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Abstract

Self-assembly systems, based on polymers, nanoparticles, colloidal sized particles or other
derivatives, are an appealing way to create materials with high complexity and detail.
These systems are highly sensitive to changes in the interactions between the system’s
components, leading to different emergent structures. In material science, targeted design
of new colloidal systems requires the tuning of interactions such that the desired target
structure or macrobehaviour is emergent, and to obtain a high-yielding self-assembly path.
Changes to the interactions can be represented by a parameter space. Time-dependent
simulations (or experiments) are necessary to find emergent systems in parameter space,
and the complexity of them demands resources and time. The conventional systematic
(brute-force) scan of parameter space is highly inefficient, with most resources spent eval-
uating low-yielding regions. Typically, to counter noisy measurements to accurately iden-
tify favourable parameter values, an average is taken across multiple simulations. We
examine hill-climbing as a potential alternative for tuning parameters values to obtain
high-yielding systems. As an example tuning problem, a two-dimensional shorted-ranged
attractive patchy hard disk model, important for coarse-grain modelling of polymers and
biological systems, and a yield measure for quantifying our target structure (large round
compact honeycomb clusters) are introduced. Varying the interaction strength and patch
width, a noisy landscape is constructed from Monte Carlo simulation yield data. We
show that a hill-climbing search on this landscape can locate the localised region of high-
yielding assembly, and suggest situations where this is advantageous over brute-force scan.
Additionally, we introduce novel meta-heuristics and strategies to augment hill-climbing
(including reusing and cumulative averaging of measurements, and scheduled increase of
simulation lengths) to handle noise. Reduction in the demand for computational resources
is possible at the cost of increased execution times. This extends the algorithmic protocols
available, different from averaging over multiple samples, for controlling the computational
cost of search.
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Chapter 1

Introduction

Material scientists are becoming increasingly interested in nanoscale and mesoscale syn-
thesis of particles for the potential they provide in creating new novel materials. Fully-
controlled construction of micro- and nano- scopic structures using techniques such as
lithography and ion beams require high precision and expensive specialised equipment [1;
2]. Self-assembly of small colloidal particles have many desirable features that can over-
come these limitations. Once the right conditions are set up, a collection of particles,
usually in solution, will spontaneously organise themselves into a desired structure. These
conditions include temperature, concentration and other environmental parameters that
are easy to control. Scaling up these processes thus becomes relatively easier, and specialist
apparatus may not be required.

Being able to understand and direct the self-assembly of components into some in-
tended structure would enable greater control over the fabrication of materials. By build-
ing ‘pre-programmed’ constituent particles that assemble by themselves into a desired form
under given conditions, the monitoring of fabrication processes can be reduced. Clearly
this would be advantageous for increasing yield during large industrial scale production
of materials such as catalysts [3], as well as offering sensitive functional properties with
potential applications in optoelectronics [4; 5] and drug delivery [6–8]. At the same time,
this ‘bottom-up’ approach to fabrication enables us to further our current understanding
of particle interactions and phase behaviour [9–15], and have potential impact in chemical
and biological engineering [16; 17].

We study these phenomena at the molecular level using a combination of statistical
mechanics and computer simulations. With many design parameters and parameter values
to tune, it is hard to only rely on experimental work to test out and develop colloidal design
principles. Modelling particle systems enable us to test colloidal designs and predict their
assembly outcomes, screening out poor yielding parameters and parameter values before
designs are advanced to the experimental stages.

As progress is being made in understanding self-assembly principles, and synthesis of
colloids are becoming more intricate and complex [18–20], our attention is turning towards
a targeted design of colloidal particles. The goal is to start with the target structure
and/or desired aggregate properties in mind, then tailor the design of the colloids to
influence the resulting system such that it exhibits the matching emergent self-assembly.
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CHAPTER 1

One major aspect is the tuning of design/interaction parameter values to bring out and
enhance the assembly yield of the target structure. Two design approaches have been
recognised: forward and inverse design. As the names suggest, they are viewed as opposite
approaches to one another. The forward approach represents the conventional method of
selecting a base design informed from theory and past examples before tuning parameters
via systematic particle simulations. The inverse approach starts with the target in mind
to control decision making, iteratively modifying a functional design to match selected
characteristic qualities of the design criteria, such as the radial distribution function or
the desired crystalline configuration, to optimise complex multi-parametric models to give
better performing solutions.

Although inverse design approaches are hailed as the modern approach to functional
design, many of these techniques are highly specialised to target well-behaved properties
(order parameters) of systems and adapted to take advantage of systems near-equilibrium
or in equilibrium for the sake of efficiency [21–25]. This limits their applicability when
attempting dynamical self-assembly design, where it is important to assess time-dependent
thermodynamical and dynamical effects. The multi-scale assembly mechanisms, from the
short-time annealing of local defects to the long-time cluster merging events, introduce
kinetic features, e.g. defects and cluster morphology, to the assembling structures that
may cause high variability between independent realisations of the self-assembly, producing
large fluctuations in the assembly outcome. Cluster morphologies are of concern for many
functional structures [3; 16]. They can have knock on effects in hierarchical assembly where
the progressive assembly of intermediate structures is used to bridge the gap between the
small colloids and large targeted structures [26; 27]. With the emergent self-assembly
outcome of systems highly sensitive to the initial conditions and particle design, direct
particle simulations of systems remain an integral part of the modelling of these dynamical
systems. The more inefficient but reliable forward design thus remains important for
tuning design parameters of dynamical systems.

The goal of the work in this thesis is to speed up and reduce the cost of searching
for optimal interaction parameters in systems where direct particle simulation—which
alone are already computationally intensive and require long execution times—is the most
reliable way to model and evaluate the particle system of interest. An examination is
performed on the stochastic hill-climbing algorithm, a well-known and easy-to-implement
local search heuristic, as an alternative to the simple brute-force scanning of the parameter
space for the tuning problem. Interacting externally with the particle simulation program,
the hill-climbing algorithm iteratively informs the simulation inputs as it seeks higher
yielding solutions, effectively "climbing" the yield landscape. In this sense it is an attempt
to reduce the computational demand and execution time of the forward design approach
when finding the interaction parameters that maximise the self-assembly yield. We also
empirically explore a selection of metaheuristic strategies and tools, applicable to the hill-
climbing algorithm with noisy measurements, to seek ways to shorten the search intensity
and execution length and time. These metaheuristic strategies may also be applicable to
the improvement in efficiency of inverse design schemes where the iterative algorithm for
converging to the desired target solution is based on a local search algorithm that assesses
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its current solution at every iteration, and the evaluation of particle systems remains
expensive.

To this end, an example parameter tuning problem is considered: we study the tuning
of interaction parameters for a dynamical self-assembling system of short-ranged attractive
patchy particles to optimise its target yield outcome, based on the structural quality and
morphology of the largest cluster in this system. We define a cluster to be an energetically-
bound collection of disks interacting with at least one other member via a patch-patch
interaction. For this, a patchy hard disk model system is chosen as the model colloidal
system of interest, providing two interaction parameters that form the design (parameter)
space of the parameter tuning problem, with each state point on this space representing a
solution to the tuning problem. The patchy particle model is important as a surprisingly
effective coarse grain model for polymers, applicable especially to biological systems, and
is seen as one of the most basic non-trivial anisotropic colloidal systems, forming the bridge
between theory and experiment, and a blueprint for more complex and ambitious colloidal
designs. The self-assembly of the particle systems are modelled using the Virtual-Move
Monte Carlo (VMMC) algorithm by Whitelam et al. [28]. This algorithm, based on
moving clusters of particles in unison, is chosen to provide more realistic dynamics for
mimicking the physical collective behaviour of a real physical system that are lacking in
standard Monte Carlo modelling approach involving single particle moves.

Initialised from out-of-equilibrium states, direct particle simulations are executed to
measure the performance of the emergent assembled structures under different interaction
parameters values. The parameter space is systematically scanned to provide a bench-
mark for the parameter tuning problem. The yield outcomes of these systems form a
yield landscape on the parameter space with the tallest peak corresponding to the sought
parameters maximising the target structure assembly. Crucially, each self-assembly run of
the system will yield a different measurement, resulting in a noisy yield landscape.

Our focus then switches to parameter tuning using the stochastic hill-climbing algo-
rithm, synonymous with finding this highest peak—the global maximum. The stochastic
hill-climbing algorithm is assessed empirically on a model version of the noisy yield land-
scape. This noisy yield landscape model is constructed based on the simulated data to
substitute the execution of time- and resource- expensive particle simulations to enable
a large sample of hill-climbing runs to be generated within reasonable timescales. Sev-
eral metaheuristic tools and search strategies to complement and augment the stochastic
hill-climbing algorithm are also considered to improve the search outcomes at termination
while attempting to reduce the computational demand. In particular, a trial period limit
m is considered to limit the number of evaluations of the algorithm’s current solution,
providing an "investment-free" parameter to control the noise felt by a climber. Moreover,
the cumulative averaging of yield measurements over several evaluations of a solution is
considered as opposed to the conventional method of averaging over a larger number of
simulations per evaluation.

The objective of the hill-climbing (meta-)heuristic is to provide an alternative method
to the conventional brute-force scan, offering options in search method and flexibility in
the tailoring of the hill-climbing. This aims to extend the tools available to users looking to
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tune parameters, whose choice of search method will ultimately be based on a combination
of search objectives (what is required from the search) and the practical constraints in
execution. In fact, the generality of our assumptions makes this relevant not only for
users performing any intensive simulation based sampling with an optimisation problem
based on searching a 2D parameter space, but also for any users adopting the hill-climbing
algorithm who are concerned with the computational performance of the heuristic.

1.1 Thesis Outline

This thesis is set out as follows. In Chapter 2, an introduction to colloidal systems is given,
highlighting their potential to organise into interesting structures. This is followed by a
description of the core concepts of self-assembly. Targeted design and parameter tuning
in the context of self-assembly are reviewed, focusing on how one can search for higher
yielding targeted assembly more efficiently.

Chapter 3 describes the fundamentals of particle simulation using Monte Carlo tech-
niques and the VMMC algorithm used to simulate the assembly of the patchy hard disk
model system, which is defined in Chapter 4.

Chapter 4 reviews the existing knowledge of self-assembly of the patchy disk model,
before moving onto our own self-assembly simulations of the model. We make the choice
to target the self-assembly of large, round, compact honeycomb clusters. To capture the
target assembly quantitatively, we constructed a yield measure consisting of two parts:
a measure of the quality of honeycomb crystalline domains formed, and a shape factor
measuring the closeness of the resulting cluster to a compact circular aggregate. The
observations of the self-assembly performance across the parameter space are described,
and from the simulations a yield landscape of the system is obtained.

A more mathematical framework for optimisation and search heuristics in the form
of finding local and global optima on a fitness landscape is introduced in Chapter 5.
In particular, a review of local search heuristics on noisy fitness landscapes, relevant to
our parameter tuning problem with noisy yield measurements, is presented, considering
techniques used to handle the fluctuations in measurements.

This mathematical interpretation is then used to formalise the study of the self-
assembly parameter tuning problem. In Chapter 6, the yield landscape toy model is
constructed on which the performance of several variants of the stochastic hill-climbing
algorithm, obtained by combining different protocols to form a complete algorithm, is
assessed. After elucidating the effects of the trial limit period m on the hill-climbing
behaviour, the optimal m value and strategies exploiting the nature of the self-assembly
yield landscape are presented.
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Chapter 2

Colloidal self-assembly and
particle design

Self-assembly is the phenomenon describing how components organize themselves relative
to each other to form ordered structures and patterns, without any direct control provided
by external sources. This definition can be viewed in a very broad context, for example in
the field of engineering and robotics where simple programmable units obey set rules to self-
assemble into larger structures by analyzing both individual and collective behaviour [29].
We concern ourselves with self-assembly at the molecular and meso- scales. The collective
assembly behaviour of particles is a result of the components trying to minimise their free
energy whilst obeying the second law of thermodynamics.

Self-assembly is a fundamental aspect of biological processes, where it plays a vital role
in the construction of complex macromolecular assemblies found in organisms. Examples
include the formation of the double helical DNA through hydrogen bonding of the indi-
vidual strands, and the folding of proteins and interactions with other polymer groups,
where erroneous arrangements can have devastating consequences [30–32]. Research in
supramolecular chemistry and nanotechnology also utilises self-assembly for the synthesis
of microscopic compounds and structures [8; 33]. With the ability to get components to
assemble or disassemble under specific conditions, applications include catalysts [3] and
drug delivery [6; 7].

We focus our attention on colloidal self-assembly that shows the ability to form ordered
structures. An important focus of current research is understanding how the relative local
interactions between such microscopic components govern the collective behaviour and
assembly pathways leading to a target structure, and to ultimately manipulate the particle
interactions to embed the desired self-assembly process into its design. Reproducibility,
timescales, and stability are crucial to predicting whether a thermodynamically designed
system can reach its intended final state. Computational modelling can help determine
assembly pathways and mechanisms, as most intermediate states are transient and hard
to detect in experiments.

In this chapter, we will introduce colloidal self-assembly, then review some approaches
to manipulating structures via local anisotropic interactions that demonstrate how self-
assembly mechanisms of patchy particles have been exploited to produce novel structures.
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We follow this with a summary of the current progress in targeted design of particle
interactions and parameter tuning.

2.1 Colloidal systems

Colloidal systems consist of microscopic particles and a fluid medium to hold them. These
colloids, roughly 1-1000nm in size, are small enough that thermal motion of the solvent
molecules are important, resulting in a diffusive random motion of the colloids. The
colloids are thus allowed to explore possible configurations as the system settles into an
energetically favourable state. Particles that are larger than the microscale do not expe-
rience a net displacement from the weak random thermal forces of the solvent; stronger
forces are required to move them around [17]. On the other hand, colloidal particles are
of the size where thermal fluctuations give rise to diffusive (Brownian) dynamics, allow-
ing them to explore different configurations as they seek to relax into gas, liquid or solid
phases, in a manner similar to molecular systems relaxing under equilibrium thermody-
namics. For larger colloids, this occurs on time scales that allow observations to be made
under a microscope, providing a good system for scientists to study statistical mechanics
and thermodynamical behaviour. Additionally, colloidal particles tend to interact weakly
with each other, allowing entropic contributions to play an important role in determining
the behaviour of the colloidal system.

Classically, the study of crystallization and how matter organise itself has been re-
stricted to isotropic particles, borrowing from well-studied theories of nucleation and phase
behaviour to understand the basis of assembly. A limited number of different crystals have
been obtained using spherical particles with isotropic potentials in monodisperse systems,
with polydisperse (particles with varying mass) systems an outlet for modifying the phase
behaviour of a system [34]. Anisotropy, however, is present in most systems of interest;
organic compounds, proteins and simple molecules are not isotropic in shape or interac-
tions. A consequence of this anisotropy is an increased specificity and complexity of bond
arrangements in addition to lower densities of ordered structures [35]. New phases are
possible even with the simplest of changes in colloidal geometry [36]. The diversity of self-
assembled structures only continues to increase as the variations in particle design expand.
Moving from isotropic particles to anisotropic ones is hence desirable when searching for
new structures and functionality.

This motivation is coupled with the advancement of increasingly sophisticated and
intricate fabrication of non-trivial colloidal particles. Possible colloidal features to modify
include, but are not limited to, geometry (rods [36], dumbbells [5], polyhedra [19; 37],
topological knots and links [18; 38])), composition (polydisperse [9; 10; 36],mixtures [4]),
and varying surface interactions (patch valency [20; 39; 40], patch surface roughness [41;
42], indented [43]).

Colloidal systems provide an alternative way of producing functional materials. Syn-
thesis of such materials focus on the building blocks rather than the final structure, so
scaling up its manufacturing is easier than a process based on building the large scale
framework before working on the finer details. Controlled assembly/disassembly of mis-
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celles and reconfigurable structures from shape-shifting colloids [44–46] provide promising
mechanisms for novel applications in smart materials and for biomedical purposes [47].

For larger colloids in the range of optical length scales, colloidal crystals can be used
for their photonic properties. Photonic crystals consisting of anisotropic particles show
promise in creating more controllable photonic materials. For example, colloidal dumbbells
were successfully assembled into a 3D crystal with tunable optical properties [5]. With
no field, the dumbbells are able to form a plastic crystal—a positionally ordered crystal
with rotational freedom. However, by applying an electric field, a uniform orientation is
achieved, enabling optical properties in colour and variable refractive index (birefringence)
to emerge.

2.2 Patchy colloidal particles

Patchy colloidal particles refer to colloids that have been manipulated to produce direc-
tional interactions. Their surfaces can be decorated with chemically-attractive patches to
restrict the ways neighbouring particles ‘stick’ to each other, or molded in non-uniform
ways to produce geometric features such as depressions, creating differing interactions on
its surface. Patchy particle systems have been found to exhibit rich phase behaviour [27;
48–52]. The break in orientational symmetry of the units have significant consequences on
the resulting self-assembled structure, favouring certain orders that reduce its free energy
under the prescribed environment to access a range of possible self-assembled structures
otherwise inaccessible through isotropic interactions. Variations in surface position and
distribution, number and size, and a combination of spots, stripes and rings can give rise
to both regular lattices and pseudocrystals, amorphous solids, as well as unexpected phase
behaviour such as plastic crystals [53]. Aside from enthalpic forces, entropic forces have
also been shown to be important in the ordering of systems, especially hard particles. This
stems from depletion forces as the efficient ordering of colloidal particles free up available
volume in the system for the solvent (depletant) to explore that would otherwise be lost
(an inefficient packing would create an abundance of volume inaccessible to the depletant).
Entropic patches created via geometric modifications have been considered to access an
even richer colloidal design space [9; 10; 35].

More advanced methods of fabricating patchy particles with rich topology and vari-
ability have been reported recently. Stellacci and coworkers showed that a range of tunable
patchy particles can be constructed by applying a binary mixture of immiscible alkanethiol
surfactants (different end-groups to the alkane chain) of different lengths to coat spher-
ical nanoparticles [54]. Varying the ratio of the binary mixture changed the domains of
microphase separation of the two mixtures, creating intricate stripes and spotted surfaces
on the coated nanoparticles. Pons-Siepermann and Glotzer extended this direction of
research by looking at ternary [55] and quaternary [56] mixtures. Several design rules
were identified using simulation, based on the relative ratios of surfactant lengths and
nanoparticle size. These mixtures settled into configurations that reduced the contacts
between immiscible mixtures to minimise energy, while encouraging interfaces between
surfactants of different length or bulkiness to maximise conformational entropy, producing
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(a) (b)

Figure 2.1: (a) Patchy colloidal particles with metal coating (black in inset). Reprinted
with permission from [40]. Copyright 2011 American Chemical Society. (b) Tetrahedral
patchy particle. Reprinted with permission from [41]. Copyright 2009 American Chemical
Society.

a rich spectrum of possible surface patterns. These studies showcase possible routes to
intricate designs of patchy particles that can be used for self-assembly of complex struc-
tures. Targeting more richly patterned building blocks is a gateway for creating even more
diverse structures.

Short-ranged hard-core patchy particles have received huge attention as candidate
patchy models. Under suitable conditions, short-ranged hard-core patchy spheres have
been shown to prefer liquid states over solid states at zero temperatures [50]. Here, the
tetrahedral spacing of four patches on a sphere directly anchors the bonding directions of
the neighbours required for diamond structure, which is favoured at the correct density
for finite temperatures. However, widening the patches allows the stable liquid phase to
extend towards zero temperatures at certain packing fractions. These patches can only
share one bond at any one moment and thus when a patch is in contact with two other
patches at the same time, one of two possible bonds can form, multiplicatively increasing
the number of possible configurations with the same particle positions. Extended to the
full system, for packing fractions where the average number of contacts per patch can be
maximised in a disordered state, the increased configurational entropy stabilises this liquid
phase at zero temperatures.

From the design and fabrication of patchy colloidal particles with hydrophobic caps at
opposite poles, Chen et al. were able to observe the self-assembly of such colloids (similar
to the patchy coverage found in Fig. 2.1a), suspended between solutions of different den-
sities, into the targeted two-dimensional Kagome lattice under suitable conditions [39].
Experimental work like this on self-assembly of patchy colloidal particles not only con-
firms the approach to studying the thermodynamically stable structures, but also provide
valuable information on the dynamical self-assembly pathways chosen by the system. Sub-
sequent simulation work based on the same model [49; 57] showed that this open crystalline
arrangement owes its stability to rotational and vibrational fluctuations. These modes in-
crease the elastic free energy of the system compared to a closed packed arrangement—the
preferred configuration for hard core and short-ranged isotropically interacting spheres.

Such entropic effects have been responsible for observed preference of assembly struc-
tures in many patchy particle systems where enthalpically similar configurations are com-
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peting [13; 50]. The extra room for particles to move out of their lattice sites and rotate
without breaking bonds help stabilise configurations. This ability to create open structures
is something not offered by geometry driven self-assembly [11]. For extended attractive
patches, the extra room between interacting particles introduces vibrations. An analytical
explanation shows that this vibrational entropy also helps stabilise open lattices.

Further control in the final product can be introduced by incorporating different species
of patches to favour specific patch-patch bonds, promoting/restricting the permitted con-
figurations both locally and globally. Moreover, different interaction pairs may bond
at different rates, enabling control of hierarchical assembly pathways on a multitude of
scales [58; 59], or to add chirality to structures [27]. At the other extreme, a full multi-
component design of structure consisting of many unique species of building blocks has
been shown to produce very specific structures [59]. DNA can offer such highly specific
interactions [60]. Contrary to the theory that systems with growing specificity and detail
take longer to assemble, fully multicomponent assembly has been shown to give reliable
self-assembly characteristics at reasonable timescales, both experimentally [61] and via
simulation work [62; 63]. With the misbinding of DNA pairs energetically disfavoured,
target structures are designed to be the unique energetically favoured structure. Using
them to decorate colloids so that every component is distinct allows one to create assem-
blies of detailed finite structures [64].

The range and diversity in techniques, colloidal design and self-assembled structures
introduced in this section demonstrate the vast possibilities in particle design and potential
diversity in assembled structures and system of interest. Computational modelling and
direct simulation remains a cost-effective approach to discovering, searching and predicting
good target self-assembly design and behaviour. We finish this section by referring the
reader to Duguet et al. [48] that gives an excellent review on the current state of research
on patchy particles.

2.3 Core concepts of colloidal self-assembly

Thermodynamics indicates the favourability of possible states, with a closed system tend-
ing to realise a global free energy minimum. Colloidal self-assembly considers the processes
as a disordered system of colloidal particles evolves into an ordered state. As particles
move in the solvent, interacting with each other, enthalpic and entropic contributions
are minimised and maximised respectively, lowering the free energy of the system in the
process. As pair interactions are typically weak (e.g. volume depletion, van der Waals,
hydrogen bonding), particles can sample several different configurations until stabilised by
surrounding particles collectively.

Bond specificity is often required for well-ordered structures. For example, one could
attach attractive patches at the specific tetrahedral points on spherical particles to promote
the assembly of (double) diamond structures [50; 65; 66]. Patches with a small solid angle
result in a rigid and precise diamond structure once assembled. Strong interactions help
stabilize the structures once formed.

However, as particles swim about interacting with each other, it is inevitable that they
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will bond in non-ideal ways which, if the bonds are too strong, will persist and disrupt the
local order of a structure, inhibiting the growth of the equilibrium structure. Non-specific
bonds lead to many local bonding mistakes incommensurate with the desired assembled
structure. The inability for defects to dynamically anneal out during self-assembly is
known as kinetic trapping. An abundant level of kinetic trapping disrupts good assembly,
leading to disordered aggregates. Therefore effective assembly requires the ability to anneal
defects naturally.

To suppress kinetic trapping, the specificity of the bonds can be increased to reduce the
number of possible configurations, and thus the number of incorrect bonding, allowed [67].
However, patches still need to be wide enough. Interactions that are too directional require
precise alignment to form bonds, lowering the chances of patches of finding each other in
the first place.

Similarly, the bond strength ought to be weak enough to allow any undesired bonds to
break and test out several other arrangements to find those commensurate with the ordered
structure, but strong enough to stabilise the structure. Good assembly therefore occurs
in a finite window of parameter values, sandwiched between the absence of assembly and
poor quality aggregation [28] (for example see Fig 4.16a). It is believed that good assembly
requires reversible interactions, where the rates of bond-forming and bond-breaking are of
a similar order of magnitude [68]. Microscopic reversibility is seen as a crucial property
to ensure that bonds can be made and broken easily during assembly to allow defects
to annealing out, producing an ordered final state [68–71]. This highlights the delicate
balance of the self-assembly process to achieve significant and rapid growth that is also
high in quality. In a physical system this typically involves weak interactions such as
hydrogen bonding and van der Vaals.

Microscopically-reversible interactions also coincide with the argument suggesting that
a localised region of small patches leads to a more efficient assembly than a large patch of
identical interaction strength. More specifically, the nucleation and growth of a system of
particles with n small weakly-interacting patches each with strength Ui and distributed
in a localised region R interaction exhibits higher activities of bond breaking and bond
forming compared with a similar system of particles with these regions R substituted by
a single patch with interaction strength n

∑
Ui [72]. The multi-level interaction energies

accessed by collective pair interactions of the former means that the effective interparticle
interaction is more reversible, thus misbinding is not as costly as the latter case when a
bond does form.

The combination of thermodynamical preference and kinetic factors thus determines
whether a system will relax into the preferred equilibrium state or become arrested in some
metastable state, and the self-assembly pathway it takes to get there. Particles can directly
agglomerate into a stable structure, or transition through several intermediate metastable
states [67]. The pathways followed by a system depend on the initial state of the self-
assembly, which determines whether the system starts near-equilibrium and is dominated
by reversible interactions, or starts from a far-from-equilibrium state. Kinetic trapping
arises when particles bond too quickly without unbinding fast enough, often resulting in
metastable states inconsistent with desired ordered structure.
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Self-assembly of isotropic spherical particles have been well explored previously in
terms of their predictability, preferred equilibrium state, and growth behaviour. This
is epitomised by Noro and Frenkel’s work extending the law of corresponding states (all
simple gases obey the same reduced equation of state when scaled by their thermodynamic
variables e.g. temperature and volume) to colloidal suspension of spherical particles with
attractive pair potentials [73]. On the other hand, anisotropic colloidal systems remain
relatively unexplored, due to the complexity introduced by even the simplest of changes to
the particles, and the diversity of variations. New structures can be constructed that are
otherwise not possible from using isotropic spheres only. Efforts to study anisotropically
interacting, anisometric particles [74] have been made.

Aside from studying the behaviour of these new colloidal designs experimentally, sim-
ulations of these colloidal models have provided us with accurate observations of self-
assembling systems, enabling the exploration of their dynamical and thermodynamical
phase spaces. Simulations of self-assembly systems are typically equilibrium studies or
dynamical experiments. The ability to track intermediate states permits the study of
competing assembly mechanisms underlying the emergent collective behaviour to numer-
ically observe the self-assembly pathways. The ease in varying model parameters makes
computational studies a useful tool for the tuning of self-assembly designs.

2.4 Designing self-assembling systems

While studying the equilibrium phase behaviour is key to knowing whether a colloidal
system will eventually self-assemble into a target structure, it is often necessary to know
if the correct self-assembly will occur under a given initial state within experimental and
practical times. The exploration of a system’s dynamical phase behaviour is thus crucial for
identifying regions of parameter space in which a target structure is emergent. Moreover,
one can target kinetically trapped states that are only examinable through dynamical
studies, or maximise the yield of a given target structure by controlling the level of self-
assembly activity, or lack thereof.

There are an increasing number of studies and reviews distilling the mechanisms in-
troduced by colloidal features that are predicted to encourage self-assembly of particular
types of structure [9; 37; 48; 75; 76]. These design rules provide valuable guidelines on
what to incorporate into the specifications for a more fruitful design. Equally as impor-
tant, these rules inform us about the colloidal features to avoid, reducing the parameter
space of the problem.

Dynamical events or modifications to the environment influence assembly pathways to
produce alternative structures. External factors such as surface substrates [77; 78] and
seed structures [65] alter the free energy landscape of the system and lowering nucleation
barriers to encourage certain assembly pathways that would otherwise be unfavourable.
The assembly of capsids, such as nanoparticles and viral protein capsids around RNA,
can be enhanced by introducing alternative assembly mechanisms via templating [79].
Shape-shifting particles or time-dependent protocols offer time-dependent assembly path-
ways, allowing ordered assembly to occur for a simpler geometry before morphing into
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different shapes [46; 80], or to adjust nucleation and growth rates in a system of com-
peting structures [63; 81]. Hierarchical assembly also offers alternative scalable path-
ways [26; 27; 59; 82; 83]. Examples like these offer additional kinetic factors that extend
the assembly pathways of the system. Accurate modelling of these dynamical systems
require intensive computer simulations.

2.4.1 Targeted design

For a more purpose-driven design process of self-assembly systems, it is important to start
with the goal in mind. Desired configurations and topological features of structures are
captured by a set of specifications with which the design outcome aims to satisfy. Informed
selection strategies of colloidal features using the design rules introduce different assembly
mechanisms into the system. Interaction parameters require further tuning to bring out a
correct balance in assembly mechanisms to yield the desired emergent structures. There
are broadly two approaches to designing and tuning colloidal particles, thought to be
fundamentally different in philosophy: forward design and inverse design.

Forward design

The conventional forward approach or direct approach involves applying design rules to
combine intuitively sound interaction features together with a handful of free parameters
and predict the structure of the aggregate based on knowledge of the interaction potential.
Computationally these interaction parameters are tuned by performing an exhaustive scan
(brute-force scan) of the whole parameter space, by taking a grid of parameter values at
a set resolution and simulating the respective systems, in order to identify the values
maximising the yield.

The major downfall of such strategy is the inefficiency of the process, both in design
and in parameter tuning. Our interpretation of the design rules limits the complexity
and creativity of the design. More non-trivial target structures usually require more
intricate features beyond the straight-forward blending of basic design rules. The brute-
force approach to parameter tuning is inefficient, and scales poorly with the number of
parameters considered. However, forward design remains an integral approach due to its
flexibility in application. The search process is independent of the system modelled, which
can be very simple, in the case of direct self-assembly in a closed system, or more complex,
such as time-dependent interactions and hierarchical assembly.

Inverse design

Inverse design starts with the desired attributes in mind and evaluates the candidate model
in comparison to the target. Candidates yielding structures that better satisfy design
criteria are deemed fitter. The performance of the model is redirected as input to modify
the candidate design, typically with a large number of design variables to consider, until the
optimal solution is found. The idea is to avoid a full exploration of the configuration space
of the system and the design space of the model involved, while allowing the algorithm to
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access non-trivial designs and explore systems that cannot be easily inferred using basic
design rules.

These highly specialised optimisation algorithms, or heuristics, have mostly been de-
veloped to look at in-equilibrium or near-equilibrium systems, where target structures
can be characterised by time-independent distributions or well-behaved order parameters
with low fluctuations. They iteratively generate and test solutions, discarding non-optimal
ones in favour of better performing parameter values, until the ‘best’ design is found. Ge-
netic algorithms (GA) and evolutionary algorithms (EA), aside from being used to identify
favourable energy minimising particle configurations (see Section 2.4.4), are used to evolve
an initial set of base colloidal designs to maximise the similarity between candidate and
desired self-assembled structures, e.g. DNA-grafted colloids [24].

A target configuration can be characterised using a radial distribution function (RDF)
gtgt(r) that shows positional correlations between particle pairs of distance r apart. Start-
ing with some functional form, a piecewise pair interaction potential with a large number
of parameter variables is tuned according to gtgt(r). For example, Jadrich, Lindquist and
coworkers [21–23] applied iterative schemes to optimise pair potentials of finite range to
target non-trivial microstructures (e.g. cluster fluids, porous mesophase) using the dif-
ferences between the current iteration’s RDF gi(r) and the target RDF gtgt(r) to adjust
the interaction potential, known as Iterative Boltzmann Inverse (IBI). This technique can
be performed using multiple target data to tune models whilst satisfying multiple ob-
jectives e.g. anisotropic systems characterised by orientationally-dependent correlation
functions [84] or a system that is consistent over a range of thermodynamic states [85].
The concept is general enough to be applied to other parametric functions, such as the
tuning of size distributions in polydisperse systems [86].

Recent advances saw a data-driven approach to parameter tuning for realising par-
ticular cluster configurations of double-ring colloids [25]. Using a combination of various
techniques involving particle simulation, diffusion mapping and hybrid Monte-Carlo sam-
pling of this diffusion space, both the thermodynamical and dynamical effects of the sys-
tem were accounted for in order to converge onto parameters that yielded and maximised
the self-assembly of octohedral clusters from a well-mixed initial fluid state. This marks
progress in inverse design incorporating dynamical behaviour, adding to techniques such
as Ref. [24] that folds in the kinetics of self-assembly into the design and prediction of
crystalline structures using GA primed with a library of predicted assembly mechanisms
and models. Data-driven approaches take advantage of the computational power to work
with multiple sets of data simultaneously.

With multiple degrees of freedom in the system considered, coupled with numerous de-
sign parameters to modify, the vast design space demands huge computational resources.
An increase in system size or number of free interaction parameters to tune leads to a
polynomial increase in computational effort. This currently limits the practicality of in-
verse heuristics to studying small crystalline systems, time-dependent systems for short
durations, equilibrium systems, and disordered states (e.g. fluid clusters). These systems
restrict the size of available configurations and/or limit the timescales involved in order,
reducing the complexity of the structure and allowing simulations to exploring the system
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more effectively to obtain larger statistics (and hence more accurate measurements). How-
ever, many desired systems and practical applications of structures require self-assembly
of systems involving larger length scales or longer timescales. In these cases, direct simula-
tion of the particle system remains a reliable approach, able to incorporate the dynamical
details as well as keeping the thermodynamics accurate.

Choosing between the two approaches

As we have illustrated, inverse design has received great attention in recent years due to its
advanced capabilities in interpreting and modifying complex multidimensional parameters.
This is seen as a crucial component for accessing a richer design space and the subsequent
novel structures. Indeed, the ability to utilise characteristics of the desired target system
configuration allows for a more efficient and purposeful strategy in computer-assisted tar-
geted design. However, although the inverse design philosophy is straightforward, these
heuristic approaches so far address parameters with particular qualities. More creative
target criteria are subject to the suitability of the available inverse techniques (as a single
algorithm or a combination of different techniques), thus more novel systems may not have
the adequate conditions for these advanced techniques to be implemented.

The forward approach is an ever present methodology for exploring such systems at
the forefront of development. Its simplicity offers a foundational strategy for exploring
uncharted territory in design space and novel systems. Moreover, its independence from
the modelling and simulation techniques of the system of interest makes it a ready-to-use
strategy during any point of a project, although brute-force scanning, the only obvious
method in this category, is not efficient. We explore whether hill-climbing search is able to
offer a more resource efficient technique in the context of parameter tuning and exploration.

2.4.2 Parameter tuning

Parameter tuning plays an integral role throughout the design process. Design compo-
nents brought together using design rules need tuning to enable emergent target assembly.
Once the design components have been decided, further tuning is required to maximise
the desired assembly performance. It is often desirable to maximise the efficiency, and
therefore yield, of the self-assembly to lower production costs. The scope of this thesis
deals with the tuning process after design components have been decided. This can be
treated as an optimisation problem, where the optimal solution is the set of design pa-
rameters values satisfying the target specification. This is revisited in Chapter 5. Of the
many possible design parameters available for tuning for hard particles (e.g. aspect ratio,
patch positions) we focus on the tuning of the interaction strength of attractive patches
and its coverage on the surface of hard disks.

Inverse methods utilise parameter tuning for targeting both dynamical and structural
qualities of the system. For example, Klotsa and Jack [87; 88] developed a feedback
mechanism to tune the interaction strength of short-ranged attractive hard spheres on-the-
fly, such that the self-assembly system exhibited reversible dynamics. Reversible dynamics
(i.e. equilibrium in time [28; 67–70]) is believed to be a good indicator of well-behaved self-
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assembly with relatively few defects. Nguyen et al. [89] used the particle radial distance
from its parent cluster as the control parameter to renormalise the repulsive interactions
relative to the attractive ones to form a uniform-sized aggregation of both polydisperse and
monodisperse particles into supraparticles. The absence of this renormalisation results in
gel-like structures percolating the system.

Parameter tuning in the forward approach is motivated by the physically observable
self-assembly outcomes of the system, often a single valued quantity. Many studies explore
the self-assembly behaviour on a two-dimensional parameter space by evaluating a set of
parameter points (or state points or solutions) that covers the entire space. Typically, a
two-dimensional (2D) parameter space is explored by evaluating a finite set of state points
uniformly distributed on a grid, upon which the interaction parameters are varied [72; 75;
90; 91]. A brute-force scan is performed where the respective system is evaluated at each
point via simulation, and the point corresponding to the best yield outcome is identified
as the optimal solution given the grid resolution. The additional bonus of a brute-force
scan is the resulting dynamical phase diagram. Further tuning at a finer resolution and/or
smaller region of parameter space is possible to increase the accuracy of the solution.

The yield of the system on the parameter space can be thought of as a landscape,
with the ‘height’ of a point a measure of its performance (fitness). Yield measures are
often defined such that the resulting landscape peaks at the desired target. Locating the
interaction parameters that maximises the yield of the system is therefore the same as
finding the global peak (maximum) of the yield landscape. The reduction in yield value
as one moves away from the optimal parameters reflects the deviation from assembly of
the target structure. Multi-staged assembly schemes require the tuning of multiple yield
landscapes [26]. It is this exploration of parameter space in the forward approach that we
focus our attention on in the rest of this thesis.

2.4.3 Speeding up the exploration and optimisation of parameter values

Given a bounded parameter space deemed interesting and a chosen simulation method to
sample the self-assembly result for a particle system, it is desirable to maximise the time
spent obtaining information at the region of interest, i.e. the region of parameter space
that gives significant yield. In the brute-force scan mentioned in the previous section,
each region is sampled in proportion to its fractional area. Regions of good assembly
are typically small, occupying only a fraction of parameter space; most of the time and
resource is spent simulating regions of low yield, making it highly inefficient for searching
high yielding parameter points. One can reduce the demand of the scan by increasing the
grid spacing, but at the cost of lowering the resolution of the landscape.

A move away from uniform brute force scanning would reduce the time and cost of
exploration. Search heuristics, a large topic of study in mathematics and computer science,
have been applied to solve many numerical problems. Instead of sampling the full problem
space, search methods use data obtained to iteratively guide the exploration of space, so
that an answer is reached by only covering a subset of points in the problem space. We
cover the topic of heuristic search in more detail in Chapter 5.
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We found only one study that addresses heuristic exploration and search of parameter
space in the context of self-assembly landscapes. Phillips applied adaptive mesh refine-
ment (AMR) to iteratively distribute evaluations in a parameter space based on previous
evaluations to discover all distinct regions (i.e. phases) present in the parameter space [92].
The algorithm coarsely covered the entire parameter space with a mesh of points, before
iteratively inserting more points to sample about small and/or interesting regions, along
boundaries between regions, and/or new regions of unexplored space, redistributing the
time and resources spent for exploring different regions of space evenly. This method
does not consider noise in the measurement, although one can reduce the noise by aver-
aging over multiple independent samples of the same state point to obtain an accurate
measurement.

The measurement of the self-assembly yield is intrinsically noisy. Yield measures that
are based on locally average order parameters (e.g. bond-orientational order) have small
variance in noise. Other parameters can vary wildly between different realisations (e.g.
cluster shape). It is common practice to reduce a state point evaluation by averaging
over several yield measurements. Unlike in-equilibrium studies where several observations
averaged over time is encouraged, in dynamical studies the observation is time sensitive
and an average is obtained by taking the mean over individual simulations. Increasing
the number of simulations inevitably increases the computational cost. The use of ad-
vanced computational tools such as shape matching and machine learning [93] to assist
the detection and characterisation of structures can bring insight to to development of
new structural measures for handling more complex assembly products.

In summary, the current strategy of brute-force scanning of parameter space is highly
inefficient. On top of this, reliable identification of the high yielding state points requires
repeated measurements to reduce the effect of noise, leading to a high computational cost.
This motivates our study of local search algorithms and strategies to aid search on a noisy
landscape and reduce the overall computational cost involved by cutting down on the
number of simulations called.

2.4.4 Speeding up particle simulations

Long and intensive computer simulations are required to simulate extended periods of
self-assembly of large and/or complex systems. In practice, an important component in
reducing the execution time and computational resources spent in parameter tuning is
the better modelling and more effective simulating of each individual particle systems.
Indeed, much effort has been devoted to improving the accuracy and efficiency of these
simulation models. In this section we highlight some of the recent work addressing these
computational challenges, mainly for Monte Carlo (MC) simulations.

There is no time dependence in equilibrated systems hence particle dynamics are not
crucial to understanding the globally favourable state of the system. This gives freedom
in the choice of update moves in an MC algorithm to increase the sampling efficiency.
Unphysical non-local moves, such as cluster flipping in geometric cluster algorithm [94; 95]
or long distance moves in basic Monte Carlo, help overcome poor sampling in locally-dense
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configurations

Biased MC methods [96–98] are another popular approach used to traverse phase space
more efficiently and promote the sampling of low probability regions of phase space. A
biasing term is added to the Boltzmann contribution in the move acceptance criterion
of an MC algorithm, transforming the underlying probability distribution sampled by
the algorithm. If acc(µ → ν) ∝ exp(−βH) is the acceptance criterion for moving from
state µ to state ν with a Hamiltonian energy difference ∆H (See Section 3.2) then, with
weight factors wi associated with each state, this acceptance is modified into acc(µ →
ν) ∝ exp(β∆H) · exp(wµ − wν) (β = 1/kBT with kB the Boltzmann constant and T

temperature). By choosing to modify the Boltzmann factor by the inverse likelihood of
observing the state, exploration of likelier regions of phase space are suppressed in favour
of sampling low probability regions of phase space. This is used to overcoming large free
energy barriers to from one (meta)stable state to another and spend more time sampling
regions of interest [97].

Genetic algorithms and evolutionary algorithms are used to identify favoured config-
urations that minimise the enthalpy for zero temperature (T = 0) systems [52; 66; 99].
Starting from a set of candidate system configurations, each configuration is examined and
those with the lowest energy are used to generate the next set of candidate configurations.
Bianchi et al. [100] showed that Monte Carlo and evolutionary algorithms gives consis-
tent results on crystalline phases of small patchy particle systems, but with the Monte
Carlo approach offering more flexibility by being able to handle finite T and discontinuous
interaction potentials.

Dynamical self-assembly studies ask how and if the system will reach its thermody-
namically preferred location in phase space. One may also target dynamically arrested
states such as amorphous crystals [13]. For this, kinetic features such as binding and
unbinding events and internal relaxations are important to the system and hence mod-
elling of the time-dependent dynamics are necessary. Large system sizes, slow assembly
mechanisms and rare-events are among the reasons for the long execution times required.

Techniques for improving the speed and efficiency of dynamical MC simulations avoid
decorrelating the states generated between successive iterations of the MC algorithms. In
diffusion-driven self-assembly, the maximum step sizes of moves are restricted, but cluster
moves model correlated motion to improve acceptance rates [101]. Forward flux sampling
tracks and promotes relevant but rare events, pushing simulations to spend more time
sampling low frequency events to generate better statistics [102; 103]. Kinetic Monte Carlo
focuses on the coarse grain modelling of the dynamics, incorporating faster modes into
slower ones to restrict the move pool and advance the system at larger time steps [104].
This is effective for structure growth and diffusion studies where the important kinetic
processes and transition rates are identifiable and can be used as inputs for the Kinetic
Monte Carlo algorithm. Simulations with implicit-solvent and/or coarse grain modelling
offer alternatives to explicit modelling, providing efficient and effective modelling of self-
assembly at longer characteristic times [105; 106].
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2.5 Conclusion

Practical applications of self-assembly studies for targeted design requires the considera-
tion of thermodynamical and dynamical understanding of the system. Once interaction
parameters have been identified, it is important to find out how such parameters couple
together to produce the desired structure, and at which parameter values the resulting
colloids can optimally assemble. Direct simulations of large systems remain a reliable ap-
proach for tuning interaction parameters at latter stages of targeted design, where systems
are highly sensitive to input parameters. A brute-force scan of the parameter space is not
ideal in the parameter tuning problem as simulations and experiments cost execution time
and computational resources. In this thesis, we study the application of hill-climbing al-
gorithms and variants for finding optimal or near-optimal solutions in parameter space,
based on comparing the intrinsically noisy yield performance between solutions. We em-
pirically confirm whether this approach is practical and introduce a few metaheuristics
and strategies for improving this approach.
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Chapter 3

Monte Carlo simulations

Numerical simulations form an integral part in the study of self-assembling systems. They
form the bridge between theory and experiment, testing theories by applying them and
resolving the physics behind experimental results, as well as predicting phenomena that are
hard to observe experimentally. Computer simulations also offer consistency in controlled
and reproducible testing, and can track the system’s evolution down to particle level and
individual interactions. For designing self-assembly systems, computational modelling is
used to discover potential designs and parameter values before they are tested physically.

We use numerical simulations to simulate our model colloidal system. Specifically
we use Monte Carlo (MC) techniques to obtain particle trajectories relevant to different
particle systems under a simple system. MC is based on generating states of a system
based on the equilibrium distribution of states without explicitly considering the particle
dynamics.

In this chapter we review Monte Carlo methods as an application of statistical me-
chanics and thermodynamics used to explore particle systems, and how realistic dynamics
can be approximated in the limit of small update moves. For a more comprehensive de-
scription of statistical mechanics and Monte Carlo methods, refer to reference material
such as Newman and Barkema [107], and Frenkel and Smit [98]. We then introduce the
virtual-move Monte Carlo (VMMC) algorithm, a member of the MC family designed to
move a collection of particles concurrently in order to improve the sampling of collective
dynamics. Note that in this chapter, the term cluster refers to a general collection of parti-
cles labelled as a single entity due to some criteria (e.g. when the energetic evaluations are
non-zero), and not limited to those with patch-patch interactions as defined specifically
for our patchy hard disk system (See Section 4.1).

3.1 Modelling particle systems

There are several distinct classes of numerical techniques for modelling particle systems,
each with their own advantages and disadvantages. Among them Molecular dynamics
(MD) and Monte Carlo (MC) methods are the most popular. Molecular Dynamics models
the movement of molecular components in a system to generate configurations through
solving Newton’s equations of motion for an N body system. By explicitly considering
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particle motion, energy is exchanged between molecules via collisions, enabling free energy
barrier crossings which lead to better sampling of configurations in denser systems, e.g.
in liquid systems. On the other hand, Monte Carlo relies on generating a random config-
uration for each move based on space of available states in order to derive the equilibrium
average of some property A. Proposal moves are accepted with a likelihood based on the
energy of the system, reflecting the likelihood of the state itself. Choosing which tech-
nique to use is largely determined by the problem being investigated and the information
sought from the simulations. MD is favoured to analyse dynamics, seeing heavy use in
the study of biological systems where explicit modelling of all components in the complex
system in a time sensitive manner is paramount. On the other hand, MC is popular for
equilibrium studies, with the versatility of update moves able to efficiently explore large
numbers of states to obtain better statistics. For example, there is a large probability of
selecting random states that result in overlapping molecules in dense systems. A large
number of rejected moves leads to poor efficiency in sampling. However, random moves
trigger barrier crossing events more readily in low density systems. In comparison, MD
can struggle due to the lack of collisions, so molecules become stuck sampling a fraction
of low energy configurations.

MC methods get around the problem of inefficient sampling by performing unphysical
moves, such as flipping particles/molecules around, and moving particles in non-local
ways, including particle addition/deletion in Grand Canonical Monte Carlo where the
particle number in the system varies. Additionally, the lack of force calculations mean
larger systems and longer timescales can be accessed at relatively cheaper computational
costs. MC can model a large range of ensembles. Transport properties such as diffusion
coefficients are naturally derivable from the equations of motion in MD but lacking in MC.

3.2 Monte Carlo method

Monte Carlo sampling methods generate random states proportional to their likelihood
under the equilibrium distribution of the system’s phase space, subject to the chosen sta-
tistical ensemble. We will focus on the canonical ensemble, where the number of particles
N , the volume V , and the temperature T of a closed system are constant. A sequence
of states generated based solely on the current state is ‘memoryless’ (it does not depend
on any previous states) and is known as a Markov chain. This builds up a simulation
pathway that samples the system of interest in an ergodic manner, yet one that is more
efficient than considering all possibilities available in the system.

Metropolis-Hasting Monte Carlo avoids the evaluation of the partition function Z.
Instead, a proposal distribution is conditioned on the current state. Typically, a small
random translation or rotation is applied to a single particle in an existing configuration
to generate proposal moves. This new state is accepted with a probability proportional to
the ratio of importance weights of the states before and after the move. This conditioning
of the acceptance probability pushes the simulation to sample more favourable regions
more often. This is known as importance sampling. The rate of sampling is therefore built
from the underlying probability distribution, rewarding more favourable states by visiting
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associated configurations more often than less favourable ones.

3.2.1 Statistical Ensemble

Consider a d-dimensional system of N anisotropically interacting particles in a box of
volume V at temperature T . Each particle has position r = (x1, x2, · · · , xd, θ1, θ2, · · · , θd)
and momentum q = (p1, p2, · · · , pd, L1, L2, · · · , Ld), comprised of spatial xi and orien-
tational θi positional components, and linear pi and angular Li momenta components,
respectively. The full set of position and momentum coordinates can be used to define a
microstate of the system. For a system in thermal equilibrium with a reservoir at temper-
ature T , the probability density of a state with rN and qN is related to the Boltzmann
factor corresponding to the total energy H of that configuration,

P (rN , qN ) =
e−βH(rN ,qN )

Z
, (3.1)

where β = 1/(kBT ), kB is the Boltzmann constant, and Z is the partition function

Z(rN , qN ) =

∫
e−βH(rN ,qN ) dΓ, (3.2)

representing all points Γ(rN , qN ) in the phase space Γ, specifically for a constant NV T

system.
When an observable quantity of interest A of the system is independent of the particle

motion, we can consider the integral to be dependent on rN only. The independent rN

and qN coordinates allow for the factorisation of Z into a sum of kinetic and potential
parts, or equivalently, the Hamiltonian as a sum of the potential U and kinetic K energies
H(rN , qN ) = U(rN ) +K(qN ).

Assuming classical particles of mass m and moment of inertia I, there is quadratic
dependence of the kinetic terms on momenta components (linear kinetic energy p2i /2m

for each pi, and rotational kinetic energy L2
i /2I for each qi). Using the relationship

∫∞
−∞ exp(−u2) du =

√
π, these kinetic terms can be analytically integrated to constants

and hence can be factorised out of Z.
Equation (3.1) then becomes

Z(rN ) =

∫
e−βU(rN ) drN (3.3)

with probability of a state occurring being

P (rN ) =
e−βU(rN )

Z
. (3.4)

To numerically sample this partition function we generate the states according to
the underlying transition rates and probabilities that would be observed for the physical
system. However, instead of producing a full integration of all possible states in the
ensemble, feasible only for the smallest and simplest of systems, the focus here is to obtain
a representative sample of states proportional to the likelihood of them occurring. A
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system in a state µ will evolve into state ν after time t with some rate characterised by a
transition probability π(µ→ ν). We utilise this set of transition probabilities to transform
the system in order to explore the different possible states. The generation of these state
need to be random, so that even from the same initial state the random sequence of
samples generated by the algorithm is different every time. To do this, we use a Markov
process – a random process satisfying two conditions: (1) the transition probabilities are
time-independent; (2) the transition probabilities depend solely on the properties of the
current states µ and ν and no other states. Such processes are set up such that if it is run
for sufficient time, from any initial state, it will eventually produce a sequence of states
that appear with probability given by the Boltzmann distribution, analogous to a physical
system reaching equilibrium. Two additional conditions are sufficient to guarantee that
the system converges towards this underlying probability density distribution, regardless
of where we start looking in the neighbourhood of the phase space, and is trajectory
independent [107]: ergodicity and detailed balance (see below).

The resulting sequence of states generated using a Markov process is known as a
Markov chain. One can then use this Markov chain to query observables of the system. In-
equilibrium studies are usually concerned with the expected outcome, or ensemble average,
for some observable quantity A(rN ) of the system obtained by performing a weighted
average of A with respect to all possible states in a system to give ⟨A⟩:

⟨A⟩ =
∫
drNA(rN )e−βU(rN )

∫
drNe−βU(rN )

(3.5)

=

∫
drNA(rN )P (rN ). (3.6)

The integration over all states is replaced by a weighted averaging of A with respect
to the sample of states generated by the Markov process. When the number of points
sampled M is sufficiently large, the number of points mi generated around rN reflects the
probability ratio, so that

⟨A⟩ ≈ 1

M

L∑

i=1

miA(rNi ). (3.7)

3.2.2 Ergodicity and detailed balance

To ensure that a Markov Chain Monte Carlo algorithm will produce a sample distribution
that reflects the underlying equilibrium probability distribution given enough time, it needs
to satisfy ergodicity and detailed balance. Applied to particle systems, the former guaran-
tees that all states can be reached from any other, and the latter ensures that the sampled
states and transition probabilities collectively reflect the Boltzmann distribution [107].

Given a dynamical system, ergodicity is the quality of the transformation of the system
where the average behaviour of the system over time is equivalent to the statistical average
of all the states visited by the system. This property allows us to compute a measurable
quantity by either time averaging or ensemble averaging as the system evolves. More
crucially, it is necessary in order to guarantee that all possible states of the system can
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be explored given enough time, regardless of the starting configuration, hence no state is
prevented from being explored by construction. An ergodic Markov chain is one where
any state can be reached in at least a finite number of steps from any other state.

Physically, detailed balance is a principle that came to represent the concept of mi-
croscopic reversibility. Time reversibility for elementary collisions representing kinetic
processes, once broken down into steps, implies that at equilibrium, any collision is equili-
brated by an equal but opposite collision. For Markov processes, detailed balance can be
interpreted as a condition where the average number of accepted moves from state µ to
state ν is exactly the same as the reverse transition from ν to µ. This can be written as

P (µ)π(µ→ ν) = P (ν)π(ν → µ), (3.8)

where π(µ → ν) is the transition matrix relating the probability of a system in state µ

moving to state ν. This is a sufficient but not necessary condition [108] that guarantees
the satisfaction of a broader relation, balance, given by

∑

ν

P (ν)π(ν → µ) =
∑

ν

P (µ)π(µ→ ν) = P (µ), (3.9)

with the left equality describing how the rate of transitions in and out of any state µ must
be equal at equilibrium, and the right equality from applying the definition that Markov
processes must generate some valid state ν when given any state µ, i.e.

∑
ν π(µ→ ν) = 1.

Equation (3.8) guarantees the satisfaction of the left equality in Equation (3.9), which is
a necessary condition that implies P (µ) will be the equilibrium probability of the Markov
process. In addition to this, it can be shown that systems satisfying the condition of
detailed balance will always converge to this equilibrium distribution from any state,
something that the left relation in Equation (3.9) by itself doesn’t guarantee [107; 109].

From Equation (3.8) we select the Boltzmann distribution to be the equilibrium dis-
tribution that the Markov process will converge towards:

π(µ→ ν)

π(ν → µ)
=

P (ν)

P (µ)
= e−β(U(ν)−U(µ)). (3.10)

The transition matrix π(µ→ ν) can be expressed as the product of two independent parts:

π(µ→ ν) = α(µ→ ν)acc(µ→ ν), (3.11)

the underlying Markov transition matrix α(µ → ν) that determines the probability of
state µ transitioning to state ν, and acc(µ → ν) which provides the probability that the
proposed move α(µ→ ν) is successful.

Substituting Equation (3.11) into Equation (3.10), we get

α(µ→ ν)acc(µ→ ν)

α(ν → µ)acc(ν → µ)
= e−β(U(ν)−U(µ)). (3.12)

As long as this ratio is satisfied, the method for generating new states from old states and
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the details of the acceptance criteria can be tailored to suit the system being studied [107].
A stricter subset of this condition is superdetailed balance [98], used when a probabilis-

tic artificial labelling of the particles in state µ is performed to give a realisation R. Here,
the probability of generating the same labelling R in both µ and ν is explicitly considered
in the balance equation:

P (µ)α(µ→ ν|R)acc(µ→ ν|R) = P (ν)α(ν → µ|R)acc(ν → µ|R). (3.13)

This is used in cluster algorithms where each distinct way of grouping disks into a single
entity is a different realisation.

3.2.3 Metropolis Monte Carlo

A basic MC sampling scheme can now be constructed. As mentioned previously, there is
freedom in choosing the state generator and acceptance probability to sample the phase
space of a system as long as Equation (3.12) is satisfied. In general this choice is done
to maximise the sampling efficiency [107]. The widely used Metropolis scheme is the
standard approach for generating states. Let a model system be in state µ with positions
xN and orientations θN . Random translation and rotation moves altering the available
coordinates of the system have a maximum magnitude of ∆t and ∆r respectively. One
scheme that proposes moves of a single particle at a time is as follows:

1. Calculate the energy of the system in current state µ, U(µ) = U(xN ,θN ).

2. Select a particle with coordinates x,θ at random, and choose to displace the particle
with probability pt (Go to step 3), otherwise rotate the particle i.e. the probability
of performing a rotation is pr = 1− pt (Go to step 4).

3. Translate the particle by a random displacement vector δt with uniformly chosen
step size in [−∆t,∆t], i.e. x′ = x + δt, θ′ = θ. Go to step 5.

4. Rotate the particle a random rotation vector δr with uniformly chosen step size in
[−∆r,∆r], i.e. θ′ = θ + δr, x′ = x. Go to step 5.

5. Calculate the new energy of the system in state ν, U(ν) = U(x′N ,θ′N ), and accept
this move with probability

acc(µ→ ν) = min {1, exp(−β[U(ν)− U(µ)])} . (3.14)

6. End of a move. Go to step 1.

This Metropolis scheme assumes a symmetric Markov transition matrix (i.e. α(µ →
ν) = α(ν → µ)), with zero probability for transitioning to states that are not possible.
The acceptance scheme in step 5 is the defining part of the Metropolis approach. This
form maximises the probability of accepting any moves, while satisfying the acceptance
ratio between µ → ν and ν → µ transitions. For in-equilibrium studies, maximum step
sizes ∆t and ∆r are typically chosen to increase the acceptance rate of proposed moves to
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maximise the simulation efficiency. They can also be chosen to satisfy other characteristic
rates, such as the diffusion rates for simulating dynamical system.

3.2.4 Simulating dynamical systems

When out-of-equilibrium systems are studied, one is typically interested in how the system
evolves from an initial state. The sequence of states generated by MC methods naturally
defines a trajectory associated with a time axis t. Measurements of the evolving system
are therefore also time dependent i.e. A(t). Einstein’s relations can be used to obtain a
physical timescale for diffusive dynamics of the system, at which point the relation between
∆t and ∆r can be established.

Colloids move under Brownian dynamics, diffusing in the solvent in order to interact
with each other. Brownian motion can be approximated by overdamped equations of mo-
tion, where the average acceleration is zero due to the viscous effects of the solvent. One
can apply equations of motion by Langevin [110] to model such diffusive systems, typi-
cally using Brownian Dynamics methods [111] or Molecular Dynamics simulations [112].
However, it has been shown that the Monte Carlo approach can be adapted to evolve
a system under an approximate Brownian dynamics regime, being applied to many dy-
namical studies. Overdamped Langevin dynamics can be approximated using MC by
restricting update moves to local physical moves (translations and rotations) limited to
small step sizes [113; 114]. Although dynamic details and forces are not considered ex-
plicitly to generate moves, the resulting motion from Monte Carlo moves may reflect an
integration of overdamped Langevin equations of motion. An accurate approximation is
possible by relating the diffusive timescales with acceptance rates and move update sizes,
and is applicable to multicomponent and anisotropic systems [115–117].

For our self-assembling system, we considered a canonical ensemble of 2D patchy hard
disk system in an implicit solvent initialised in a well-mixed fluid condition, and advanced
this system using Metropolis Monte Carlo updates to relax the system. We initially used
a simple Monte Carlo algorithm for our simulations that proposes single particle moves.
However, the acceptance rate was low due to the large energy differences involved with the
highly directional and short-ranged potentials, and the high percentage of proposed moves
in locally dense regions that led to the forbidden overlap between hard disks. Moreover,
the strongly interacting disks showed a lack of collective particle motion, resulting in
very unrealistic movement. To counter this, we adopted the Virtual-Move Monte Carlo
(VMMC) algorithm [28; 101] that explicitly considers moving groups of particles to restore
collective dynamics in the system. The use of VMMC led to a significant improvement in
the self-assembly yield outcomes of our low density patchy particle system, with a much
higher particle agglomeration activity and more realistic dynamics.

3.3 Virtual-Move Monte Carlo (VMMC)

The virtual-move Monte Carlo (VMMC) algorithm [28] is a probabilistic state-generating
algorithm that considers moving groups of particles collectively. VMMC was invented

25



3.3. VIRTUAL-MOVE MONTE CARLO (VMMC) CHAPTER 3

to restore the collective dynamics lacking in Single Particle Monte Carlo (SPMC), when
translations and rotations are restricted to local moves (small step sizes). By doing so, one
can retrieve an approximate overdamped Langevin dynamics. A pseudocluster is generated
by selecting a random seed particle, proposing a move from the move pool, before scouting
for nearby particles interacting with the seed particle that will be affected. The recruitment
of neighbouring particles, known as linking, is subject to probabilities correlated with
cluster size. The resulting pseudocluster is then treated as a single unit and moved under
an appropriate acceptance criterion. The acceptance criterion considers relative diffusion
rates, scaling with the size of the cluster (assumed to be spherical/circular), which are
crucial to studying systems where the main modes of clusters growth are not via the
agglomeration of single particles.

Collective motion is suppressed in SPMC; a set of particles has to move sequentially
over a series of complementary moves in order to mimic collective motion. Reducing the
update step size can restore the collective behaviour of particles. However, this comes at
the cost of advancing the system at finer time steps, which requires more iterations of the
algorithm and is especially inefficient at low densities where particles need to travel far
to interact with other particles. Moreover, this approximation is poor in some conditions
such as when particle-particle interactions vary strongly with distance and angle, as large
energy differences lead to low acceptance rates of such systems, compromising the evolution
of the system [118]. To avoid this slowdown yet regain the long range collective motion,
explicit consideration of collective particle (cluster) moves is built into the Monte Carlo
sampling. Such cluster moves allow direct sampling of these collective modes, enabling
long ranged correlated dynamics to be realised explicitly in the simulation trajectories
while avoiding further reduction in the update step sizes. We use the VMMC algorithm
to alleviate this problem for the patchy particle system.

Explicitly referenced in its name, VMMC performs ‘virtual’ moves on bodies in the
system, whether it is an individual particle or a group of particles. Proposed Monte Carlo
moves consider both the initial state before a move is applied, and the final state after it
is applied. This amounts to considering the energy change, or energy gradient, associated
with the move for each particle affected [118]. The diffusion of the moving particles is also
incorporated into the move proposal, in order to impose a relation between cluster size and
diffusion coefficient. The algorithm assumes the moving group to be spherical (circular in
2D). The virtual move is then subject to the acceptance condition, and is implemented as
a proper move if accepted.

3.3.1 Move proposal

A particle in the box, a proposed move type (translation/rotation) and the move details
(direction and magnitude) are all randomly selected at the start of a VMMC move. The
particle becomes the seed particle of the virtual move. For translation moves, proposed
with probability pt, the seed particle is selected to move locally within a radial distance
∆t. For rotation moves, attempted with probability pr = 1 − pt, the seed particle is
rotated about its disk centre by a randomly chosen angle in the range of [−∆r,∆r] around
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a randomly oriented axis n̂. In a 2D system, n̂ is perpendicular to the plane of the box.
Once a virtual move is chosen, neighbouring particles are iteratively recruited into the

moving particle group, or pseudocluster C, by testing the link between neighbouring pairs
before and after the virtual move. Beginning in a microstate µ, a particle j outside of
the moving cluster lying next to a member i of the moving group C are linked with a
probability

pij(µ→ ν) = Θ(nc − nC)Iij max(0, 1− eβ(εij−εi′j)), (3.15)

where ϵij is the interaction energy between the particle pair i and j, and ϵi′j is the energy
between them after the virtual move is applied to i into its new position as i′ in the
resulting microstate ν.

The factor Θ(nc−nC) ensures that motions of clusters of different sizes are not oversam-
pled so that all particles experience proposed moves with approximately equal frequency.
A random number ι drawn uniformly from the interval [0, 1] is chosen before the move
to give a maximum cluster size cutoff nc = ⌈ι−1⌉. The move is rejected if the number of
particles nC in the moving pseudocluster grows larger than nc, ensuring that clusters of
all size are moved with the same frequency. Iij is a boolean matrix identifying particle
neighbour pairs i and j.

The recruitment process finishes when no more particles are waiting to be tested. The
resulting move of the pseudocluster C, defining the transition between states µ to ν, is
then subject to the move acceptance criterion. The axis of rotation is fixed at the COM
of the seed particle.

3.3.2 Move acceptance

Using the above linking scheme results in a move µ→ ν being accepted with probability

Wacc(µ→ ν) = Θ(nc − nC)D(C)

×min

⎧
⎨

⎩1,
∏

⟨i,j⟩n↔o

e−β(εi′j−εij)
∏

failed

qij(ν → µ)

qij(µ→ ν)

R∏

linked

pij(ν → µ)

pij(µ→ ν)

⎫
⎬

⎭ (3.16)

satisfying super-detailed balance (Section 3.2.2). ⟨ij⟩n↔o denotes particle pairs that start
off interacting in state µ and non-interacting in ν, or start off non-interacting in µ but
ends up interacting in ν, i.e. particle pairs that see a change in energy. qij = 1− pij is the
probability of links not forming, i.e. failed links, internal and external to C, and R denotes
a particular realisation of formed and failed links built during the recruitment procedure.

D(C) is a diffusion cutoff parameter that enables one to enforce dynamics of collective
motion at different scales. In the limit of a tightly bound cluster that is also assumed to be
isotropic, pseudoclusters are always entire clusters and Stokes’ Law can be implemented
with D(C) chosen to reduce the rate of accepting a move according to the cluster size
Smaller clusters diffuse at a larger rate than a larger particle according to

Dt =
kBT

6πηRH
, Dr =

kBT

8πηRH
3 . (3.17)
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kB is the Boltzmann constant, T is the temperature, and RH is the hydrodynamic radius
of the cluster. The diffusion coefficients Dt and Dr scale inversely with RH and RH

3

for translation and rotations respectively. To enforce this, a random number γ from a
uniform distribution on the interval [0, 1] is chosen and a translational move is terminated
immediately upon nc exceeding RH/γ (RH/γ3 for rotational moves). This is accurate
for pseudoclusters that are spherical (disk-like in 2D). Further attention is required for
the parameterisation of clusters away from this limit, with the consideration of relative
translation and rotation move proposal probability pt and pr and step sizes ∆t and ∆r

required to include approximations for internal relaxations of a less tightly bound clus-
ter, and anisotropic clusters. A possible treatment to increase the accuracy of moves of
anisotropic C is to numerically resolve the average diffusive properties of different cluster
shapes and sizes, as demonstrated in Ref. [90]. For our purposes, we did not perform such
parameterisation to obtain an accurate dynamics, instead borrowing the VMMC ability
to move groups of clusters efficiently to allow the quick spatial localisation of colloidal
particles from an initially dispersed state.

We used the VMMC library developed and maintained by Hedges [119] that imple-
ments a symmetric version of this algorithm [28; 101]. In this symmetrized version of the
algorithm, a proposed move is applied on a seed particle in its initial microstate twice,
once in the intended ‘forward’ direction, and once in the ‘reverse’ direction. Failed links in
the first ‘forward’ stage are not considered in the second stage—all other particle pair are
considered in the second stage. Failed links from the second stage are considered as frus-
trated links—they result in an inconsistency in the realisations considered by the forward
and inverse moves. Only particle pairs that form links successfully in both directions are
considered as fully linked, and these fully linked particles form the moving pseudocluster.

This symmetrized recruitment scheme leads to a simplified acceptance probability pro-
cedure, exploiting the fact that only failed links external to the cluster contribute to the
acceptance rate [28]. By construction, the observed failed links internal to the moving
cluster, and all the fully formed links are the same pre- and post- move. These failed links
and fully formed links therefore cancel each other out in the multiplicative sums of the link
probabilities in Equation (3.16), reducing the acceptance probability to a simpler form that
only requires the consideration of particles pairs contributing to

∏
⟨i,j⟩n↔o

e−β(εi′j−εij), i.e.
either those that go from interacting to non-interacting, or not interacting to overlapping.
Frustrated links joining the pseudocluster leads to immediate rejection of the move [28].

3.4 Conclusion

The Metropolis MC and VMMC algorithms for modelling particle systems were intro-
duced in this chapter. Although the assumptions for the algorithm are based on sampling
the phase space characterised by the underlying equilibrium probability distribution, a
dynamical interpretation of the system’s evolution is possible by restricting the step sizes
of the updates.

The VMMC algorithm, a powerful cluster algorithm, was adopted to improve the dy-
namics observed in the simulations, as strongly interacting hard disks were inefficiently
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evolved using SPMC. VMMC enables cluster moves which collectively update an inter-
acting group of particles based on the consequences of applying the move. The patchy
hard disk system in solution exhibited more realistic activity in solution after adopting
the VMMC algorithm, with cluster-cluster agglomeration and internal relaxation events
producing aggregates that were not realised under the SPMC regime at much longer times.
As we will see in the next chapter this has huge consequences on the final cluster shape.
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Chapter 4

Self-assembly of a patchy disk
system

The 2D patchy particle model studied by Whitelam et al. [13] is an example of a non-trivial
self-assembly system that exhibits a wide range of different structures when interaction
parameters are varied, able to form a variety of ordered and non-crystalline structures
depending on the interaction strength and the flexibility of the patches. The patchy
model is popular as a coarse grain model for systems with directional valency, such as
polymer systems and globular proteins, where anisotropy of subunits is an important
factor governing the complexity of aggregate morphologies. The self-assembly and growth
of protein structures is pertinent to the understanding of deficient assembly [32], a cause
of diseases such as cataracts [31], Parkinson’s and Alzheimer’s. The 2D patchy disk model
we used is based on the widely used Kern-Frenkel model [49; 74; 120–122]. Despite the
surprisingly complex and rich phenomena expressed by this model, its theoretical and
computational simplicity make it a popular choice in computer modelling of polymer chain
and ring formation. We adopt this model as our example system to study the targeted
design of high yielding self-assembled structures, by searching for the design parameters
that maximise the yield of large round compact honeycomb clusters.

In this chapter, we introduce the patchy particle model and summarise the previ-
ous findings by Whitelam et al. on such a system. Next, a discussion of yield measures
characterising the degree of the target structure formation is given. Measuring only the
largest cluster in the system, our target structure is a symmetric, round, compact, large
honeycomb cluster. We capture the network quality and domain size using the bond-
orientational susceptibility, and the cluster morphology (specifically the compactness and
circularity) by constructing a shape factor, such that products more similar to the target
assembly product give higher values. By quantifying and combining these features into a
single yield measure Q, a yield landscape defined on the parameter space is constructed,
with the best yielding interaction parameters at the global peak of the landscape. The
VMMC self-assembly simulation setup is described, followed by a presentation and dis-
cussion of the simulation results and the self-assembly behaviour of the patchy disk model
systems.
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4.1 Patchy disk model

The 2D patchy particle model consists of hard disks of radius a/2. Each disk is decorated
with three uniformly distributed patches—each labelled with a bisecting patch vector uγ—
on the surface sweeping an angle of 2w from the disk centre, forming sectors. These sectors
are arranged uniformly around the disk such that their bisector uγ are at an angle 2π/3

relative to each other. Only in the neighbourhood perpendicular to the patched surfaces
(the arc of the sectors) does a square well potential exist, extending from the particle
surface at radius a/2 to a radius of (a + δ)/2, where δ = 0.1a. A patch of interaction
strength ε has a well depth of −ε.

Disk pairs i and j interact via a patch-patch interaction if the displacement vector rij

between the centres of i and j intersect a pair of patch arcs, one from each disk, and no
longer than a+ δ (See Fig. 4.1). To sum up, the potential of the patchy model is

Vp(rij ,Θi,Θj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ if |rij | < a,

−εVang(rij ,Θi,Θj) if a ≤ |rij | ≤ a+ δ,

0 if |rij | > a+ δ,

(4.1)

where rij is the displacement between two disk centres, and Θi is the orientation of particle
i, and

Vang(rij ,Θi,Θj) =

⎧
⎨

⎩
1 if θγij < w and θγ′ji < w,

0 if otherwise,
(4.2)

where θγij is the angle between patch perpendicular bisector uγ on particle i and the
interparticle vector rij , as shown in Figure 4.1. We limit w, the flexibility of a patch, to
a maximum of arcsin( a/2

a+δ ) = arcsin(5/11) ≈ 27◦, such that each patch may only interact
with at most one other patch from a different disk at any one time. w is called the flexibility
as it represents the freedom of the relative position between a patch-patch interacting pair
while remaining bonded. We impose this upper bound on w to avoid contact between
patches belonging to three different disks. Otherwise, additional rules are required to
determine which of the equally valid particle pairs interact, which can lead to interesting
behaviour [50].

As we shall see in the next section, a diverse phase behaviour can be produced by
varying only the interaction strength ε and flexibility w. A two-dimensional model is also
easy to represent, inspect and characterise via a yield measure, hence we choose this as
our example system.

4.1.1 Review on this particular model

As mentioned previously, this colloidal model is taken from the study performed by White-
lam et al. [13]. In their work, the bulk behaviour of the system is explored in the grand-
canonical regime, characterising the competing factors in interaction strength ε and patch
flexibility w that result in a rich thermodynamical and dynamical phase behaviour (see
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Figure 4.1: Schematic of patchy disk model of radius a/2. Three sectors (red) indi-
cate the angle subtended by the surface arc where attractive patch-patch potentials (blue
regions) interact with energy −ε. Patches γ on disk i and γ′ on disk j interact if the dis-
placement vector rij between the disk centres is no longer than a+ δ and passes through
γ and γ′.
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Equilibrium order:
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polygonal network
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loops generated
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loops generated
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Polycrystal - glass Honeycomb Polygon glass

Figure 4.2: Schematic phase diagram of the patchy hard disk model as a function of the
interaction strength ε and flexibility w, annotated with example systems. At equilibrium,
networks are found to be honeycomb at low w or polygonal at high w. When the interac-
tions are stronger, kinetic effects play a more significant role, with early-formed polygon
networks annealing into honeycomb networks. When interactions are very strong (high ε),
kinetic defects persist, leading to dynamical self-assembly networks such as polycrystals
in low w and polygon glasses at high w. Figure adapted from [13].
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(a)

θ(5)

θ(6)

(b)

Figure 4.3: (a) Key legend for polygon loops of different sizes, determined by the number
of disks composing the loop. Polygon loops are filled according to their size: pentagons
are red; hexagons are blue; and heptagons are green. (b) Demonstration of the restricted
movement of a disk in non hexagonal polygons. A disk in a pentagon loop has less freedom
to rotate (top), compared to a disk in a hexagonal loop (bottom).

Figure 4.2 adapted from Ref. [13]). The resulting self-assembled 2D networks resemble var-
ious real physical systems at different scale magnitudes with topologically distinct features,
achieved by only resolving these two interaction parameters. For example, cyclohexane-
m-phenylene assembly [78] was identified to be a honeycomb polycrystal in a regime that
resembles the assembly of equilibrium honeycomb with dynamically induced grain bound-
aries due to inflexible (low w) yet strong (high ε) bonds. With a single simple model
able to reproduce the assembly behaviour of several real physical systems of a variety of
length scales and assembly components, Whitelam argued that this strongly suggests that
basic ‘design criteria’ (in this case geometry and strength of binding) play a dominant role
in determining the stable structures preferred by systems, both thermodynamically and
dynamically.

The diverse range of emergent networks stems from the local interactions between
neighbouring particles. As the patches bind to each other, the patchy disks each create
up to three pairwise bonds to form an open network structure, with the closed convex
loops of neighbouring disks resembling polygons (Fig. 4.3a). Disks distributed in a regular
hexagonal manner form ordered, periodic honeycomb networks; disks organised in a less
ordered configuration through a mixture of non-hexagonal loops and incomplete loops
form a non-periodic polygonal network (or polygon network). Six patchy disks can bond
to form a hexagon loop, the preferred loop size complimenting the three-fold symmetry
of the three-patch design; the 120◦ angle between patch sectors within a disk matches the
internal angle of a regular hexagon. Hexagonal loops form naturally for any w > 0◦, and
rotate freely by up to 2w without breaking bonds (Fig. 4.3b bottom). Patches need to be
wide enough to form other polygonal loops, as well as having smaller rotational freedom
once formed. For example, a regular pentagon loop has an interior angle of 108◦, so can
only be accessed by patchy disks with w ! 6◦ (Fig. 4.3b top).

At equilibrium, the 2D patchy disk model is predicted to favour a honeycomb network
at small w, but prefer a polygon network at large w (bottom centre in Fig. 4.2). For very
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low w, disks are only able to access hexagonal loops. Considering isolated polygon loops,
when w is large enough for other polygon loops to form, the hexagonal configuration is
still thermodynamically favoured as it maximises the disks’ rotational entropy compared
to other polygon loops. Carried over to a system of patchy particles, this entropic contri-
bution leads to the preference of honeycomb lattice in a fully-connected network, especially
for small w.

As the free energy difference between different isolated polygon loops reduces with
increasing w [13], other polygon loops become more stable relative to the hexagon case.
Polygonal networks are found to be favoured at large w since the available distinct network
configurations that particles can arrange into increases in number; the rotational entropy
contributions from the disks are outweighed by a larger configurational entropy of avail-
able network configurations. This was argued using analytical estimates from studying a
mean-field topological-gas [13]. The irregular distribution of disk neighbours enables the
resulting polygon loops to tessellate 2D space, stabilising these polygonal defects.

Dynamically, even more network types are generated upon varying ε and w. A periodic
honeycomb lattice is still the preferred network structure at low w. Grain boundaries are
low in numbers for weak bonding disks, but permeate throughout the system in the strong
bond (high ε) regime, creating polycrystals (bottom right of Fig. 4.2). For more flexible
interactions (high w), polygon glass form (bottom left of Fig. 4.2). In fact, polygon loops,
especially pentagons, form readily when patches are wide enough, but are unstable. If
interactions are weak enough then ample time is available for any polygon loops, a source
of kinetic trapping, to anneal out into hexagons. Strong interactions leave existing loops
persisting for long times, leaving the network in a glassy state with kinetic defects.

Although our system will be at a low constant density, we expect our simulations to
exhibit similar dynamical self-assembly behaviour seen here, with the effects of varying
interaction strength and flexibility, dictating the dominant assembly regime and kinetic
trapping, enough to reproduce the various networks seen here.

4.2 Simulation details

Our simulations model the dynamical self-assembly of patchy hard disks from an initially
far-from-equilibrium, disordered well-mixed fluid state. A system of N = 900 particles,
initiated from a disordered state in a square container of area fraction ϕ = 0.04 with
periodic boundary conditions, is relaxed using the VMMC algorithm for 2 × 107 VMMC
cycles. One VMMC cycle is equivalent to performing N VMMC move attempts. Trans-
lation and rotation moves are attempted with equal probability, with constant maximum
step sizes of ∆t = 0.13a and ∆r = 10◦ ≈ 0.175 respectively. These values were taken from
previous equilibrium studies and do not result in a consistent time scale δt according to the
Einstein relations (∆t =

√
6Dt × δt and ∆r =

√
2Dr × δt). Only one of these step sizes is

required as independent variable if the time scale δt and the relations are respected. The
low area fraction provides adequate room for clusters to form while avoiding percolation,
where a cluster extends beyond the box dimensions and interacts with a periodic copy of
itself, forming gels. We take ε to be the scaled interaction strength i.e. ε = U/T for an
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interaction of energy magnitude U at temperature T . Some examples of simulated systems
are shown in Figure 4.4, exhibiting near-optimal and sub-optimal assemblies.

At an area fraction of ϕ = 0.04, the system’s equilibrium state is expected to be at fluid-
solid coexistence for large enough strength εco (equivalently at low enough temperature
T ) [13]. Initiated from a disordered fluid state, it is expected that having ε > εco is
not sufficient to guarantee cluster formation due to the long nucleation times exceeding
the simulation durations. Instead, only for slightly higher ε is crystallization observed,
which lies near the metastable liquid-gas coexistence line [75; 123]. When ε is too large,
kinetic trapping is abundant, hindering effective self-assembly within the time scales of
the simulation. The yield of the self-assembly is also dictated by our choice of simulation
duration tf , taken to be tf = 2×107 VMMC cycles to allow for adequate assembly activity
to take place across the range of parameters simulated.

We chose tf in terms of VMMC cycles and constant maximum step sizes to obtain
a consistent self-assembly problem for tuning. The adoption of VMMC over SPMC en-
ables much needed realistic system evolution of cluster morphology via cluster motion,
but consistent dynamics for a physically-motivated modelling of the self-assembly were
not considered. Aside from the inconsistent timescales of the different moves, the main
consequence in our choice of constant ∆t and ∆r is the different dynamical regimes ac-
cessed by the VMMC algorithm depending on w. Long ranged modes are suppressed for
w > ∆r, limiting large cluster diffusion, whereas internal relaxation of cluster are sup-
pressed for w < ∆r. As we will see later in the chapter, this does create an artefact in our
yield landscape, but nevertheless it provides us with an example system for tuning.

A more physical colloidal system would require a proper treatment of the diffusion co-
efficients of the translation and rotation moves, correlated with the respective acceptance
rates via the definition of Einstein’s relations to define a unique timescale. A comprehen-
sive example of a physically motivated treatment of parameter-dependent step sizes for
modelling consistent dynamics can be found in a study by Haxton et al. [90], where the
maximum step sizes varied with the interaction range to implicitly tune the acceptance
rate of the simulations such that they advanced under a consistent unique timescale. The
Brownian timescale is commonly chosen to be the unique timescale for self-assembly prob-
lems. The Brownian time tB—the average time it takes for a free particle to diffuse its
own diameter—would scale differently with the VMMC time tV at different parameter
state points. Note that these systems are still valid thermodynamically regardless of the
evolution dynamics.

4.3 Measures

In this section, we define the quantitative measures used in our study to measure the ability
of a patchy particle system to yield large round compact honeycomb clusters. Recall our
definition of a cluster as an energetically-bound collection of disks interacting with at least
one other member via a patch-patch interaction. We choose to use the bond-orientational
order susceptibility χ6, a measure of the correlations between the φ6 of particle pairs, to
quantify the extent of long-range crystalline order, allowing one to assess the size of the
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Initial state at tV = 0

Time

High ε, low w

Time

Low ε, low w

Time

High ε, high w

Figure 4.4: VMMC simulations of patchy particle systems initiated from a well-mixed
disordered state (top left) and relaxed for tV = tf = 2 × 107 VMMC cycles. Bottom
left shows near-optimal assembly of a single large compact honeycomb lattice. Sparse
networks, polygon defects and presence of competing clusters (top and bottom right) all
contribute to sub-optimal assembly. Due to the constant rotation maximum step size ∆r,
clusters in systems with w < ∆r move relatively freely compared to w ≥ ∆r systems.
Cluster-cluster agglomeration events are therefore rare in the latter case, producing sys-
tems with multiple clusters at final times (top right) unlike the former case where single
clusters are formed (bottom right).
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crystalline domains.
Aside from the associated bulk phase of a cluster structure that forms (e.g. crystal-,

gel-, liquid- clusters) which we will refer to as the quality of a cluster, we are interested
in the morphology of a final assembled cluster. If we think of the local particle neighbour-
hood features (e.g. arrangements and vacancies in lattice/network sites) of the solid as the
microstructure of a cluster, then large scale morphological features, including size, shape,
symmetry and voids/defects, form the macrostructure or external morphology of a cluster.
All macrostructural features apart from cluster size are scale-independent (independent
of the cluster size), measured using dimensionless quantities. These quantities often char-
acterise the degree of difference from a target morphology. The target morphology does
not necessarily have to be one with the lowest free energy. A compact cluster suggests
the efficient arrangement of particles, reducing the space occupied by a cluster network.
Inefficient arrangement is interpreted as gaps in a cluster—both locally (such as vacancies
in the lattice) and on larger scales (such as space enclosed by a ring-shaped cluster).

Since we are interested in the interaction parameter values that yield the largest clus-
ters, the yield of a system is based upon identifying the cluster with the largest mass
(number of particles) in the box, which we call the principal cluster C, and performing
measurements on C alone. In the following section we define a few measures considered
to characterise the system and its principal cluster C. For a consistent definition of round
compact target clusters, the set of ideal honeycomb cluster structures H∗ for all sizes
NC is established. A compound yield measure Q is then constructed by combining the
cluster-specific bond-orientational susceptibility χ6,C with a circularity-compactness mea-
sure NI/NC , allowing Q to consider the quality and morphology of the largest cluster
found in the system. Several candidate measures were considered which are discussed in
more detail below. Observations of our self-assembly systems using these measures can be
found in Section 4.4.

4.3.1 Local bond-orientational order and bond-orientational order sus-
ceptibility

The local structure around a disk j is defined using the local bond orientational order
φl(j) [123]. φl(j) provides an orientation-independent method of quantifying local ar-
rangements of neighbours for each particle j, where l is an integer value of the rotational
symmetry in question. We choose l = 6 to assess the six-fold symmetry of the local
neighbourhood. φ6(j) for a particle j with neighbours j′ ∈ Nb(j) is defined as

φ6(j) =
1

Nb(j)

Nb(j)∑

j′=0

ei6θjj′ , (4.3)

where θjj′ is the angle between an arbitrary chosen but consistent reference axis and the
displacement vector between each neighbour-particle pair j and j′. A local distribution
satisfying six-fold symmetry will have |φ6(j)| = 1, and 0 ≤ |φ6(j)| < 1 otherwise. We
define Nb(j), the set of neighbours j′ of j, as those disks j′ whose centres lie within a
distance of a+ δ from the centre of j, whether or not a patch-patch interaction exists. By

38



CHAPTER 4 4.3. MEASURES

accounting for disks that lie in close proximity to a cluster C but are not a member of C,
one includes the influence of trapped colloidal particles and nearby particles/clusters into
the definition of cluster quality.

As mentioned before, long-ranged correlations of similarly oriented particles is synony-
mous with the formation of large crystal domains. To analyse this larger scale order in C,
interparticle correlations in φ6(j) within the local structure are considered and integrated
spatially [43] to give the bond-orientational susceptibility, defined as

χ6,C =
1

NC

〈∣∣∣∣∣∣

NC∑

j

φ6(j)

∣∣∣∣∣∣

2〉
, (4.4)

where NC is the number of disks in C. If particles j and j′ belong to the same domain
then φ6(j) · φ6)(j′) ≈ 1, whereas φ6(j) · φ6(j′) ≈ 0 between differently oriented members
in C.

Although the honeycomb has three-fold symmetry, the three-fold bond-orientational
susceptibility χ3,C would be zero due to the odd symmetry in the lattice cancelling out the
contributions. Fluid and honeycomb phases are hence indistinguishable using χ3,C . χ6,C

can also be used to estimate the typical crystalline domain size in C. It is bounded above
by NC (χ6,C = NC means a pure crystalline domain), and below by 0 (due to low local
ordering and conflicting subdomain orientations). The subscript C in χ6,C reminds us that
this represents how far a local orientation persists throughout the network of the principal
cluster, with almost no effects from competing clusters (surface effects still contribute).

Note that under our Nb(j) definition this measure is influenced by any particles lying
within suitable distance from C that are not necessarily interacting via patches, e.g. free
particles. If all particles in the system are considered then this measure is defined as a
system-wide measure, χ6,sys.

4.3.2 Shape factor (compactness-circularity measure)

We define a cluster to be compact if its particles maximise the possible number of bonds
while minimising the average length of the shortest paths between all particle pairs in the
network. This is equivalent to achieving a minimum average shortest path distance† of a
network structure in graph theory. The most compact crystals maximise the correct lattice
structures formed, while reducing the volume of space occupied. Vacancies in the lattice,
appearing as defects within the cluster (Fig 4.5 (D),(F)) or as cavities on the surface of a
cluster (Fig 4.5 (E),(F)) contribute to a less compact shape. We identified the symmetric
concentric hexagons as the ideal compact cluster shape, compatible with the honeycomb
lattice (e.g. Fig 4.5 (A),(C)). Analogous to a disk (the most compact 2D shape) this ideal
cluster shape also sufficiently satisfies our target criterion of round clusters. In summary,
concerning the cluster morphology, round symmetric clusters are preferred, while clusters
with defects are unfavourable.

†The distance between two nodes is the number of edges in the shortest path i.e. connected edges,
between the nodes [124].
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(A) (B) (C)

(D) (E) (F)

Figure 4.5: Examples of honeycomb cluster networks showing how cluster morphology
can differ from the ideal case. The ideal circle S (green dashed circle) derived from
constructing the respective mass-equivalent ideal honeycomb H∗(NC) is shown, centred
at the centre of mass (COM) (blue cross) of each cluster. Particles lying within S are
filled in red. Clusters A and C are ideal cases Hsym(q = 1) and Hsym(q = 3); cluster
B show mild elongation; a ring-like void is present in cluster D; cluster E demonstrates
non-circular shape and cavity in the cluster; cluster F is non-compact with many voids and
loose particles not part of any closed loops. The shape factors attempting to quantitatively
capture these morphological differences are presented in Table 4.1.

To construct a compactness-circularity measure—we will call this the shape factor—we
chose the symmetric honeycomb shape to be our target shape and quantified the deviation
from this target shape. This measure ought to be independent of the cluster size, but
since we are working with particles, the shape factor is more sensitive for smaller clusters.
Three candidates were considered to quantify the similarity between C and our ideal
target cluster structure: (1) radius of gyration; (2) centre of mass (COM) based overlap
measure; (3) coordination number. We first define the target cluster morphology for our
self-assembly yield to enable comparison of assembled clusters with the mass-equivalent
ideal version.

Target cluster—constructing our ideal honeycomb cluster

The honeycomb cluster satisfying the criteria of being round and compact is the symmetric
honeycomb cluster (e.g. Figure 4.5 (A) and (C)). Treating the disks centres as vertices,
regular hexagons are considered for the constructed cluster lattices. Starting from a single
hexagonal loop of disks, labelled as Hsym(q = 0) (green hexagon in Fig. 4.6a), additional
hexagons are placed on each of its six sides to form the first ring of hexagons, labelled as
Hsym(q = 1) (green hexagons in Figs. 4.6c). q tracks the number of concentric rings of
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Figure 4.6: Construction of the ideal honeycomb lattices H∗ that maximises the number
of hexagons (hexagonal loops) created from a given number of particles. The primary rule
for creating a new hexagon is to choose one that requires the least additional particles. (a)
Starting from a seed hexagon #1 (green filled hexagon) of particles (green filled circles)
with bonds (solid edges), a second hexagon is constructed from four bonded new particles
(hollow circles) bonding (dashed) with two existing ones. (b) The third hexagon can be
constructed using three extra particles. Continuing in this fashion yields a full q = 1 shell
on which the next hexagon is added. (c) It requires four additional particles to create the
hexagon #9 if the hexagon #8 was not created first (which only requires three additional
particles itself), hence #8 is prioritised. After #8 is formed, hexagon #9 is created before
#10 (both require three additional particles to form)—we use #8 to seed the ‘growth’ of
the layer. The rest of the layer is built clockwise following the direction of the growth. (d)
Upon the completion of a layer, a face is chosen and the next hexagon is constructed on
the next layer from the centre of the face while accounting for symmetry. In this case, the
q = 5 layer is completed, and the hexagon construction moves onto the next layer (q = 6).
Multiple sites i, j, k, l are available to construct the next hexagon at. Site i is chosen as
it is one of the closest to the centre of the selected face. Working symmetrically from
the face centre outwards, subsequent hexagons are added until the face sites are filled, at
which point hexagons are added in a clockwise direction from the right end of this face
layer until the q = 6 layer is complete. Blue circles highlight some example "corners" of
H∗ where the disks are furthest away from the COM of hexagon #1.
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hexagonal loops in the ideal cluster Hsym. Subsequent layers are built by adding more
hexagons to the surface of the outermost shell. This set of symmetric honeycomb clusters
Hsym(q) is used as the guideline for our target structure; we try to quantify the similarity
of a cluster C to a member from this set. The number of hexagonal loops in Hsym(q),
which we denote as |Hsym(q)|, follows the relation

|Hsym(q)| = 3q(q + 1) + 1, (4.5)

and is constructed from 6(q + 1)2 particles.
Of course, Hsym is only defined for a subset of cluster sizes NC . To define an ideal

target cluster H∗ for every NC , we exploit the fact that using the most efficient approach
possible to construct the maximum number of hexagons for a given number of disks yields
the most compact honeycomb arrangements. We base our choice of the next hexagon
loop to construct by the number of particles required to create it, opting to construct a
loop that calls for the least number of particles. Particles closer to the centre of the seed
hexagon are added first, with no preference when multiple options are available due to
symmetry. New layers are added starting from a single face and built symmetrically from
the face centre outwards, before the remainder of the layer is completed in a clockwise
manner. Remainder particles are not considered in H∗ but contribute to NC . Details of
this ideal hexagon construction are found in Fig. 4.6.

From this set of instructions, one finds that the set of regular concentric hexagon
tessellation {Hsym(q) | ∀q} is a subset of {H∗ | ∀ number of hexagons}. In fact, Hsym are
the unique configurations for their respective sizes, i.e H∗ ≡ Hsym when |H∗| = |Hsym|.
All other structures are intermediate states between the Hsym clusters. We note that
{H∗} is not necessarily the set of most compact ideal honeycomb clusters for all cluster
sizes. Alternative approaches to constructing H∗ will affect their centre of mass, which
may influence the measurement of its shape factor.

Radius of gyration

The cluster radius of gyration is a geometric measure describing the spatial distribution
of mass about the aggregate’s centre of mass, capturing its size [125]. For a cluster of
NC equal-mass particles, it is the root mean square of the particle distances ri from the
cluster’s centre of mass

R2
g =

1

NC

NC∑

i=1

(ri − rmean)
2 + a21, (4.6)

where the centre of mass (COM) is

rmean =
1

NC

NC∑

i=1

ri, (4.7)

and a1 is the characteristic monomer size. The a1 component ensures that the dependence
of Rg on NC is non-zero for small clusters: Rg = a1 for a monomer. We take this to be
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the particle radius, a1 = a/2 [125].
Particles distributed further away from the COM will increase Rg. Densely packed

particles will have a smaller Rg. Consequently, clusters that are more compact have lower
Rg. We construct a shape measure srog by comparing the radius of gyration of a cluster
C of size NC to that of its mass-equivalent ideal target H∗(NC),

srog =
R∗

g

Rg
, (4.8)

where the label ∗ refers to the ideal cluster. If C is an ideal cluster already, then srog = 1.
Clusters that are less compact will have srog < 1, and srog > 1 if they are more compact.

COM-based overlap measure

This measure is inspired by the circularity (or isoperimetric quotient) measure, a quantity
gauging the ratio between the area A and square of the perimeter P of a shape, A/P 2

(for a circle this is 1/4π) and subsequently scaled so that the circularity has a maximum
of 1†. For all shapes of area A, the disk has the smallest perimeter. By definition this
perimeter is a circle S of radius RS . Denote the area of the overlapping region between two
(filled) shapes as Aoverlap. For a shape and a disk of areas A with their centre of masses
(COM) aligned, Aoverlap = A if and only if the shape is a disk. Otherwise Aoverlap < A

(equivalently, the area of shape lying outside S is greater than 0).
We will define a quantity soverlap to measure the proportion of particles in a cluster

lying within RS from the COM of the cluster. For a cluster of size NC , H∗(NC) is used to
define a radial bound S with radius RS . This radial bound is then applied on the cluster
C to identify particles that lie within distance R from its COM. We use a circle bound
over a hexagon as the ideal shape to target because it is isotropic and easy to implement.

Consider an arbitrary cluster C with NC patchy particles. To calculate this measure,
we first deduce |H∗(NC)|. Considering only the symmetric honeycomb clusters Hsym(q)

for now, the furthest particle centre rcorner from the COM of the seed hexagon is found
at the "corners" of Hsym(q) (See Fig. 4.6), thus an imaginary circle S(q) centred at the
COM rmean with radius RS(q) = |rcorner − rmean| is the smallest circle able to contain
the entirety of Hsym(q).

Let a′ = (a+ δ/2)/2 be the lattice parameter between two neighbouring points. With
b =
√
3a′/2, RS(q) scales with the number of shells by the relation

RS(q)
2 =

a′

2
+ (2q + 1)2b2

=
a′2

4
+

3a′2

4
[4q2 + 4q + 1]

= a′2[3q2 + 3q + 1]

= a′2|Hsym(q)|. (4.9)

The terms in the bracket in the penultimate line is equivalent to Eqn. (4.5). Adapting to
† Dividing A/P 2 by the ratio for a circle, the circularity becomes 4πA/P 2. For a circle, this will be 1.
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clusters of different sizes, we interpolate Eqn. (4.9) linearly for different |H∗| to obtain

RS(NC) = a′
√
|H∗(NC)|, (4.10)

which we use to define the radius of the corresponding ideal circle S(NC).
Drawing S(NC) on the original cluster C, centred at its COM, the overlap measure is

calculated by taking the ratio
soverlap =

NI

NC
, (4.11)

where NI is the number of disk centres that lie within the space enclosed by S(NC).

Coordination number

The final candidate measure considered is based on the coordination number, the number
of nearest neighbours of a particle. The coordination number describes the local behaviour
of a cluster solid, and is useful for identifying crystalline behaviour in packing problems
of isotropic colloids where the expected average number of interactions is known. Only
considering patch-patch interacting neighbours for each particle, the coordination number
n3 of a cluster of size NC is the average over the coordination number n3,i of all particles
i in the cluster, i.e. n3 = (1/NC)

∑
n3,i. Although ⟨n3⟩ cannot differentiate the network

quality in our system (particles participating in fully connected polygonal or honeycomb
lattices have ⟨n3⟩ = 3), it is correlated with the size of a maximally-connected domain.
Members of the cluster that are not maximally-connected are found in defects (voids
in the structure and grain-boundaries) and on the cluster surface. By definition, all ideal
honeycomb clusters H∗(NC) maximise n3 for the respective cluster size NC , as the number
of bonds in the cluster is maximised when forming the most hexagon loops possible.

To turn n3 of a cluster of size NC into a shape factor we again compare it to the
coordination number n∗

3 of the corresponding H∗(NC) to give

scoord =
n∗
3

n3
. (4.12)

Performance

Examples of different cluster shapes are shown in Figure 4.5, with their corresponding
shape factor measurements given in Table 4.1. Clusters (A) and (C) are Hsym clusters with
q = 1 and 3 respectively, and all candidate measures give a shape factor of 1. Cluster (B),
a slightly elongated cluster, is compact but not as circular—most candidate measures give
values less than 1. Clusters (D),(E) and (F) demonstrate how voids in the lattice, cavities
on the surface, elongated shapes, and fractal-like solids all contribute to low compactness
and circularity. All measures can detect these features, but we found soverlap to be the
most sensitive to deviations from the Hsym cases. Although a circle is used as the guide in
soverlap to approximate the deviation of clusters from the hexagonal H∗ shape, in practice,
this measure is good at distinguishing compact and round shapes from poor ones with
voids.
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Table 4.1: Table summarising shape factor candidates soverlap, srog and scoord for the
example clusters found in Figure 4.5 and 4.7, along with the measure they are derived
from. Clusters C and D have the same size (NC = 96), but the latter is less compact and
circular due to the void in its structure. All candidate measures are able to differentiate
this, with soverlap exhibiting the largest change. Overall, soverlap is the most sensitive to
the deviations from the ideal honeycombs H∗, while scoord is the least sensitive.

NC |H∗(NC)| RS(NC) NI soverlap Rg srog n3 scoord

A 24 7 2.78 24 1.00 0.95 1.00 2.50 1.00
B 38 12 3.64 28 0.74 1.11 0.92 2.58 0.99
C 96 37 6.39 96 1.00 1.02 1.00 2.75 1.00
D 96 36 6.39 75 0.78 1.20 0.85 2.54 0.92
E 134 47 7.64 83 0.62 1.32 0.81 2.69 0.97
F 210 57 9.85 175 0.83 1.19 0.91 2.55 0.90

XYYX 66 20 5.14 34 0.52 1.19 0.86 2.58 0.96
XYXY 66 20 5.14 42 0.64 1.09 0.93 2.58 0.96

scoord is the least sensitive to the different morphological features, since no positional
distribution information of the particles is contained in the measurement. Figure 4.7
demonstrates one major disadvantage in using scoord over srog and soverlap. Taking two
copies of two different domains (X—the 9-ball, Y—a single loop), clusters XYYX and
XYXY are formed by the arrangement of these domains that they are named after as
shown. Both clusters are of the same size and have the same number of hexagonal loops
in each. Different arrangements of congruent subdomains lead to different shapes, affecting
the overall form of the cluster. Intuitively we identified cluster XYYX as being less compact
than XYXY. scoord fails to distinguish between these different arrangements.

On the other hand, srog and soverlap show a difference in the two arrangements due to
the differing COM positions. The inclusion of the cluster COM in the definitions offers a
reference point to study the spatial distribution of the cluster network. Vacancies within
the structure and concave features on the surfaces occupy space but do not contribute
to the honeycomb network, increasing the spatial range covered by the cluster. Disks
lying further away from the COM push the cluster boundaries outside of S, and increase
the radius of gyration of the cluster. We found that soverlap places more emphasis on
having the particle distribution closer to the COM, and consequently the roundness and
compactness of the cluster. For this reason, we select soverlap = NI/NC over srog as our
shape factor for the yield measure Q.

4.3.3 Compound yield measure

So far we have looked at measures that capture the size of honeycomb domains in clusters
and the shape of clusters, satisfying the different objectives we desire in our final duration
assembly product. To obtain a compound yield measure Q of the principal cluster C in
the system, we combined the bond-orientational susceptibility χ6,C , shape factor NI/NC
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XYYX XYXY

Figure 4.7: Cluster networks XYYX and XYXY contain the same number of disks
and hexagon loops, but differ in the order of subdomains X (9 hexagons arranged in 9-ball
configuration) and Y (single hexagon). The different particle arrangements lead to different
COM (blue crosses), resulting in different NI , the number of disks (red) lying within the
ideal circle guide S (green dashed circle), and in the radius of gyration Rg. These two
cluster are indistinguishable when only considering coordination number (scoord = 0.9551
for both), but srog and soverlap recognise that XYXY is more compact and circular than
XYYX (See Table 4.1 for numerical data).

and cluster size NC in a multiplicative form

Q =
χ6,C

NC

(
NI

NC

)α

NC , (4.13)

where α is chosen as a weight factor between the different aspects. We express the yield
measure with explicit NC appearing in both the numerator and denominator to emphasis
the three aspects that form the target criteria for the structure (χ6,C/NC captures the
structural network/phase of the cluster; NI/NC the morphology; NC the size). Although
a large honeycomb lattice is desired, this yield measure ensures that the cluster morphology
is not compromised.

Targeting interaction parameter values that exhibit quality self-assembly outcomes
defined on multiple design criteria (quality, size and shape in this case) constitutes a
multi-objective optimisation problem, where multiple tests are used to measure the per-
formance (the fitness) of the candidate values (the solutions). By combining the measures
together we leave ourselves with a single yield quantity to work with—a single-objective
optimisation problem with only a single test of fitness. Combining multiple objectives can
help reduce the dimensionality of the problem, and reduce the size of the solution set by
removing extreme solutions (for example a solution that satisfy one set of design criteria
but is considered a major outlier in another criteria would require only one test instead of
several to determine that is a poor one) [126]. The multiplicative form of our definition
of Q achieves this; the non-linearity of Q means clusters with balanced performance in
quality and size (χ6,C) and shape (NI/NC) have a chance to rank higher than large clus-
ters with poor shape for example. Q is of the same dimension as N , and scales with the
cluster size NC .
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4.3.4 Summary

We have described several measures characterising different aspects of our self-assembly
system. In order to target good assembly yield, we adapted existing definitions (bond-
orientational order) and new measures (circularity/compactness measure) in order to fully
express the target structure sought. χ6,C formed the basis of the yield measure to identify
the formation of sizeable honeycomb clusters. This was then modified using a shape factor
NI/NC to filter those products that have poor morphology, resulting in a single compound
yield measure that we will use to evaluate the effectiveness of the patchy disk system to
assemble the target structure.

NI/NC is sensitive to small deviations from the ideal target shape, placing emphasis
on particles distributed near the centre of mass of the cluster. It is very specific to the
system studied as it measures the deviation from the target ideal H∗, but demonstrates
how cluster morphology can be explicitly incorporated into our design criteria. This shape
factor measure is more suited for computational studies, with the task of finding NI for a
physical system being difficult.

4.4 Self-assembly observations

We report the simulation outcomes for our patchy hard disk model simulated under the
conditions described in Section 4.2.

4.4.1 Assembly yield at final time

A heatmap plot of the expected yield ⟨Q⟩tf on the ε–w parameter space is shown in
Figure 4.8, with α = 1.4 to emphasise the cluster shape more (see Section 4.4.2). The
yield for each state point (ε, w) on the plot is an arithmetic average of the final time
yield of 10-16 independent simulations, represented by the notation ⟨·⟩tf . An uneven
distribution of simulations were performed during the mapping of Q as large areas of low
yielding state points were subsequently identified after an initial set of simulations. This
is not dissimilar to standard practices when mapping parameter space, where intermittent
user input is common to determine whether a subset of state points has been identified
already (in this case at around the top right and bottom left corners of the parameter
space where large flat plateaus are found), in which case no further data collection for
the respective points is necessary. We restricted the range of w to 20◦ or less as the
thermodynamic equilibrium state prefers disordered polygonal networks at high w [13].
Example clusters depict (A) compact honeycomb with few polygonal defects, (B) compact
honeycomb, (C) polycrystalline glass, and (D) polygonal glass. A region of significant
yield activity extends from high strength ε and low flexibility w along the lower half of the
plot, curving upwards towards low ε and high w to form a pointed peninsula. The yield
on this peninsula can be visualised as a hill with a global peak at x∗ = (8.6, 4.0) near (B),
being heavily skewed towards the low ε, w side of the peninsula and gradually fading in
the positive ε,w direction.

47



4.
4.

SE
LF

-A
SS

EM
BL

Y
O

BS
ER

VA
TI

O
N

S
CH

A
PT

ER
4

Figure 4.8: Heatmap of the compound yield ⟨Q⟩tf with α = 1.4 averaged over 10-16 simulations each, at final time tf = 2 × 107 VMMC cycles
on the ε–w parameter space. The global maximum of 522.7 (1.d.p) is located at x∗ = (8.6, 4) in the region of near-optimal assembly. The dashed
line at w = 10◦ divides the parameter space into the two different dynamical regimes modelled. Example principal clusters have coordinates: (A)
(7.6, 15), (B) (8.4, 4), (C) (14, 6), (D) (15, 12). Inset shows the secondary local peak with significant prominence at (7.2, 11).
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The secondary peak at (7.2, 11) highlighted in the inset is an artefact of the discreti-
sation of the parameter space P that create local maxima. The artefact occurs when a
ridge of the yield surface—a chain of local maxima forming a continuous curve—passes
at an angle to the coordinate axes such that points b1, b2, · · · ∈ P lying sufficiently close
enough to the ridge are not all neighbours. The points in between some of these b1, b2, · · ·
have relatively low ⟨Q⟩tf , creating local maxima. This secondary peak is not the only
local maxima on Q created in this way (for example, this also occurs at the high ε, low w

region), but it has a high prominence and will have a significant effect on the hill-climbing
behaviour in Chapter 6.

At low ε (high temperature T ), a fluid state exists where no assembly activity occurs.
Moving to higher ε (lower T ), nucleation occurs readily within simulation durations, in-
dicated by the dynamical phase boundary on the lower side of the peninsula. Optimal
assembly, where relatively circular single domain honeycomb clusters form such as exam-
ple cluster (B), was found at within two δε greater than this dynamical boundary for each
w, near the metastable liquid-gas coexistence curve [75; 123]. A larger ε is required to
stabilise the more specific (low w) interactions [67; 75]. Disks become increasingly able at
forming non-hexagonal closed loops as their patches widen, so polygon loop defects in the
final yield structure also become more common, e.g. cluster (A). Lowering the interac-
tion strength ε provides better annealing behaviour to counter the increased tendency of
polygon loop formation, highlighting the importance of bond reversibility for good assem-
bly [67; 68]. The ridge of significant yield at high ε low w is expected to extend further
along the ε axis.

Increasing ε further for each fixed w leads to a rise in kinetically trapped features
in the system, as mentioned in Fig. 4.2. We identified two categories of kinetic defects
contributing to poor assembly: polygonal and structural. Polygonal defects, as the name
suggests, are non-hexagonal loops embedded in the network as disks efficiently bond to
each other (yielding coordination number n3 = 3) but does not maximise their rotational
entropy, predominantly affecting χ6,C . We categorise other defects such as voids in the
lattice, grain boundaries, disk chains etc. that prevent an efficient bonding of disks as
structural defects. Structural defects play a bigger role in determining the macrostructure
of the cluster.

The number of polygonal defects in a system increases as w is increased, with fewer
polygonal loops annealing out along increasing ε. On the other hand, a rise in structural
defects occur when ε is increased as faster bonding rates do not allow adequate time for
disks to arrange themselves into loops. In the large ε limit, the resultant clusters resemble
the products seen in diffusion-limited aggregation, where particles undergoing Brownian
motion irreversibly agglomerate to a cluster, forming fractal-like trees [127]. The interplay
between these two types of defects yields compact clusters at low ε (example clusters (A)
and (C)) and low-density glassy aggregates at high ε (Cluster (C) and (D)) with more
polygonal defects as w is increased.

The region of significant yield owes its peninsula shape to ⟨χ6,C⟩tf (see Fig. 4.9a).
Low χ6,C is indicative of the lack of significant honeycomb domain growth. The largest
honeycomb domains (⟨χ6,C⟩tf peak) are yielded at (11.8, 2.0). For each w, a non-monotonic
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(a)

(b)

Figure 4.9: Heatmaps of bond-orientational susceptibility ⟨χ6,C⟩tf and shape factor
⟨NI/NC⟩tf . ⟨χ6,C⟩tf reveals that the largest honeycomb domains are found in systems
with high ε and low w. High shape factor coincides with near-optimal target assembly,
where predominant particle agglomeration rather than cluster-cluster agglomeration leads
to round compact growth.
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Figure 4.10: Heatmaps of ⟨NC⟩tf . Simulations show two distinct regions of cluster
growth below and above the dashed line at w = 10◦. For w < 10◦, ⟨Q⟩tf shows a monotonic
increase on ε and w, as stronger interactions enable faster growth of clusters. For w ≥ 10◦,
clusters in the system fail to merge within simulation time tf , resulting in smaller principal
clusters. Consequently, the two regions have distinctly different magnitudes in χ6,C and
NI/NC along w axis.

profile of ⟨χ6,C⟩tf against ε is observed as expected [81] (similar in form to Fig. 4.16a).
Starting from the peak interaction strength along a fixed-w profile, weaker interactions
lead to smaller honeycombs (see Fig. 4.10), but stronger interactions raises the levels of
structural defects found in principal cluster.

Figure 4.9b shows the shape factor ⟨NI/NC⟩tf of the final time principal clusters.
Although a larger honeycomb domain is yielded at high ε low w regions, the cluster also
deviates away from our target structure as it becomes increasingly elongated (the cluster
circularity decreases). The roundest and most compact clusters (high NI/NC) are located
in a narrow band of parameter space along the region of optimal assembly. For w > 10◦,
this band widens along the ε axis as w is increased due to the increased flexibility of
patches enabling easier loop formation and thus higher network distortion, helping the
network to stay compact. The discontinuity in the heatmaps is due to the two different
dynamical regimes modelled by the VMMC algorithm. We discuss this in more detail in
Section 4.4.3.

4.4.2 Effects of tuning α

Table 4.2 on page 52 lists the top 5 yielding state points for α = 1.4, shown alongside
⟨Q⟩tf for α = 1.0 and α = 2.3. The heatmaps in Figure 4.11 show the corresponding yield
landscapes. Numerically, the principal clusters found at ε = 8.6, w = 4.0◦ consistently
yielded the highest global ⟨Q⟩tf for a large range of α. After visually inspecting the
principal clusters, we confirmed that the products assembled in the neighbourhood around
x∗ = (8.6, 4.0) did indeed reflect the best yielding target structure. However, we found
that with no tuning (α = 1.0), high ε, low w systems yielded elongated honeycomb clusters
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Table 4.2: The top 5 best yielding state points ordered for ⟨Q(α = 1.4)⟩tf (shown in
bold). Although the clusters found at x∗ = (8.6, 4) are not the largest in size NC , they
are well-balanced in shape and quality. Compare this with the state points (11.8, 2.0) and
(8.0, 5.0) with the highest ⟨χ6,C⟩tf and ⟨NI/NC⟩tf respectively (italicised). For all α tested
from 1.0 to 2.5, x∗ consistently gives the best yielding assembly behaviour. All values are
to 1 or 2 decimal places.

ε w/◦ ⟨χ6,C⟩tf ⟨NC⟩tf ⟨NI/NC⟩tf ⟨Q(1.0)⟩tf ⟨Q(1.4)⟩tf ⟨Q(2.3)⟩tf
8.6 4.0 672.3 697.6 0.84 561.0 522.8 447.3
9.0 5.0 791.1 835.8 0.70 556.5 484.9 357.8
8.4 4.0 579.2 601.3 0.86 501.2 473.9 419.7
8.4 5.0 690.3 727.3 0.76 521.4 468.4 371.4
8.2 7.0 697.9 765.0 0.75 522.5 468.1 369.6
8.0 5.0 499.9 527.4 0.92 460.2 445.7 415.6
11.8 2.0 867.2 892.3 0.51 448.6 350.8 208.0

that were ranked too high, with the contribution of χ6,C outweighing NI/NC . Increasing α

raised the weighting of the macrostructure contribution to Q. As a consequence, the peak
at the near-optimal assembly region around x∗ became more prominent. However, we felt
that too much emphasis was placed on the macrostructure over the honeycomb domain
quality by the time a value of α = 2.0 is reached. We used an arbitrarily chosen value of
α = 1.4 between these bounds as our final choice in order to favour cluster morphology
enough to achieve more reasonable prominence in the neighbourhood of x*.

4.4.3 Differences between the two dynamical regimes of the VMMC
algorithm

Recall from Section 4.2 that we chose a constant maximum step size ∆r = 10◦ for VMMC
rotational moves for all w, resulting in two categories of dynamical regimes modelled by
the VMMC algorithm: dynamics exhibiting adequate collective motion when w ≥ ∆r,
and dynamics with long range correlated motion suppressed when w < ∆r. The effect of
having two dynamical regimes across the parameter space led to distinct differences in the
self-assembly outcomes, especially in aspects concerning the size and morphology of the
clusters. This can be seen in many of the heatmaps as the discontinuity at w = ∆r = 10◦,
highlighted by the red dashed line.

The different dynamical regimes modelled by the VMMC do not have a significant
bearing on the thermodynamical outcome of the assembly, as suggested by the absence of
this discontinuity in the internal energy ⟨|E|⟩tf in Figure 4.12. It does, however, have huge
consequences on the size of the principal cluster C, as seen in Fig. 4.10. Consequently,
χ6,C , which measures the size of the honeycomb domains, and Q also show a discontinuity.
The discontinuity seen in ⟨NI/NC⟩tf in Figure 4.9b is a result of late time cluster-cluster
merging (see Section 4.4.5).

For the w > 10◦ region, a slight increase in ⟨NC⟩tf is present in the neighbouring state
points of (15, 10). As ε increases and w decreases, the clusters formed become less compact,
thus covering a larger area. The larger sphere of influence means an increased likelihood
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Figure 4.11: ⟨Q⟩tf heatmaps for α = 1.0, 1.4 and 2.3. Note the color gradient scale is
normalised to the maximum of the respective landscape. Increasing α favours the assembly
behaviour of honeycomb clusters that are also rounder and more compact. This is found
at lower ε systems, enhancing the prominence of the global ⟨Q⟩tf peak at x∗.

Figure 4.12: Heatmap of the magnitude of the total energy ⟨|E|⟩tf of the system in
logarithmic scale. The absence of a ridge at w = 10◦ indicates that the different dynamical
regimes has little bearing on the thermodynamical outcome of the self-assembly.
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of a cluster interacting with a neighbouring cluster in the system, reflected by the slightly
larger ⟨NC⟩tf values. Upon successful agglomeration, the resulting cluster is less compact
and more elongated (see Section 4.4.5), hence a drop in shape factor ⟨NI/NC⟩tf is also
seen in the corresponding region in Figure 4.9b.

4.4.4 Closed loop formation

One primary indicator of high quality assembly is the creation of hexagonal closed loops:
tessellating hexagons form the honeycomb. The abundance of other polygon loops indicate
poor aggregate structures. The evolution of the system-wide polygon counts Nz over tV

for polygon loops of size z is shown for various different interaction strengths ε for w = 8◦

(Fig 4.13) and w = 13◦ (Fig 4.14). In both cases, increasing ε leads to an increase in
polygonal defects. The increase in structural defects for high ε results in a decrease in
total number of loops at final time.

Non-hexagonal loop formation is disfavoured when w = 8◦, but form more easily when
w = 13◦. We suspect the significant N5 growth for w = 13◦ systems at early times is due
to the rate for a chain of 5 particles manoeuvering into a pentagon loop being faster than
the rate at which an additional particle agglomerates onto an awaiting 5-particle chain to
form a hexagon loop. This depletes the opportunities for hexagon loops to grow early on.
Pentagon formation and the annealing out of these defects therefore play an increasingly
significant role in the assembly pathways of honeycomb networks as w is increased, in
agreement with Ref. [128].

4.4.5 Cluster growth dynamics—effects on the cluster morphology

As monomers collide and bind via attractive patches, clusters form and grow via the ag-
glomeration of particles and clusters. Morphological studies of cluster formation via the
agglomeration of monomers have been studied in Ref. [125] from solving Langevin equa-
tions of motion in a continuum regime. Modelled as short-ranged isotropic interacting
monomers, it was found that at early times monomer-cluster agglomeration was the dom-
inant growth mechanism of clusters, whereas cluster-cluster agglomeration occurred at
late times. The resulting clusters were found to be compact yet elongated, with these two
characteristics being respectively attributed to the isotropy and relatively short range of
the monomer-monomer potential.

Similar behaviour was observed in our system. Multiple nucleation events leading to
cluster growth occurred for high ε systems. At low ε only a few clusters grew at any one
time, if any. Steady growth is achieved from the agglomeration of monomers and small
clusters throughout the system’s evolution, producing round clusters. For high ε, multiple
clusters grew during the simulation to significant size. Then, at late times, cluster-cluster
agglomeration becomes the main mechanism for large cluster growth, which, in the absence
of free particles and good annealing, produces elongated clusters and aggregates with
abundant structural defects. As touched upon in Section 4.4.3, the two dynamical regimes
realised by the algorithm thus resulted in different levels of cluster-cluster agglomeration
in the simulations, affecting the shape and size of the principal cluster (See Figs. 4.9b
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Figure 4.13: Stacked time trajectories of system-wide polygon population for w = 8◦

systems at various strengths ε. The polygon loop counts Ns, defined on a logarithmic
VMMC time tV , are shown for loop size s from 5 to 7 (Other polygon counts are negligible).
All strengths started growing at similar times, suggesting that nucleation is not a rare event
for this range of ε. At ε = 7.2, the interactions were not sufficiently strong, resulting in
a low number of polygon closed loops forming. At ε = 9, N6 dominated as honeycomb
domains formed with little kinetic trapping. At ε = 10.8, increased levels of kinetic
trapping led to the stabilisation of pentagons N5 and heptagons N7. By ε = 13, pentagon
loops did not anneal out fast enough, hindering hexagon formation. The decrease in N5

after tV = 106 indicates the annealing of pentagon loops into hexagon loops. The rise in
structural defects from increasing ε led to a lower total number of loops.
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Figure 4.14: Stacked time trajectories of system wide polygon population for w = 13◦

systems at various ε. The polygon loop counts Ns, defined on a logarithmic VMMC time
tV , are shown for loop size s from 5 to 7 (other polygon counts are negligible). N5 was
more significant compared to Figure 4.13 as wider patches enabled non-hexagons loops to
form and persist more easily. Interactions were too weak at ε = 6.80 to form many loops.
Overall polygon population increased with ε, with hexagon loop formation dominant across
most ε. Pentagons played an increasingly significant role in the earlier stages of assembly
as ε was increased. At ε = 7.5 and 8.5, enough bond forming and bond breaking activities
enabled healthy N6 growth while N5 was kept low. By ε = 11, bonds were so strong that
the assembly was dominated by pentagon loops before annealing out into hexagon loops.
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and 4.10 on pages 50 and 51). For w < 10◦, where cluster motion is significant, cluster
sizes reach the system size limit NC = N as competing clusters in the system merge to
form a single aggregate. However, these principal clusters become increasingly distorted
and elongated in shape. For w ≥ 10◦, where long range diffusion of clusters is suppressed,
inter-cluster motion is poor and becomes increasingly so as NC increases, limiting cluster-
cluster agglomeration within the simulation times observed. Numerous clusters remain
in the system at final times and hence NC remains relatively small, while clusters have a
large NI/NC over a wider range of ε values.

We clarify this with an example. Figure 4.15a shows a example NC trajectory for a
low w system near optimal assembly, with NI/NC tending towards 1 as C grows. Note
that in general NC does not necessarily track the same cluster throughout the assembly,
although manual inspection indicates that most of this example trajectory tracks the
same C. A significant merging event between two clusters of similar size occurred at some
time between tb = 8126497 VMMC cycles (Fig. 4.15b) and ta = 8629358 VMMC cycles
(Fig. 4.15d), the latter marked with a dot-dashed line. This merging event is reflected by
a significant decrease in NI/NC (Fig. 4.15c as a result of two round clusters merging into
an elongated one).

The presence of late time cluster merging events thus increases the level of large
scale structural defects in C. Not only does this explain the discontinuity in the NI/NC

heatmap, it also explains the sudden narrowing of the high NI/NC band at the w = ∆r

boundary; for systems at sufficiently high ε where numerous clusters grow, reducing w to
below ∆r led to an immediate increase in the number of cluster merging events as cluster
motion was enabled. The qualitative agreement of the observations here with Ref. [125]
suggest that the presence of cluster motion is a sufficient requirement to realising late-time
cluster-cluster agglomeration activity for short-ranged interacting hard particles, with the
interaction strength determining the level of cluster-cluster agglomeration activity in the
system.

4.4.6 Summary

We presented results from the VMMC simulations of the patchy hard disk system, char-
acterising its self-assembly behaviour. The range of self-assembly activity observed in P
reflect the diversity in self-assembly activity observed in Ref. [13]. The interaction pa-
rameters ε and w influence the level of polygonal and structural defects to yield poor
assembly, near-optimal assembly or kinetically trapped structures. The yield parameter Q
successfully distinguished between the various outcomes, combining aspects of local and
correlated ordering with the cluster macrostructure to quantify the similarity between
the assembled principal structures and our target structure. Importantly, the state point
satisfying our target design criteria produced the global maximum Q value.
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(a) (b)

(c) (d)

Figure 4.15: Example of effect of growth and merging of clusters on the shape factor.
(a) shows NI and NC trajectories for an example system with ε = 8.4 and w = 4◦ over
simulation time tV . (c) shows the shape factor NI/NC trajectories. On the right are
snapshots of the system (b) before a cluster merging event at tb = 8126497 VMMC cycles
and (d) after at ta = 8629358 VMMC cycles. The principal cluster C is shown with
its ideal circle S(NC). Between times tb and ta (highlighted by the dot-dashed line),
two medium sized round clusters merge to form one larger cluster that is elongated and
contains structural defects. This is reflected in the graphs as a large jump in NC and NI ,
but a drop in shape factor NI/NC .
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4.5 Yield landscape properties

Our yield landscape exhibits properties that can be expected in self-assembly yield land-
scapes of other systems. We discuss some of these properties important for characterising
our optimisation problem.

4.5.1 Time dependency

The yield landscape ⟨Q⟩tV is dependent on the assembly duration tV , affecting the scale of
the yield values at each state point x differently as it increases by varying rates according
to the assembly pathways explored (Fig. 4.16a). The different assembly behaviours also
result in a form-changing yield landscape whose yield peak location x∗ is non-stationary.

This time dependency carries over to the full 2D parameter space. Figure 4.16b is a
plot of two averaged yield trajectories for two points (10, 4) and (8.6, 4), along with the
global maximum ⟨Q⟩ value at each recorded duration tV . The patchy disk simulations at
(10, 4) proceeded with clusters forming quickly very early on, but non-optimal assembly
led to an eventual slow-down in Q growth after tV = 4× 106 VMMC cycles. Simulations
at (8.6, 4) exhibited an initially slow but steady growth in Q, becoming the global peak by
tV = 1.2× 107 VMMC cycles. The Q(tV ) peak (black dashed trajectory) passes through
these two state points, from high strength where cluster size growth is rapid with large
χ6,C , to lower strength where the cluster is consistently round and compact.

4.5.2 Noise in the landscape: fluctuations in the measurements

The yield landscape describes the expected assembly outcome of the system at each state
points, with the consistency of the self-assembly outcomes reflected in the variance σ2 of
the expected yield. The yield definition determines the magnitude and change in vari-
ance across the landscape. Figure 4.16c, showing the expected Q for w = 5◦, exhibits
a large standard deviation σ at high Q throughout due to the high variability in cluster
shape. Compare this with the same profile but for χ6,C in Figure 4.16d. Here σ is small
in the near optimal assembly region, reflecting the consistency in size of the gradual hon-
eycomb growth. The consistency of assembly outcomes (reproducibility) and its reflection
in the yield measure is an important aspect of the self-assembly particle design problem
to consider.

In the next half of this thesis, our study on the practicality of using local search
heuristics to optimise the assembly yield of the patchy model will involve taking advantage
of these fluctuations in the measurements. The handling of the fluctuations in the assembly
outcomes is also relevant to the intensity of the search heuristic, as each step of the search
requires the evaluation of the self-assembly performance of the patchy model system, hence
increasing the accuracy of ⟨Q⟩ demands a higher computational intensity. We attempt to
keep this computational intensity low, which is useful when one already needs to the
computational investment for each complex particle simulation is already large.

59



4.5. YIELD LANDSCAPE PROPERTIES CHAPTER 4

(a) (b)

(c) (d)

(e)

Figure 4.16: (a) Profile of ⟨Q⟩ against ε for w = 4◦, at various simulation times tV ,
depicting the characteristic form of a yield curve. Too weak a bond (low ε) leads to
insufficient cluster growth and assembly activity, whereas too strong a bond (high ε) leads
to abundant kinetic trapping inhibiting quality structural assembly. Different assembly
pathways exhibited by varying ε result in ⟨Q⟩ evolving over simulation time at different
rates. Some symbols are omitted for clarity. (b) The location x∗ = (ε∗, w∗) of the global
yield maximum (black dashed) is dependent on the simulation time tV , passing through
(10, 4) at early time, where rapid honeycomb growth is found, before settling at (8.6, 4)
for tV ≥ 1.2 × 107 (c) Final time Q profile for w = 5◦ with 1-σ range band (light blue).
(d) Final time χ6,C profile for w = 5◦ with 1-σ range band (light blue). (e) The execution
time tEXEC of VMMC simulations plotted along ε for w = 5◦.
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4.5.3 Computational demand of VMMC simulations

For each simulation of the patchy particle system ran according to the details in Sec-
tions 4.2, the execution time tEXEC was dependent on the state point simulated, varying
between 0.5 and 5 days to simulate 2 × 107 VMMC cycles (Fig. 4.16e). Each run is a
single CPU simulation, hence the total computational demand tTOTCPU is equivalent to
the execution time tEXEC (See Section 5.2.2).

The large differences in tEXEC reflect the computational processes of the VMMC algo-
rithm. VMMC attempts to move collections of particles at each step. The computational
demand of each step scales with the number of particles pairs considered during the re-
cruitment stage of the VMMC move, thus the average tEXEC per VMMC cycle increases
during the simulation as cluster domains grow.

Another situation where a large time difference in tEXEC could arise for self-assembly
simulations is when they are simulating according to physical timescales, such as the
Brownian time tB. In this case, the number of VMMC cycles would vary with the state
point to keep a constant Brownian time duration.

4.6 Conclusion

We have presented a self-assembly system of patchy particles with interaction design pa-
rameters interaction strength ε and patch flexibility w and executed a set of VMMC
simulations of the system for a finite range of ε and w. We took the opportunity to
deviate from conventional yield definitions found in self-assembly studies based solely
on microstructural qualities (and common derivates such as correlations of local proper-
ties): we demonstrated how macrostructural features can be considered by incorporating
a shape factor into the yield measure Q and controlling its weighting via a tuning constant
α. The gathered data formed a yield landscape ⟨Q⟩, with the best yielding parameters at
x∗ = (8.6, 4.0) corresponding to the global peak of ⟨Q⟩tf . Consequently, we were able to
target honeycomb clusters that are large, round (circular) and compact.

This yield landscape forms the benchmark for our optimisation studies. The simulation
data will also form an integral part of the latter half of the thesis where, under the interest
of time and statistical significance, a yield landscape model will be constructed based on
the data, on which our investigation of hill-climbing and optimisation will be carried out.
The yield landscape is noisy and time-dependent. These are general properties that we
believe are found in most dynamical self-assembly yield landscapes. We will keep these
properties in mind for the next part of the study, which focuses on treating parameter
tuning as an optimisation problem.
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Chapter 5

Review of local search heuristics
and hill-climbing techniques

We now move onto the tuning of interaction parameters for maximising target assembly
yield. As mentioned previously we are interested in looking at alternative approaches
for exploring parameter space with the primary goal of reducing the computational cost
and execution time for finding the best yielding parameter values. The yield landscape
⟨Q⟩tf obtained in the previous chapter represents the targeted design model we want to
tune, and the tuning problem equates to locating high yielding state points near/at the
global maximum of ⟨Q⟩tf . Good assembly, associated with a localised range of interaction
parameters, is dependent on the assembly duration. One defining feature of the yield
landscape that we shall exploit during optimisation is the intrinsic noise of the assembly
outcome.

In this chapter we will review the fundamentals and introduce the language of opti-
misation and hill-climbing, with emphasis on applications to noisy landscapes. We look
at hill-climbing, a local search algorithm (heuristic), as an approach to finding interac-
tion parameters leading to optimal assembly of target structures. We choose to focus on
hill-climbing since it is easy to implement and adaptable to any colloidal design problem.
Then, we summarise existing metaheuristics (problem-independent algorithmic tools) that
handle noise in landscapes to control the behaviour of an algorithm, motivating our meta-
heuristic study of the trial period limit m of a stochastic hill-climbing algorithm in the
next chapter.

5.1 Optimisation problems

Let S be an M-dimensional set of points and f a function defined on this space, such that
for all points x ∈ S, f(x) returns a value. A simple question to ask is where the maxima
of f lie, i.e. the location x of each peak, and more often than not, the global maximum
of f at x∗. An evaluation f(x) at all points x will give us the answer—we simply choose
x that gives us the highest value—but this approach is highly inefficient. If S contains
an enormous set of points and/or the act of evaluating a point x to obtain f(x) is time
consuming and costly, this restricts the practicalities of scanning the full search space. It
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is then natural to ask how one can find the global maximum more efficiently, and whether
it is necessary to evaluate all available points in S when only the peaks are of interest.
The latter is especially relevant when it is only practically feasible to sample a subset of
S.

This example illustrates the basic setup of an optimisation problem, an approach
to solving the optimisation problem along with the consideration of practicality when
selecting the method. An optimisation problem is defined by the search space of possible
solutions S and the objective/fitness function f which represents the degree to which the
solution satisfies the criteria numerically. f(x) can be a mathematical evaluation, or a
measurement in an experiment or a simulation. The goal of optimisation is to find the
optimal or near-optimal solution in S that maximises/minimises f .

S can be a discrete set of solutions or a continuous space of points. It is common to
identify a subset of solutions in RM defined within a finite range satisfying a set of con-
straints, and for S to be a grid of points representing a discretised version of this subset
to reduce the size of the search space, at the cost of introducing error in the discrete rep-
resentation. Moreover, search spaces tend to have a notion of distance between solutions
which define the relationship between two solutions, with similar solutions having shorter
distances. This is typically the Euclidean metric (distance measure) when considering
a continuous space of parameters. A search space formed from a discretised subset of
this parameter space naturally inherits the same metric. From the notion of distance a
neighbourhood can be defined, which determines how the solutions are similar to one an-
other. The neighbourhood definition N , search space S and objective function f combine
together to form a fitness landscape (f,S,N ). For convenience we will use f to refer to
both the fitness landscape and the fitness function. Without generalisation, we look to
maximise f .

The global optimal solution (maximum in this case) to the optimisation problem is
the overall fittest solution, i.e. the solution x∗ ∈ S where f(x∗) ≥ f(x) for all x ∈ S.
When a notion of neighbourhood is defined, i.e. when concerning fitness landscapes,
locally maximum solutions may also exist, where a solution x ∈ S is a local maximum
if f(x) ≥ f(x′) for all x′ ∈ N (x). Often the global maximum is the desired solution
to problem. However, in the interest of time or flexible operating conditions, finding a
local maxima may suffice. When a single maximum is present, the fitness landscape is
unimodal. When multiple maxima are present the fitness function is multimodal.

Optimisation methods are applied to search for these maxima. One may use a range
of algorithms to explore S and find x∗ and other local maxima. In the example at the
start of this section, the enumeration and systematic evaluation of all available points
(solutions) in S describes a brute-force method to solving such optimisation problems.
Exact methods such as the brute-force search guarantee that the global optimal solution
is found and identified. Unfortunately they are often impractical as they don’t scale
well with the size of the search space or are unfeasible for very complex problems (not
polynomial (NP) problems [129]), hence they can only realistically handle problems of
small sizes. Approximate methods, known as heuristics, are developed to find solutions
within a reasonable amount of time, making them practical for most real-world problems.
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On the other hand, they do not guarantee that an optimal (local or global) solution will
be found.

5.1.1 Heuristics and metaheuristics

Heuristics are approximate algorithms for solving optimisation problems, invented to find
the ‘best’ solution to a problem after taking into account the objective of the optimisation
and factors limiting the execution of the algorithm. They are approximate because an
exhaustive search is not performed and hence the final answer is not guaranteed to be the
global optimal, unlike exact methods. Heuristics are often algorithms that, starting with
an initial solution, iteratively suggests and assesses new solutions, replacing the current
solution if a new solution is deemed better as it progressively converge towards a better
solution. When the new solutions are generated from the local neighbourhood of the
current solution, the algorithm is a local search algorithm. Local search heuristic can be
single-solution based algorithms (hill-climbing, gradient descent, simulated annealing [130],
tabu search [131]) or population-based algorithms (genetic algorithms) [129]. The above
iterative local search description alone yields a hill-climbing if a value-based comparison
of the solutions is considered, or gradient ascent/descent if the gradient between solutions
is used as the indicator. Ref. [132] provides a classification of optimisation techniques
including population based algorithms (such as evolutionary algorithms), local search and
global search algorithms.

Since a local search heuristic generates moves locally, it will find local maxima. Heuris-
tics that only accept fitter solutions cannot escape local maxima, so reaching global opti-
mum is dependent on the initial solution. Protocols to assist in the escaping of local max-
ima generally approach from four categories: considering different initial solutions; accept-
ing non-improving neighbours; changing/varying the neighbourhood; changing/varying
the objective function/data [129]. Popular alternatives to hill-climbing consider at least
one of these approaches. For example, simulated annealing, developed to emulate the
slow cooling of a substance so that it reaches equilibrium crystalline structures, accepts
neighbours with lower fitness (non-improving) with a temperature-controlled probability
scaling with the fitness difference [130]. Simulated tempering, a cousin of simulated an-
nealing, is used in the exploration of free energy landscapes by treating the temperature
as a dynamic variable to ensure the system is kept in equilibrium [133]. Tabu search [131],
evaluating the full neighbourhood, accepts non-improving moves if no improving moves
exist. It memorises recently visited solutions to avoid revisiting them and can be extended
to memorise its history to expand the different decisions made during its search. The noisy
method adds artificial noise to the objective function, so that measurements of the fitness
fluctuates. This noise is then gradually reduced at each iteration.

The decision for using a particular algorithm for solving an optimisation problem
involves considering the features of the landscape (for example ruggedness—the variability
of fitness values and their distribution in search space; global landscape structure such as
symmetry and modality; dimensionality; noise) and the constraints in execution (execution
time, computational resources, etc) in order to tailor the algorithm to suit the needs of
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the user [134]. Identifying the complexity of the landscape greatly informs us of the
complexity of the search algorithm to deploy, or the rate at which to expect acceptable
solutions to be found [135]. Unimodal functions ensure that the global optimum is found
when an optimum is located, so local search techniques often suffice. Multimodal functions
with rugged surfaces require more thought into ensuring that the search algorithm finds
the basin of attraction of the global optima, for example utilising multiple search agents
(Particle Swarm technique) to communicate and work together to increase the chances of
hitting this peak earlier in the search. An iterative algorithm can be terminated at any
time since its solutions are always valid (but not necessarily the best). The termination
condition of an algorithm is thus tailorable, and often forms limits for the search parameter
choices.

The concept of metaheuristic is varied and still disputed. Heuristics are often borne
from tackling an optimisation problem, whose algorithm details are characterised into
a distinct routine defining the nature of the heuristic. Many algorithmic aspects of a
heuristic can be made variable, or modified for more adaptable purposes in order to raise
its performance. Moreover, a heuristic considers many parameters addressing the demands
specific to an optimisation problem. The treatment of all these aspects when considered
on its own, regardless of the specific problem, forms a set of guidelines and strategies.
We will use the term metaheuristic as the study of these aspects of a heuristic beyond a
specific problem. This includes any general conceptual approach and strategies that can
be applied to groups or families of heuristics. Metaheuristics are used as a framework for
studying and analysing existing heuristics, as well as for informing and motivating choices
when tailoring a heuristic to tackle a new optimisation problem. It may be easier to try to
distinguish these two definitions based on why they are of interest. Heuristic research is
concerned with finding ways of optimising a problem; metaheuristic research is interested
in how to improve current heuristics and inventing new ones. Ref. [136] provides a good
history of metaheuristics and the conceptual nuances associated with the unclear division
between higher-level metaheuristic framework and lower-level (meta-)heuristic algorithm.

One pair of concepts addressed in metaheuristic studies is the idea of expanding the
area of space searched to unexplored areas (diversification) and concentrating the explo-
ration in localised regions with high-quality solutions (intensification). New (meta)heuristics
often spawn from popular heuristics by modifying or adding to existing intensification and
diversification metaheuristic protocols. As mentioned earlier, local search heuristics natu-
rally converge to the local maximum in the basin of attraction that the initial solution lives
in, which may not be the global maximum. Several adapted metaheuristic techniques ma-
nipulate the downhill movement of agents to introduce diversification, enabling climbers
to escape from the basin of attraction and enhance the search potential of an algorithm,
by using for example artificial noise (simulated annealing), memory (tabu search), and
multiple agents (particle swarm) [129].

It is difficult to consider all these modifications and their effects on local search algo-
rithms theoretically. Instead, empirical studies of various strategies are required in order
to understand the resulting behaviour. Local search algorithms are widely applicable and
typically have low empirical complexity, so they are popular as optimisation tools for tack-
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ling many problems. They are used for many intricate and complicated problems precisely
for their ease in setup, with few constraints and requirements beside defining a neighbour-
hood of the search space and an initial solution [137]. The choice of the initial solution
may dictate the quality of the final outcome, therefore local search algorithms may be run
several times at different initial solutions to increase the likelihood of reaching the global
maximum.

5.2 Redefining the parameter tuning problem

The main goal of this thesis is to explore parameter tuning strategies to enhance the ef-
ficient formation of the largest, round compact honeycomb colloidal clusters. Interpreted
as an optimisation problem, this corresponds to finding the parameter values that max-
imise the yield of target self-assembly. In the previous chapter we constructed a yield
measure Q to capture this targeted assembly objective, with higher Q corresponding to
a structure that is more similar to our desired target. Analogous to our simple example
in Section 5.1, the interaction strength ε and bond flexibility w form a two dimensional
parameter space and Q is the fitness function for the optimisation problem. We take the
search space P to be the discretised subset of this parameter space with spacing δε = 0.2

and δw = 1◦ to obtain a grid, at a range of 6 ≤ ε ≤ 15 and 1◦ ≤ w ≤ 20◦, corresponding
to the sampled state points in Section 4.4. Other discretised values were not considered
due to the restriction of the simulated data. However, we expect the qualitative trends we
observe to be consistent regardless of the discretisation. Q, P and the Euclidean metric
forms our yield landscape, characterising the patchy particle system’s predicted behaviour
for different interaction parameters at time tV . Tuning interaction parameters becomes
a search of the global optimum x∗ = (ε∗, w∗) on this Q yield landscape. In practice, the
objective of the search could be relaxed to locate a sufficiently high yielding state point
in the global peak region around x∗.

5.2.1 Constraints in simulation-based parameter tuning

To evaluate the yield Q of a state point x = (ε, w), the corresponding particle system is
simulated using the VMMC algorithm and measured at the end of the simulation. Each
independent simulation ran at x will return a different Q value due to the stochastic nature
of the system. We can see this evaluation of x, Q(x), as being noisy. The presence of noise
in Q complicates the comparison between solutions. Indeed, since the yield function are
relatively simple in form without noise, the presence of noise only increases the difficulty
of the search [138]. The conventional method for handling noise involves taking the mean
of several measurements/samples to obtain an evaluation with reduced noise, at the cost
of increased computational demand.

Existing knowledge of the system can help speed up the tuning process. First and
foremost is to determine the parameter ranges to consider for the search space P where
good assembly is highly probable. Restricting the size of the initial P limits the problem
size. Temperatures too high or too low set natural thermodynamical bounds where self-
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assembly is non-existent/non-ideal at equilibrium. Apart from using knowledge of phase
diagrams and behaviour from previous studies of related systems, analytical and numerical
methods can be used to identify and eliminate infeasible regions of good assembly. Our
decision to limit the w range to 20◦ or less (See Section 4.4.1) is an example of this. In
literature, zero-temperature genetic algorithm search [51; 99] was applied to determine the
preferred zero temperature equilibrium structures and infer finite temperature structures.
Techniques such as connectivity landscape analysis [139; 140] looked to identify the subset
of parameter space which satisfied a set of geometric constraints, further reducing the
domain size where good assembly takes place. What remains after identifying P is to
simulate particle systems in this parameter region to find the best yielding region.

Our concern in methodology is in reducing the total computational cost and/or exe-
cution time required to satisfy the search objective. Each MC simulation requires long
times and large computational demand in order to reach the defined cutoff time of the
self-assembly problem, making it computationally expensive to call an evaluation. The
brute-force search is useful for mapping out and understanding phase behaviour defined
on the interaction parameters [75; 90; 91], with the optimal or near-optimal solution being
a by-product of the conducted scan. When the main interest in studying the system is
to locate the optimal or near-optimal parameters that enhance the targeted self-assembly
yield, sampling the full search space P is inefficient and only practical for small P. When
P is large, it is preferable to only sample a subset of the solutions in order to reach the
answer. We apply hill-climbing to our tuning problem to examine its ability and speed to
locate high yielding interaction parameters.

5.2.2 Measuring search performance

With the choice of search algorithm to apply dependent on the problem studied, no unique
standardised measure of search efficiency exists to characterise the performance of a search
algorithm. Our concerns when applying a search heuristic often involve the length of
execution time and amount of resource spent performing the search. The execution time
is the amount of time that the user waits for a simulation or search process to run. For
simulations and algorithms, the resource is taken to be the computational effort, usually
measured in computational time.

Various timescales are considered to evaluate the performance of a computational task
(simulation or search process). The CPU time tCPU is the amount of time used by a central
processing unit (CPU) to perform a task. Simulations may exploit parallel-processing, in
which case two or more CPUs are utilised for a single computational task. Here the total
computational demand required to execute the task is taken: the total CPU time tTOTCPU

is the sum of the CPU time spent by each CPU. We extend this definition to include the
total CPU time required to run a set of tasks.

The execution time tEXEC is the amount of time a user has to wait for a compu-
tational task, or a set of tasks, to run from start to finish. For our purposes, ignoring
run-time factors such as delays and queueing for available resources, we will assume that
for a single CPU task, tEXEC = tTOTCPU = tCPU . A multi-CPU task would use more
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CPU time than the execution time suggests. Analogously, executing multiple tasks in
parallel would demand more tTOTCPU than tEXEC . When the task refers to a search,
tEXEC determines the minimum waiting time for a user to finish a search from start to
termination, whilst tTOTCPU indicates the computational demand/cost. If a search cannot
execute single-CPU tasks concurrently, then tEXEC = tTOTCPU . The execution time and
the total computational demand of a search are related by the computational (search)
intensity. Increasing the search intensity by exploiting concurrent computations shortens
its execution time. We will assume that particle simulations are single-CPU tasks.

Another important aspect in measuring the performance of (meta-)heuristics is the
robustness [129]. We consider a metaheuristic to be robust if it handles the objective func-
tion and initial condition well, such that its performance is resistant to poor initial point
x0. In a similar sense, the search outcome is sensitive to small changes in x0 if a heuristic
is not robust. Moreover, a non-robust heuristic is likelier to have a poorer worst-case
scenario than a robust one. In practice, for the purposes of our implementation to the
self-assembly problem, we interpret robustness as the dependence of climbing performance
on the choice of x0—hill-climbing parametrised with high robustness would consistently
search the landscape to reach the global peak region regardless of x0, whereas the per-
formance of hill-climbing parametrised with low robustness would be heavily dependent
on x0. We will examine the overall performance of the hill-climbing algorithm as if it
were executed in a random initial point by examining several different initial points on S.
Consistent performance across different x0 is considered as a robust performance.

We consider an algorithm to be reliable if, from any given x0, it consistently reaches
the same basin of attraction, namely the global peak region. We consider an algorithm to
have high accuracy if it has little variance in the terminal x within the basin of attraction.
For example, if an algorithm will always find the global peak region but will return any
of, say, 30 points within this region at termination, then it is considered to be reliable but
inaccurate. If an algorithm finds the global peak region consistently with most climber
terminating at x∗ then it is both reliable and robust (e.g. compare Figs. 6.6a and 6.6b on
page 101). If an algorithm will statistically only find the global peak region half of the
time and be stuck at another local maximum for the other half, but will return only any
of, say, 4 points for each respective region, then it is considered unreliable but accurate
(e.g. see Fig. 6.7f on page 102).

Computational demand of VMMC simulations and search

Computer simulations of self-assembly are CPU-intensive tasks, especially when modelling
large, complex systems at long timescales, and it is under this premise that we consider
hill-climbing search as an alternative for parameter tuning. As we saw in Section 4.5.3,
our VMMC simulations of 2D patchy particle systems reached up to tEXEC = tTOTCPU =

1.3× 108s (5 days), requiring an average of 1.5× 105s (1.7 days) per simulation per point.
With the cost of a single simulation of the order of days, the total CPU time tTOTCPU

required to evaluate all 920 points in P once in a brute-force scan is 1.38 × 108s = 1552

days. Parallelism can be trivially exploited in a brute-force scan; if an unlimited number
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of cores were available, then all points in P for our system can be executed simultaneously.
The brute-force scan would then be completed within the 5 days it took to perform the
longest simulation, although tTOTCPU remains unchanged. Opportunities to exploit such
extreme parallelism are limited.

We assume a scan of parameter space with single simulation at each point, as a lower
limit for the standard brute-force scan. The peak region may be approximated from a
single scan. Averaging over multiple samples at each point is often required to obtain an
accurate reading to identify the global peak. This can be chosen at the start—considering
more than one simulation (sample) for each point. Efforts to increase the scan accuracy
may include user input—progressively contracting the scope of points scanned progres-
sively as more data is collected—in which case a basic scaling of tTOTCPU per full scan
with an increase in the number of simulations per points overapproximates the computa-
tional demand of the scan.

Such differences in the potential computational performance by varying the distribution
of simulation execution is an example of the trade-off between competing aspects of the
search constraints. The user may not want to wait for tEXEC = tTOTCPU for a search to
finish, in which case the exploitation of concurrent simulations is a must to reduce tEXEC .
On the other hand, they may be constrained to a finite number of resources or have
multiple searches to perform, so a search strategy to reduce tTOTCPU is welcomed. One
major disadvantage of hill-climbing is its limited opportunity for exploiting concurrency
when executing simulations, since the algorithm is based on iteratively exploring the local
landscape, requiring one iteration to finish before another begins. Considering hill-climbing
to reduce tTOTCPU becomes relevant when there is a restricted number of CPUs per search
(for example, when there is limited concurrency in simulation execution, or when multiple
independent searches/systems are considered) such that tTOTCPU is of similar order to
tEXEC under the brute-force scheme. We will take the computational demand tTOTCPU

to be the default aim for improving the parameter tuning performance. Equivalently, we
aim to reduce the number of full duration simulations called by a search, addressing if and
when hill-climbing is a more efficient option in comparison to the brute-force scan and
exploring different variations of hill-climbing heuristics for doing so.

Approaches to improving performance

There are two approaches to reducing tTOTCPU of the tuning process. The first is to focus
on reducing the computational resource of the complex stochastic particle simulations
themselves, i.e. reduce tTOTCPU for each particle simulation. As covered in Section 2.4.3,
speeding up the particle simulations is the most direct way to improve the computational
efficiency of the search.

The second approach is to reduce the number of full duration simulations performed
to find our region of interest. We try to address this second approach. We ask if the
hill-climbing algorithm can consistently reduce the number of evaluations (and therefore
simulations) required to find the optimal or near-optimal region of self-assembly as com-
pared to the brute-force scan. Moreover, as we shall motivate in the next section, we
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will attempt to reduce the search intensity (number of evaluations called on average per
iteration) to see how it affects the computational demand of a hill climb run.

5.3 Noisy fitness landscape

As is the case for most real world problems, repeated measurements of a self-assembly
experiment with the same parameters will yield slightly different results every time. Ob-
servables are changing in time, and variability in the final product of a stochastic system
is inevitable. These random variations associated with the observations are intrinsic to
the system (the physical self-assembly system should also exhibit similar variability), and
thus it is important to account for them. We can treat this difference as noise about some
expected value.

For a solution x ∈ S, a noisy evaluation g(x) can be mathematically represented as:

g(x) = f(x) + Yx, Yx ∼ Yx, (5.1)

where f(x) represents the true/underlying fitness value of x, and Yx is a random fluctuation
drawn from some distribution Yx, with expected mean of zero such that the ⟨g(x)⟩ = f(x).
An evaluation g is the arithmetic mean over r independent samples gi i.e. g = 1

r

∑r
i=0 gi.

When r = 1, an evaluation is just one sample. Increasing r reduces the noise of g(x) seen
by a climber.

For the self-assembly problem, the interaction parameter coordinate pair x = (ε, w) ∈
P is evaluated by sampling the corresponding patchy colloidal systems. Each sample Qi is
obtained from an independent VMMC simulation measurement. An evaluation Q of size
r of a point x ∈ P is the arithmetic mean over r sampled values Qi(x), i = 1, 2, .., r, i.e
Q(x) = 1

r

∑r
i=0Qi(x).

5.4 Hill-climbing on noisy landscapes

Hill-climbing is one of the simplest algorithms in the family of local search heuristics.
With little assumptions about the global state of the problem, it is widely applicable and
easy to implement for problems of any size. At each iteration of the algorithm, a climber
performing the hill climb attempts to change its state towards increasing fitness values
on f until it reaches a peak where no neighbouring states have higher value. It does
so by attempting to move to neighbouring points at each iteration, with the protocols
involved in move suggestion and move acceptance criterion offering variation in the hill-
climbing algorithm [129; 141]. Greedy hill-climbing considers all candidate solutions in the
neighbourhood and moves to the point yielding the highest improvement in fitness. First-
improvement hill-climbing accepts the first random neighbour that has higher fitness.
Stochastic hill-climbing follows the same procedures as first-improvement hill-climbing,
but also accepts neutral moves (moves between neighbouring points x and x′ with g(x) =

g(x′)). Probabilistic hill-climbing introduces a probabilistic acceptance criterion, with the
probability of moving proportional to the difference in fitness [142].
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Hill-climbing algorithms do not look ahead beyond the next potential step, and often
hold information about its current state only, so it requires little memory to run. It is a
popular choice when tackling local optimisation problems and can find fairly reasonable
solutions in large/infinite state space.

Algorithm 1: Stochastic hill-climbing algorithm on a noisy fitness landscape g.
Input : Initial point x0, termination condition
Output: xk, g(xk)

1 k = 0;
2 xk = x0;
3 while termination condition not satisfied do
4 Evaluate g(xk);
5 Select random neighbour x′k, and evaluate g(x′k);
6 if ∆g = g(x′k)− g(xk) ≥ 0 then
7 xk+1 ← x′k;
8 else
9 xk+1 ← xk;

10 end
11 k = k + 1;
12 end

Algorithm 1 is a pseudocode of the stochastic hill-climbing algorithm, applicable to a
noisy landscape g. At each iteration k, a point x′k in the neighbourhood of xk is chosen at
random before the climber attempts to move to the point with higher fitness by evaluating
both points and comparing their measured fitness, moving to x′ if ∆g = g(x′)− g(x) ≥ 0,
but staying at x if ∆g < 0. We call a move attempt a successful move if it results in a
move to the new location x′, and unsuccessful or failed if the climber stays at x. During
the following iteration k + 1, the next pair of points are evaluated even if the same pair
of points are considered. The initial point x0 can be an arbitrary or informed choice.
The former is arguably a careless strategy, as the latter case increases the likelihood of a
hill climb reaching global fitness faster. However, initial efforts to derive better x0 may
require significant time, whereas one can simply ‘execute-and-forget’ a hill climb search if
one takes an arbitrary or instinctive approach to setting x0. Again, it is down to the user
to judge the initial efforts in deriving better x0, time that can be dedicated to other tasks,
against the potential time saved later on in the hill-climbing. Stochastic hill-climbing
outperforms greedy hill-climbing on rugged noisy landscapes [141].

The algorithm terminates upon satisfying the termination condition, which can be
based on the fitness reached by the algorithm, the allocated number of simulations, or
upon reaching a local maximum. A solution x is a local maximum if g(x) ≥ g(x′) for all
x′ ∈ N (x). Increasing the accuracy of g(x) (by averaging over many samples) is the only
way to recognise that x is also a local maximum in f . Compare this to finding the local
maxima (and the global maximum) using the brute force method. Multiple measurements
per point are required to identify these maxima in f accurately. We did not consider
termination conditions based on locating a local maximum, a necessity if the peak value
is unknown and requires identification, as our focus is on the climbing behaviour of the
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algorithm in general. However, we do make observations on a more tolerant condition,
threshold fitness, where a target fitness value is taken to be a sufficient answer and climbs
are terminated upon attaining a value equal or greater than this value. This termination
condition, requiring the understanding of the measure used to determine a value to target,
is relevant in searches where a region of good assembly is desired, but not necessarily the
best. This is often the case when searching under a time limit, or when dealing with large
scale production where a suitable compromise to the yield is acceptable after considering
other aspects of production, e.g. cost of materials, difficulty in operations control, value
after production—the order of magnitude, rather than precision, of outcomes is more
important.

Hill-climbing often makes quick advances to a solution because of the direct nature
of its ascent. However, its design does not allow non-optimal moves to be performed,
hence its ability to explore the landscape is heavily dependent on the form of the fitness
landscape and the initial point x0. Most metaheuristics modify the hill climb to enable
the acceptance of non-optimal moves when climbing on noiseless landscapes, for example
by explicitly allowing for non-optimal moves in tabu search [131], or using a lag l in late-
acceptance hill-climbing [143], where a proposed solution with fitness g(x′k) is compared
with g(xk−l). Probabilistic acceptance metaheuristics, e.g. simulated annealing, accept
non-optimal moves probabilistically [142].

The presence of noise in the objective function, introducing a soft annealing effect in
the landscape, is therefore welcomed in moderation. The smoothing of rough surfaces
and the annealing of the peaks enable a local search algorithm to escape a local optimum
by allowing a move to be accepted that would not have been otherwise had the noise
been absent. Both Levitan [144] and Rana [138] summarised this in their respective
local search algorithm studies, suggesting that the presence of small noise enhances the
exploration of local search algorithms. However, due to the noisy landscape, many common
metaheuristics designed for noiseless landscape would not perform as expected without
tailoring. Simulated annealing would only add more uncertainty to the already noisy
fitness measurements, while a variant of tabu search which bans climbers from revisiting
old points assumes that a previous evaluation is representative of its true fitness. We will
expand on the effects of intrinsic noise on the behaviour of stochastic hill climbs in more
detail in Sections 5.4.2 and 5.4.3.

5.4.1 Neighbourhood

At each iteration, a hill-climbing algorithm is limited to moving within a local subset of
S defined by the neighbourhood N . The definition of N is critical to the performance
of any local search algorithms, having large consequences on the behaviour and length of
a search algorithm as it explores the fitness landscape [137]. Neighbourhood definitions
can be tailored to reflect certain correlations and interaction schemes between attributes
that form the parameter space, for example coupling the interactions between different
genomes [145].

In colloidal particle design, the design parameters considered form a set of coordi-
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Figure 5.1: The neighbourhood N definition for the yield landscape on P, a discre-
tised space of parameter points with spacing δε and δw in the ε and w axes respectively.
The neighbourhood of a point x = (ε, w) ∈ P (red filled circle) are the 8 possible incre-
ment combinations of the parameters (green open circles): (ε+ δε, w), (ε− δε, w), (ε, w +
δw), (ε, w − δw), (ε+ δε, w + δw), (ε− δε, w − δw), (ε+ δε, w + δw)and(ε+ δε, w − δw).

nate axes and a search space. The naive way of defining the neighbourhood of a set of
parameter values is to consider incremental changes to a single parameter such that pos-
sible moves are all orthogonal to a parameter axis. Multiple incremental changes in the
different values expand the possible directions and routes of exploration for the climber,
although the neighbourhood would then include non-uniform step sizes (moves are of dif-
ferent lengths). Identification of the role between different design aspects, such as ratios
of coupled interaction parameters and aspect ratio of colloidal rods, can inform more
non-trivial neighbourhood definitions to correlate movements on the landscape.

For this study we use the neighbourhood definition illustrated in Figure 5.1. For any
point x = (ε, w) ∈ P the neighbourhood is defined as all combinations of incremental
changes to the elements in x that lie within the valid parameter range. Moves orthogonal
to the parameter axes have a step size of one incremental unit, whereas the diagonal moves
are moves of two incremental units when interpreted as a combination of two orthogonal
moves. The neighbourhood size (number of neighbours) of x varies between 3 at the
corners of the search space P to 8 away from the boundary.

5.4.2 Effects of intrinsic noise

To appreciate the effects of intrinsic noise on the hill-climbing behaviour, let us compare it
with the stochastic hill-climbing algorithm on a deterministic (noiseless) landscape. For a
deterministic landscape (g ≡ f), where a system under the same parameter and conditions
returns the same value for all evaluations, accepted moves are always uphill or neutral.
Downhill moves are never accepted. A climber gets stuck when it finds a local maximum,
ridge, or plateau [146]. When a climber is located at a local maximum, all of its available
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neighbours have a fitness value less than g(x). When the climber is on a ridge, unless
the grid is discretised such that the ridge lies along one of the neigbourhood move axis,
all move attempts are also downhill moves. When on a plateaux, only neutral moves
(∆g = g(x′) − g(x) = 0) are available. A climber performs a random walk but risks
travelling indefinitely if the plateau is large.

Neutral moves can either be accepted or rejected systematically, or with some proba-
bility. It is obvious in a flat region where all neighbours are neutral moves that a rejection
policy would be fatal to the movement of a climber. Accepting neutral moves can help
climbers move out of flat regions and local optima, and stochastic hill-climbing, which
indifferently accepts the first improving or neutral moves, are able to reach better solu-
tions than greedy or first-improvement hill-climbing where improving moves are prioritised
first [141; 147].

Enabling the acceptance of downhill moves is key to overcoming the problem of getting
stuck, and is the essence of the diversification process introduced by the use of metaheuris-
tics. By moving downhill, hill-climbing can move away and out of local maxima and hence
the consequence of a poor initial point x0 is not fatal. In simulated annealing on a noiseless
landscape, a local search proceeds in a similar fashion to a hill-climbing algorithm, but with
downhill moves accepted with a probabilistic acceptance scheme according to the fitness
difference ∆g, typically accepting moves with probability P (∆g, T ) = exp(−∆g/T ) [130].
A global temperature T controls the probabilistic preference of accepting a downhill move
and is usually scheduled to vary with the search time. The higher the temperature T ,
the larger P (∆g, T ) becomes for accepting non-improving moves, allowing the agent per-
forming the algorithm to move between different local maxima (in physics, metastable
states are found at local minima and moving to another metastable state requires mov-
ing away from the optima in order to overcome the energy barrier). As T tends towards
zero, P (∆g, T ) must also tend towards zero for ∆g < 0 moves, reducing to the classic
deterministic hill climb where only uphill moves are accepted at the zero limit, leading
to the eventual restriction of the exploration to a local (and hopefully global) maximum.
Simulated annealing is a preferred method for exploring complex (energy) landscapes as
it has a better chance of locating the global optimum in a fixed amount of time.

Similarly, for a noisy landscape (g = f + Y) the intrinsic noise enable climbers to
perform downhill move. Noise in the fitness measurements effectively blurs out the details
of a rough landscapes, annealing the peaks and reducing the chance of climbers getting
stuck in local optima. However, the annealing of peaks forces a climber to move indefinitely
in the neighbourhood of the global peak once reached and never settle on one solution.
Moreover, an improvement in the maximum attainable fitness is only seen when a small
amount of noise is present [144]. When noise is significant, the performance of the hill-
climbing algorithm (or any other search algorithms) on any function weakens since they
trade their strong directional convergence (intensification) towards solution for increased
exploration of other sub-optimal points (diversification). The larger the magnitude of the
noise, the likelier it is for a climber to walk downhill, until at a large noise limit where a
climber cannot discern any of the landscape features and instead performs a random walk.

75



5.4. HILL-CLIMBING ON NOISY LANDSCAPES CHAPTER 5

5.4.3 Details of intrinsic noise effects

Levitan & Kauffmann’s study [144] on adaptive walks on NK landscape models reported
how noise affects the types of neighbourhood moves that a climber can perform. NK
landscape models are theoretical fitness models with vector solutions, used in the study
of genomes and biological systems to generalise the complexity of interactions between
solutions. Adaptive walks are the local search algorithms performed on such models, with
neighbours defined as incremental changes to the elements of the vector solutions. The
summary of possible move scenarios they described, which will be covered in this section,
is applicable to the case of noisy hill-climbing moves.

Four move scenarios are possible during an iteration of the adaptive walk algorithm.
Neutral moves were not accepted. Adopting their notation, let a1 be the candidate solution
currently being considered, and a2 a neighbour of a1. Evaluating these two points using a
noisy function g gives g(a1) and g(a2). g is of the same form as defined in Equation (5.1).

When ∆g = g(a2) − g(a1) > 0 and ∆f = f(a2) − f(a1) > 0, then the walk moves
to a2 believing that it is increasing fitness, and indeed it is increasing in the expected
fitness (true positive). On the other hand, if ∆g > 0 and ∆f ≤ 0, then although the
algorithm moves to what it sees as a higher fitness valued point, it is in fact moving
downhill in expected fitness (true negative). The other two scenarios cover the remaining
two combinations of ∆g ≤ 0 and ∆f > 0 (false negative), and ∆g ≤ 0 and ∆f ≤ 0 (false
positive). The relative rates of these moves dictate the performance of a walk.

The preference for fitter solutions (they call this the selection pressure) of an agent
performing the adaptive walk forces it uphill towards higher fitness, yet the presence of
noise introduces downhill moves, pushing it away from peaks. A survey of the probabilities
of true positive and false positive moves, p(true+) and p(false+) respectively, showed how
this influences the walk dynamics of the algorithm in the long term.

Focusing on the fitness dependence of the probabilities [144],

p(true+) = p(∆f > 0|∆g > 0, f) (5.2)

and
p(false+) = 1− p(true+) = p(∆f ≤ 0|∆g > 0, f) (5.3)

where f is the fitness of a1 in the move.
Applying Bayes’ rule [148] gives

p(true+) =
p(∆g > 0|∆f > 0, f)p(∆f > 0|f)

p(∆g > 0|f) , (5.4)

where the denominator can be further expressed as noisy uphill moves subjected to the
probability of uphill and non uphill moves in the underlying landscape:

p(∆g > 0|f) = p(∆g > 0|∆f > 0, f)p(∆f > 0|f) + p(∆g > 0|∆f ≤ 0, f)p(∆f ≤ 0|f).
(5.5)

From Equation 5.4, it is immediately apparent that as fitness f increases, a point a1 will
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have fewer neighbours with higher fitness, leading to a decrease in p(∆f > 0|f). Hence
p(true+) also decreases with higher f . At the fitness value equivalent to that of the global
peak, p(∆f > 0|f) = 0 and p(true+) = 0. On the other hand, p(∆f > 0) = 1 and
p(∆f ≤ 0) = 0 at a fitness value equivalent to the global minimum, hence p(true+) = 1

as expected. The other move types follow similar probabilities. Moreover, the average
difference in f values between neighbours, i.e. ⟨∆f⟩, determines the influence of noise
fluctuations on the move types. If ∆f is large compared to the fluctuation, then it is less
likely that ∆g and ∆f will give opposing signs, i.e. p(true+) is higher. Approaching any
peaks sees ⟨∆f⟩ dropping along with p(true+) [144].

With p(true+) = 1− p(false+) = 0 at the global maximum, and p(true+) = 1 at the
global minimum, there exists a fitness value fx at which p(true+) = p(false+) = 0.5—it
is equally likely to move uphill and downhill in fitness value. fx is an attractor of the
landscape where walkers will fluctuate about [144]. On average walkers with f < fx will
move to higher fitnesses, and to lower fitnesses when f > fx. This explains why walkers
move constantly in a near-optimal region around the peak rather than converge to the peak
and stay there. Depending on the form of the noise (such as constant noise throughout the
landscape or exponentially increasing/decreasing with fitness), there can even be multiple
attractors (but always an odd number) [144].

5.4.4 Reducing noise

With noise intrinsic to many real life problems, noise control motivates many metaheuristic
studies. The basis for most noise control studies involves altering the number of samples
obtained to inform the decision making of a heuristic. For example, Fitzpatrick [149]
was one of the first to compare explicit averaging (averaging over many samples for each
evaluation) and implicit averaging (averaging over the population size of the gene pool) in
genetic algorithm search. Their research suggested that there are cases where the overall
efficiency of genetic algorithms is enhanced more by reducing the sample size in the explicit
averaging but increasing the population size in the implicit averaging. Jin & Branke [150]
summarised the techniques for handling uncertain environments in evolutionary optimi-
sation.

For hill-climbing algorithms exploring noisy landscapes, only explicit averaging of sam-
ples to reduce the measured variance of evaluations is possible. As mentioned previously,
for a point x, sampling its fitness r times reduces the error of the mean fitness value by
a factor of √r, resulting in a measured fitness g(x) that better estimates the underlying
true fitness f(x). Fitness-based decisions thus correlate more with the expected fitness
difference ∆f . The gain in noise reduction diminishes with growing sample size. Note
that the variance of the evaluation is altered, but the variance of the observation (sample)
of the system remains unchanged.

Even then, finding the optimal sample size is dependent on the form of the function,
both globally and in the neighbourhood. As highlighted by Stonedahl & Stonedahl [151],
in noisy landscapes there is a sweet spot for the ideal number of samples to average over,
where the search is most efficient to reach a desired fitness level. The total computational
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cost of the search is minimal when enough sampling is performed to resolve sufficient detail
in the landscape for uphill decisions but not by too much that the evaluation of each point
becomes too slow and computationally demanding.

Instead of using a fixed evaluation sample size r throughout the whole search, varying
r during the walk may help speed up convergence to optima. One search strategy is
to perform a quick exploration at the start of a search to locate basins of attractions
before shifting the search algorithm to target finer details in the landscape and converge
towards the global peak. This can be achieved by initially starting with low r (large noise)
then gradually increasing r—an intensification process of the algorithm—to increase the
precision of evaluations. Protocols to increase r include adaptive rules that estimate the
current conditions of the search agent, such as the noise level of the current state, or
non-adaptive scheduled ones that scale according to the number of iterations. Liu [152]
focused on selecting mathematically motivated adaptive and non adaptive rules based on
the step size and generation number of the search (each iteration yields a new generation)
to maximise the speed of convergence in distance to the solution given a ‘budget’ in the
number of evaluations allowed.

Metaheuristics complementing search algorithms externally rather than modifying the
search algorithm parameters internally have also been studied. Random restarts, where
a climber restarts its climb at a random location every time it becomes stuck at a local
maximum or makes little progress, have been found to effectively complement the accurate
measuring of fitnesses to enhance the exploration of search space. The fittest solution
amongst all these restarted climbs is tracked. The philosophy here is that it is better to
abort a climb when it appears hard to traverse locally and start at a potentially better
initial point x0, instead of investing more effort into improving the current solution. One
way to see this is that one is effectively running several independent hill-climbs at different
locations and tracking the best.

When fitness evaluations are computationally expensive, it has been shown that fitness
caching, where only newly visited sites are evaluated and stored to build up a picture of
the landscape for reuse later, is a possible way to reduce the total computational cost of a
search. Stonedahl & Stonedahl [151] applied fitness caching on top of random-restart hill-
climbing on noisy fitness landscapes, then combined it with the averaging over multiple
samples (they call this noise reduction technique fitness averaging by repeated sampling)
to reduce the total computational cost of finding peaks. The caching of fitness values
as a climber explores a fitness landscape builds up an approximate image of the fitness
landscape. The cached landscape is very rough if one sample is taken for the evaluation,
and precise for a large evaluation sample size r. In between where r is moderate, the
reconstruction will be able to tolerate some level of noise while retaining the peak locations.
Additionally, the work attempted to characterise the robustness of several test fitness
functions and use different measures from the fitness difference correlation function (the
distribution of fitness differences between all neighbouring points xi, xj i.e. |f(xi)− f(xj)|)
to select the optimal sample size at which one could still identify the maxima from the
noisy image. The experiments demonstrated that an optimal noise level, corresponding to
the shortest number of samples required to reach a certain threshold fitness value, exists,
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although a universal technique to deduce this noise pre-search via knowledge of the fitness
difference correlation function was not found.

5.4.5 Alternative approach—reusing past sampled values

All the examples described above attempt to reduce the total computational cost of a local
search algorithm by adjusting the sample size of each evaluation. When each sample is
expensive to measure, it is discouraging to increase the number of samples per evaluation.
This is the case for our particle simulation based parameter tuning problem, where each
simulation is expected to be computationally intensive and expensive already. Increasing
the sample size of each evaluation from r = 1 to r = 2 doubles the effective computational
cost tTOTCPU of a climb of length kmax. The computational intensity (the average number
of simulations performed per iteration) scales with r. If samples cannot be taken concur-
rently, then r also affects the execution time tEXEC—each evaluation will take twice as
long to complete, doubling the execution time per step. To use these techniques without
increasing tTOTCPU or tEXEC requires reducing kmax by half at least. We want to see a
‘return’ in tTOTCPU from raising its computational intensity (an initial ‘investment’).

Noticing this, we ask whether there are alternative ways to control noise without
increasing r. Examining the stochastic hill-climbing algorithm defined in Algorithm 1, we
observed that g(x) is sampled at every iteration, regardless of the result of the previous
step (We use the terms step and iteration interchangeably). More specifically, the same
current location is reevaluated following a failed move in the (k − 1)th iteration, even
though g(xk−1) is still a valid representation of xk ≡ xk−1. We ask whether it is necessary
to perform this reevaluation after every failed attempt. We introduce a concept of a trial
where a current fitness value g(x) is reused for multiple iterations. The immediate local
consequence in reusing g(x) that the computational intensity of these iterations is halved—
only one evaluation is called rather than two. A decrease in computational intensity would
see a climb of equal length kmax demand fewer computational resources, producing a
direct scaling down of tTOTCPU without having to invest in more computational resources
initially. Another search protocol we will study is a cumulative averaging protocol to
average multiple samples across past iterations rather than averaging multiple samples
within each single iteration.

For the second objective of this thesis, we seek to answer whether reducing the average
number of evaluations performed per iteration via the reuse of past values can reduce
tEXEC and tTOTCPU of a stochastic hill-climbing heuristic, while increasing the yield
of the terminal solutions reached. In the next chapter, we will relax the requirements
of the heuristic for re-evaluating the current point’s fitness value at every step, instead
allowing an evaluation to be used over m multiple iterations. Other search strategies to
be considered will also avoid increasing the computational intensity of the search. The
averaging of fitness values is crucial to tackle the annealing of peaks, so that a climber
can eventually converge to a local maximum. We will consider a cumulative averaging of
fitness values over past evaluations, which requires no extra simulations per evaluation, as
an alternative to fitness averaging over several samples within each evaluation.
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5.5 Conclusion

In this chapter, a framework borrowed from the study of optimisation problems was pre-
sented for studying the self-assembly tuning problem. A noisy fitness landscape was de-
fined to model the self-assembly yield landscape, on which the hill-climbing heuristic can
be applied. Heuristics are approximate algorithms that work under a set of constraints
to find optimal or near-optimal solutions of a fitness landscape within practical times.
Constraints relevant to simulation-based self-assembly parameter tuning were identified:
simulations of particle systems take a long time to run and are computationally demand-
ing; and the self-assembly observations are noisy. We motivated our study of hill-climbing
as an alternative methodology to the brute-force scan for finding the best yielding param-
eter values more efficiently. We will empirically test this in the next chapter. A possible
metaheuristic, focusing on reducing the intensity of the hill-climbing algorithm by the use
of trials to improve the efficiency of the stochastic hill-climbing efficiency was proposed and
will be formally defined and studied in the next chapter along with other ‘investment-free’
strategies: multi-duration climbing schedule and cumulative averaging.
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Hill-climbing on self-assembly
landscapes

Our analysis of the hill-climbing heuristics is based on how well it guides the execution of
MC simulations of a colloidal particle system for tuning an identified set of parameters.
The main characteristics of the yield landscape is a large noisy yield where measurements
have large fluctuations, along with expensive and time consuming simulations required
to obtain the associated yield values of the system of interest. Computational factors
provide several limitations, such as the size and complexity of the system and the available
resources, which determine how long a simulation will take to run and therefore limit the
practicalities of the search heuristic. As we will see, it also naturally restricts our ability
to study hill-climbing whilst performing large numbers of simulations. One needs large
samples of hill climbs in order to draw any reliable conclusions on the performance from
the statistics.

To make progress, we constructed a toy model Q̂ to generate expected yield values
for given parameter values. We performed hill climbs on this toy model to examine the
expected performance of hill-climbing on the actual VMMC simulation setup. Based on
the mean and variance of the actual VMMC simulation data from Chapter 4, Q̂ produces
similar noisy outputs to the actual VMMC simulations, agreeing especially well for high
Q values. Since uncertainty and noise is intrinsic to the measurements in the actual
self-assembly system, we expect the small differences between Q̂ and VMMC simulations
to have little effect on the qualitative behaviour of the hill-climbing runs. This model
also enabled us to test several hill-climbing variants in order to suggest new possible
metaheuristic tools to complement search strategies involving costly evaluations of particle
systems.

As we learned from Chapters 4 and 5, yield landscapes of self-assembly systems are
typically noisy, with a localised region of high yielding assembly with time-dependent op-
tima. Common metaheuristics on noisy landscapes focus on controlling the noise level by
increasing the sample size of each evaluation, which is undesirable when each evaluation
is expensive and time consuming to perform. We seek to find strategies and heuristics
that extend the standard stochastic hill-climbing algorithm in order to reduce the com-
putational resources required. Our main contribution focuses on a new protocol where a
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current fitness value is reused for m consecutive iterations. Aside from testing the po-
tential of hill-climbing to replace brute-force scan, we empirically test metaheuristics to
address the following questions:

• Can one reduce the number of Monte Carlo simulations executed in a hill-climbing
search whilst maintaining desirable algorithm traits and outcomes including reliable
and high terminal yield (synonymous with good yielding design parameters), and
robustness to poor initial points?

• What aspects of noisy yield landscapes can be exploited to improve the terminal
yield, robustness and reliability of hill-climbing?

Q̂ serves as an example parametrised self-assembly tuning problem (parametrised here
refers to the optimisation parameters and step size choices). The choice of state points
used determines the local maxima of the yield landscape that our experiments will be
performed on, thus the numerical results are subject to P and Q̂. Our focus is therefore
to learn about the qualitative results that should remain valid across other self-assembly
systems under different parametrisations, with emphasis placed on how metaheuristic
protocols alter the reliability and robustness of hill-climbing. This serves to guide any
potential users of their optimisation parameter choices and adjustments according to their
optimisation problem. Hill-climbing performance will be subject to the initial point x0—
good x0 choices will improve the search outcomes. We will consider the search performance
when hill-climbing is initialised with random x0 choices, in order to provide the baseline
for exploring the worst-case scenario, although we will only present a select number of
initial points to provide clarity and comparison between different x0. Indeed, in practice,
carefully considered x0 choices will offer better conditions for the success of a hill-climbing
run in finding high yielding parameters at relative cost but this is problem-specific and
beyond the objectives of this thesis.

In the following section a preliminary study of hill-climbing for parameter tuning is
given, where an actual application of hill-climbing alongside MC simulations were per-
formed to illustrate its potential. The limited conclusions drawn due to the small set of
climbs performed motivates our decision to move on to studying the hill-climbing on a
model landscape to replace the running of full VMMC simulations. This yield landscape
model is constructed in Section 6.2 using the data gathered in Chapter 4. Section 6.3
presents the stochastic hill-climbing modified by the trial protocol, along with cumulative
averaging and other protocols studied. The behaviour of these algorithms on our yield
landscape model is discussed in Section 6.4. Next, the analysis of move probabilities cov-
ered in Section 5.4.2 is extended to account for the effects of the trial period limit m.
Following this, threshold hill-climbing experiments are performed, both on the yield land-
scape model and on 1D model fitness landscapes to identify the optimal m∗ that reduces
the total number of evaluations required for a climber to reach a certain threshold fitness.
Finally, the climbing schedule strategy utilised in the preliminary studies is revisited and
studied formally on our yield landscape model with the modified hill-climbing algorithm.
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6.1. PRE-MODEL STUDIES: DIRECT APPLICATION OF HILL-CLIMBING WITH

VMMC SIMULATIONS

6.1 Pre-model studies: direct application of hill-climbing
with VMMC simulations

Before moving on to looking at the toy yield landscape model for studying hill climbs,
we had directly deployed a hill-climbing algorithm along with the VMMC simulations to
allow the algorithm to determine the sequence of parameters executed by the computer in
order to locate the best yielding parameters, as a preliminary check on the feasibility of
the approach.

Specifically, we used the greedy hill climb (Algorithm 2) for the preliminary studies, ex-
ploiting the computational resources available to us to simultaneously evaluate the current
point and all neighbouring points. Although conclusions about the hill-climbing perfor-
mance are limited due to early termination of these direct climbs and the small number of
climbs performed, we demonstrated a few empirical strategies that are worth mentioning.
These strategies exploit the time-dependency of dynamical self-assembly yield landscapes.

6.1.1 Direct application of greedy hill-climbing algorithm with VMMC
simulations to tune parameters

The pseudocode for the greedy hill-climbing algorithm is given in Algorithm 2. At each
iteration k, nine simulations are executed—one for each evaluation of the current climber
position xk and its neighbouring state points x′

k,j in N (x)—to give a representative snap-
shot of the local neighbourhood landscape. The neighbouring fitnesses g(x′

k,j) are ranked
and the climber moves to the x′

k,j with the highest fitness g(x′
k,j) if it is larger than g(xk),

else it stays at xk. When two or more neighbouring points share the same highest fitness
value the climber moves to one of these points with equal probability.

A shorter simulation duration of tf = 107 VMMC cycles was opted in this preliminary
study to limit the execution time of a search. The rest of the simulation setup was kept
the same as in Section 4.2 (N = 900, η = 0.04, square box, kB = 1, T = 1, initialised in a
random well-mixed configuration).

A climbing schedule—defined by a fixed duration update size ∆tV (in units of VMMC
cycles) and an update rate κ—was used to provide a termination condition and further
reduce the potential execution time. At the start of this climbing schedule, simulations
were performed for tV = ∆tV . tV was then increased by ∆tV every κ iterations until the
simulation duration reached tV = tf , where simulations of length tf were performed for
another κ iterations before the climb was terminated. A tolerance trigger Qmin was used
to control the start of this climbing schedule. Prior to the start of the climbing schedule,
all simulations were limited to a simulation duration of tV = ∆tV /2. Upon measuring a
simulation with value Q > Qmin, the climbing schedule was triggered.

The idea behind introducing these additional protocols is to prevent climbers from
launching full length simulations right from the very beginning, when they are likelier to
be in a poor yielding region of the landscape. Since Q of a system generally increases
as it evolves (see Section 4.5.1), a system with a significant Q value at early times will
be expected to perform at least as well during late times; it is unlikely to have low Q at
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Algorithm 2: Greedy hill-climbing algorithm with neutral moves accepted proba-
bilistically.

Input : Initial point x0, termination condition.
Output: xk,g(xk)

1 k = 0;
2 xk = x0;
3 while termination condition not satisfied do
4 Evaluate g(xk);
5 for every neighbour x′k do
6 Evaluate g(x′k);
7 end
8 gmax = max{g(x′k) for all neighbours x′k} ;
9 ∆g = gmax − g(xk);

10 if ∆g > 0 then
11 xk+1 ← x′k ;
12 else if ∆g = 0 then
13 Move to xk or x′k with equal probability;
14 else
15 xk+1 ← xk ;
16 end
17 k = k + 1;
18 end

final time tf . Following a similar reasoning, a system with low Q at tf will have low Q

for all 0 ≤ tV ≤ tf . Therefore it is wiser to keep the simulation duration low, searching
for indications of possible self-assembly activity at early times, while moving away from
regions likelier to lead to poor yield. Arriving at a potentially high yielding solution by
simulating only a fraction of tf reduces the computational cost and execution time of the
hill-climbing searches. The trigger keeps the initial simulation duration low until a desired
tolerance Qmin of self-assembly activity is detected in the neighbourhood, in case climbers
are initiated too far from the hill, e.g. in the fluid phase region, prompting a climb to
enter its climbing schedule phase at more probable regions of high yield.

We chose to use ∆tV = 2×106 VMMC cycles and κ = 5 iterations for our hill-climbing
runs to make sure the hill-climbing run terminated within reasonable times. We chose to
use Qmin = 0 since the shape factor in the definition of Q ensures that only clusters with
6 or more particles have a non-zero Q. Under these conditions, the quickest a climber
would be able to terminate the climb is after 26 iterations, enabling climbers to travel a
maximum of half the range in both ε and w axes within this shortest climb length.

6.1.2 Observations

One such example climb is shown in Figure 6.1 on page 86. Initialised at x0 = (12, 12)

away from the hill, where low yielding polygonal structures are found, the climber steadily
moved towards lower ε and w onto the hill. The trajectory is roughly split into three
stages based on Q. The first stage occurred for low Q before the trigger was activated
and at the early stage of the climbing schedule. In this example, the climbing schedule
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was triggered right from the start: tV = ∆tV = 2 × 106 VMMC cycles at k = 1, and
continued for 1 ≤ k ≤ 5 as it explored the low yielding region. The second stage occurred
from tV = 4 × 106 VMMC cycles. This main climbing stage, defined by a large increase
in Q, lasted for 3 iterations only as the climber located at the foot of the hill climbs to
significantly fitter neighbours. This stage is highly directional, being a combination of
increase in time and climbing of the hill. After the rapid climb to Q > 300, the climber
entered the final stage of the climb as the climbing schedule increased to tf , exploring the
neighbourhood of the peak region with Q fluctuating largely between 300 and 500 until
the termination condition is reached. Higher activity in ε than in w is observed due to
the finer discretisation in ε yielding smaller fitness changes.

The paths of five climbs (including the above example) are shown in Figure 6.2 on
top of an interpolated version of the final time yield landscape. Most climbs initialised
from different parts of parameter space found the peak region before termination. At
this discretisation, the climber starting in the ridge at (14, 2) struggled to move towards
lower ε, instead being trapped at higher ε. We were only able to perform a low number
of climbs within a reasonable amount of time, hence observations of reliable convergence
of climbs are not conclusive. The hill-climbing runs performed in this preliminary study
suggests it is a feasible alternative to brute-force scanning. To avoid spending most of
the computational time of the search on the VMMC simulations, we decided to move
away from the full simulation searches, instead constructing a toy yield landscape model,
introduced in the next section, on which to perform the experiments to gain more statistics.

Apart from this, our preliminary studies prompted us to base our study on the stochas-
tic hill-climbing algorithm (Algorithm 1) in the rest of this work. With the greedy hill-
climbing algorithm, it is computationally wasteful to decide the best neighbour to move
to after sampling a full picture of a local neighbourhood, whose representation of the un-
derlying fitness landscape is poor due to fluctuations. Moreover, stochastic hill-climbing
has higher explorative power on rugged landscapes than greedy hill-climbing, reaching fit-
ter solutions more consistently [141]. Instead, redistributing the computational intensity
(resources required per evaluation) in greedy hill-climbing to perform multiple stochastic
hill-climbing runs is likely to increase the reliability of the results collectively, or at least
increase the chance of locating the global peak region if different x0 are used. For ex-
ample, for the same computational intensity required to evaluate all eight neighbouring
points and the current point per iteration in a greedy hill climb for the neighbour defined
in Section 5.4.1 (9 evaluations per iteration), four independent stochastic hill climbs—each
requiring two evaluations per iteration—can be executed, massively increasing the chance
of successfully finding the global optimal solutions.

6.2 Yield landscape model Q̂

6.2.1 Yield landscape model construction

The interaction between the search algorithms studied and the VMMC simulations of
self-assembly systems are rather straightforward. The algorithm provides inputs for the
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Figure 6.1: Example trajectory of a hill climb search in the parameter space of patchy
particle model. The climber performing the search starts at x0 = (12.0, 12.0). Clockwise
from top left: changes in the climber’s ε over k; changes in the climber’s w over k; the
path of the climber on the (ε, w) parameter space; and the maximum evaluated yield
value max{Q(xk), Q(x′

k)} during the iteration k—the value is also depicted in the colour
gradient of the symbol fill in all the plots (a darker shade (red) corresponds to a larger
value).
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Figure 6.2: The path of five greedy hill-climbing runs coupled with VMMC simulations
are shown on an linearly interpolated version of the yield landscape data. The initial points
are (6, 14), (14, 2), (12, 12), (7.8, 1), (9.4, 9). Climbers starting away from the hill have
an initial fitness close to zero, but all managed to reach a terminal fitness f > 200 from
different directions. The climber starting at (14.0, 2.0) around the ridge fails to escape
towards higher fitness at lower ε within the short climb time, instead being ‘trapped’ at
higher ε than it started with.
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VMMC simulations, which in turn returns a yield value to inform the move protocol of
the local move landscape from which a decision is made. We constructed a yield landscape
model as a substitute for the VMMC simulations to bypass the large computational effort
required. The role of the yield landscape model, essentially an array of random number
generators each associated with a distinct state point x in parameter space, is to provide
noisy outputs resembling the act of performing the actual VMMC simulation itself at the
corresponding x. We aim to capture the broad features of the yield landscape, namely
the overall form of the hill, the sharp front at the fluid to fluid-solid dynamical phase
boundary, and the x-dependent yield fluctuations.

We based our yield landscape model on the available data from the brute-force scan of
the parameter space in Section 4.4.1 (see Fig. 4.8 on page 48). Q is bounded by the interval
[0, N ], where N is the size of the system, hence a truncated normal distribution (TND)
(also known as truncated Gaussian distribution) was used to approximate the noise contri-
butions involved in measuring Q. From the noisy landscape definition in Equation (5.1),
at each point x = (ε, w) sampled in the brute-force scan, the measured model yield Q̂(x)

is defined by
Q̂(x) = ⟨Q(x)⟩+ Yx, Yx ∼ Y(0,σ(x), a, b), (6.1)

where ⟨Q(x)⟩ and σ(x) are the mean and standard deviation of the simulation yield data at
x, and a random variable Yx is drawn from a truncated normal distribution Y(0,σ(x), a, b).
Y(0,σ(x), a, b) is constructed by truncating a normal distribution Nnorm(0,σ(x)) of zero
mean and standard deviation σ by a lower bound a = −⟨Q(x)⟩ and upper bound b =

N − ⟨Q(x)⟩, such that 0 ≤ Q ≤ N for all random terms Y ∼ Y. We discuss the use of
the TND as the noise distribution, and the similarity between the resulting model and the
simulation data in the next section.

6.2.2 Comparison of the yield landscape model Q̂ with simulation yield
data Q

The form of the yield value fluctuation distribution is expected to be dependent on the state
point x. For example, we expect a binomial distribution at the boundary of fluid and fluid-
solid coexistence, where the self-assembly outcome depends heavily on whether nucleation
events are observed. This is different to higher ε regions where the central limit theorem
is expected to be a sufficient approximation of the yield outcomes. With between 10 to 16
yield values measured per state point x, we could not resolve the details of any distribution
with any confidence, hence the TND is used throughout. Moreover, to avoid overfitting
the TND to match its mean and variance with the data values, the normal distribution was
fitted to the statistical moments of the data before it was truncated accordingly to give the
TND. The noisy outputs of this model hence does not reproduce any skewed or binomial
distribution, or outliers that is otherwise possible in VMMC simulation steps, which is
expected to have an effect on the local behaviour of the hill-climbing algorithm. However,
this concerns only a fraction of the state points considered, whose TND is subject to large
σ, hence we believe the qualitative behaviour of the hill-climbing observations on Q̂ will
accurately reflect those performed with actual VMMC simulations.
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(a) (b)

(c)
(d)

Figure 6.3: Comparison of the yield landscape model and the simulation data. (a) The
standard deviation σ =

√
V ar(Q) is plotted against ⟨Q⟩ on log-log scale for the simulation

data and the yield landscape model, obtained by taking 16 samples per point. σ scales
linearly with ⟨Q⟩ in both cases, following the dashed line σ = ⟨Q⟩, but deviates from
this for ⟨Q⟩ > 50 (b) The signal-to-noise ratio ⟨Q⟩/σ agrees with this, staying relatively
constant between 1 and 2 for ⟨Q⟩ < 50, before increasing for ⟨Q⟩ > 50. (c) The differences
in ln(σ) and ln(⟨Q⟩) between the model values and the corresponding simulation values
are no larger than 1 in each axis, with points where the model mean fitness is larger also
having lower noise (data points populate the bottom right quadrant of the plot). Plotting
the magnitude of these differences |(∆ ln(⟨Q⟩),∆ ln(σ))| against ⟨Q⟩ shows that the larger
deviations of Q̂ from simulated Q happens for small ⟨Q̂⟩, analogous to (d) the z-score
plotted against ⟨Q⟩.
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The distribution of ⟨Q̂⟩ and ⟨Q⟩ is found to be very similar. The σ and ⟨Q⟩ scatter
plot in Figure 6.3a exhibits a positive linear correlation, a trend also captured by ⟨Q⟩.
The truncation redistributes the probability mass over the resulting domain, resulting in
a shifted expectation value of Y and a shrunken standard deviation, i.e. ⟨Q̂⟩ ̸= ⟨Q⟩ and
σ̂ < σ, as shown in Figs. 6.3c and 6.3a. The signal-to-noise ratio in Figure 6.3b is constant
for ⟨Q⟩ " 50, reflecting the additive contributions from the particle components of the
clusters, but increases for ⟨Q⟩ > 50 by up to an order of magnitude more. This is likely a
reflection of how state points exhibiting high yield are also more consistent at achieving
such values; there is high variability in the low yielding structures. ⟨Q̂⟩ exhibits a slightly
stronger signal compared to the simulation, suggesting that climbers on Q̂ do not feel as
much fluctuations at low yield value, but is of the same form.

Further comparison between the model and simulation data is performed by studying
ˆQ(x) and ⟨Q(x)⟩ for all x. In Fig. 6.3c, ∆ ln(⟨Q⟩(x)) = ln(⟨Q̂(x)⟩)− ln(⟨Q⟩(x)) is positive

for almost all sampled values since ⟨Q⟩(x) < N/2 for most points x. The differences
in the logged σ values, ∆ ln(σ(x)) = ln(σ̂(x)) − ln(σ(x)), are also limited in order of
magnitude. The correlation in Fig. 6.3c is due to the same boundaries being applied
across all truncations.

Moreover, the magnitude of (∆ ln(⟨Q⟩),∆ ln(σ)) plotted against ⟨Q⟩ exhibits the same
distribution as the z-score plotted against ⟨Q⟩ (Figure 6.3d). The z-score [153] (also
known as standardised score) compares a sample with mean X1 to a distribution with
known mean µ and standard deviation σ in units of the standard deviation σ, assuming a
normal distribution:

z =
X1 − µ

σ2
. (6.2)

This gives an idea of how well the sample mean of each TND approximates the normal
distributions that used the simulation data, with z closer to zero for distributions that are
more similar to each other.. From studying Fig. 6.3d, the model output agrees very well
for points with ⟨Q⟩ > 200 as the mean of the distribution is sufficiently far enough from
the [0, N ] boundary. For example at x∗, rounded to 2 decimal places, ⟨Q⟩ = 522.73 with
σ = 54.28 and ⟨Q̂⟩ = 522.77 with σ̂ = 54.24. Points with Q̂ ≤ 200 show less agreement
in values, due in part to the lower truncation of 0 being much closer to the mean µ, thus
more probability mass is redistributed.

We note that the relationship between the fitness and noise was shown to have an effect
on the local search behaviour [144]. The expected simulation values ⟨Q⟩ approximates the
true fitness Q̄ = ⟨Q̂⟩ of the yield landscape model Q̂ with similar trends. We felt that
larger variations for points with low Q is acceptable given its absolute magnitude compared
to the rest of the hill in addition to the relatively low precision of these points due to the
smaller sample sizes of the simulation data. Considering these small differences between
the model and data, we assume the true yield value of Q̂ to be Q̄ := ⟨Q⟩ with standard
deviation σ̂ := σ for the rest of study.
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6.3 Hill-climbing algorithms

Equipped with the yield landscape model, we now consider the hill-climbing protocols
used to modify the stochastic hill-climbing algorithm (Algorithm 1). This includes a new
parameter m modifying the trial period limit (see below), an aspect that we believe has
not been explored yet, and cumulative averaging of past evaluations from previous visits.
We consider the neighbourhood selection protocol as well, a technical detail necessary to
complete the algorithm.

We did not consider random restarts in our hill-climbing studies. Our trial period
protocol is based on detecting the lack of progress when current fitness values are reused.
Random restarts also use the lack of progress to determine if a climb should be restarted
at a new random x0. Since they respond to similar conditions, a distinction is required
to make sure the conditions at which these two routines are triggered do not overlap. We
leave this as future work.

6.3.1 Trial period limit m

As mentioned in Section 5.4.5, the reevaluation of the current fitness value g(x) at every
iteration felt unnecessary. To address this we modified Algorithm 1 by introducing an
extra parameter m to limit the number of times an evaluated fitness value g(xk) is reused
giving Algorithm 3. Should a climber fail to successfully move after g(xk) and g(x′k) are
evaluated, then in the following iteration k+ 1, a random neighbour x′k+1 is again chosen
and evaluated, whereas g(xk) is reused i.e. g(xk+1) = g(xk). We define a trial to be a
sequence of iterations where the same evaluation g(x) is used. The number of iterations
in a trial is the trial period. The trial period limit m of the climb is the maximum trial
period allowed for any trial during the climb: g(xk+l) = g(xk) for 0 ≤ l < m as long
as xk+l = xk+l−1 = · · · = xk+1 = xk. If by step k + m the climber has yet to move
away from xk (i.e. xk+m ≡ xk) then xk+m is evaluated to yield a new evaluated current
fitness g(xk+m). A new trial also starts upon a successful move. For the next section,
the termination condition is a maximum climbing length kmax. All cases where the trial
period limit is greater than the climbing length, i.e. m > kmax, are degenerate. When
m = 1, Algorithm 3 reduces to Algorithm 1.

6.3.2 Neighbour selection scheme

A technical detail when implementing the stochastic hill-climbing algorithm concerns
choosing whether the evaluation of the neighbourhood is exhaustive (selecting neighbours
without replacement), and whether the order of an exhaustive neighbour selection is sys-
tematic or randomised. An empirical study by Basseur and co.workers [141] suggested that
for a small finite neighbourhood on a noiseless landscape, an exhaustive neighbourhood
evaluation is preferable to a random one, while a random neighbourhood exploration order
is more natural considering the motivation for randomness by choosing to use a stochastic
search. Their experiments did not see significant differences between the different choices
however.
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Algorithm 3: Modified stochastic hill-climbing algorithm with trial period limit m,
on a noisy fitness landscape g.

Input : Initial point x0, trial period limit m, termination condition, the
maximum number of steps kmax, and m, the number of move
attempts/steps per g(x).

Output: xk,g(xk)
1 j = k = 0;
2 xk = x0;
3 while termination condition not satisfied do
4 if j == 0 then
5 Evaluate g(xk);
6 end
7 Select random neighbour x′k, and evaluate g(x′k);
8 if ∆g = g(x′k)− g(xk) ≥ 0 then
9 xk+1 ← x′k;

10 j = 0;
11 else
12 xk+1 ← x′k;
13 j = (j + 1) mod m;
14 end
15 k = k + 1;
16 end

In the following experiment, to observe whether the terminal noisy fitness is influenced
by such neighbourhood selection strategies, an exhaustive and a non-exhaustive version of a
random neighbourhood exploration order will be considered. Randomly chosen neighbours
are not replaced in the move pool for the following iteration in the former version, denoted
protocol a, until the move pool is exhausted and refreshed, but are immediately replaced
in the latter version, denoted protocol b.

6.3.3 Cumulative averaging of past sampled values

We considered averaging fitness values of a point across multiple visits rather than dis-
carding the measurements immediately after use. We will determine empirically whether
this helps climbers converge to a more localised region of space and reach higher terminal
fitness.

For each point x ∈ S, upon evaluation a single sample gj(x) is obtained and appended
to a history of sampled values history(x) = {gj(x)}. Then, a measured fitness evaluation
g(x) is returned by taking the mean of all the samples in history, as shown in Algorithm 4.
This approach progressively reduces in the fluctuation seen as the climber evaluates x

repeatedly, scaling with the inverse of the size of history(x), and is expected to add
intensification to the algorithm without increasing the sample size of the standard fitness
evaluations. This differs from progressively increasing the sample size r of the number of
samples to obtain in a single iteration, instead requiring r visits in order to reach a history
of r samples.

Each history(x) is limited in memory by rhist such that a new sample replaces the
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oldest sample in history(x) when rhist samples have already stored. The choice for
rhist could be down to a limit in computational memory, or to limit the noise reduction
so that climbers still experience some fluctuations to help drive exploration. The use
of history(x) introduces correlations in g(x) evaluations. If all samples are stored and
averaged throughout the search, then in practice history(x) can be replaced with two
numbers tracking the averaged fitness value and the number of samples considered.

Algorithm 4: Cumulative averaging metaheuristic for noisy hill-climbing evaluation
at x.

Input : Point x, history(x) array tracking past sampled values, maximum
number of samples rhist.

Output: g(x)
1 if length(history(x) >= rhist) then
2 Delete oldest entry in history ;
3 end
4 Sample x to obtain gsample(x);
5 Add gsample(x) to history(x);
6 Return g(x) = 1

length(history(x))
∑

j gj for gj in history(x);

6.4 Hill-climbing observations

In this section we present observations from executing Algorithm 3 augmented by different
protocols on the yield landscape model Q̂. We will describe the effects of m on the hill-
climbing behaviour in terms of the measured and true fitness of the climbers, for individual
climbing runs and for a collective set of runs to determine the expected average behaviour
of a hill-climbing protocol. A total of 24 different hill-climbing variants were considered
by combining the different protocols mentioned in the previous section, including the
trial period limits m = 1, 8, 1000 (denoted by protocol names m1, m8 and m1000) and
with no retrials of the current fitness (NR); non-exhaustive (a) and exhaustive (b) random
neighbour selection; and cumulative averaging with sample sizes rhist = 1 (S1), rhist =

16 (S16) and averaging over all past samples (WA i.e. with averaging). We include the
protocol NR that is adopted by climbers on a deterministic landscape where the current
fitness Q̂k(x) is taken to be the higher of the two fitnesses in the previous iteration i.e.
Q̂k = max{Q̂k−1(x), Q̂k−1(x′)}, to demonstrate the necessity of reevaluating the current
fitnesses upon a successful move on a noisy landscape. A NR climber will therefore always
have a non-decreasing Q̂ during the run. Climbs were terminated after kmax = 1000

iterations.
The hill-climbing outcome was highly dependent on the initial point. This is system

dependent—the same protocols and search parameters will produce slightly different out-
comes depending on the properties of the noisy fitness landscape. What we are interested
in is the overall effect of the behaviour and how different choices in parameter values
may influence the robustness and reliability of the search and its outcome, as a reference
for searching other systems using these protocols. We summarise the different observed
behaviour through a handful of points.
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(a) m1a-S1 (b) m1a-S16

(c) m8a-S1 (d) m1a-WA

(e) m1000a-S1 (f) m8a-S16

(g) NRa-S1 (h) NRa-WA

Figure 6.4: Fitness trajectories of example hill climbs of different protocols (see cap-
tions), with lines showing the true fitness ⟨Q̂⟩ (blue solid) and measured fitness Q̂ (red
dashed-dot) of the fitter candidate point at each iteration k. All start at x0 = (10, 19)
where the true fitness is 2.45.
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6.4.1 Fitness changes in hill-climbing

The true and measured fitness changes, Q̄ and Q̂, over the course of climbing trajectories
for different protocols initiated at (10, 19) and terminated after kmax = 1000 are shown in
Figure 6.4. Climbers were not necessarily close to each other at termination even if they
had similar terminal fitness. In the plots on the left, showing climbs with no cumulative
averaging (S1), Q̂ exhibited constant fluctuations at every iteration when m = 1 (m1)
(Fig. 6.4a), but saw a slower rate of fluctuations for m = 8 (Fig 6.4c) as the number of
trials dropped. By m = 1000 (Fig. 6.4e), fluctuations were sparse and changes in Q̄ also
became less frequent. A climber was essentially stuck at a single state point for large
intervals of k. Intervals of constant Q̂ were no greater than m iterations in length, but
intervals of constant Q̄ exceeded m iterations when multiple trials at the same location
are performed. The tendency to choose higher fitness in the move protocol resulted in
Q̂(x) > Q̄(x) for most steps. Only a versions of the protocols are shown—there were no
discernible differences found between individual trajectories of versions a and b.

Rapid jumps in yield fitness to levels of approximately 400 are indicative of a climber
reaching the peak region, occurring at larger k as m is increased. Moreover, an increasing
number of climbers failed to reach the global peak before termination. Climbers were
found to be attracted to the secondary peak at (7.2, 11) with Q̄ = 270.2(1 d.p) when
initialised near/at (10, 19) (e.g. the fitness activity between 100 ≤ k ≤ 200 in Fig. 6.4a).
NR protocols (Fig. 6.4g and 6.4h) saw sparse changes in their monotonically increasing Q̂

trajectory, failing to exhibit any significant climbing activity—the majority of the climber
population at termination was within two δε and δw away from x0.

Cumulative average protocols altered the fluctuations exhibited by Q̄ and Q̂ of the
climbs. Comparing m1a-S1 (Fig. 6.4a) with m1a-S16 (Fig. 6.4b) and m1a-WA (Fig. 6.4d),
a clear drop in the number of Q̂ fluctuations is seen. Relatively large Q̂ changes were
observed when a climber evaluates an unvisited point x. Subsequent evaluations of x

dampened the Q̂(x) fluctuations so longer intervals of constant Q̄ were observed. For WA,
long intervals of being stationary in x resulted in a converged Q̄ as history(x) increased,
resulting in even longer stationary intervals. Cumulative averaging had little effect on the
frequency of yield fluctuations of NR protocols (Fig. 6.4h).

Overall, we see that the activity in fitness changes is a lot higher for low m and low rhist

values. Increasing m and rhist values both independently reduce this activity, but does not
necessarily cause a drastic degradation in terminal fitness performance when x0 = (10, 19).
The dependence of terminal fitness on x0 will be covered in the next section.

6.4.2 Averaged fitness performance for different protocols

Independent hill-climbing runs produce different outcomes. We capture the general effects
of the different hill-climbing variants by considering the averaged Q̄ trajectory of the
climber population. We expect Q̄ to increase as more climbers converge towards the
global peak.

A set of 500 hill-climbing runs terminating after a maximum of kmax = 1000 iterations
were performed for each protocol combination described in Section 6.4 at various initial
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points x0. An overview of the average Q̄ outcomes for a selection of initial points x0

is found in Table 6.1, coarsely ordered by the expected memory used and level of book-
keeping involved in the protocol definition (m1a-S1 does not track any yield values, NRa-WA
holds all yield values throughout the climb). A subset of averaged yield trajectories are also
plotted in Figure 6.5, chosen for their distinctive initial location on the yield landscape:
(8.6, 4)—global maximum; (6, 10)—from fluid region via the secondary peak; (14, 2)—at a
ridge; and (14, 19)—far away from the peak. Selected climber distribution plots showing
terminal locations are shown in Figures 6.6 and 6.7 on pages 101 and 102.
Table 6.1: Average Q̄ at various iterations k for climbs starting at different initial
points. The sets of hill-climbing protocols are categorised by the cumulative averaging
scheme used (S1, S16, or WA). Each cell is coloured according to their normalised value
within each column i.e. initial point. A darker fill indicates higher relative fitness.

Protocol k Initial point

(6,2) (6,10) (6,19) (8.6,4) (10,2) (10,10) (10,19) (14,2) (14,10) (14,19)

S1
m1a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22

50 49.27 141.93 55.30 440.93 401.47 353.17 10.81 311.30 224.03 1.00
200 362.19 380.77 333.28 423.40 398.16 403.55 221.65 318.47 308.94 93.14

1000 409.93 407.59 411.70 405.68 397.82 403.86 404.68 357.30 357.09 353.49

m1b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 65.17 173.16 74.19 444.74 406.43 370.06 13.67 317.88 268.27 1.32

200 385.24 404.60 375.41 428.32 409.24 413.36 258.12 326.68 324.39 118.05
1000 418.44 418.62 418.55 413.94 411.63 412.98 415.16 369.34 372.47 367.45

m8a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 45.88 134.86 48.77 446.85 407.76 354.68 7.73 316.07 234.60 0.71

200 359.10 373.06 323.98 429.88 407.30 412.91 193.49 322.39 316.68 74.01
1000 419.50 422.13 421.65 416.09 411.04 412.03 416.63 359.73 361.09 344.46

m8b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 59.48 156.43 61.45 453.09 411.15 368.94 8.26 323.29 271.17 0.77

200 381.17 399.18 356.43 437.09 413.54 421.10 215.36 330.22 328.47 86.72
1000 428.24 430.69 429.78 425.76 418.40 422.76 427.09 370.72 370.79 352.87

m1000a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 41.28 91.74 25.11 458.82 418.22 335.26 5.06 322.78 220.11 0.54

200 285.48 261.43 160.84 443.13 415.93 401.46 76.83 327.87 310.93 22.47
1000 389.90 395.02 358.32 433.68 420.66 419.53 304.94 345.76 344.38 170.39

m1000b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 50.51 108.66 32.11 460.51 420.87 348.05 5.81 327.38 252.47 0.68

200 295.56 275.48 176.81 446.58 421.94 408.59 87.40 333.52 321.02 26.09
1000 391.92 398.89 368.61 438.82 423.45 426.55 313.44 352.07 349.80 172.26

NRa 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 36.92 51.50 17.06 457.47 420.54 298.42 3.13 320.97 175.60 0.36

200 210.33 114.67 51.81 449.48 422.74 337.68 5.55 322.78 249.19 0.64
1000 230.91 157.85 79.79 444.44 423.81 365.57 15.80 322.69 269.39 2.17

NRb 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 44.59 60.02 21.28 457.99 421.41 308.35 3.15 321.23 201.23 0.36

200 207.72 122.53 57.44 449.51 423.01 339.94 6.05 323.10 257.20 0.56
1000 224.08 166.15 81.52 445.47 424.65 366.95 16.81 323.70 276.40 2.65

S16
m1a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22

50 45.70 98.22 25.82 510.30 431.82 373.99 4.40 347.40 272.55 0.53
200 239.81 253.01 148.27 513.93 448.61 445.44 98.43 360.90 354.24 23.83

1000 334.30 371.15 357.13 516.26 486.86 489.83 364.22 376.41 376.94 196.98

m1b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 53.14 116.67 29.99 512.35 433.42 383.41 6.83 349.99 302.48 0.68

200 243.16 265.71 156.39 515.08 452.04 449.56 120.01 362.85 357.50 29.18
1000 322.00 367.39 354.48 517.48 490.25 492.36 371.02 376.60 377.37 192.78

m8a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 40.85 79.02 17.85 507.90 432.38 356.18 4.30 343.62 255.29 0.40

200 234.81 201.03 92.11 512.93 442.71 429.41 47.50 357.36 347.54 9.25
1000 301.44 327.71 291.72 515.97 474.75 478.97 302.05 372.23 372.03 134.31

m8b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 49.51 89.11 21.94 510.38 433.36 362.74 4.22 344.75 280.39 0.45

200 237.27 200.51 97.63 514.07 442.95 429.88 46.64 358.88 351.76 9.41

Continued in next page.
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Protocol k Initial point

(6,2) (6,10) (6,19) (8.6,4) (10,2) (10,10) (10,19) (14,2) (14,10) (14,19)

1000 297.85 330.58 294.57 516.85 475.22 477.63 304.31 372.43 372.99 135.78

m1000a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 39.33 44.04 11.39 497.68 429.93 317.81 3.20 329.20 212.98 0.36

200 200.97 75.71 24.18 499.76 432.53 341.96 5.47 333.03 276.65 1.00
1000 224.50 99.38 35.30 502.04 435.87 364.96 11.13 336.76 302.84 2.41

m1000b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 44.33 50.38 12.67 498.39 429.61 322.60 3.56 329.15 234.50 0.38

200 201.94 76.86 23.42 500.92 431.83 343.27 5.56 332.29 282.50 0.80
1000 223.81 100.28 32.84 502.63 435.47 364.15 9.08 336.71 305.09 2.54

NRa 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 34.75 34.19 11.89 472.32 421.58 273.08 2.91 320.91 150.94 0.35

200 177.61 54.88 20.37 474.10 422.73 288.34 3.09 323.72 197.17 0.35
1000 199.43 73.34 28.10 475.81 424.47 302.86 3.78 326.34 221.89 0.42

NRb 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 40.52 33.72 12.80 471.84 421.53 270.46 2.80 319.87 160.01 0.35

200 180.20 52.09 20.32 473.57 422.55 285.99 3.07 322.42 195.55 0.43
1000 202.67 72.27 27.41 475.41 424.36 301.93 3.23 325.32 220.51 0.43

WA
m1a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22

50 41.30 92.34 22.18 510.58 435.58 369.32 5.07 348.83 269.92 0.50
200 222.20 165.67 71.45 515.38 448.50 422.75 63.28 360.58 348.49 10.64

1000 241.22 185.23 87.86 516.88 451.51 430.87 157.04 362.95 356.01 31.26

m1b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 52.36 109.01 27.34 513.03 437.85 380.62 5.69 350.52 300.17 0.43

200 222.36 169.17 70.99 516.38 449.39 422.78 62.51 361.18 351.15 11.43
1000 237.88 185.91 85.81 517.19 452.04 430.72 149.54 363.29 357.44 29.82

m8a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 41.11 75.68 18.51 507.59 432.54 356.54 3.82 343.49 253.76 0.41

200 226.55 157.16 66.23 513.91 444.82 415.72 34.56 357.97 343.40 5.70
1000 249.06 181.50 88.29 516.67 451.53 430.16 130.19 362.93 356.47 27.53

m8b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 48.44 88.74 21.46 509.88 432.80 363.44 4.66 345.04 280.09 0.44

200 222.84 160.88 63.20 515.67 445.55 413.78 35.58 358.21 344.35 5.31
1000 242.19 184.85 85.84 517.72 452.26 426.93 117.37 363.00 355.70 25.57

m1000a 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 39.69 45.11 11.29 497.46 429.79 320.42 3.15 329.50 216.44 0.36

200 196.85 64.78 20.53 498.78 430.75 333.22 4.61 330.93 265.04 0.63
1000 208.28 66.79 21.59 499.06 430.92 335.31 5.16 331.11 270.57 0.80

m1000b 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 46.32 47.01 13.04 497.36 430.31 321.79 3.21 328.92 232.74 0.36

200 193.17 62.86 19.44 498.61 430.92 331.23 4.20 330.16 264.32 0.82
1000 203.76 66.05 20.58 498.88 431.10 333.06 4.67 330.38 268.04 0.82

NRa 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 35.29 31.28 12.08 472.42 421.30 269.86 2.82 320.51 150.11 0.34

200 177.03 41.30 17.69 473.16 421.41 276.67 2.85 321.08 182.34 0.35
1000 186.74 43.31 18.36 473.30 421.45 277.63 2.92 321.15 186.16 0.35

NRb 0 0.00 0.31 0.80 522.77 448.22 16.97 2.45 306.09 1.20 0.22
50 42.62 35.27 12.45 473.11 421.56 271.30 2.81 318.94 156.90 0.35

200 169.56 44.11 16.28 473.68 421.78 276.51 2.94 319.46 180.53 0.40
1000 179.33 45.62 17.31 473.91 421.83 277.41 2.94 319.53 183.69 0.40

Focusing on S1 cases first, for most variants an exhaustive neighbourhood selection (b)
led to better terminal yield than a neighbourhood selection with replacement (a). Proto-
cols with low m have more explorative power, reaching high yield even when initialised
(far) away from the global peak region (Figs. 6.6a, 6.7a, 6.7b). The skewness of the termi-
nal climber distribution for low m reflects the underlying Q̄ landscape around the global
peak region. Protocols with high m retained high Q̄ better at k = 1000 when initialised
at a high Q̄ point already (Figs. 6.6d, 6.7c).

A reduction in the terminal Q̄ for all protocols initialised at high Q̄ points is seen for all
m, as climbers moved away from the global maximum x∗ = (8.6, 4) (e.g. Fig. 6.5a). Note
the terminal yield for NR was lower at k = 1 due to a default initial yield of Q̂(x0) = 0;
NR climbers all move away from x0 for k = 1. The reduction in Q̄ by all protocols
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(a) S1 (b) S16

Figure 6.5: Plots of average true fitness Q̄ over 500 hill climbs at different initial points
for (a) S1 and (b) S16 averaging schemes. Legend at top applies to all plots. Hill-climbing
algorithms adopting protocol b (orange) consistent achieve higher fitness than the protocol
a (blue) counterpart. For cumulative averaging with no memory limit (WA), the fitness
changes are similar in form to rhist = 16 case but with significantly lower increase for
each case.
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demonstrate the ‘melting of the peaks’—the effective annealing of peaks due to the noise
enabling downhill moves—described by Levitan [144] (See Section 5.4.3). The x0 = x∗

case gives us an idea of the best Q̄ attainable at termination, characterising the optimal
steady state of the climber population on the Q̂ landscape. The average terminal fitness
Q̄(xkmax) was higher for larger m (Fig. 6.5a), suggesting weaker annealing effects (Similar
behaviour is found when comparing the distributions of Fig. 6.6a and Fig. 6.6d). Protocol
NR resulted in the highest Q̄.

Starting away from the global peak region, the terminal Q̄ was heavily influenced by
the choice of m, but in general increased in fitness by the end of their runs. Infrequent
retrialing still led to larger improvement in expected fitness when climbers were initiated
at x0 only a small distance away from the hill and/or only encountered few local maxima
to reach the global peak region (e.g. when x0 = (10, 10) — See Fig. 6.6a and 6.6d). For
x0 = (14, 2) (Fig. 6.5c), m1 and m8 climber populations reached similar average terminal
Q̄ to the x0 = x∗ case (see Table 6.1). m1000 climbers had a lower average terminal Q̄.

When x0 is far from the global peak region, climbers encountered more local maxima.
m1a and m8a climbers yielded moderate average terminal Q̄ (Fig. 6.6c), whereas climbers
adopting the m1000 or NR protocols resulted in suboptimal terminal Q̄ (Fig. 6.5e) or low
terminal Q̄ (NR protocol in Fig. 6.5g).

Switching on the cumulative averaging (S16 and WA) either improved or worsened the
terminal yield depending on the choice of x0. Cases of x0 where the climber popula-
tions comfortably reached the global peak region in the S1 scheme saw an improvement
in terminal fitness when cumulative averaging S16 was switched on (Figs. 6.5b, 6.5f, and
Fig. 6.6b). m = 1 climbers stayed robust to the choices of x0 and cumulative averag-
ing scheme. All other x0 points performed worse when S16 or WA schemes are adopted,
with significantly less climbing activity seen for the respective m1000 and NR protocols. In
these cases, climbers were concentrated in very few state points where local maxima lie,
countering the annealing of the peaks, but often covered only a short distance from x0

(Fig. 6.6e, 6.7d, 6.7e, 6.7f). Interestingly, the cumulative averaging also affected the per-
formance between a and b climbing performances. For WA, a climbers generally performed
better than b. A possible reason for this is that the ability to pick the same neighbouring
point in quick succession for a avoids the accumulation of too many samples in the time it
takes to consider the same pair of state points, slowing down the rate of noise reduction.

We highlight the delicate balance in intensification and diversification provided by
changing m and rhist using Figs. 6.6a, 6.6b and 6.6c. When x0 = (10, 10), m1a-S16
achieves this balance with most climbers reaching x∗, compared to m1a-S1 that spreads
out too much, and m1a-WA where answers are scattered in a few local maxima near x∗.

In Table 6.1, the negative correlation between averaged Q̄ and m for WA protocols
with a x∗ start is the reverse of the positive correlation seen for the S1a protocols. Three
of the WA protocols are also displayed in Figs. 6.6g, 6.6h, and 6.6i, showing that less
climbers are at x∗ when m = 1000 than when m = 1 or 8. We suspect that this negative
correlation reflects how the cumulative averaging gradually freezes a climber’s activities.
A climber with too strong a tendency to move uphill (e.g. m = 1000) saturates history
of the neighbouring points faster as it gets stuck in these points, thus reducing the noise
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(increasing the number of past samples in history) in the neighbouring points faster
than the climbers are able to return to x∗. Again, this highlights the delicate interaction
between these two metaheuristics with the landscape. Figs. 6.7d and 6.7e illustrate how
the prominent secondary peak hinders climbers initiated around the low ε high w region
from converging to the global peak region.

To better understand how the averaged terminal Q̄ depends on m, we study the Q̄

distribution of the climber populations in the next section.

6.4.3 Influence of m on terminal fitness distribution of climbers

In the previous section, we saw that the averaged terminal fitness was dependent on m.
To look further into why this is the case, we study the distribution of climber fitnesses.

The late-time Q̄ distributions for climber populations with S1 and a but different m

values are plotted in Figure 6.8 on page 103. Focusing on the climbs initialised at the
global peak x∗ (blue circles) only, the late-time Q̄ distribution was skewed towards high Q̄

values when m = 1, with most climbers in the bin centred at Q̄ = 460. This distribution
becomes increasingly skewed as m is increased due to more climbers having yield values in
the range 430− 470 (Also refer to Fig. 6.6a and 6.6d, showing a similar terminal climber
distribution). These distributions approximate the best terminal climber distribution for
each m if all climbers reached the global peak region.

Next, we compare these distributions with those initialised at x0 = (6, 19), (14, 19).
Climbers with m = 1 and m = 8 performed well when x0 = (6, 19), converging to the
same distribution, but could not cope when x0 = (14, 19), with a large spread in Q̄ values.
Some climbers still had Q̄ < 10. The late-time Q̄ distribution was subject to x0 when
m = 1000. Around 10% of climbers have Q̄ > 10 when x0 = (6, 19), rising to around
half the population when x0 = (14, 19). The remaining climbers have fitnesses in localised
pockets of yield values where they are stuck in local maxima. For x0 = (6, 19), climbers
stuck in the secondary peak (see Fig.4.8) contribute to the spike in the Q̄ = 280 bin.

6.4.4 Discussion

The runs on Q̂ so far suggest that hill-climbing can find the global peak region of a yield
landscape, and thus the optimal or near optimal interaction parameters for the targeted
assembly of a self-assembly system. The spread of the terminal climber locations high-
light the annealing of the peaks, suggesting that hill-climbing is more suited for finding the
global peak region rather than the global peak. While protocols a and b produced little
difference in the climbing behaviour, both trialing the current fitness and cumulative aver-
aging led to different results. Cumulative averaging self-evidently provided intensification
to a hill climb which induced a poor climbing behaviour when climbers were initialised far
away from the peak, allowing a climber to localise its exploration to a smaller region near
a local maximum. Surprisingly, the trialing of current fitness values also exhibited inten-
sification effects, although much weaker, as seen in the gathering of climbers in m = 1000

in Fig. 6.8 and when comparing the terminal climber distributions in Figs. 6.6a and 6.6d.
We will understand why this is the case in the next section.
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(a) m1a-S1: (10, 10) (b) m1a-S16; (10, 10) (c) m1a-WA; (10, 10)

(d) m1000a-S1; (10, 10) (e) m1000a-WA; (14, 2) (f) m8a-S1; (14, 19)

(g) m1a-WA; (8.6, 4) (h) m8a-WA; (8.6, 4) (i) m1000a-WA; (8.6, 4)

Figure 6.6: Plots of terminal climber distribution on P. Circle markers show where
climbers are found, semi-transparent to show overlapping markers. Marker area scales
linearly with number of climbers found at each point. Corresponding hill-climbing protocol
and initial point x0 (star) are given in caption. (a),(b),(c) demonstrate the necessary
use of averaging to achieve smaller spread in climber distribution, but can result in too
much trapping at local maxima as rhist is increased. (a) and (c) highlights the weak
intensification effects introduced when m is increased. (e) shows poor climbing ability
when m and rhist are both too high. (f) illustrates the high explorative power required by
climbers to traverse a plateau region. (g),(h),(i) highlights the sensitive balance between
rhist and m; see main text.
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(a) m1a-S1; (10, 19) (b) m8a-S1; (10, 19) (c) m1000a-S1; (10, 19)

(d) m1a-S16; (6, 10) (e) m1a-S16; (6, 19) (f) m1a-S16; (10, 19)

Figure 6.7: Plots of terminal climber distribution on P. Circle markers show where
climbers are found, semi-transparent to show overlapping markers. Marker area scales lin-
early with number of climbers found at each point. Corresponding hill-climbing protocol
and initial point x0 (star) are given in caption. Marker area scales linearly with number
of climbers found at point. (a),(b),(c),(f) illustrate how high m and high rhist both inde-
pendently increase intensification but decrease diversification, reducing search robustness.
(d),(e) shows the secondary peak hindering convergence, and is an example of a major
obstacle shared by close-lying x0 to yield similar expected terminal behaviour. (d),(e),(f)
show how climbers may gather at drastically different x, compromising reliability and
robustness.
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Figure 6.8: Histogram of the true fitnesses of multiple sets of S1a climbs between
800 ≤ k ≤ 1000 for (a) m = 1, (b) m = 8, and m = 1000, each set starting at either (6, 19)
(triangle), (14, 19) (square), or the global maximum x∗ = (8.6, 4) (circle). Bins are centred
at multiples of 20, with bin widths of 20. For each population of 4000 climbers, Q̄ at step
k is tallied to produce a histogram. This is performed separately at k = 800, 900, 1000 to
then obtain a bootstrapped mean of them at each bin. Error bars are smaller than the
marker size for all points. Q̄ at x∗ is 522.7 (1 d.p.).
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Effective x0 choices within P led to efficient and reliable search outcomes for all hill-
climbing variants. A random initialisation of the climb calls for a low m and low rhist

to ensure consistent convergence to the global peak region. The original stochastic hill-
climbing algorithm (equivalent to m1a-S1) is thus the most robust amongst the variants
studied due to its explorative power, is reliable in reaching the global peak region but
has relatively low accuracy in terminal result as it does not converge to a localised region
once at the global peak region. Compare this to an increased m or rhist protocol, where
hill-climbing becomes less robust (climbing performance is reliant on choice of x0), less
reliable (as climbers may end up in drastically different parts of P e.g. Fig. 6.7c), but more
accurate (in the sense that the climbers are localised within the respective regions, and
thus consistency in the result is guaranteed if the correct basin of attraction is found). The
balance between intensification and diversification is controlled by the balance in r and
rhist. It is therefore worth considering an scheduled implementation of the current fitness
trial period and cumulative averaging, where increasing m and rhist values gradually
provides the best opportunity for a climber to both reach the global peak region robustly
and improve the yield value of the solution at termination. This would achieve a similar
effect to increasing the evaluation sample size r, but without increasing the computational
intensity of the search (in fact the computational intensity would be decreased).

The least accurate Q̂ approximations of the noise fluctuations in a simulated Q were
found for low Q̂ values. Certain state points were therefore consistently local maxima,
which led to some climbing trajectories and behaviour being favoured locally, especially
at low Q̂ value. We do not expect this to have a significant effect on the qualitative inter-
pretation of the trajectories and its version executed with VMMC simulation, particularly
at high yield values where accurate approximations are found.

The standard stochastic hill-climbing algorithm (m1a-S1) is able to consistently reach
the global peak region within 300 iterations, with the final search outcome robust to the
choice of x0. On the other hand, increasing m or rhist reduces the robustness of the
algorithm as climbers became less proficient at finding the global peak when initiated
far away from the global peak region. In terms of reliability, measuring the variability
of the outcome, a balance in the protocols seems best. m1a, although often reaching
the same distribution, has a broad spread in terminal fitness and location within the
local region. m1000a has more confined spreads, but is distributed across the parameter
space. Compare this to the densely populated points achieved when increasing rhist, which
enables over 95% of the climber population to converge to a single point at termination
in some cases. This highlights the necessity for fitness averaging over multiple samples,
through the adoption of cumulative averaging or increased sample size per evaluation, as
the only way to gain more accurate and reliable search outcomes.

6.5 Move probabilities

In Section 5.4.3 we covered how Levitan’s study [144] of the NK model showed that a
decreased probability of finding fitter neighbours along with a decreased average difference
in fitness between neighbours as the fitness value becomes higher both contribute to the
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initial fast rise and gradual plateauing of the fitness trajectory of an adaptive walk in the
noiseless version of the model. Meanwhile, additional probabilities were considered for a
noisy NK model landscape, characterising the likelihood of an accepted move coinciding
with the same move type (uphill or downhill) on the underlying fitness landscape. Al-
though this explains why increasing the noise variance reduces the average fitness reached
by the walkers, these probabilities fail to capture the behaviour of reusing fitness mea-
surements in a trial and why increasing the trial period limit m reduces the annealing
effects of noisy local search. In this section, rather than focusing on fitness-dependent
move probabilities, we consider fluctuation-dependent move probabilities to elucidate the
influence m has on the hill-climbing behaviour.

Recall that in a noisy landscape, the measured fitnesses g(x) and g(x′) of two neigh-
bouring points x and x′ are subject to two factors: the difference ∆f between the un-
derlying true fitness values f(x) and f(x′); and the noise contributions Y (x) and Y (x′).
We consider the move probabilities after a climber has evaluated its current position x to
yield a measured current fitness g(x) = f(x) + Y (x), i.e. the probabilities given Y (x).

According to Algorithm 3 on page 92, the condition for a successful move is

∆g = ∆f + Y (x′)− Y (x) ≥ 0, (6.3)

which gives
Y (x′) ≥ Y (x)−∆f. (6.4)

∆g < 0 results in a failed or unsuccessful move attempt. Recall that a successful move
can be uphill or downhill in f [144]. We call a successful move that is also an uphill
move in f a correct move (∆f > 0), and one that leads to a decrease in f an incorrect
move (∆f < 0)—this is equivalent to the true positive (true+) and false positive (false+)
moves mentioned in Section 5.4.3. We consider neutral moves in true fitness (∆f = 0) as
correct moves as well.

For a neighbour x′j ∈ N (x), let the probability of a move occurring given Y (x) be

Pj(Y (x)) = P (Y (x′j) > Y (x)−∆fj)

=

∫ ∞

Y (x)−∆fj

P (Y (x′j))dY (x′j), (6.5)

where P (Y ) is the probability density for sampling g with fluctuation Y .
The probability of a successful move given Y (x), for a fitness value f , is

P (∆g ≥ 0|Y (x), f) =

∑
j Pj(Y (x))

∑
j

∫∞
−∞ P (Y (x′j))dY (x′j)

, (6.6)

where the sums are over the available neighbouring points x′j ∈ N (x). The domain of
Pj(Y (x)) decreases as Y (x) increases, thus P (∆g ≥ 0|Y (x), f) drops when Y (x) is higher.
Intuitively, it is likelier to have g(x′) ≥ g(x) if Y (x) is more negative (See Fig. 6.9).
The form of this probability curve is dependent on the average ∆f between neighbouring
points found at points with fitness value f in the same manner as in Ref [144]. However,
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Figure 6.9: Schematic illustrating the likelihood of outcomes for a climber moving away
from a point x after its current fitness g(x) = f(x) + Yx is evaluated. The point x has
two neighbouring points x1 and x2 with fitnesses f(x1) and f(x2) respectively and noisy
evaluations g represented by the normal distribution curve at the points on the fitness
curve f . A larger proportion of move attempts, where a random neighbour is chosen
and its fitness g(x′) evaluated, will be a successful move (∆g > 0) for negative Yx (left
diagram) than for positive Yx (right diagram). On the other hand, a successful move
is likelier to have led to a correct move (∆g > 0 and ∆f > 0) than an incorrect one
(∆g > 0 but ∆f < 0) if Yx is more positive than negative, illustrated by the relatively
larger proportion of noisy distribution above g(x) between points x1 and x2 when Yx is
positive.

we expect to observe the same behaviour for each f value.
The probability P (∆f ≥ 0|∆g ≥ 0, Y (x), f) that, given fitness f , a successful move is

a correct one is also dependent on the fluctuation Y (x), given by

P (∆f ≥ 0|∆g ≥ 0, Y (x), f) =

∑
j,∆fj≥0 Pj(Y (x))
∑

j Pj(Y (x))

=

∑
j,∆fj≥0 Pj(Y (x))

∑
j,∆fj≥0 Pj(Y (x)) +

∑
j,∆fj<0 Pj(Y (x))

, (6.7)

where the summation subscript ∆fj ≥ 0 (∆fj < 0) indicates the summation of neighbours
with higher (lower) fitness than x. This is the proportion of the probabilities Pj(Y (x))

between ∆fj > 0 and ∆fj < 0 neighbours (See Fig. 6.9). Note that integrating Eqn. (6.7)
over all Y for a given fitness value yields P (∆f > 0|∆g > 0, f), which is what Levitan
studied (except the handling of neutral moves).

Equation (6.6) and (6.7) was sampled over the course of several hill climbs on Q̂, using
the normalised fluctuation Y ∗ = Y (x)/σ(x) since the fluctuations vary with x, effectively
integrating Equation (6.6) over a selected range of fitness values f , to yield the plots in
Figure 6.10. In Figure 6.10a, the probability of successful moves is almost one for highly
negative Y ∗, dropping to zero as expected when Y ∗ is highly positive. Meanwhile, only
approximately 40% of successful moves are correct when Y ∗ is highly negative, but this
increases up to 1 for highly positive Y ∗ (Fig. 6.10b). Large variations at the tails of
these curves are due to the small sample size and the different truncations of the TND
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(a) (b)

Figure 6.10: (a) Plot of P (∆g > 0, Y ∗(x)) for a typical hill climb. Legend corresponds
to m. (b) Plot of P (∆f > 0|∆g > 0, Y (x)). Legend corresponds to m.

distributions at each point.
Note that the overall probability of seeing correct moves for a fitness value f is given

by
P (∆f ≥ 0, f) ∝

∫
P (∆f ≥ 0|∆g ≥ 0, Y, f)P (∆g ≥ 0|Y, f)P (Y )dY. (6.8)

Crucially, these probabilities are independent of m, in agreement with the lack of effect of
m observed in Figs. 6.10a and 6.10b.

To consider the effects of m, the probability of a trial resulting in a successful move, a
successful trial, is examined:

P (successful trial|Y (x),m) = 1− (1− p)m. (6.9)

At the cost of more move attempts (iterations) per sampled Y , moves with more positive
Y have a relatively higher improved chance of being successful when m is increased.

Figure 6.11a shows a histogram of the relative frequency of Y ∗ per iteration. The
distribution for m = 1 reflects the averaged TND noise distribution of the evaluations,
peaking around Y ∗ = 0. Increasing m effectively shifted this distribution in the positive
direction as higher Y ∗ was reused more often, such that moves with a higher chance of being
a correct one were attempted more frequently relative to its occurrence in evaluations. In
Figure 6.11b, the relative frequency of successful moves peaks at Y ∗ = −0.5 ± 0.2 for
m = 1. Increasing m again shifted this peak to the right, but also scaled down the total
number of successful moves. Consequently, fewer downhill moves were performed as m

was increased.

6.5.1 Discussion

This section showed that the dependence of the hill-climbing algorithm on the fitness
function shown by Levitan [144] is still the crucial factor in the behaviour of modified
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(a) (b)

Figure 6.11: (a) Plot of relative frequency of Y ∗ appearing in each iteration in a typical
climbs. Legend corresponds to m values. (b) Plot of relative frequency of successful
moves, P (∆g > 0, Y (x)), in a typical climb. The area under each curve represents the
total number of successful moves, decreasing as m increases. The peak shifts away from
negative Y (x), where accepted moves are likelier to be downhill moves. Legend corresponds
to m values.

hill-climbing algorithm. Larger f values have reduced P (∆f > 0|∆g > 0, f) as it becomes
likelier for climbers to move downhill due to noise. The maximum trial period limit m

merely enhances these chances relatively, suppressing the likelihood of moving away from
the local maxima, but cannot overcome small initial probabilities.

Almost all attempts are accepted if the current evaluation g(x) has a highly negative
fluctuation Y ∗, whereas failed moves are likelier if the relative fluctuation Y ∗ is large and
positive. A move attempt with more positive Y ∗ has a lower chance of being successful,
but is likelier to result in climbing uphill in f should a move occur. When m is too large
it has a negative effect on the climbing behaviour as the drop in successful moves is not
worth the evaluation cost. Striking a balance in the choice of m would combine the best of
searchability and efficient exploring of the space. The trial period limit m works differently
to the standard approach of reducing noise variance by increasing the evaluation sample
size r, providing an independent way to manipulate the noise seen by a climber.

6.6 Climbing to threshold fitness

Having looked at how m affects the hill-climbing protocol, we understand that increasing
m reduces the number of downhill moves at the cost of having to fail more move attempts.
The sweet spot for m is found when a sufficient increase in the number of correct moves
is achieved without expending too many attempts deemed likely to fail. More specifically,
there is an optimal choice of trial period limit m∗ where on average, after m∗ consecutive
failed move attempts using the same measured current fitness Q̂(x), it is more beneficial
to reevaluate the current fitness. In this section, we empirically find m∗ for the modified
stochastic hill-climbing algorithm with protocols a and S1 on the yield landscape model
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Figure 6.12: Plot of various counts for threshold climbs. For each m value, all 500
climbers start from the same point, and are terminated upon reaching a fitness ⟨Q̂⟩ ≥
Q̄∗ = 370. The number of iterations (NSTEPS); evaluations (NEVALS); trials (NTRIALS);
and successful moves (NSUCCS) required for climbers to reach a value of Q̄∗ are considered
and averaged.

Q̂ by performing climbs from a low initial yield value and observing how quickly a chosen
fitness threshold Q̄∗ is reached. This is especially relevant for searches where a high self-
assembly yielding region of parameter space is desired rather than the maximum, thus
locating the global peak region suffices, or when it is used as part of a system of search
techniques (e.g. hill-climbing before a high-resolution brute-force scan). Again, this is
complementary to the idea of searching under practical constraints.

6.6.1 Experimental details and results

To perform a hill-climbing run to threshold fitness Q̄∗, a climber is initialised at point
x0 ∈ P with Q̄(x0) < Q̄∗, and allowed to climb Q̂ until it reaches a true fitness value
Q̄ ≥ Q̄∗ for the very first time, at which point the search is terminated. Each experiment
in this section were performed for a set of 500 independent threshold climbing runs, before
taking an average over each set of observations.

Figure 6.12 shows the averaged observations for a set of threshold runs initialised from
x0 = (14, 19), where Q̄(x0) ≈ 0.22, and terminated when a climber reached Q̄∗ = 370,
or terminated prematurely when k exceeded kmax = 105 iterations. Only 6.5% of points
in P have Q̄ ≥ 370. The average number of steps taken to reach Q̄∗, NSTEPS, increased
monotonically as m increased, indicating that longer hill climbs were required to reach
the same fitness threshold. Contrast this with the asymptotically decreasing NTRIALS, the
number of trials performed during the threshold run. For m = 1, NTRIALS=NSTEPS since a
climber reevaluates its current fitness regardless of the outcome of the preceding move. As
m increased, climbers performed fewer trials to reach Q̄∗, exhibiting a rapid initial decrease
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(the number of trials is almost halved when m = 3) before converging asymptotically to
NSUCCS (the number of successful moves executed) since a climber is forced to evaluate Q̂

after a successful move. NSUCCS also indicates the distance travelled by a climber. The
decrease in NSUCCS as m was increased suggests a more direct convergence to Q̄∗ with
fewer downhill moves.

The total number of evaluations performed is given by NEVALS (NEVALS = NSTEPS +

NTRIALS). From NEVALS=620 at m = 1, NEVALS reduced initially to its lowest value of
535 at m = 3 (roughly 80% drop), before steadily rising as m continued to increase. By
m = 40 more evaluations were required to reach the threshold fitness than when m = 1.
For convenience we will refer to the decreasing part of the NEVALS curve at small m as the
dip and the increasing part after the minimum value as the tail.

Threshold hill climbs were also executed for different initial points x0 and evaluation
sample sizes r, and for an additional threshold fitness value of Q̄∗ = 250. 19.5% of points
in P have Q̄ ≥ 250. NEVALS differed in magnitude for different combinations of x0 and
r, an amalgamation of starting at various distances from high fitness and having different
climbing behaviour. To isolate the effect of m on hill-climbing performances under all
these different circumstances, the number of evaluations is normalised by the m = 1 case
for each experiment to observe the relative changes in NEVALS, shown in Figure 6.13 on
the facing page.

Similar to Figure 6.12, non-monotonic increases in NEVALS were observed for all con-
ditions tested, and consistent across the two chosen Q̄∗. Focusing on Q̄∗ = 370, in
Figure 6.13a where r = 1, the form of the NEVALS curve was similar to that found in
Figure 6.12 (forms in NSTEPS and NTRIALS curves were also similar (not shown)). A min-
imum in NEVALS of up to 76% was found in NEVALS for integer m ∈ [2, 10]. The drop
in NEVALS existed for all tested m values between 2 and 50 compared to the m = 1 case
when initialised at (6, 2), but was only found to improve NEVALS for a narrow window of
2 ≤ m ≤ 30 when initialised at (10, 19), and at an even narrower window 2 ≤ m ≤ 10

when initialised even further away at (14, 19). The dip lasted for a shorter number of m,
while the tail of NEVALS was much steeper when x0 was further away from high fitness.

In Figure 6.13b, climbers were all initialised from (10, 14). For this set of threshold
runs the sample size of each evaluation was varied to test the effect of m on climbs for
different levels of noise fluctuations (increasing r reduces σ). Each NEVALS curves exhibited
a relatively steeper increasing tail and shorter dip as r increased.

Surveying the other attributes, the increase in NSTEPS is responsible for the form of the
NEVALS tails in all cases. NTRIALS consistently converged asymptotically to approximately
40% of the m = 1 case across all conditions except for r = 8, where there was a convergence
down to 20%. Overall, for different x0 and r tested, and for threshold fitnesses Q̄∗ = 250

and 350, m∗ = 3 gave the most consistent reduction in NEVALS, being at 80%± 3% of the
m = 1 case.
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(a)

(b)

Figure 6.13: Plots of relative number of evaluations NEVALS taken to reach threshold
fitness Q̄∗ for a range of maximum trial periods m between and including 1 and 50 for (a)
different initial points (columns), and (b) for different evaluation sample size r (columns).
NEVALS for different m cases are normalised by the m = 1 case. 500 climbs were performed
for each set of runs. In (a), the initial points (ε, w) = (6, 2), (10, 19) and (14, 19) get further
away from the global peak x∗, but all have Q̄ < 2.5. In (b), climbs were all initialised
at (10, 19), The solid line (black) is a guide, and the dashed line (blue) is a copy of the
left-most case on the same row, redrawn for comparison.
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6.6.2 Discussion

NEVALS signifies the computational effort required for a climber to reach threshold fitness,
while NSTEPS indicates the minimum execution time required. An overall drop in NEVALS
is possible when the rapid decrease in NTRIALS outweighs the small increase in NSTEPS at
low m. However, a climber with an m value too high wastes iterations. The effectiveness of
reusing the same Q̂(x) thus drops, requiring more iterations to reach Q̄∗. This is the effect
of what we observed in the previous section, where increasing m improves the outcome of
successful moves, but at the cost of failing more attempts overall.

For users looking to select m different from unity, a consideration of a potential reduc-
tion in the computational effort tTOTCPU must be made in conjunction with the inevitable
increase in hill-climbing length tEXEC . Since the hill-climbing algorithm is an iterative
improvement algorithm, each iteration must be completed before moving onto the next.
If two evaluations of an iteration can be performed concurrently, then NSTEPS dictates the
minimum execution time tEXEC =

∑
k max{tEXEC,g(xk), tEXEC,g(x′

k)
} of the search (where

tEXEC,g(xk) and tEXEC,g(x′
k)

are the execution times of g(x) and g(x′) evaluations respec-
tively), thus tEXEC increases when m is increased. On the other hand, if the two evalua-
tions cannot be performed concurrently then the serial evaluation of each state point results
in a total execution time of the search given by tEXEC =

∑
k(tEXEC,g(xk) + tEXEC,g(x′

k)
).

In this case, tEXEC can be shortened by reducing NEVALS, hence a value of m = m∗ should
undoubtedly be considered to approach a minimum in NEVALS for a random x0.

6.7 One-dimensional noisy hill climbs

In the previous section we found that the NEVALS-m curves for threshold climbing runs
exhibited a characteristic form with a dip for low m and an increasing tail for high m.
But is this purely a result of performing hill-climbs on the yield landscape model Q̂? To
confirm that the characteristic form of the attributes curves (NEVALS, NSTEPS, NTRIALS)
observed are not exclusive to Q̂, we performed similar threshold hill-climbing runs on
simple 1-dimensional (1D) landscapes.

1D landscapes are easier to model and analyse than 2D landscapes. Restricted to
moving along a single dimension forces a climber to move across a local maximum lying
between the initial point and destination (threshold fitness), eliminating the possibility
for it to go around the maximum in higher dimensions. All climbers thus consider the
same available path to reaching the threshold fitness, restricting the changes in threshold
climbing results as a consequence of the modification of the single path, rather than the
contributions of a subset of available paths in 2D. This isolates the contribution of a local
maximum to the threshold climbing results purely to the path concerning the crossing
of the maximum. The runs were performed on an assortment of 1D landscapes to gain
further insight into the interaction between the m parameter and noisy fitness landscape
features, and whether the NEVALS minimum is always found at low m.
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6.7.1 1D fitness landscapes model and experimental setup

Climbers move along a discretised x axis of integer values. A linear fitness function f1D(x)

is defined by
f1D(x) = γx, (6.10)

with γ the gradient of the fitness slope. Noise is added in a similar manner to our yield
landscape, by appending a constant normal distribution Nnorm(0,σ) with zero mean and
standard deviation σ to each point x to give a noisy measured fitness g1D(x):

g1D(x) = f1D(x) + Y, Y ∼ Nnorm(0,σ). (6.11)

We used γ = 1 in our studies.
For finite σ, climbing on g1D is analogous to a biased, dampened 1D random walk. The

ratio between the gradient γ and standard deviation σ determines the climbing speed. The
ascent is sharper for σ/γ < 1.0, with no moves in the negative x direction if σ = 0. The
influence of the gradient is suppressed when σ/γ >> 1. The resulting hill climb exhibits
a dampened unbiased random walk when σ →∞.

Aside from this base noisy fitness landscape g1D (labelled G1), we considered a few
other variants by either reducing the noise and/or adding local optima. Local optima were
added by defining pairs of integer points xa, xb where the gradient of f1D between (xa, xb)

was reversed. For example, defining a negative gradient −γ in the negative gradient
interval (xa, xb) of size l = xb − xa, a piecewise 1D function with a single local maximum
at point xa is defined as

fsinglemaximum(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γx, for x ≤ xa,

γxa − γ(x− xa), if xa ≤ n ≤ xb,

γx− 2γ(xb − xa), if x ≥ xb.

(6.12)

The basin of attraction for this local maximum is x < xb. Once at xa, a climber can
escape the local maximum by moving downhill for l steps in the positive x direction.
Local maxima were inserted in the range 0 < x < 30. The effect of the position of (xa, xb)
on the performance was not tested but is believed to not have a huge consequence on
the normalised form. Plots of these underlying fitness functions F1-F6 can be found in
Figure 6.14. Combined with a choice of σ and a neighbourhood N (x) = {x − 1, x + 1}
yields the noisy versions of the landscapes G1 to G6. The fitness functions and landscapes
used in this section are listed in Table 6.2.

A total of 4000 climbers with m ranging from 1 to 100 were initialised at x = 0 and
allowed to walk on each of the landscapes G1 to G6 for at most kmax = 1000 iterations,
or alternatively terminated once they reached a threshold fitness of F ∗ = 70. Again,
the number of iterations NSTEPS, number of evaluations NEVALS and the number of trials
NTRIALS were recorded upon termination. The results of these climbs are plotted in
Figure 6.15, focusing on the change in climbing properties relative to the base case m = 1

for each landscape tested.
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Table 6.2: The six 1D noisy fitness landscapes G1 to G6 tested, along with there
respective fitness function F1-F6 and features. The noisy landscapes varies in the standard
deviation σ of the normal distribution noise, and the number and size of negative gradient
intervals (NGIs) in its fitness function F. Plots of F1 to F6 are found in Figure 6.14. The
defining features of each landscape are: (G1) no maximum (equivalent to g1D with σ = 1);
(G2) small standard deviation (equivalent to g1D with σ = 0.001); (G3) single maxima
with reduced standard deviation; (G4) single maximum; (G5) two maxima; (G6) single
large maximum.

Noisy landscape Fitness function σ Number of NGI Size of NGI (l)
G1 F1 1 0 –
G2 F2 0.001 0 –
G3 F3 0.5 1 1
G4 F4 1 1 1
G5 F5 1 2 1
G6 F6 1 1 2

Figure 6.14: Plots of the six 1D fitness landscapes, F1 to F6, used in study. Noise is
not shown (See Table 6.2). All fitness landscapes are linear beyond the x range shown.
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Figure 6.15: Plots of relative NEVALS and NSTEPS counts with respect m = 1 case, for
the six different 1D fitness landscapes G1 to G6.

6.7.2 Results

For all landscapes G1 to G6, NTRIALS exhibited an almost identical asymptotic decrease
to ∼ 40% of the m = 1 case. NSTEPS increased with m at different rates depending on the
landscape and hence the NEVALS tail also differed. The value of m∗ was almost always less
than 10, with associated NEVALS value greater than 76% (nearest integer).

The increase in NSTEPS as m is increased was negligible when σ = 0.01 (G2), but
significant in the presence of noise σ = 1 (G1). However, the better signal-to-noise ratio
did not bode well for landscapes with local maxima, with a larger increase in NSTEPS as m
is increased for σ = 0.5 (G3) than for σ = 1.0 (G4). The gradient of the NSTEPS-m curve
was more positive as the number of local maxima and/or noise increased, with the curve
affected more by an increased prominence and size of local maxima (G6—bigger local
maximum) than by an increase in the number of local maxima (G5—more local maxima).
The non-monotonic NEVALS behaviour followed the NSTEPS trend, where a sharper NSTEPS
increase led to a lower drop in NEVALS minimum and smaller m∗ value.

6.7.3 Discussion

Even with a reduced dimensionality and minimal form of a noisy fitness landscape, the
changes in threshold climbing behaviour as m is varied on the 1D noisy landscapes were
found to be similar in form to that on the yield landscape model Q̂ (a 2D landscape) in
the previous section. This strongly suggests that these changes in climbing behaviour are
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universal across all noisy landscapes models. The NTRIALS curves are largely the same
across the different landscapes, whereas NSTEPS at high m exhibited a high dependency
on the local maxima present in the landscape.

Insight into why this is the case can be found by studying the effects of m on the
move probabilities as discovered in Section 6.5. For simplicity, let us assume a linear noisy
landscape f1D with fixed noise, but also that a current fitness evaluation g(x) at point
x will always yield a fixed fluctuation c; neighbouring evaluations are still noisy. The
probability of a successful move pc will thus be the same for every iteration k. Moreover,
let us assume that a threshold climb requires NSUCCS number of successful moves to reach
threshold fitness for any value of m.

The probability of a successful trial (a trial ending with a successful move before it
reaches m) is

hx(m) = 1− (1− pc)
m, (6.13)

(see Eqn. 6.9) and increases as m is increased. The expected number of trials required to
observe a successful trial is

E [successful trial] = 1

hx(m)
. (6.14)

E [successful trial] decreases as m is increased. It follows that NTRIALS is proportional to
E [successful trial]× NSUCCS.

Meanwhile, the expected number of iterations per trial is the geometric sum

E [iteration per trial] =
m∑

j=1

(1− pc)
j−1pcj, (6.15)

with the number of iterations to reach threshold fitness NSTEPS = E [iteration per trial]×
NTRIALS. As m appears in the summation of E [iteration per trial], NSTEPS increases as
m is increased. The sum of decreasing NTRIALS and increasing NSTEPS yields the non-
monotonic NEVALS as seen in the climbs. This describes the geometric decay of NTRIALS
contrasting with the increasing NSTEPS as m is increased. Since these hold for all fluctu-
ations c, and each pc is independent random variable for each iteration, the behaviour is
expected to be of similar form in the noisy current fitness evaluation case.

The presence of local maxima and different noises for landscapes G2 to G6 alter the
average move probabilities. The expected number of iterations required to move beyond
a point x is increased when a local maxima is introduced at x. One possible explanation
for this is that E [iteration per trial] is increased towards the limit m, while the number
of trials increases slightly, resulting in a large multiplicative increase in NSTEPS.

In summary, simulated threshold hill-climbing runs on 1D noisy landscapes and ob-
served similar trends to those on Q̂, confirming the consistent improvement in NEVALS from
increasing m. The brief insight into the expected move outcomes given above showed that
this has a tendency to increase the number of iterations while reducing the number of
trials. In two or more dimensions the ability to take locally different paths offers different
routes to threshold fitness (leading to drastically different NSUCCS). Further investigation
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is required to confirm how this influences the trends discussed here.

6.8 Revisiting the climbing schedule strategy: searching a
changing landscape

As noted in Section 4.5, the yield landscape Q is time-dependent. The region of significant
assembly is established at early times and stays relevant throughout the duration of the
assembly. One strategy for cutting down on execution times and computational resources
is to deploy a climbing schedule to tune the parameter values for early-time assembly yield
so that shorter simulations are executed initially, before gradually considering the yield at
later durations and eventually at final duration tf . This was used in the preliminary study
in Section 6.1. In this section, we test the performance of the modified hill-climbing algo-
rithm (Algorithm 3) with this climbing schedule strategy on the yield landscape model Q̂
for different m. The climbing schedule trigger in Section 6.1 is not considered here. There
are two aims for implementing the climbing schedule: one is to reduce the computational
time and thus increase the efficiency; the other is to assist climbers in converging towards
higher fitness and thus increase their robustness.

6.8.1 Setup

To model the climbing schedule using the yield landscape model Q̂, we performed hill-
climbing runs on a multi-duration yield landscape Q̂mult consisting of a set of noisy yield
landscapes models Q̂mult = {Q̂t1 , Q̂t2 , ..., Q̂tf } for a number of self-assembly durations
ti = tV /(VMMC cycles), with a schedule update rate κ. A hill-climbing run is performed
on Q̂mult with a climber starting on Q̂t1 . After κ iterations, the climber advances onto
Q̂t2 , preserving its position xκ, and is prompted to trial its current yield. The climber
continues its climb on the new landscape for κ steps before repeating the process to larger
durations ti, until it reaches Q̂tf where it climbs until it exhausts the remainder of its
allocated iterations kmax, i.e. the termination condition is the maximum climbing length
kmax. We used {t1, t2, t3, tf} = {106, 5 × 106, 107, 2 × 107} as our experimental set of
durations and κ ∈ {10, 20, 50, 80} for the schedule update rates on each landscape. The
average Q̄ trajectory were tracked for multi-duration hill-climbing runs performed on Q̂mult

and on a single final time landscape Q̂tf for comparison (labelled κ = 0) for the modified
hill-climbing algorithm (Algorithm 3) with protocol S1a and m = 1, 8 and 1000.

A couple of intuitive guidelines concerning the number and distribution of durations
were followed when choosing {ti}. A larger Q̂mult set systematically extends the number
of iterations before a climber arrives at Q̂tf —we call this the queue time. The queue time
is also influenced by the choice of κ: a climber takes κ|Q̂mult| iterations to access the tf

landscape. The termination condition kmax defines an upper bound for κ and |Q̂mult|,
since if κ(|Q̂mult| − 1) > kmax then a climber would fail to reach Q̂tf . We chose a set of
four durations (including tf ) to keep the number of landscapes |Q̂mult| low. To further
ensure that a climber does not neglect climbing the final Q̂tf landscape, we imposed the
criterion that climbers had to climb the Q̂tf for a minimum of κ iterations, i.e. 1 ≤ κ ≤
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(kmax/|Q̂mult|). A selection of durations {ti} with a sensible distribution is also helpful
to observe sufficient change between landscapes Q̂ti . We chose {ti} such that they were
closer for the early stages, but doubled between the penultimate and final durations i.e.
tf = 2t3 to complement the logistic yield growth.

6.8.2 Results

The observed outcomes for k-dependent Q̄ trajectories between Q̂tf -only climbs (κ = 0)
and Q̂mult climbs (positive κ) were dependent on m. For low m (e.g. m = 1, 8), similar
terminal Q̄ were seen for all κ values, regardless of the initial point x0. Positive κ climbs
exhibited a slow start as expected before joining the Q̄ trajectory of κ = 0 at larger k,
subject to the queue time. Examples shown include climbs initialised at x0 = (6, 10)

(near secondary peak, Fig. 6.16a) and x0 = (14, 19) (in plateau far away from peak,
Fig. 6.16b). For m = 1000, significant improvements in the terminal Q̄ were observed.
Climbers reached higher Q̄ but did so at larger k as κ was increased, due in part to the
queue time.

Of course, our motivation for the climbing schedule is to reduce tTOTCPU of the search.
The same Q̄ trajectories in Fig. 6.16 are shown in Fig. 6.17 but plotted against tTOTCPU .
The computational times used are an approximation of the actual simulations. Only the
full execution time tEXEC,sim of each single-CPU VMMC simulation was recorded, so we
assumed a linear relation between the simulation duration tV and the mean execution
time ⟨tEXEC,sim⟩ for each x to infer the execution times of the simulations at different
ti. As argued before, VMMC simulations become slower as clusters grow hence this linear
relation overestimates the computational demand of simulations terminated at small tV .
In general, for a given m value, climbers reached similar or higher Q̄ at lower tTOTCPU as
κ was increased, with the effect most apparent for m = 1000.

The observed changes in terminal fitness and tTOTCPU as κ increased were dependent
on the choice of the initial point and were not guaranteed to provide better self-assembly
parameters at termination. However, considering all the initial points tested, the climb-
ing schedule does provide some benefits to the hill-climbing outcomes. In general, as κ

increased, the terminal Q̄ stayed similar for small m but saw a relatively large increase
for large m, with some cases showing an increase of up to triple the original κ value
(Fig. 6.18a). These increases are not necessarily monotonic however. Overall this induces
an improvement in the robustness of the hill-climbing, since the worst-case outcome (ter-
minal Q̄) is not as heavily reliant on bx0. This comes as a bonus on top of the lower
tTOTCPU (and thus lower tEXEC) required to perform such fixed kmax climbs. Low m

saw the largest proportional reduction in tTOTCPU , in some cases by over a quarter of the
original κ = 0 climbs when κ = 80.

6.8.3 Discussion

The climbing schedule improves terminal Q̄ by helping climbers handle local maxima and
long simulation durations at the same x. A climber avoids prominent late tV local maxima
by traversing the region at early tV . For example, in Fig. 6.16a, positive κ climbers avoided
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(a) (b)

Figure 6.16: Plots comparing the expected true fitness Q̄ trajectories, dependent on
iteration k, for hill-climbing runs at different m and κ, initialised (a) in the liquid phase
(6, 10) and (b) at a strongly interacting (10, 19) state. Each plot, grouped by m, shows the
mean fitness trajectory of a set of climbers on Q̂(tf = 2× 107) (labelled κ = 0) alongside
the mean fitness trajectories of climbers searching on the multi-duration yield landscape
Q̂mult = {Q̂(ti)} with ti ∈ {106, 5 × 106, 107, 2 × 107}. Advancing in increasing order,
each climbers spent κ steps at each intermediate landscape, before it spent the rest of the
allocated iterations (kmax = 500) climbing Q̂(tf ). Error bars are smaller than the marker
size.
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(a) (b)

Figure 6.17: Plots comparing the expected fitnesses for hill-climbing runs at differ-
ent m and κ, initialised (a) in the liquid phase (6, 10) and (b) at a strongly interact-
ing (10, 19) state. Each plot, grouped by m, shows the mean fitness trajectory of a set
of climbers on Q̂(tf = 2 × 107) (labelled κ = 0), compared to the mean fitness tra-
jectories of climbers searching on the multi-duration yield landscape Q̂mult = {Q̂(tV )}
with tV ∈ {106, 5 × 106, 107, 2 × 107}. Advancing in increasing order, climbers spend κ
steps at each intermediate landscape, before spending the rest of the allocated iterations
(kmax = 500) climbing Q̂(tf ). Error bars are smaller than the marker size.
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(a)

(b)

Figure 6.18: Plots of (a) underlying average fitness Q̄ and (b) total CPU cost tTOTCPU

at termination kmax = 500 for different κ and m averaged over all initial points x0 sampled
(500 hill climbs each).
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the secondary peak at (7.2,11) which only fully formed after 7 × 106 VMMC cycles. A
larger κ allowed time for a climber to reach the global peak region at lower w before
this secondary peak formed, eliminating the need to waste iterations trying to escape this
prominent local maxima. Climbers initialised in the low-ε high-w region, where a ridged
surface developed at late tV , also showed significant improvements when climbing on Q̂mult

instead.
The schedule forces a retrial at every advancement of the landscape, assisting climbers

with Q̂ with highly positive fluctuation Y to move before the trial period limit m is
reached. Together, the climbing schedule helps climbers with limited explorative power
escape local maxima, which explains why a greater effect is observed for m = 1000 than
for m = 1 or 8.

In terms of computational demand, the climbing schedule for all κ successfully reduced
the potential tTOTCPU demand. In a few cases an increase in tTOTCPU was observed
when switching from κ = 0 to positive κ (e.g. m = 1000 in Fig. 6.16a) due the longer
⟨tEXEC,sim⟩ as higher Q̄ was reached. Moreover, the execution time tEXEC of a hill-
climbing run adopting a climbing schedule would also show similar reduction, addressing
the issues of long tEXEC due to the serial nature of the hill-climbing search.

We did not test κ = 125, the upper bound of the κ criterion. Based on the results of the
κ values tested, κ = 125 has the potential to offer the most reliable improvement in both
Q̄ reached and tTOTCPU taken, leading to an even more robust parametrised hill-climbing
algorithm. From the trajectory plots in Fig. 6.17, threshold climbs would also benefit from
the climbing schedule: a lower tTOTCPU can be sufficient for a climber to reach a given
threshold value. Moreover, only constant κ values were tested. Recall from Sec. 6.1.1 the
intuition behind the use of the climbing schedule: by eliminating low yielding regions via
searching the assembly yield at earlier durations, climbers spend a fraction of the cost to
find the hill (basin of attraction) before targeting the global peak at the final duration
tf . Starting from a large value, a decreasing κ should be considered to allocate more
iterations for low ti exploration, further reducing tTOTCPU . This assumes that the high
yielding region of a yield landscape does not change drastically throughout the assembly.

The climbing schedule can be viewed as a numerical extension to the preliminary
determination of the scope of parameter space, where the search range of parameter values
is identified. The elimination of low yielding regions of parameter space at early durations
proves effective in not only reducing the computational demand and execution time of the
search but also in producing a more reliable search outcome.

Contrary to the argument for reducing the size of a problem by consolidating to a
single objective, a multiobjective optimisation technique may enable a faster hill-climbing
search of the target global yield peak by giving climbers a better chance of starting their
climb near significant yield solutions when they eventually search at the final duration tf .
A ‘quick-and-dirty’ approach to cut down on computational demand and execution time
would be to identify the objectives that would converge at early times and be consistent
throughout the assembly. For our definition of Q, the structural quality χ6,C/NC was
found to converge within 105 VMMC cycles. For targeting the honeycomb structure,
a climber can be designed to climb the χ6,C/NC landscape at early times, consistent
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throughout most of the assembly, before switching to climbing the full Q landscape once
the parameters that produce locally ordered structures are found.

6.9 Conclusion

We have shown several stochastic hill-climbing metaheuristic protocols and strategies for
finding parameters yielding (near-)optimal assembly on noisy yield landscapes. These
protocols and strategies (current fitness trial period with limit m; cumulative averaging;
multi-duration climbing schedule) were studied to provide approaches for reducing the
computational cost of searches. The reduction of computational resources for threshold
climbs were shown to be possible at low m values without negatively affecting the search
outcome, addressing one of the questions in the chapter introduction, but required more
iterations to be executed. Increasing rhist in cumulative averaging was demonstrated to
be a viable replacement to increasing r in fitness averaging, but consequences of correlated
fitness evaluations values were not investigated. The multi-duration climbing schedule of-
fered multiple advantages: it reduced both computational and execution times of searches,
and helped climbers escape/avoid local maxima to reach higher terminal fitness.

These three methods for improving hill-climbing search on noisy yield landscapes are
independent of each other. A combination of all three methods was not investigated. The
results shown here represent a fraction of the possible parametric combinations of the
methods, highlighting the possible customisations for tailoring to a yield landscape (or
indeed any noisy fitness landscape) where expensive simulations are of concern. Further-
more, they suggest that a scheduled implementation of m and rhist, much like that of r
in fitness averaging, is worth investigating.

For self-assembly parameter tuning, where evaluations are expensive, the global peak
region seems to be an acceptable default target, and given the effect of noise, should be
considered as the most cost-effective aim, rather than finding the global maximum. Efforts
to find good initial points is encouraged. Reducing noise in the latter part of a hill-climbing
search is key to converging to a local maxima, if not the global maximum. Although we
have shown how the metaheuristic protocols introduced in this thesis are able to handle
and reduce noise, the diminishing returns of these strategies as climbers reach higher fitness
lead to long tEXEC and prevent them from making hill-climbing a practical technique to
investigate self-assembly, as computational resources are in abundance compared to time.
It seems that fitness averaging over repeated sampling (increasing the evaluation sample
size r), which we assumed to be a costly strategy at the start, is at least part of the
key to solving this issue. By including this, a hill-climbing search to find high-yielding
parameter values would take advantage of the reduced computational cost required to
reach the global peak region (by choosing a suitable m and rhist, and implementing a
climbing schedule), before increasing r upon reaching the global peak region to exploit
concurrency (running multiple simulations per iteration to search more accurately), which
should reduce the tEXEC times seen thus far. This may enable hill-climbing to become
the technique of choice over brute-force scan for computational self-assembly parameter
tuning.
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Our results are intended to be used as a basic guide for informing future selection and
application of these search methods, whether used alone or in conjunction with other meta-
heuristic techniques, to diversify/intensify the simple stochastic hill-climbing algorithm on
noisy yield landscapes.
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Outlook

The aims of this study were directed toward improving the parameter tuning methods in
forward design of colloids, where a brute-force scan of parameter space is the conventional
method for identifying high yielding parameter values. We set out to empirically test the
stochastic hill-climbing heuristic as an alternative approach for tuning values at a reduced
computational cost and execution time, and assess additional search protocols to further
this goal.

Our self-assembly example problem targeted the values of the interaction strength ε

and patch flexibility w of a three-patched disk model that would maximise the yield of
large, compact, circular honeycomb cluster aggregates. By constructing an appropriate
yield measure Q involving the shape factor we extended the scope of targeted design
criteria from conventional microstructure and size based measures to ones targeting the
macrostructure. A systematic scan revealed the dependency of the assembly outcome on ε

and w, along with the fluctuations in Q which can be interpreted as noise on the resulting
yield landscape. The noisy yield measurements also indicate the reproducibility of assem-
bled structures, an important factor to consider when designing systems that will assemble
readily into the desired state. Despite the different levels of cluster-cluster agglomeration
producing inconsistent assembly outcomes across the parameter space, optimal (highest
yielding) assembly was identified in a region where the system exhibited steady growth of
a single cluster.

The assessment of the stochastic hill-climbing heuristic was undertaken on the time-
dependent noisy yield landscape model Q̂, constructed to bypass the costly particle sim-
ulations. In terms of climbing ability, we found that the standard stochastic hill-climbing
algorithm is a reliable way for locating the global peak region of the noisy yield landscape,
reaching it consistently from different initial points. The results highlight the benefits of
providing a good initial point near to the global peak, so effort into identifying a good
range for the parameter space is encouraged. Several metaheuristic aspects and protocols
were considered on top to further improve its effectiveness.

The concept of a trial period and a trial period limit m were initially introduced to en-
courage the reuse of fitness values obtained from expensive evaluations. Surprisingly this
‘investment-free’ parameter showed the ability to intensify a search while reducing the
number of simulations performed per iteration. An assessment of the fluctuation depen-
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dent move probabilities showed that increasing m discourages the climber from performing
incorrect (downhill) moves, resulting in a proportional rise of correct uphill moves at the
cost of slowing down the climber’s exploration. This influenced a climber’s ability to es-
cape local maxima that led to improvements in the terminal yield fitness of the climb in
certain cases.

However m alone was not enough to counter the large spread in the terminal position
of climbers in the global peak region stemming from the large noise. The cumulative
averaging protocol—another ‘investment-free’ protocol emulating the reduced noise effects
offered by increasing the evaluation sample size r—addresses this aspect, enabling climbers
to converge to a highly localised region once the correct basin of attraction was found.
However, the stronger intensification effects, controlled by the history sample size rmax,
deteriorate the climbing performance significantly if a climber is initialised far away from
the peak region. We expect a scheduled implementation of both of these intensification
protocols, gradually increasing m and rmax based on k, will produce a reliable ascent yet
localised convergence to optimal yield.

Regarding the computation cost tTOTCPU of the search, the regular stochastic hill-
climbing algorithm consistently reached the global peak region within 300 iterations de-
pending on the initial point. This is superior to the brute-force scan which evaluates
all 920 state points in the parameter space at least once. On the other hand, a major
limitation of the hill-climbing search lies in its execution time tEXEC , which is of similar
order to tTOTCPU due to the serial nature of the algorithm, strongly disfavouring its usage.
The adoption of the hill-climbing search is therefore subject to the parallelisability of the
brute-force scan. If the stochastic hill-climbing algorithm is favoured however, then the
results from the threshold climbing studies show that it is almost always worth having
m ≥ 2, but only up to small integers. The catch is that there is a trade off between the
NEVALS, total number of evaluations called, and NSTEPS, the number of iterations executed,
affecting tTOTCPU and tEXEC respectively.

A break down of the threshold climb results as a function of m reveals that the rapid ini-
tial drop in NTRIALS, the expected number of trials performed, balanced by the landscape-
sensitive increase in NSTEPS, is responsible for the non-monotonic behaviour NEVALS with
reduction at low m. This reduction from increasing m weakens in effectiveness thereafter
and can even be undesirable when a landscape is too rough and its signal-to-noise ratio
is too low as m cannot overcome low initial move probabilities, leading to an increase in
climbs that would take impractically long times to reach threshold fitness. The selection
of a well-behaved yield measure is therefore critical to the enhancement brought by tuning
m. Threshold climbs to a target value also demonstrate a termination criterion for search-
ing for a ‘good-enough’ solution. This may be the most practical termination condition
for hill-climbing on noisy landscapes since climbers will never stop at the local optimum
point but continue to move and explore the parameter space indefinitely.

The iterative nature of hill-climbing hinders the algorithm’s applicability as the pre-
ferred standalone search method as execution times are too long. Its ability to reduce
computational demand is best exploited when running simultaneous hill-climbing runs to
incorporate concurrency in a different way to brute-force. Otherwise, it is best used as a
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preliminary search technique for eliminating poor yielding regions, before a more thorough
search is applied. Looking beyond the metaheuristic strategies studied here, increasing
the evaluation sample size r to independently reduce noise quickly after a climber reaches
the global peak region is crucial to lowering the execution time and thus increasing the
search efficiency even further.

Our final strategy considered is multi-duration hill-climbing. This strategy, taking
advantage of the time dependency of the yield landscape, is beneficial for multiple reasons.
Firstly, it cuts down on the duration of the particle simulations at early iterations, directly
reducing the long tEXEC of hill-climbing. Moreover, it provides a ‘nudge’ for the climber
every time it progresses to longer durations, allowing climbers that are stuck to escape
local maxima. This provides a good complementary strategy to aid the trial period limit
and cumulative averaging strategies, whose powers lie in the intensification of the climbing
behaviour, helping climbers with high m or large rmax to move when they get stuck.

In conclusion, the stochastic hill-climbing algorithm and associated protocols serve to
aid in the exploration of dynamical colloidal self-assembly design parameters. Although
the results were empirically derived from observations on the noisy yield landscape model
Q̂, they summarise underlying mechanisms that manifest due to general characteristics
possessed by all yield landscapes. Our results suggest that improvements to the conven-
tional brute-force scan are not particularly significant and subject to several restrictions,
but it nevertheless expands the tools available for parameter tuning. It is fundamentally
down to the user to determine whether the hill-climbing algorithm is suitable based on
the optimal management of simulations and the available computational resources.

7.1 Future Work

Our yield landscape model is based on the yield data gathered from the particle simula-
tions, limiting our hill-climbing search studies to a fixed step size. Varying the step size
(i.e. having a variable neighbourhood) of a local search is a common method for allowing
climbers to respond to the changing terrain of the local landscape. This could potentially
lead to significant improvements in the performance of hill-climbing on these yield land-
scapes as they typically only have a small region of high yielding parameter values. It is
not obvious how the handling of noisy yield measurements and the protocol for chang-
ing the step size should proceed, but, as proven on many occasions, the opportunity for
downhill moves may lead to enhanced performance of the heuristics.

One major quality of metaheuristics is its ability to optimise search efficiency via a
metaheuristic variable, either by predetermining it using knowledge of the landscape or
tuning it on-the-fly. As mentioned in Chapter 5.4.4, this is part of the current research of
the evaluation sample size r in fitness averaging. In the same manner, an on-the-fly proto-
col for altering m would enable greater control of the climbing behaviour. Unfortunately
the effect of increasing m is not trivially dependent on the noise variance and it is unknown
whether a mathematical approach can provide further insight into this endeavour.

This does not prevent us from exploring simple variable m protocols that may help a
climber adapt more effectively on a standard fitness landscape as opposed to a constant
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m throughout. An idea for a variable m protocol would work in a similar fashion to
the acceleration scheme of a non-gradient-based local search optimisation [135]. In this
acceleration scheme, a successful move on a deterministic landscape is rewarded with a
following move attempt in the same direction but at a larger step, increasing the speed
(distance travelled over each unit iteration) of the climber. Successive moves of this type
"accelerates" the speed of the search in the direction of travel until a move fails, upon
which the speed is reset and the next iteration proceeds with a random hill-climbing move
attempt.

The idea for a similar scheme involves increasing or decreasing the value of m based on
whether a successful move was attempted during a trial before m was reached. The trial
period hitting m successively could indicate the climber getting stuck at a local maxima,
so more explorative power can be regained by slowly reducing m, down to a minimum of
m = 2. If a successive move is completed before reaching the trial period limit then m

is reset to its default value. While this default value would be subject to the landscape,
from our studies we know that it should be kept relatively low. A more comprehensive
study of the trial period could offer conditions on when m could be increased otherwise.

Ultimately, this study of stochastic hill-climbing search and strategies was undertaken
considering its implementation to the design and tuning of colloidal self-assembly param-
eters. We limited ourselves to optimising two interaction parameters. A consideration of
multiple interaction parameters is required as colloidal designs begin to move away from
simple designs. For finite low dimensions, we expect the effect of m on the threshold
climbing results to be similar under a basic neighbourhood definition. However, further
investigation is required to understand whether this still holds in higher dimensions, where
preferred local trajectories for climbers may be plentiful when in large neighbourhoods and
the number of local optima decreases [154] (more directions are available to escape into).
It is unclear how this changes the effect of increasing m on threshold climbs, and is likely
heavily dependent on the landscape. One plausible trend is a dampening of the effects of
m on the climbing behaviour seen in our studies as the number of dimensions increase, as
more paths are available to go from point a to point b, hence the reduction in NTRIALS
weakens. Another entirely different possibility is that increasing m has negligible effect on
NSTEPS while NTRIALS is reduced, hence the increasing tail in NEVALS disappears. The use
of a more complex neighbourhood definition may lead to improvements in the parameter
tuning in general [145; 155] and in relation to m. Research into the effects of neighbour-
hood definitions and the coupling of different design parameters will likely offer further
insight into standard procedures for creating complementary neighbourhood definitions
for more efficient exploration of yield landscapes.

Although we have limited our application to forward design, the general optimisation
framework adopted here means that our results are relevant to any applications of iterative
local-search algorithms on noisy landscapes where evaluation of the current solution is
performed at every iteration.
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