicted consequence of the strong relationship between amino 

acid frequencies predicted based on base composition and costs with those observed 

in the genome would be a roughly homogeneous proteome in absence of selection 

on individual proteins. Expression is an important trait of individual genes/proteins, 

and has been implicated on variation in evolutionary rates – proteins required at 

high levels usually evolve more slowly and are strongly optimized to make usage 

of available resources (Duret and Mouchiroud 2000; Drummond et al. 2005; Akashi 

2001). We therefore hypothesize that expression could be an important factor in 

determining amino acid composition of individual proteins because it increases the 

strength of selection on proteins relative to other genome-wide processes (such as 

those shaping base composition). To test this hypothesis, we used a dataset 

characterizing gene expression in vegetative and developmental stages of D. 

discoideum (Parikh et al. 2010; Nasser et al. 2013; Rosengarten et al. 2015), 

including expression levels of 11,918 genes (de Oliveira et al. in review). 

Expression is negatively correlated to the fraction of amino acid composition 

explained by genome-wide factors across proteins and explains ~32% of variation 

on this feature (R² = 0.324, P < 10-15; Figure 4.3A). Because selection on expression 

optimization can encompass minimization of biosynthetic costs (Akashi and 

Gojobori 2002), we measured the relative importance of each variable of the model 

with increasing expression levels. Overall, the relative importance of base 

composition and the interaction between base composition and metabolic costs 

decreases across groups of genes with relatively higher expression levels, while the 

relative contribution of cost increases (Figure 4.3B) (becoming increasingly 

negative) (Figure S4.2). These results suggest that selection on expression features 

play an important role in shaping ‘individuality’ of amino acid composition in 

proteins by decreasing the effect of base composition, at the same time that 

optimization increases the overall (negative) effect of biosynthesis cost (i.e., the 

preferential use of lower cost amino acids). 

To further test our hypothesis for the role of selection versus background 

processes, we analyse the relationship between influence of genome-wide factors 

shaping amino acid content and expression levels in two groups of genes evolving 

under different evolutionary constraints. Sociality genes evolve under Red King 
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dynamics characterized by weak selection due to conditional expression, whereas 

Non-sociality genes do not present this signature because they are expressed in 

every generation (de Oliveira et al. in review). In both groups of genes, the fraction 

of amino acid content explained by the genome-wide model (which is mostly 

affected by base composition) decrease with expression (Figure 4.3C), but this 

relationship is stronger in Sociality genes – exactly as predicted by our general 

findings. 

 

 

Figure 4.3 Expression and strong selection shapes individuality of protein amino 

acid content. 

A) The fraction of amino acid content explained by genome-wide factors shaping 

genome base composition and metabolic costs decreases with expression levels. B) 

The relative contribution of cost and the interaction term between base composition 

and cost decreases with expression levels (divided in 10 groups representing deciles 

of the distribution of expression levels), whereas the relative importance of cost 

increases. C) Following expectations from our general results, fit to the genome-

wide model decreases with expression levels, but it is still higher on genes evolving 

under diluted selection (Sociality genes) in comparison to genes that do not show 

this evolutionary signature (Non-sociality genes). 

 

Our study reveals a striking influence of processes shaping genome and 

metabolic features on amino acid usage. This finding support previous discussions 

of the robustness of proteins (Kurland 1992), since the proteome remains functional 

even under the strong influence of these processes. A fine tune optimization, 

however, is essential for proteins required at high levels, consistent with a variety 

of studies showing slow evolution and optimization on highly expressed genes  

(Duret and Mouchiroud 2000; Drummond et al. 2005; Akashi 2001). Less 

intuitively, expression seems to be an essential feature that generates heterogeneity 
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in the proteome, since, in the absence of selection on individual proteins, the 

proteome would be essentially homogeneous. Taken together, these results 

highlight the importance of considering external effects shaping focal proteins, 

rather than viewing the protein as an isolated unity when studying molecular 

evolution. 

 

4.2 Methods 

4.2.1 Amino acid frequencies 

Observed amino acid frequencies were estimated from reference genome 

(Eichinger et al. 2005) version 2.7 downloaded from Ensembl (Kersey et al. 2016), 

using seqinR (Charif and Lobry 2007). Because methionine is excluded from amino 

acid content analyses, frequencies were rescaled after excluding this amino acid. 

4.2.2 Base composition and metabolic cost parameters 

Influence of background processes was assessed by calculating expected 

amino acid frequencies were they solely a result of base composition, as described 

elsewhere (de Oliveira et al. in prep.b) and rescaled after removing methionine and 

stop codons. Metabolic costs of amino acid biosynthesis was obtained from 

(Wagner 2005). An approximate estimate of biosynthetic costs of each protein was 

obtained by calculation of the geometric mean for the protein sequence, defined as: 

𝐶𝑜𝑠𝑡𝑝 = (∏ 𝐶𝑜𝑠𝑡𝑗

𝐿

𝑖=1

)

1
𝐿⁄

 

where 𝐶𝑜𝑠𝑡𝑗 is the cost to synthesize amino acid j, and L is the protein sequence 

length. 
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4.2.3 Evolutionary tests 

We used two data sets containing information from evolutionary rates and 

intraspecific evolutionary parameters (de Oliveira et al. in review). The first one 

includes rates of protein evolution (Ka/Ks) and rates of nonsynonymous 

substitutions (Ka) for 5509 orthologues estimated by comparison between the 

reference genome and a divergent Dictyostelium strain (OT3A). The second one 

contains several intraspecific parameters (such as π/site, number of nonsense 

mutations, etc.) for > 12,000 coding sequences, estimated from genome sequence 

data from 67 natural strains. 

4.2.4 Gene expression 

We used a dataset containing several gene expression parameters estimated 

from RNAseq data from vegetative (Parikh et al. 2010; Nasser et al. 2013; 

Rosengarten et al. 2015) and developmental stages (Rosengarten et al. 2015) to 

characterize the peak of maximum expression (in TMM units/sequence length) and 

whether the gene is conditional or expressed at every generation of vegetative 

growth (Sociality/Non-sociality genes, respectively) (de Oliveira et al. in review). 

4.2.5 Statistical analyses 

Statistical analyses were performed in R 3.5.1. Regressions and significance 

tests for the inclusion of each new regressor (ANOVA) were performed using base 

functions. Packages seqinR (Charif and Lobry 2007), ggplot2 (Wickham 2016) and 

relaimpo (Groemping 2006) were used to handling sequences, plotting and 

calculate relative importance of regressors in a model, respectively. 
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4.3 Supplementary material 

 

Figure S4.1 Fit of the model MB+C+(B×C) of amino acid usage to proteins. 

A model explaining amino acid content from base composition (expected 

frequencies under GCeq) and metabolic costs was fitted to each protein. A) 

Distribution of FDR-corrected P-values of the model, with the dashed red line 

representing FDR-corrected P = 0.05. B) Distribution of model fit (R²), with the 

dashed blue line representing the median value of R² = 0.518. 

 

 

Figure S4.2 Correlation between biosynthesis costs and expression levels. 

The geometric mean of metabolic costs to synthesize a protein is negatively 

correlated to expression levels.  
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5 General discussion 

In this work I have investigated the relative contribution of natural selection 

and non-adaptive processes to the evolution of genes and the genome of a microbial 

eukaryote. Starting from the specific question about the evolutionary signatures 

harboured by genes underlying social traits, I contrasted four alternative scenarios 

for the evolution of ‘social genes’. Although identified by different approaches, the 

four groups of social genes analysed show a unified signature of an evolutionary 

dynamic that we name the Red King process. This process is characterized by a 

dilution of the power of selection due to conditionality of the social cycle, which 

occurs only in a fraction of generations when the population starve. This finding is 

consistent to predictions from theoretical models (Linksvayer and Wade 2009; Van 

Dyken and Wade 2010, 2012) and with studies that investigate the evolutionary 

signatures of genes underlying social traits by contrasting adaptive and appropriate 

evolutionary null hypotheses (Van Dyken and Wade 2012; Warner et al. 2017). 

Two groups of genes analysed in the second chapter were previously 

considered to evolve under conflict-driven dynamics (Ostrowski et al. 2015) or kin 

selection (Noh et al. 2018). However, conclusions were drawn from limited sets of 

genes, strains and analyses, sometimes including large genomic regions that may 

blur the signature carried by social genes, and more importantly, they lack a full 

consideration of evolutionary null hypotheses. For example, under the assumption 

that dynamics shaped by selection on social genes should affect the distribution of 

variation at linked sites, Ostrowski et al (2015) investigated signatures of selection 

in genomic windows containing mutations that disrupt cooperative behaviour 

(Santorelli et al. 2008). When large genomic windows are used (20Kb), patterns of 

linkage disequilibrium and high polymorphism are identified, but are diluted when 

window size is narrowed to half (10Kb). This suggests that the conclusion of 

balancing selection on these genes/mutations is unlikely to be associated to the 

target gene, particularly considering that recombination is high on this system 

(Flowers et al. 2010), and that in a 20Kb window size there are, on average, a total 

of four genes (Eichinger et al. 2005; Fey et al. 2013). When the analysis is restricted 
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to genes carrying such mutations, an excess of nonsynonymous polymorphism to 

divergence is identified in MK-tests, which was interpreted as a signature of 

balancing selection (Ostrowski et al. 2015). However, this test is influenced by 

segregation of slightly deleterious mutations (Parsch et al. 2009). When these two 

groups of social genes are included in our analyses (Figure 2.4), their evolutionary 

signatures are predicted simply by the proportion of conditionally expressed 

(sociality) genes within that group and are part of a larger scenario characterized by 

the RK process. 

Findings from chapter 2 motivated further work in two different ways. First, 

it revealed that the dilution of selection caused by the RK process also affects 

synonymous codons, suggesting a role of selection in shaping synonymous codon 

usage. Second, it showed how overall features not directly related to selection in 

individual genes (in that case, conditional expression of the social cycle) can impact 

molecular evolution. 

These two points were addresses in chapter 3, where I first characterized 

patterns of nucleotide substitution across the genome – identifying a strong bias 

towards AT accumulation – and analysed how this could impact the differential 

usage of alternative codons. Indeed, not only do all amino acids (and stop signal) 

use AT-rich codons much more often, but this parameter alone can explain a 

striking 88% variation of synonymous codon usage across the genome. This strong 

pattern could be inadvertently interpreted as a ‘preference’ towards usage of AT-

richer codons. However, when contrasted against an appropriated null hypothesis 

of mutation-drift evolution, it reveals that the pattern is driven by non-adaptive 

mutational processes. After removing this effect, we identified sets of ‘preferred’ 

codons, whose use increases with expression and among genes evolving under 

stronger constraints, and are related to expression optimization by modulation of 

transcript stability. 

Such a strong effect of mutation bias raised the hypothesis that this could 

have an impact on evolution at nonsynonymous sites as well and, consequently, 

amino acid usage. However, amino acid content can be also influenced by overall 

process shaping cell economics, such as minimization of costs of amino acid 
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biosynthesis (Akashi and Gojobori 2002; Wagner 2005). To understand how these 

processes shaping the genome and cell ‘environments’ can potentially affect amino 

acid content, we analysed amino acid usage across the proteome and in individual 

proteins. These two processes together explain a large fraction of amino acid 

frequencies in both proteome and protein levels. This is interesting because protein 

sequences are usually thought of as an intrinsic feature of a specific protein as a 

product of evolutionary processes acting at the protein level. Results presented in 

chapter 4 highlight the importance of considering the genome and cell contexts in 

which the protein is coded and expressed, rather than thinking the protein as an 

isolated entity. 

The aim of this work is not, however, to argue against natural selection. For 

example, minimization of metabolic costs on amino acid biosynthesis is likely to 

be shaped by selection rather than non-adaptive processes – which is even clearer 

when analysed in the context of expression (Figures 4.3B and S4.2). Instead, I 

suggest a full consideration of evolutionary null hypothesis, especially when 

complex adaptive scenarios, such as social conflict, are also plausible. 

Our work was designed and performed relying on hypothesis testing, i.e. 

contrasting alternative (adaptive) to null (neutral) scenarios, a core method in 

molecular evolutionary studies. Formulation of these alternative hypotheses was 

guided by current discussion in the literature, supported by evolutionary analyses 

(for example, in Chapter 2, where four alternative hypotheses were considered as 

putative evolutionary processes shaping social genes) and/or experimental work 

(for example, the role of certain codons in optimization of expression by modulation 

of transcript stability in Chapter 3). As a whole, our findings make several testable 

predictions about biological processes, which would certainly benefit from 

validation by follow-up experimentation. 
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