

University of Bath

PHD

Exploring the Benefits and Implications of Dynamic Partial Reconfiguration using Field
Programmable Gate Array-System on Chip Architectures

Beasley, Alexander

Award date:
2019

Awarding institution:
LocalizedString(id=184942321, text={en_GB=University of Bath})

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

Exploring the Benefits and Implications of Dynamic

Partial Reconfiguration using Field Programmable

Gate Array - System on Chip Architectures

Alexander E. Beasley

A thesis submitted for the degree of Doctor of Philosophy

University of Bath

Department of Electrical and Electronic Engineering

December 17, 2018

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy

of this thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that they must not copy it or use

material from it except as permitted by law or with the consent of the author.

Candidates wishing to include copyright material belonging to others in their theses are

advised to check with the copyright owner that they will give consent to the inclusion of any

of their material in the thesis. If the material is to be copied other than by photocopying or

facsimile then the request should be put to the publisher or the author in accordance with

the copyright declaration in the volume concerned. If, however, a facsimile or photocopy will

be included, then it is appropriate to write to the publisher alone for consent.

This thesis may not be consulted, photocopied or lent to other libraries without the

permission of the author for three years from the date of acceptance of the thesis.

Contents

List of Figures xiv

List of Tables xvii

List of Acronyms xviii

1 Introduction 1

1.1 Systems with multiple processors . 2

1.2 Current processing technologies . 3

1.2.1 General Purpose Processor - GPP . 3

1.2.2 Graphics Processing Unit - GPU . 5

1.2.3 Accelerated Processing Unit - APU . 6

1.2.4 Digital Signal Processor - DSP . 6

1.2.5 Field Programmable Gate Array - FPGA . 6

1.2.6 Application Specific Integrated Circuit - ASIC 8

1.3 Aims and Organisation of this Thesis . 8

2 Review of Literature 10

2.1 Processor topologies . 10

2.1.1 The early years . 11

2.1.2 Specific hardware for specific tasks . 12

2.1.3 The history of CMOS . 13

2.1.4 The FinFET . 16

2.1.5 The photonic processor . 17

2.1.6 What is the next step? . 17

2.2 Architectures . 18

2.2.1 What makes the ‘best’ architecture? . 18

i

CONTENTS

2.2.2 Homogeneity and heterogeneity . 18

2.2.3 How multiple devices interact . 19

2.3 Hardware acceleration . 23

2.3.1 The beginnings of hardware acceleration and the introduction of co-processors . 23

2.3.2 Modern acceleration . 23

2.3.3 Acceleration of image, video and graphics processing 27

2.4 Dynamic reconfiguration and context switching 29

2.4.1 Task scheduling . 30

2.4.2 Dynamic reconfiguration . 32

2.4.3 Context switching . 33

2.4.4 Applications for dynamic reconfiguration and context switching on FPGAs . . . 35

2.5 Code compilation and automatic optimisation techniques 36

2.5.1 Coarse grain reconfigurable architectures . 37

2.5.2 Hardware compilers . 38

2.5.3 Example applications for generated HDL . 39

2.6 Summary . 40

3 Hardware Implementations of Fundamental Maths Functions 42

3.1 The implementation of algorithms . 43

3.2 Processors versus dedicated hardware . 44

3.2.1 How can hardware make life better? . 46

3.3 Implementing floating-point mathematical operations on a hardware architecture 47

3.3.1 Basic mathematical functions in hardware . 47

3.3.2 Analysis methods . 48

3.3.3 Vector and matrix operators . 60

3.4 Summary . 65

4 Hardware Implementations of Complicated Maths Functions 66

4.1 Iterative floating-point approximations and efficient hardware implementations . 68

4.1.1 Division . 68

4.1.2 Analysis of error . 73

4.1.3 Square-root . 75

4.1.4 Exponential . 84

4.1.5 Hardware implementations of curve-fitting methods 87

ii

CONTENTS

4.1.6 Analysis of error . 93

4.2 Case study: implementing a neuron in hardware 97

4.2.1 Training neural networks using approximations to the exponential function . . . 97

4.2.2 Implementing the Hodgkin-Huxley model on an FPGA 98

4.2.3 Outputs from the neuron simulation . 102

4.3 Considerations for the implementations of other arbitrary complex functions . . 104

4.4 Summary . 105

5 Case Study: Creating an OpenGL Compliant GPU on an FPGA-SoC 108

5.1 Replacing processors with dedicated hardware 108

5.1.1 Overview of a GPU . 109

5.2 Implementing the FPGA-GPU . 110

5.2.1 Basic render engine . 110

5.2.2 Modelling the system . 111

5.2.3 FPGA implementation of the GPU . 112

5.2.4 Considerations for designing and implementing the FPGA-GPU 120

5.2.5 Designing for system bottlenecks; maximising performance for minimal resource

cost . 123

5.3 Performance of the FPGA implementation compared to embedded GPU devices 124

5.4 Complete FPGA-GPU implementation . 125

5.5 Summary . 127

6 Dynamic Task Allocation and Context Switching 129

6.1 Dynamic reconfiguration . 129

6.1.1 Full reconfiguration . 130

6.1.2 Partial reconfiguration . 130

6.1.3 Continuous end-to-end data flow . 131

6.2 Context switchable hardware . 132

6.2.1 De-fragmenting hardware accelerators . 135

6.2.2 Controlling context switching in hardware . 136

6.2.3 Effects of using pre-emptible flip-flops on resources and performance 139

6.2.4 Including pre-emptible resources in hardware designs 142

6.2.5 Pre-empting hard IP blocks . 144

iii

CONTENTS

6.3 On-line compilation and configuration of reconfigurable devices 145

6.3.1 Mapping to the FPGA’s floor plan . 148

6.4 Summary . 151

7 Automatic Synthesis of Hardware from High-Level Languages 153

7.1 High level versus low level . 154

7.2 Traditional design flows and optimisation techniques 155

7.3 High-level synthesis of OpenGL shading language 155

7.4 Optimising the flow graphs before synthesis of hardware 156

7.4.1 Critical path analysis . 160

7.4.2 Removing repeated hardware . 161

7.5 Synchronising the data path . 162

7.6 Pipelines and resource reuse . 163

7.7 Using the automated synthesis tool . 165

7.8 Summary . 167

8 Conclusions and Further Work 169

8.1 Benefits . 170

8.2 Limitations . 171

8.3 Future work . 173

8.3.1 Hardware accelerated functions . 173

8.3.2 High level synthesis . 173

8.3.3 Dynamic reconfiguration of FPGAs . 173

Appendices 195

A Resource use and performance for single and half precision implemen-

tations of floating point maths in hardware 196

A.1 Fundemental operators . 196

A.2 Iterative operations . 198

A.3 Vector and matrix operators . 201

B Floating point adders and multipliers in single and half precision 202

C Accuracy of Newton-Raphson inversion algorithm implemented in hard-

ware for IEEE-754R standard input formats 205

iv

CONTENTS

D Square root accuracy for single and half precision inputs 215

E Approximating exp(x) using both traditional mathematical expansions

and hardware friendly interpretations 219

E.1 Traditional mathematical expansions . 219

E.1.1 Double precision . 219

E.1.2 single precision . 221

E.2 Hardware friendly implementations . 223

E.2.1 Double precision . 223

E.2.2 Single precision . 224

E.2.3 Error plots for the hardware friendly exp(x) implementations 225

F Hardware Implementations of the Hodgkin-Huxley Model of a Neuron 237

F.1 Step responses . 237

F.2 Impulse responses . 245

F.3 Resource and performance metrics . 253

G Graphics shaders and rasterization unit resource demand using differ-

ent floating point precisions 254

G.1 Vertex shader . 254

G.2 Fragment shader . 255

H FPGA based implementation of a GPU using different floating point

precisions 256

v

List of Figures

1.1 Process nodes from 1970 to today . 1

1.2 High-level representations of homogeneous and heterogeneous system architectures 2

1.3 Overview of a typical CPU, reference from Intel [1]. 4

1.4 Overview of a typical GPU, reference from NVIDIA [2]. 5

1.5 Overview of a typical FPGA-SoC, reference from Intel FPGA [3]. 7

2.1 TTL implementations of basic logic functions . 14

2.2 Cross-section of CMOS circuit . 15

2.3 CMOS implementations of basic logic functions 15

2.4 Cross-section of FinFET and MOSFET . 16

2.5 Cross-section of photonic processor . 18

2.6 Shared memory architecture for hardware accelerated software routine 32

3.1 Floating-point number . 44

3.3 Flow diagram of the stages performed by the hardware implementation of a

floating-point add/subtract module. 48

3.2 Determining the relative error in floating point numbers 49

3.4 Flow diagram of the stages performed by the hardware implementation of a

floating-point multiply module. 50

3.5 Flow diagram of the stages performed by the hardware implementation of a

floating-point compare module. 50

3.6 Flow diagram of the stages performed by the hardware implementation of a

floating-point to fixed-point module. 51

3.7 Flow diagram of the stages performed by the hardware implementation of a fixed-

point to floating-point module. 52

3.8 Registers required for hardware implementations of fundamental mathematical

operations. 54

vi

LIST OF FIGURES

3.9 ALMs required for hardware implementations of fundamental mathematical op-

erations. 55

3.10 fmax of hardware implementations of fundamental mathematical operations. . . 55

3.11 Relative and absolute error for hardware adder in double-precision. The top graph

is negative input number. The bottom graph is positive input numbers. 59

3.12 Relative and absolute error for hardware multiplier in double-precision. The top

graph is negative input number. The bottom graph is positive input numbers. . 60

3.13 Matrix/vector multiply methods optimised for performance and resource use in

hardware . 62

3.14 Number of registers required for hardware implementations of some example vec-

tor operations. 63

3.15 Number of ALMs required for hardware implementations of some example vector

operations. 64

3.16 fmax of hardware implementations of some example vector operations. 64

4.1 Numbers of registers required for hardware implementations of Newton-Raphson

based inversion. 70

4.2 Numbers of ALMs required for hardware implementations of Newton-Raphson

based inversion. 70

4.3 fmax of hardware implementation of Newton-Raphson based inversion. 71

4.4 Number of registers required for hardware implementations of divide operation

using Newton-Raphson inversion. 71

4.5 Number of ALMs required for hardware implementations of divide operation using

Newton-Raphson inversion. 72

4.6 fmax of hardware implementations of divide operation using Newton-Raphson

inversion. 72

4.7 Relative and absolute error for hardware inverter with a single NR stage in double

precision . 74

4.8 Relative and absolute error for hardware inverter with a five NR stages in double

precision . 74

4.9 Relative and absolute error for hardware inverter with a ten NR stages in double

precision . 75

4.10 Non-restorative square root operation . 78

4.11 Registers required for hardware implementations of square-root operation. . . . 80

vii

LIST OF FIGURES

4.12 ALMs required for hardware implementations of square-root operation. 80

4.13 fmax of hardware implementations of square-root operation. 81

4.14 Relative and absolute error for traditional non-restoring square root 82

4.15 Relative and absolute error for increased accuracy non-restoring square root . . 82

4.16 Relative and absolute error for increased accuracy non-restoring square root with

pipelining . 83

4.17 Euler series approximation to 10 iterations in half-precision using a five stage

Newton-Raphson division implementation. Top half of the graph shows error for

a negative input, bottom half shows error for a positive input. 88

4.18 Power series approximation to 10 iterations in half-precision using a five stage

Newton-Raphson division implementation. Top half of the graph shows error for

a negative input, bottom half shows error for a positive input. 88

4.19 Euler series approximation to 10 iterations in half-precision using a single stage

Newton-Raphson division implementation. Top half of the graph shows error for

a negative input, bottom half shows error for a positive input. 89

4.20 Power series approximation to 10 iterations in half-precision using a single stage

Newton-Raphson division implementation. Top half of the graph shows error for

a negative input, bottom half shows error for a positive input. 89

4.21 Flow diagram of the stages performed by the hardware implementation of the

proposed hardware friendly exponential function. 90

4.22 Registers required for hardware implementations of the exponential operation. . 92

4.23 ALMs required for hardware implementations of the exponential operation. . . . 92

4.24 fmax of hardware implementations of the exponential operation. 93

4.25 Hardware friendly floating-point exponent approximation using a single line curve

fit in double-precision. The top graph is negative input numbers. The bottom

graph is positive input numbers. 94

4.26 Hardware friendly floating-point exponent approximation using a four line curve

fit in double-precision. The top graph is negative input numbers. The bottom

graph is positive input numbers. 94

4.27 Hardware friendly floating-point exponent approximation using a single line curve

fit with fixed-point integer division operation double-precision. The top graph is

negative input numbers. The bottom graph is positive input numbers. 95

viii

LIST OF FIGURES

4.28 Hardware friendly floating-point exponent approximation using a single line curve

fit with a floating-point multiply in double-precision. The top graph is negative

input numbers. The bottom graph is positive input numbers. 95

4.29 Hardware friendly floating-point exponent hybrid approximation single line curve

fit and 1 + x in double-precision. The top graph is negative input numbers. The

bottom graph is positive input numbers. 96

4.30 Hardware friendly floating-point exponent hybrid approximation cubic curve fit

and 1 + x in double-precision. The top graph is negative input numbers. The

bottom graph is positive input numbers. 96

4.31 Performance of neural network on the MNIST database 98

4.32 Number of ALMs used in implementing neuron model on an FPGA 99

4.33 Number of registers used in implementing neuron model on an FPGA 99

4.34 fmax of neuron model implemented on an FPGA 100

4.35 Number of DSP blocks used in implementing neuron model on an FPGA 101

4.36 Step response of hardware implementation of a Hodgkin-Huxley neuron 103

4.37 Step response hardware implementation of a Hodgkin-Huxley neuron 103

4.38 Impulse response of hardware implementation of a Hodgkin-Huxley neuron . . . 104

5.1 OpenGL based graphics pipeline construction . 110

5.2 OpenGL render example . 111

5.3 Rasterizer clock cycle reduction method . 115

5.4 Low and high density primitives for rasterization 121

5.5 Example FPGA-GPU output . 126

6.1 FPGA floorspace arrangement for continuous end-to-end processing 132

6.2 AN improved FPGA floorspace arrangement for continuous end-to-end processing 133

6.3 FPGA floorspace arrangement for hardware accelerators 133

6.4 Pre-emptible flip-flop design . 136

6.5 D-type flip-flop netlist . 137

6.6 Pre-emptible flip-flop netlist . 137

6.7 Serial arrangement of scan chain for pre-emptible flip-flops 139

6.8 Parallel arrangement of scan chain for pre-emptible flip-flops 140

6.9 Registers used for a design before and after conversion for pre-emption 140

6.10 fmax of a design before and after conversion for pre-emption 141

ix

LIST OF FIGURES

6.11 ALMs used for a design before and after conversion for pre-emption 141

6.12 Proposed FPGA floorspace arrangement for on-line configuration 146

6.13 Intel FPGA floor plan view with two partial reconfigurable regions 147

6.14 Intel FPGA floor plan view with six partial reconfigurable regions 148

6.15 Reconstruction of flow graph for realisation in on-line reconfigurable FPGA . . . 149

6.16 The algorithm used to map the control flow graph to the FPGA’s floor plan. If

the program reaches an error position, it is reported to the host and exits gracefully.150

7.1 Flow diagram depicting the parsing and interpretation of the GLSL file to con-

struct the data flow graphs. 157

7.2 Initial control and data flow graphs for synthesis of GLSL code 158

7.3 Updating data flow graph to include temporary variables 158

7.4 Extracting data and control flow from initial flow graph construct 159

7.5 The two key optimisations performed are used to remove duplicated hardware

and to schedule tasks based on critical path analysis. This flow diagram gives an

overview of their operation. 159

7.6 Critical path analysis of control flow to assign lowest area components 160

7.7 Removal of repeated hardware . 161

7.8 Construction of storage for synchronising delay information 163

7.9 Comparison of delay line methods for lowest resource implementation 164

7.10 Output data synchronisation . 165

7.11 Back propagation of ‘wait’ signal . 166

B.1 Relative and absolute error for floating-point adder in single-precision 202

B.2 Relative and absolute error for floating-point multipler in single-precision 203

B.3 Relative and absolute error for floating-point adder in half-precision 203

B.4 Relative and absolute error for floating-point muliplier in half-precision 204

C.1 Relative and absolute error for hardware inverter with a single NR stage in double-

precision . 205

C.2 Relative and absolute error for hardware inverter with two NR stages in double-

precision . 206

C.3 Relative and absolute error for hardware inverter with three NR stages in double-

precision . 206

x

LIST OF FIGURES

C.4 Relative and absolute error for hardware inverter with four NR stages in double-

precision . 207

C.5 Relative and absolute error for hardware inverter with five NR stages in double-

precision . 207

C.6 Relative and absolute error for hardware inverter with ten NR stages in double-

precision . 208

C.7 Relative and absolute error for hardware inverter with a single NR stage in single-

precision . 208

C.8 Relative and absolute error for hardware inverter with two NR stages in single-

precision . 209

C.9 Relative and absolute error for hardware inverter with three NR stages in single-

precision . 209

C.10 Relative and absolute error for hardware inverter with four NR stages in single-

precision . 210

C.11 Relative and absolute error for hardware inverter with five NR stages in single-

precision . 210

C.12 Relative and absolute error for hardware inverter with ten NR stages in single-

precision . 211

C.13 Relative and absolute error for hardware inverter with a single NR stage in half-

precision . 211

C.14 Relative and absolute error for hardware inverter with two NR stages in half-

precision . 212

C.15 Relative and absolute error for hardware inverter with three NR stages in half-

precision . 212

C.16 Relative and absolute error for hardware inverter with four NR stages in half-

precision . 213

C.17 Relative and absolute error for hardware inverter with five NR stages in half-

precision . 213

C.18 Relative and absolute error for hardware inverter with ten NR stages in half-

precision . 214

D.1 Relative and absolute error for a traditional non-restoring algorithm in single-

precision. 215

D.2 Relative and absolute error for the new non-restoring algorithm in single-precision.216

xi

LIST OF FIGURES

D.3 Relative and absolute error for a traditional non-restoring algorithm in half-

precision. 216

D.4 Relative and absolute error for the new non-restoring algorithm in half-precision. 217

D.5 Effects of pipelining a non-restoring algorithm to accuracy of result at single-

precision . 217

D.6 Effects of pipelining a non-restoring algorithm to accuracy of result at half-precision218

E.1 Hardware friendly floating-point exponent approximation using a single line curve

fit in double-precision. 225

E.2 Hardware friendly floating-point exponent approximation using a single line curve

fit with integer divide in double-precision. 225

E.3 Hardware friendly floating-point exponent approximation using a single line curve

with floating-point multiply in double-precision. 226

E.4 Hardware friendly floating-point exponent approximation using a single line curve

fit with pipelining in double-precision. 226

E.5 Hardware friendly floating-point exponent approximation using a double line

curve fit in double-precision. 227

E.6 Hardware friendly floating-point exponent approximation using a double line

curve fit with pipelining in double-precision. 227

E.7 Hardware friendly floating-point exponent approximation using a four line curve

fit in double-precision. 228

E.8 Hardware friendly floating-point exponent approximation using a four line curve

fit with pipelining in double-precision. 228

E.9 Hardware friendly floating-point exponent approximation using a quadratic curve

fit in double-precision. 229

E.10 Hardware friendly floating-point exponent approximation using a quadratic curve

fit with pipelining in double-precision. 229

E.11 Hardware friendly floating-point exponent approximation using a cubic curve fit

in double-precision. 230

E.12 Hardware friendly floating-point exponent approximation using a cubic curve fit

with pipelining in double-precision. 230

E.13 Hardware floating-point two to the x approximation in double-precision. 231

E.14 Hardware friendly floating-point exponent hybrid approximation single line curve

fit and 1 + x in double-precision. 231

xii

LIST OF FIGURES

E.15 Hardware friendly floating-point exponent hybrid approximation single line curve

fit and 1 + x with pipelining in double-precision. 232

E.16 Hardware friendly floating-point exponent hybrid approximation double line curve

fit and 1 + x in double-precision. 232

E.17 Hardware friendly floating-point exponent hybrid approximation double line curve

fit and 1 + x with pipelining in double-precision. 233

E.18 Hardware friendly floating-point exponent hybrid approximation four line curve

fit and 1 + x in double-precision. 233

E.19 Hardware friendly floating-point exponent hybrid approximation four line curve

fit and 1 + x with pipelining in double-precision. 234

E.20 Hardware friendly floating-point exponent hybrid approximation quadratic curve

fit and 1 + x in double-precision. 234

E.21 Hardware friendly floating-point exponent hybrid approximation quadratic curve

fit and 1 + x with pipelining in double-precision. 235

E.22 Hardware friendly floating-point exponent hybrid approximation cubic curve fit

and 1 + x in double-precision. 235

E.23 Hardware friendly floating-point exponent hybrid approximation cubic curve fit

and 1 + x with pipelining in double-precision. 236

F.1 Step response of hardware implementation of a Hodgkin-Huxley neuron 237

F.2 Step response hardware implementation of a Hodgkin-Huxley neuron 238

F.3 Step response of hardware implementation of a Hodgkin-Huxley neuron 238

F.4 Step response hardware implementation of a Hodgkin-Huxley neuron 239

F.5 Step response of hardware implementation of a Hodgkin-Huxley neuron 239

F.6 Step response hardware implementation of a Hodgkin-Huxley neuron 240

F.7 Step response hardware implementation of a Hodgkin-Huxley neuron 240

F.8 Step response hardware implementation of a Hodgkin-Huxley neuron 241

F.9 Step response hardware implementation of a Hodgkin-Huxley neuron 241

F.10 Step response hardware implementation of a Hodgkin-Huxley neuron 242

F.11 Step response hardware implementation of a Hodgkin-Huxley neuron 242

F.12 Step response hardware implementation of a Hodgkin-Huxley neuron 243

F.13 Step response hardware implementation of a Hodgkin-Huxley neuron 243

F.14 Step response hardware implementation of a Hodgkin-Huxley neuron 244

F.15 Step response hardware implementation of a Hodgkin-Huxley neuron 244

xiii

LIST OF FIGURES

F.16 Impulse response of hardware implementation of a Hodgkin-Huxley neuron . . . 245

F.17 Impulse response of hardware implementation of a Hodgkin-Huxley neuron . . . 245

F.18 Impulse response of hardware implementation of a Hodgkin-Huxley neuron . . . 246

F.19 Impulse response hardware implementation of a Hodgkin-Huxley neuron 246

F.20 Impulse response of hardware implementation of a Hodgkin-Huxley neuron . . . 247

F.21 Impulse response hardware implementation of a Hodgkin-Huxley neuron 247

F.22 Impulse response hardware implementation of a Hodgkin-Huxley neuron 248

F.23 Impulse response hardware implementation of a Hodgkin-Huxley neuron 248

F.24 Impulse response hardware implementation of a Hodgkin-Huxley neuron 249

F.25 Impulse response hardware implementation of a Hodgkin-Huxley neuron 249

F.26 Impulse response hardware implementation of a Hodgkin-Huxley neuron 250

F.27 Impulse response hardware implementation of a Hodgkin-Huxley neuron 250

F.28 Impulse response hardware implementation of a Hodgkin-Huxley neuron 251

F.29 Impulse response hardware implementation of a Hodgkin-Huxley neuron 251

F.30 Impulse response hardware implementation of a Hodgkin-Huxley neuron 252

xiv

List of Tables

2.1 NAND gate truth table . 14

2.2 NOR gate truth table . 14

3.1 Floating-point bit configurations . 52

3.2 Resources and performance for double-precision simple maths operations 54

3.3 Resources and performance for double-precision vector maths operations 61

4.1 Resources and performance for double-precision Newton-Raphson maths operations 69

4.2 Latency of square-root implementation . 79

4.3 Resources and performance for double-precision square-root operations 81

4.4 Resources and performance for Intel floating-point square-root megafunction . . . 83

4.5 Resources and performance for half-precision Euler and power series approxima-

tions of ex . 86

4.6 Resources and performance for half-precision Euler and power series approxima-

tions of ex . 87

4.7 Types of approximation for the exponential function in hardware 91

4.8 Resources and performance for half precision hardware friendly approximations of

ex . 107

5.1 Resources and performance for half-precision vertex shaders 118

5.2 Resources and performance for half-precision fragment shaders 119

5.3 Comparison of resources and performance for forward and deferred rendering im-

plementations . 122

5.4 Power and performance for vertex shaders . 126

5.5 Resources and performance for half-precision graphics renders on FPGA 127

6.1 Resources and performance of d-type and pre-emptible flip-flops 136

6.2 Resources and performance of complete pre-emptible flip-flop controllers 138

xv

LIST OF TABLES

6.3 Complete system example using pre-emptible flip-flops 144

7.1 GLSL shaders can range from straight-forward operations such as moving data

from the input to the output side for use in a later shader, to complicated matrix

and vector operations. A number of increasingly complicated GLSL operations

have been implemented as GLSL shaders that have been converted by the HLS tool.166

7.2 Resources and performance for automatically synthesised graphics shaders 168

A.1 Resources and performance for single-precision simple maths operations 196

A.2 Resources and performance for half-precision simple maths operations 197

A.3 Resources and performance for single-precision square-root operations 198

A.4 Resources and performance for half-precision square-root operations 198

A.5 Resources and performance for single-precision Newton-Raphson maths operations 199

A.6 Resources and performance for half-precision Newton-Raphson maths operations 200

A.7 Resources and performance for single-precision vector maths operations 201

A.8 Resources and performance for half-precision vector maths operations 201

E.1 Resources and performance for double-precision Euler and power series approxi-

mations of ex . 219

E.2 Resources and performance for double-precision Euler and power series approxi-

mations of ex . 220

E.3 Resources and performance for single-precision Euler and power series approxima-

tions of ex . 221

E.4 Resources and performance for single-precision Euler and power series approxima-

tions of ex . 222

E.5 Resources and performance for double precision hardware friendly approximations

of ex . 223

E.6 Resources and performance for single precision hardware friendly approximations

of ex . 224

F.1 Resource and performance metrics for hardware implementations of the Hodgkin-

Huxley model. 253

G.1 Resources and performance for double-precision vertex shaders 254

G.2 Resources and performance for single-precision vertex shaders 254

G.3 Resources and performance for double-precision fragment shaders 255

xvi

LIST OF TABLES

G.4 Resources and performance for single-precision fragment shaders 255

H.1 Resources and performance for single-precision graphics renders on FPGA 256

xvii

List of Acronyms

2D 2-Dimensional

3D 3-Dimensional

AI Artificial Intelligence

ALM Adaptive Logic Module

ALU Arithmetic Logic Unit

ALUT Adaptive Look Up Table

ANSI-C American National Standards Institute for the C language

API Application Programming Interface

APM Automatic Parallel Module

APU Accelerated Processing Unit

ASIC Application Specific Integrated Circuit

BisFET Bilayer PseudoSpin Field Effect Transistor

BJT Bipolar Junction Transistor

BOX Buired Oxide Layer

CAD Computer Aided Design

CGRA Coarse Grain Reconfigurable Arrays

CMOS Complementary Metal Oxide Semiconductor

COTS Commercial off the Shelf

CPU Central Processing Unit

xviii

LIST OF TABLES

csv Comma Separated Values

DAB Digital Audio Broadcasting

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DWARV Delftworkbench Automatic Reconfigurable VHDL generator

EMIF External Memory Interface

FeFET Ferroelectric Field Effect Transistor

FIFO First In, First Out

FinFET Fin Field Effect Transistor

FLOPS Floating Point Operations Per Second

FPGA Field Programmable Gate Array

FPGA-SoC Field Programmable Gate Array - System on Chip

FPL Feild Programmable Logic

fps frames per second

FPU Floating Point Units

GIT Global Information Tracker

GLSL Graphics Language Shader Language

GPP General Purpose Processor

GPU Graphics Processing Unit

HDL Hardware Description Language

HDR High Dynamic Range

HLL High Level Language

HPS Hard Processor System

xix

LIST OF TABLES

I2C Inter-Integrated Circuit

I/O Input/Output

IC Integrated Circuit

IDE Integrated Development Environment

IP Intellectual Property

ISA Instruction Set Architecture

ISS International Space Station

LSB Least Significant Bit

LUTs Look Up Tables

MATLAB Matrix Laboratory

MGP Monochip Graphics Processor

MIPS Million Instructions Per Second

MISC Minimal Instruction Set Computer

MOS Metal Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPSoC Multi-Processor System on Chip

MSB Most Significant Bit

NHS National Health Services

NMOS Negative-channel Metal Oxide Semiconductor

OpenCL Open Computing Language

OpenGL Open Graphics Language

OS Operating System

PD Photo-Diode

PMOS Positive-channel Metal Oxide Semiconductor

xx

LIST OF TABLES

PROM Programmable Read-Only Memory

PSK Phase Shift Keying

RAM Random Access Memory

RGB Red, Green, Blue

ROM Read Only Memory

SEU Single Event Upset

SDRAM Synchronous Dynamic Random Access Memory

SHA Secure Hash Algorithm

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SPI Serial Peripheral Interface

SoC System on Chip

SOI Silicon-on-Insulator

Tcl/Tk Tool Command Language/Tool Kit

TFET Tunnel Field Effect Transistors

TTL Transistor-Transistor Logic

ULP Unit of Least Precision

VCSEL Vertical-Cavity Surface Emitting Laser

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLIW Very Long Instruction Word

VLSI Very Large Scale Integrated

xxi

Abstract

Demands on modern computing are becoming more intensive. Keeping up with these

demands has increasing complexity. Moore’s Law is in decline. Increasing the number of

cores on a device has diminishing returns. Specialised architectures provide more efficient

and higher performing processors. However, it is not always practical to include every archi-

tecture on every device. Running non-native tasks on architectures often results in a drop in

performance.

This research examines the benefits and limitations of Field Programmable Gate Arrays

- Systems on Chip (FPGA-SoC) devices to provide flexible hardware accelerators for hetero-

geneous architectures. A number of topics are covered, including hardware acceleration of

floating-point mathematical functions, dynamic reconfiguration and high-level synthesis. A

number of case studies are presented. Dynamic reconfiguration is used to change the configu-

ration of the FPGA at runtime, allowing the hardware accelerators to be changed depending

on the current processor tasks. Changing accelerators at runtime has limitations, such as

data perturbation. Context switching techniques are applied to the hardware to prevent loss

of data and enable de-fragmentation of the FPGA. High level synthesis techniques are used

in conjunction with the presented hardware accelerators to synthesise high-level languages

into hardware descriptions with optimisations. Techniques for runtime synthesis of hardware

accelerators are presented. These can be combined with dynamic reconfiguration to configure

FPGAs with appropriate hardware accelerators from a high-level language at runtime.

The research demonstrates that FPGA-SoC devices have the potential for providing re-

configurable accelerators for processors in heterogeneous architectures. Metrics show that the

FPGA configurations can perform better than other commercial processors. It was demon-

strated that it is possible to context switch hardware at runtime, meaning the most can be

made of the FPGA-SoC at all times, even as situations change. However, there are many

limitations that still need to be overcome, such as management of the implemented hard-

ware, synthesis of new hardware at runtime, reconfiguration times, interfacing of hardware

with software and the design of hardware accelerators.

Chapter 1

Introduction

The world is becoming even more connected. The desire to do more with ever smaller

devices is becoming greater. Data centres must provide faster service while searching larger

databases. To keep pace with change, more inventive ways of constructing processors must

be considered.

In 1965, Moore (co-founder of Intel) observed how transistor density had been increasing

over the years and predicted this would continue. This later became known as Moore’s Law.

Although the exact wording has been forgotten, the general consensus is that Moore’s Law

states the density of transistors doubles every one to two years. The Moore’s Law prediction

has been correct and transistor density has vastly increased, as shown in Figure 1.1. Much

1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

101

102

103

104

105

106

107

108

109

1010

N
um

be
r

of
 T

ra
ns

is
to

rs
 o

n
D

ev
ic

e

101

102

103

104

P
ro

ce
ss

 N
od

es
 (

nm
)

Figure 1.1: From 1970 to today there is a trend in the number of transistors in processors
and the process nodes used in their fabrication. The data presented here has been collated
from the Intel Ark of previous devices [4] and Intel history publications and articles [5] and
[6]. Red dots are process nodes. Blue stars are number of transistors.

of this increase is due to improvement in process node technology, from 10µm in 1971 to

1

CHAPTER 1. INTRODUCTION

sub-10 nm today. It is predicted that this will reduce even further in coming years. However,

smaller transistors present more challenges; for example, noise sensitivity becomes more of a

problem.

‘FinFET’ technology, invented in 1999 by Hu [7] and first used commercially by Intel in

2011, radicalised how transistors could be designed. Hu first demonstrated this technology in

the production of a sub-50 nm Positive-channel Metal Oxide Semiconductor (PMOS) tran-

sistor. The noise immunity of the FinFET design has lead to smaller, sub-10 nm, process

nodes. Increasing transistor density, while important, can only improve processing capability

so much. This can be seen as the limits of Moore’s Law are reached. Instead, the use of load

sharing and specialist architectures can greatly enhance the performance of a system.

1.1 Systems with multiple processors

(a) Homogeneous

(b) Heterogeneous

Figure 1.2: High-level representations of homogeneous and heterogeneous system architec-
tures

2

CHAPTER 1. INTRODUCTION

Homogeneous architectures, shown in Figure 1.2a, use multiple processors of the same

topology to share processing load, parallelise computation, and increase throughput. Exam-

ples range from small, single chip, multi-core, embedded devices to large server centres, such

as those owned by Microsoft and Google, and all steps in between. Multi-core processing has

been widely adopted due to its ability to increase throughput and separate tasks and it can

be seen in all manner of applications. However, each processor is the same and can suffer

from the same potential pitfalls.

Heterogeneous architectures, Figure 1.2b, combine different processors, exploiting the

different specialisms of each topology for particular tasks. For example, mobile phones and

laptop or desktop computers typically have a number of different processors. It is recognised

that heterogeneous arrangements are one of the best ways to build a system to ensure the

best performance. Many single-chip systems are now heterogeneous: consumer processors

include on-board graphics in the same chip as the computational processor.

Even in a heterogeneous architecture there is no guarantee that there will be a specialised

processor for all situations. Code must be written to match the target architecture. This

may not always produce the most optimised results. Introducing a flexible architecture that

can be adapted to the processing task could lead to a much more optimised system overall.

Field Programmable Gate Arrays (FPGAs) provide a flexible device on which specialised

architectures can be implemented. System on Chip (SoC) devices combine GPPs, such as the

ARM Cortex-A range, with FPGA fabric in the same package. In 2015, [8], Intel acquired

Altera, one of the largest FPGA vendors. This merger is likely to produce more FPGA-SoC

devices.

1.2 Current processing technologies

1.2.1 General Purpose Processor - GPP

A GPP is a processor that can perform a variety of tasks without being overly specialised in

one. GPPs are often the basis of a system where control-flow, such as ‘if-else’, statements are

dominant. Other architectures, such as graphics processors or FPGAs, are better suited to

data-flow applications where deep pipelines and high levels of parallelism can be implemented.

The most commonly recognised form of GPP is the Central Processing Unit (CPU) used

in every computer. The CPU’s ability to perform all tasks makes it suited to managing a

system. However it may not be the most efficient at certain tasks, such as floating-point

3

CHAPTER 1. INTRODUCTION

operations using graphics rendering. A CPU, shown in Figure 1.3, is good at managing the

interactions between various different hardware, e.g., GPUs and Random Access Memory

(RAM), and performing Operating System (OS) instructions.

Modern CPUs are characterised by their large number of cores and multilevel memory

caches. In 2017 two of the best-known processor manufactures, Intel and AMD, announced

new devices with ten or more processor cores, each of which supports hyperthreading, [9,

10, 11]. A typical processors can have three levels of local cache (L1, L2, L3). Typically L1

caches are kilobytes, L2 caches are hundreds of kilobytes and L3 caches are several megabytes.

Caches provide a small amount of memory physically close to the processor’s Arithmetic Logic

Unit (ALU) to reduce latency thus increasing throughput. Lower levels of cache (L1 and L2)

could be specific to a single core, but are smaller. A L3 cache could be shared between

multiple cores on a device, Figure 1.3. However caches are small so it is not guaranteed that

data will be there. Hence processors are nondeterministic devices, meaning the time taken

for an operation cannot be predicted accurately and is subject to change.

A typical architecture for a processor is given in Figure 1.3. Each manufacturer (e.g.

AMD, Intel, IBM) has architectural differences that make their products unique.

Figure 1.3: Overview of a typical CPU, reference from Intel [1].

4

CHAPTER 1. INTRODUCTION

1.2.2 Graphics Processing Unit - GPU

GPUs are designed primarily for intensive graphics rendering tasks, which have floating-point

mathematical operations. However, more uses of GPUs are being recognised such as data

mining (Bitcoin [12] and Ethereum [13]), neural network and artificial intelligence, and Com-

pute Unified Device Architecture (CUDA) [14]/Open Computing Language (OpenCL) [15]

applications.

Figure 1.4: Overview of a typical GPU, reference from NVIDIA [2].

GPUs are designed for higher data throughput that GPPs. They have a large number

of cores which have several main functional blocks optimised for processes key to graphics

rendering, Figure 1.4. The high core count allows the application to be written to exploit

parallelism. Threading separates the data stream to run processes in parallel. GPUs typically

have a dedicated threading engine. Data pipelining increases the overall throughput of the

device by minimising the number of operations that must be executed at each stage. A data

pipeline is a set of processing elements connected in series with each other. Generally, a deeper

data pipeline yields higher performance. A high-speed interface allows fast communications

between the host and the GPU. A large number of high-speed memory interfaces, coupled

with an L2 cache, ensure low latency transfer of data to each of the processing cores. Graphics

cards often use the Single Instruction, Multiple Data (SIMD) paradigm [16]. This allows the

multiple processing cores to perform the same operation on multiple data points, increasing

the throughput, so long as data alignment is maintained. Standard programming paradigms

5

CHAPTER 1. INTRODUCTION

for GPUs and SIMD architectures target vectorised code. However, not all code can be

vectorised, such as control-flow intensive processes like parsing.

This optimisation results in trade-offs. GPUs are good at high-speed mathematical com-

putation on vectorised data or parallelisable problems. However, GPUs are rigid in the way

they process data. Hence, compromises must be made to fit the task to the architecture.

1.2.3 Accelerated Processing Unit - APU

APUs use a simple heterogeneous architecture, combining a CPU and GPU in a single device.

APUs achieve a high computational throughput and reduce the overall processor footprint

and design complexity. The CPU is used to handle the everyday running of a system, while

computationally intensive tasks can be offloaded to the GPU.

APUs can also include video codecs for the graphics card, and memory controllers to allow

different elements to communicate. These devices are suited to space and power constrained

situations. However, they will still suffer from the limitations found in both the CPU and

GPU individually.

1.2.4 Digital Signal Processor - DSP

DSPs are designed for high-speed data processing of real-time signals with highly optimised

Input/Output (I/O). The type of calculations performed on a DSP often require floating-

point operations. DSPs use pipelined multiply-accumulate blocks with hardware controlled

looping to achieve minimal - sometimes zero - overhead. A DSP maybe used as a slave device

for high-speed data processing off of the systems processor.

DSPs typically contain local RAM, Read-Only Memory (ROM), and an instruction cache

along with external memory interfaces. Much like caches on processors, local RAM and ROM

store data close to the core to reduce latency. As DSPs are often used in embedded systems,

they tend to contain interfaces, such as Inter-Integrated Circuit (I2C) and Serial Peripheral

Interface (SPI), for communicating with external devices.

1.2.5 Field Programmable Gate Array - FPGA

Unlike the devices listed above, FPGAs are configurable hardware, not processors. The

configurable nature of an FPGA allows the designer complete customisation of the data types.

FPGAs are used for re-routable PCB design, hardware acceleration, and are also powerful

tools for the development and verification of Application Specific Integrated Circuits (ASIC).

6

CHAPTER 1. INTRODUCTION

This will be further addressed in Section 1.2.6.

FPGAs are versatile and have a variety of integrated Intellectual Property (IP) such as

memory, DSPs and transceivers. Some resources; e.g. memory and DSP blocks (Figure 1.5),

are interlaced with the FPGA logic fabric for ease of access and to minimise routing delay.

Unlike discrete DSP devices, DSP blocks in an FPGA are a multiply-accumulate stage. In

a modern FPGA, the DSP resources are becoming more capable and can be configured to a

number of modes such as high-, standard-, or floating-point precision [17]. Other resources,

such as External Memory Interfaces (EMIF) and transceivers, are found on the edge of the

chip as they are concerned with I/O applications.

When programming for traditional processors, the task is tailoring a problem/algorithm

to a given architecture. When programming for an FPGA, the task is somehow the other way

round by tailoring the architecture to the problem in the first place. FPGA-SoC devices are

becoming more prevalent. These contain all the standard features found in an FPGA, along

with a Hard Processor System (HPS). The HPS is a GPP that shares the same silicon as

the FPGA fabric. The interface between the two devices can then be detailed by the design

engineer resulting in a custom, flexible, fast interface.

Figure 1.5: Overview of a typical FPGA-SoC, reference from Intel FPGA [3].

7

CHAPTER 1. INTRODUCTION

1.2.6 Application Specific Integrated Circuit - ASIC

ASICs are designed to perform a single task repeatedly. This specialisation leads to a very

optimised but very inflexible solution.

An ASIC’s architecture is dependent on the environment and task for which it is devel-

oped. The details of many devices are considered company secrets. An ASIC could be a

specialised processor with a limited instruction set or a single hardware accelerator.

No two tasks are necessarily the same and neither are any two processors. There is also

variation within a single type of processor. Products aimed at consumers must be as versatile

as possible to meet the markets demands. Application specific offerings, which are much more

commonplace in aerospace and military sectors, must focus on reliability.

1.3 Aims and Organisation of this Thesis

The work presented in this Thesis is based on Intel FPGA (formally Altera) technology.

Most current research focuses on Xilinx Technology, whereas a key feature of this research

is the use of Intel FPGA devices. This thesis explores a number of aspects key to using

Intel FPGAs for dynamic reconfiguration. There are many implementations of floating-point

mathematical functions available as Intellectual Property (IP). However the first part of this

research designed new cores specifically for use with the applications presented later. The use

cases are Graphics rendering on an FPGA and creating an implementation of the Hodgkin-

Huxley neuron spiking model. By not using pre-existing library implementations of these

functions the ‘black box’ aspect is removed; the implementation is more transparent and

would allow for greater control over tuning for certain performance metrics.

The next part of the research focused on implementing partially reconfigurable architec-

tures on Intel FPGA devices. The research considers FPGA architectures for both end-to-

end data flow and hardware acceleration of processor based tasks. The context switching of

FPGA-based hardware accelerators is presented, discussed and demonstrated.

Finally, the research considers high-level synthesis tools for FPGA design. The research

presents the design for a high-level tool that is designed to convert from Graphics Language

Shader Language (GLSL) code into an FPGA implementation using the library of floating-

point functions developed for this research is presented.

The work detailed within this PhD Thesis addresses the following questions:

(Q1) What is the state-of-the-art for FPGA accelerated processes, dynamic reconfiguration

8

CHAPTER 1. INTRODUCTION

and high-level synthesis?

(Q2) What are the performance benefits of heterogeneous system architectures?

(Q3) How do these compare to traditional single and multiple processor topologies?

(Q4) What are the performance benefits of dynamically reconfigurable FPGA resources?

(Q5) What are the requirements and limitations of heterogeneous architectures on FPGAs?

Chapter 2 reviews and critiques current literature, specifically hardware acceleration, dy-

namic reconfigurability, high level synthesis, and context switching (Q1). Chapters 3 and 4

demonstrate the use of FPGAs as accelerators of floating-point functions, specifically com-

putationally expensive functions such as add, multiply, vector operations, reciprocal, square-

root, and exponential (Q2). Chapter 4 implements the Hodgkin-Huxley model of a neuron

using the FPGA, capable of processing at a rate of 100 s.s−1 (Q3). Chapter 5 provides a case

study for creating a GPU on the FPGA using floating-point operations, comparing power

requirements and throughput with Commercial Off-The-Shelf (COTS) devices (Q2 and Q3).

Chapter 6 details how dynamic task allocation and context switching can be implemented on

an FPGA, allowing hardware accelerators to be changed at runtime (Q4 and Q5). Chapter 7

provides the design and methodologies for synthesis of HDL from a high level language (Q5).

Finally, Chapter 8 concludes the Thesis, summarising the main results and outlining further

works.

The novel contributions of this research are: resource optimised FPGA implementations

of the square-root and exponential functions (Chapter 4); an implementation of the Hodgkin-

Huxley neuron on an FPGA using linear piecewise and curve-fitting methods (Chapter 4);

the implementation of a GPU using only FPGA fabric (Chapter 5); a new type of flip-flop

used to create context switchable FPGA designs with a method to automatically convert the

gate level verilog into a context switchable design (Chapter 6) and a high-level synthesis tool

for GLSL code (Chapter 7).

9

Chapter 2

Review of Literature

The research topic covers a number of distinct areas:

• Processor topologies, their development, and their potential decline

• System architecture designs

• Hardware acceleration

• Selecting and scheduling hardware tasks

• Switching between tasks

• Techniques for the automatic generation and optimisation of hardware designs

These individual areas have been the subject of research for many years. However, this does

not mean their research potential has been exhausted. Before conducting further research in

this area, it is important to understand the literature in each area and how they cross over.

This Chapter will assess a number of previous works, discussing the impact they have on this

work and providing the background and motivation.

2.1 Processor topologies

This research will explore the use of flexible Field Programmable Gate Array (FPGA) fabric

to replace traditional processor topologies and enhance heterogeneous architectures. It is

logical to first consider processor topologies and how they have become part of everyday life.

An introduction to the various different types of processors has been given in Chapter 1. The

development of these different processors shall now be considered in more detail.

10

CHAPTER 2. REVIEW OF LITERATURE

2.1.1 The early years

2.1.1.1 Moore’s Law

Perhaps the most famous, albeit misquoted, ‘law’ for electronics is attributed to Moore. In

1965 Moore wrote a prediction for the 35th anniversary edition of Electronics Magazine re-

garding the course of the electronics industry over the coming ten years. Moore discussed

the economic standings of the semiconductor industry and how the reliability of integrated

packages made them appealing for new ventures, such as space missions and in the mili-

tary [18]. Evaluating the costs and yields of semiconductor fabrication, Moore predicted that

“by 1975, the number of components per integrated circuit for minimum cost will be 65,000”.

Moore also stated that the “principle advantages will be lower cost and greatly simplified

design-payoffs from a ready supply of low-cost functional packages”. Moore’s article secured

his place in history by considering the importance of silicon to the semiconductor industry.

Since then, Moore has appeared as a keynote speaker on multiple occasions, discussing

the development of the semiconductor industry and the potential roads it must explore. In

1979 Moore attended the International Solid-State Circuits Conference where he posed the

question “Are we really ready for [Very Large Scale Integration] VLSI2?”. Microprocessors

were already well established and had been seen as a “cost-effective solution to a broad

range of applications”. However, the next step concerned how hardware could be used to

maintain “system advantage” with hardware acceleration [19]. Almost four decades ago the

importance of custom hardware and how it interplayed with flexible processor technology was

being considered.

In 1995 Moore wrote an article redressing what had become known as Moore’s Law [20].

He acknowledged that Moore’s Law had become associated with “almost anything related

to the semiconductor industry that when plotted on semi-log paper approximates a straight

line”. The article compared the predicted ten-year growth of transistor density between 1965

and 1975 with what actually occurred over the ten year period. It was found that Moore’s

Law had held relatively true and the semiconductor industry had grown at a remarkable

pace. Digital computing was widely available and the demand for higher performance was

being met. The rapid growth of the industry was not necessarily countering the growing

costs it was facing. Yield increases were beginning to plateau and newer ways were needed

to improve value.

Moore presented the significant growth in the market of Intel branded processors at the

2003 International Solid-State Circuits Conference [21]. Moore focused on the economic

11

CHAPTER 2. REVIEW OF LITERATURE

growth of the industry and states that the past 30 years had seen an average compound

annual growth of 15%. However, the number of transistors that had been produced grew

by 78% on average with several years in the ’70s and ’80s experiencing more than 100%

growth. This phenomenal increase had been accompanied by a reduction in size and increase

in efficiency of transistors. The cost of manufacture had significantly reduced and minimum

feature sizes were orders of magnitude smaller than in 1965. Although the semiconductor

industry had enjoyed the unprecedented growth, challenges were beginning to emerge that

could see an early end to the now critical industry. New ‘Tri-gate’ structures, which radically

change traditional transistor design were being developed. They will be discussed later in

Section 2.1.

There are a number of limitations and challenges facing the Moore’s Law prediction. Over

the years different approaches have been used to overcome a variety of challenges; it is these

that will be discussed.

2.1.2 Specific hardware for specific tasks

It is well established that, just like no two tasks are necessarily the same, neither should the

approach for solving them be. While it is true that a General Purpose Processor (GPP) is

capable of almost any task, its efficiency can vary massively and is often very low. An algo-

rithm or process may require a higher number of calculations, which also increases time taken

and power consumed. As demands for both high throughput and low power consumption

increase, introducing specialised hardware designed for specific tasks is a must.

An example of specialised hardware is the Graphics Processing Unit (GPU). These are

now commonplace in every day life. In 1980 the concept of a specific processor for graphics

was introduced [22]. The ‘true graphic processor’ provided dedicated hardware designed to

interface with any 8-bit microprocessor. Branded as a ‘high performance’ processor for the

time, it managed to display a 512×512 portion of a 4096×4096 pixel image with a raw speed

of 2 MPixels/second . This type of technology has lead to a whole new market sector, today

worth billions of dollars.

The development of specialist architectures progressed rapidly. Some new processors even

became more application specific than generic graphics processors. In 1982 Liu & Eastman

wrote about a GPU for computer-aided drafting [23] and in 1983 Nishimura et. al. produced

a colour graphics processor for television broadcasting [24]. These technologies focussed more

on the user experience, removing the need for technical understanding to be able to make

12

CHAPTER 2. REVIEW OF LITERATURE

full use of the devices.

The next step was to reduce the complexity of implementing specialist devices. In 1990,

Geneste & Auger published work that unified multiple custom and semi-custom Application

Specific Integrated Circuits (ASICs) for graphics processing onto a single Monochip Graphics

Processor (MGP) [25]. Their publication summarised over a decade of graphics processing

ASIC development, combining a total of nine ASICs and three Programmable Read-Only

Memories (PROMs) into a single chip solution. The resulting MGP was fabricated using a

1µm Complementary Metal Oxide Semiconductor (CMOS) process.

Graphics processing is not the only type of task that benefits from application-specific

hardware. Often digitised data must be processed at high speeds to represent analogue

waveforms. This task is easily carried out by a Digital Signal Processor (DSP). Uses for

DSPs can be varied, such as neural networks, due to their optimised Input/Output (I/O). It

is hoped that creating a system that operates by mimicking the brain and learns will produce

vast amounts of computing power. This is an incredibly difficult challenge. In 1989 Suzuki &

Atlas discussed how analogue VLSI may produce an optimal processor for neural networks.

Given that replicating mathematics in a VLSI environment can be difficult, they proposed

“a digital implementation as a reasonable near-term alternative” [26]. Pipelining techniques

are mentioned to increase throughput. It is now widely accepted that pipelining is important

to achieve very high data throughput.

Transistors have become smaller in a very short space of time, but the smaller they

become, the harder it is to make them smaller. The next Section will look at the development

of CMOS technologies and possible new directions.

2.1.3 The history of CMOS

Digital devices use a large number of discrete semiconductor devices on one chip to create

functions. Silicon is doped to have an excess (n-type) or lack (p-type) of electrons, which

allows electron flow under specific conditions. Diodes provide the simplest semiconductor

device consisting of a single p-n junction. Some basic logic functions such as AND and OR

are possible with ‘diode logic’. The logic inputs are used to control the bias of diodes to set

the output. However, the introduction of transistors provided a considerably better and more

flexible way to construct discrete logic gates. Transistors allowed the invention of Transistor-

Transistor Logic (TTL), followed by CMOS logic. This progressed with more transistors

being included in single packages, eventually creating processors as they are known today.

13

CHAPTER 2. REVIEW OF LITERATURE

TTL is constructed from Bipolar Junction Transistors (BJTs). The logic inputs are used

to drive current into the emitter of a BJT. Current is forced to flow from the base to the

collector of the transistor. This controls the base on a second BJT to set the output. A

NAND and a NOR gate constructed using TTL are shown in Figure 2.1.

The truth tables for NAND and NOR gates are shown in Tables 2.1 and 2.2 respectively.

Table 2.1: NAND gate truth table

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

Table 2.2: NOR gate truth table

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

(a) NAND gate (b) NOR gate

Figure 2.1: TTL implementations of basic logic functions

Complementary Metal-Oxide-Semiconductor (CMOS) technology, show in Figure 2.2, was

introduced in 1963 by Sah & Wanlass of Fairchild [27, 28]. CMOS moves away from current-

driven BJT transistors to voltage-controlled Metal Oxide Semiconductor (MOS) transistors.

CMOS technology is a combination of both P-channel and N-channel Metal Oxide Semicon-

ductor, Field Effect Transistors (MOSFETs); every P-channel has a corresponding N-channel

(and vice versa). The are arranged so that every nMOSFET is supplied by either VSS or

another nMOSFET and every pMOSFET is supplied by either VDD or another pMOSFET.

The result is a very low power consumption device which generates minimal heat. However,

they can struggle to operate at high switching frequencies. A NAND and a NOR gate using

CMOS technology is shown in Figure 2.3.

14

CHAPTER 2. REVIEW OF LITERATURE

p - substrate

n - well

p+ n+ n+ p+ p+ n+

B BD
G

SD
G

S

N MOS P MOS

Figure 2.2: CMOS circuits combine both n- and p-doped transistors on the same wafer. B is
the bias, S is the source, G is the gate, D is the drain, p+ is positively doped silicon, and n-
is negatively doped silicon.

(a) NAND gate (b) NOR gate

Figure 2.3: CMOS implementations of basic logic functions

The process node is defined as the minimum feature width. CMOS technology has al-

lowed the rapid reduction in process node technology: smaller processes lead to more densely

packed transistors with higher performance and lower total power dissipation per operation.

This allowed the complexity of general purpose and application specific processors to increase.

However, conventional CMOS technology has its limitations. Scaling the size of a MOSFET

to below 0.5 V becomes difficult due to its 60 mV per decade swing of current [29]. As a re-

sult, there are many other technologies that are being investigated to increase performance:

Tunnel Field Effect Transistors (TFET) [30, 31]; Ferroelectric Field Effect Transistor (Fe-

FET) [32, 33]; magnetic spin and orbital state Bilayer PseudoSpin Field Effect Transistors

15

CHAPTER 2. REVIEW OF LITERATURE

(BisFETs) [34, 35]. Additionally other materials such as graphene and carbon nanotubes

are also being considered. Currently these technologies are still in their early experimental

stages. One adaptation of the FET that is already used is the FinFET.

2.1.4 The FinFET

It has been shown that processor technology has seen dramatic change over the past 50 years.

Process nodes have shrunk rapidly: in 1971 a typical process node would have been 10µm,

whereas nodes today are sub-10 nm. This dramatic reduction in feature size was assisted by

Hu et. al. in 1999. They proposed a new arrangement for the standard transistor design,

repositioning the gate of a transistor, resulting in the ‘FinFET’ [7, 36], Figure 2.4.

The intention of the FinFET, also known as the ‘Tri-gate’ structure, was to create sub-

50 nm PMOS transistors. Fabricated prototypes showed good performance characteristics

down to 18 nm. Even when the research was first published, simulations showed promise of

a sub-10 nm minimum feature size. Only recently have such small process nodes started to

be used in production. Despite early praise from Moore at the International Solid States

Conference in 2003 [21], the FinFET did not come into use until about a decade later.

Figure 2.4: Compared to a regular transistor, the FinFET (right) repositions the source-drain
structure to create a ‘fin’ shape allowing fully depleted operation. Traditional MOSFET
construction (left) has the gate on top of the source-drain substrate. The gate is shown in
green, substrate in yellow, and oxide layers are shown in blue.

16

CHAPTER 2. REVIEW OF LITERATURE

2.1.5 The photonic processor

It is not possible to continually shrink transistors as fundamental physical limits will eventu-

ally be reached.. Eventually it will not matter how small a transistor can be made, it will not

be possible to overcome noise effects and other limitations will dominate a systems overall

performance. Whilst smaller transistors mean higher transistor density and shorter tracks,

it still takes time to move charge from one location to another. Although signal propagation

in a copper wire can be faster than in optical fibres, electrical interconnectivity is slow when

compared to the speed of light. Depending on the application, this property can be exploited.

Research has been conducted into producing photonic-inspired CMOS devices [37, 38].

Initial findings indicated an increase in energy efficiency and throughput compared to elec-

trically connected devices by up to ten times. In [37], Strojanovic et. al. reported a four

times energy efficiency and throughput gain for core-to-core performance and a ten fold im-

provement for core-to-Dynamic Random Access Memory (DRAM) networks.

Shen et. al. presented the designs for a Silicon-on-Insulator (SOI) 3D guided-wave path

device in [39], shown in Figure 2.5. The performance was reported to be 10 Gbps error-free

data transmission using 9 mA driving current. The promise of such high throughput devices

has inspired other related research. Yang et. al. presented an ‘Optical Matrix Processor’ in

2016 [40] that performed 1.6 × 109 multiplication and accumulation operations per second.

Further, Vinckier et. al. demonstrated how photonic processing can be used to process high

bandwidth signals for low power through use of a neural network application [41]. Such

devices appear to be a promising solution to the inevitable end to Moore’s Law and the

lightning-fast development of the semiconductor industry. However, they do not appear

commercially viable in the near future.

2.1.6 What is the next step?

Embedded technologies have developed rapidly since their invention. Process nodes have

shrunk, yields and efficiency have increased. The necessity of application specific devices

such as the GPU and DSP has been confirmed and they are now ubiquitous in modern

society. However, as process technology begins to throttle Moore’s Law and no alternative is

available yet, a different approach must be found.

One obvious way forward is unifying various architectures into single-chip solutions. This

would allow better use of the specialised architectures and computational load sharing to

increase efficiency and throughput.

17

CHAPTER 2. REVIEW OF LITERATURE

VCSELs

Isolation Layer

Silicon
Substrate

BOX Layer

PDs
Transmission

Line

Optical Path

Trapezoidal Silicon
Waveguide

Figure 2.5: Photonic processors introduce waveguides so that photons can be used in place
of electrons to trigger FETs. Image drawn using [39] as a reference. Where VCSEL is a
Vertical-Cavity Surface Emitting Laser, PD is a Photo-Diode, and the BOX Layer is an SiO2

Buried Oxide Layer.

2.2 Architectures

2.2.1 What makes the ‘best’ architecture?

Different situations have different requirements. A system could require low power, small

size, high throughput or efficiency. Hence, the architecture could be tailored to give the best

performance for a given situation. Lessons learnt from early architectures for devices and

systems are key in their continued development.

The interaction between different components plays just as big a role in determining the

overall system performance as the individual elements.

2.2.2 Homogeneity and heterogeneity

When building a system, the architecture will fall into one of two main categories: homoge-

neous or heterogeneous. These have already been discussed in Chapter 1. It is important to

understand the differences between the two concepts and the advantages and limitations of

both. This Section will discuss the arrangements of different systems within both categories

and some potential uses.

Any system can be considered either homogeneous or heterogeneous. Which category it

falls into is a matter of scope. For example, consider a desktop computer. Within a computer,

there are a variety of different components, such as CPU, GPU and memory. These different

items are connected to form a system which is heterogeneous. Alternatively the system can

be examined on a smaller scale. The processor may be made from multiple cores. If all of

these cores are the same, it is a homogeneous system. Similarly the GPU is likely to be a

18

CHAPTER 2. REVIEW OF LITERATURE

homogeneous system made of many identical elements.

On a larger scale, multiple identical computers could be connected to form a data centre.

All of the computers are identical so a homogeneous system has been built. Therefore, there

is now a homogeneous system made from heterogeneous systems made from homogeneous

components.

The question still remains, however, which is better? Heterogeneous systems have a

wider variety of specialisations. While it is true that a heterogeneous system will have better

performance and energy efficiency [42, 43, 44, 45] this is only achieved with careful design.

In heterogeneous systems, the problem of synchronisation and communication becomes a

limiting factor. Homogeneous systems naturally require high synchronisation for low energy

consumption [43]. However, a homogeneous system cannot exploit the variety of different

architectures of a heterogeneous system.

2.2.3 How multiple devices interact

Communication and synchronisation between various elements is key for system performance.

To illustrate the impact, the example of a computer will be revisited. Each of the elements

- CPU, GPU and memory - are discrete on the motherboard. They are controlled from the

CPU, which passes data to the other system elements. This transfer of information is not

instantaneous; it takes time and hence reduces overall system performance. In a computer

the data and instructions must leave the source and travel across the motherboard, using

a standard protocol, to the destination. If the two devices are the same, they would be

synchronised and communication would be faster. However, a computer is heterogeneous,

making synchronisation a problem.

While the computer is a relatable example, modern technologies focus on single sili-

con devices. Yousif et. al. presents communication considerations for heterogeneous and

homogeneous systems [43]. Systems were categorised as: Master-Slave, Pipeline and Net

Architecture. The Master-Slave system used a single processor to control the actions of the

other processors, distributing tasks as necessary. The Pipeline architecture used multiple

processors to provide pipelines for the other processors. This reduces the computation load

but requires specific time control. The Net Architecture allowed all processors to talk to any

other processor as there was no hierarchy.

Yousif et. al. also presented a variety of different intercommunication and memory

access topologies. Data transfer between processors is important for performance. Point-to-

19

CHAPTER 2. REVIEW OF LITERATURE

point transmission provided a direct communication link and there was no need to wait for

other communications to finish. However, in large systems this is inefficient. A shared bus

approach was a more efficient use of resources, but sharing the communication link between

all processors requires time division sharing and performance suffered as a result. The net-

on-chip approach is becoming more popular. It attempts to mitigate the shortcomings of the

other two approaches, creating the best solution in terms of both performance and resource

use.

Memory was also addressed by Yousif et. al. [43]. Fast processor communication is

important, but memory access is equally vital. Yousif et. al. discussed shared memory and

a message passing technique at length. Shared memory is accessible via all the processors.

This requires arbitration to avoid conflicts which can slow a system down. Message passing

techniques distribute memory around the system so that each processor has its own local

memory. Yousif et. al. concluded that net-on-chip and message passing techniques were the

best approaches for fast communications between system elements.

The arrangement and shape of the elements is also important. Xiao & Baas conducted re-

search into arrangements of different n-sided elements for greater communications rates [46,

42]. A processor die was considered as a four-sided element in contact with another four

elements in a 2D mesh. Xiao & Baas experimented with offsetting the processor elements,

similar to the construction of a wall, to increase the number of neighbours. They also consid-

ered a range of other tessellating polygons to see if performance gain could be achieved. It

was measured using standard benchmarks. It was reported that six-neighbour hexagon tiles

performed better than a four-neighbour mesh. However, each tile increased the fabrication

area by 2.9%. Overall the increase in interconnectivity performance meant the total area was

decreased by 22% with a average power saving of 17%.

Transistor process nodes have become smaller, to the point where they now provide

excellent throughput for very low energy cost. Hence communications between processors is

starting to dominate costs. Communication protocols and interconnectivity must be designed

carefully for the most efficient use of a collection of processor technologies.

2.2.3.1 Multi-cored single chips

Modern processors contain multiple identical cores. Increasing the number of cores improves

throughput and power efficiency. Development of homogeneous processor architectures shall

be discussed in more detail.

20

CHAPTER 2. REVIEW OF LITERATURE

Early multi-cored processors consisted of a homogeneous arrangement of processing cores,

with an increasing number of cores to provide more computational power. Yousif et. al.

considered the impact of communication and memory arrangements. This study came after

the initial development of multi-core processors.

A homogeneous system provides fewer advantages than a heterogeneous system. The

cache implementation in a homogeneous processor is an important factor for performance.

Nakajima et. al. compared two cache implementations for a dual-core homogeneous proces-

sor: dual-port and snoop access. Arranging the cache to allow multiple accesses for minimal

overhead gives large performance advantages [47]. Results showed the dual-port method re-

duces the power dissipation by 23% and requires 29% less floor space. Memory arrangements

for heterogeneous architectures are equally important.

Soleymanpour et. al. demonstrated a 42.71% speed increase and an energy reduction

of 30.77% for network-on-chip communications when compared to the homogeneous coun-

terparts [44]. However, while ‘cutting and pasting’ works for a homogeneous processor,

every part of a heterogeneous system must be individually, and carefully, designed to ensure

synchronisation. Soleymanpour et. al. proposed a synthesis algorithm based on a com-

mercial design tool for a Million Instructions Per Second (MIPS) processor. The algorithm

extracted custom instructions and explored the design space to implement a system with

optimal throughput and power consumption.

Sarma & Dutt discussed cross-layer heterogeneous architectures in [48]. They considered

several different design aspects including application, Operating System (OS) and hardware,

balancing them to provide potential Multi-Purpose Processor on Chip (MPSoC) configura-

tions. Given the number of variables in a system, providing a completely optimised solution is

difficult. The work in this paper considered only single instruction set architectures, for sim-

plicity. The system used a predictive cross-layer approach which selected the most promising

outcome. It did provide a large decrease in simulation time, but still required the input of a

designer at the final stage.

Souza et. al. noted that although MPSoCs have allowed for rapid development in the

embedded world, they lack cross-platform software compatibility [49]. There could be as many

different instruction sets as there are MPSoCs, therefore each program must be rewritten

to match its target. In contrast, GPPs tend to share a common instruction set, greatly

decreasing development time. Souza et. al. proposed a heterogeneous multi-core with a

homogeneous instruction set using a “binary translation mechanism”. The intention was to

21

CHAPTER 2. REVIEW OF LITERATURE

recompile the code to match the target at runtime.

In all architectures the energy efficiency must be considered. Processors under load get

hot and the heat reduces a system’s performance, or even stops it working altogether. In 2010

Ge & Qiu studied the effects of task allocation on the power consumption of a homogeneous

multi-cored processor [50]. The study considered the leakage current and the fan power,

which are vitally important in ensuring the system runs optimally.

2.2.3.2 Heterogeneity on different architectures

GPUs take advantage of thread level parallelism to distribute the incoming data and achieve

high throughputs. This translates to limited capability for instruction level parallelism [51].

Xiang et. al. proposed a heterogeneous graphics processing architecture constructed of cores

either capable of thread level parallelism or instruction level parallelism. The heterogeneous

architecture achieved higher throughput, energy and area efficiency than a homogeneous

version that used only one of the two available parallelisms.

Work that exploited a heterogeneous multi-core system with GPU acceleration is pre-

sented in [52]. Particle swarm optimisation, which is inherently computationally expensive,

was considered. The task would not run efficiently on a single-cored processor. Wachowiak et.

al. used a system that comprised multi-cored processors, graphical acceleration and Intel

Xeon Phi co-processor units (with vectorisation). The results showed that large speedups

are possible. The authors suggested that a heterogeneous approach could be used on other

time-intensive stochastic problems.

No matter the technology, there are a variety of different architectures that could be

exploited. Generally a heterogeneous system will outperform counterparts that rely on a

single technology. However, the design of heterogeneous architectures poses its own problems.

It is possible to apply lessons learnt form homogeneous systems to heterogeneous systems, for

example communications and memory layouts. Additionally, the layout requires searching a

large design space to achieve the most optimal system.

22

CHAPTER 2. REVIEW OF LITERATURE

2.3 Hardware acceleration

2.3.1 The beginnings of hardware acceleration and the introduction of co-

processors

Hardware acceleration is the process of implementing fixed hardware to perform a specific

job. Hardware acceleration is a proven concept, and was being used as far back as 1979 [19].

Consequently it is a vast subject about which several books could be written. This section

will focus mainly on themes that are addressed later in this Thesis.

Early hardware accelerators for Intel processors were the i80X86 family of devices which

provided additional hardware to execute microcode on. The i80X86 devices had combined

data and address busses. The i80X86 devices were intended for embedded systems, and

so were formulated as microcontrollers rather than microprocessors. Later versions of the

i80X86 family introduced more capability, particularly memory management applications.

Additional hardware reduced the number of clock cycles per instruction, and increased the

instruction set.

Intel also introduced a line of microprocessors designed solely for mathematical opera-

tions. An example is the i8087 device, which was also produced by IBM. It was capable

of performing floating-point operations such as multiplication and division, but also more

complicated operations like square-root, exponent and trigonometric functions. Performance

improvements of up to 500% were reported using the i8087 over the i8086. Additionally, the

power consumption of the device was remarkably low for its age. It consumed only 2.4 Watts

while achieving 50,000 Floating-Point Operations Per Second (FLOPS). There have been

many other mathematical co-processors since.

2.3.2 Modern acceleration

Hardware accelerators can be applied to many situations, from the very small, such as single

mathematical functions, to the very large, such as data-centre acceleration.

Hardware acceleration is used to accelerate repetitive or intensive tasks or subroutines.

A task, when broken down, will simply comprise mathematical functions. Most modern

computers use floating-point numbers. It is well known that floating-point operations are in-

tensive for GPPs, so mapping them to more suitable architectures vastly improves throughput

and energy efficiency. This research presents two case studies for FPGA implementations -

graphics rendering and neuron spiking models. A number of mathematical functions key to

23

CHAPTER 2. REVIEW OF LITERATURE

these implementations have been identified, including: addition/subtraction, multiplication,

division, square-root and exponential. Square-root and division operations are key for light-

ing calculations performed by graphics rendering pipelines, shown in Chapter 5. Non-linear

functions, such as the exponential function, are fundamental to the transfer function of the

Hodgkin-Huxley model of a neuron shown in Chapter 4. It is key to the research that these

implementations are not taken from third party libraries so the exact characteristics of each

implementation can be controlled for integration into the High-Level Synthesis tool presented

in Chapter 7. Here the complex, and less well researched, mathematical function, square-root,

shall be explored.

There are a number of iterative algorithms used to calculate the square-root of a number,

such as Taylor-series [53], or Newton-Raphson [54, 55] approximation. The accuracy of an

iterative method increases with every pass. For a processor this is a simple, although costly

procedure, in terms of time and resources. Kwon et. al. compare a Taylor expansion based

implementation of floating-point divide and square-root operations with Newton-Raphson

and Goldschmidt methods in their 2007 paper [53]. The proposed architecture uses powering

units, specialised hardware units that increase throughput and decrease latency of power

operations.

Often the procedures must be re-worked to best suit the target. There has been research

into a number of methods for square-rooting a number in hardware. Kachhwal & Rout

presented a method using Vedic mathematics [56]. The method used a non-standard 24-bit

floating-point format, requiring 90 slices, 99 slice flip-flops and 173 Look Up Tables (LUTs)

on a Xilinx device. Xilinx FPGAs are broken into slices, each of these contains a number of

resources - such as flip-flops, LUTs and carry logic. This is extremely low cost, however the

implementation only achieved 1 – 1.25 MFLOPs for 91 mW power consumption.

Other algorithms to consider are multiplicative square-root [57, 58]. These take advantage

of the DSP blocks on modern FPGAs to perform a number of multiply-accumulate stages.

The requirements for DSP and memory cells make these methods not always suitable for

intended applications.

Common square-root operations using hardware are based on the ‘non-restorative’ algo-

rithm, equation (2.1). where D is the input number, Q is the quotient and R is the remainder.

Chapter 4 describes the algorithm in detail.

D = Q2 +R (2.1)

24

CHAPTER 2. REVIEW OF LITERATURE

The number of operations required is proportional to the width of the input number.

Comparison operations are better for resource use and performance than multiply and divide

operations required by iterative methods. The non-restorative approach is popular enough

that there is a relatively large pool of research regarding the topic.

In 1996, an early implementation of the non-restoring method was shown in [59]. The

algorithm was applied to 16-, 32-, and 64- bit unsigned, fixed-point numbers with pipelining

added to increase throughput. It was compared to a Newton-Raphson based square-root

algorithm. For the 16-bit input numbers the non-restoring algorithm took two fewer clock

cycles. For 32-bit numbers it required one fewer clock cycles, however, for 64-bit inputs an

additional eight clock cycles were needed. The benefits lay in the reduction in gates required.

This demonstrates how intensive algorithms can be adapted to reduce cost.

Further research into the non-restorative method has been conducted to reduce latency as

well as cost. Putra & Adiono presented a worst-case total path delay of 102.5 ns for a register-

free, homogeneous square-root architecture using an Intel/Altera Cyclone II FPGA with

580 logic elements [60, 61]. The work presented used 32- and 64-bit fixed-point integers. The

earlier work required registers but still had low resource cost and achieved a high frequency

of operation: 110 MHz and 78 MHz respectively. The architecture did not use pipelining and

had N/2 + 1 clock cycles of latency for an N-bit length input word. This reduced the overall

throughput as it took more than one clock cycle to produce every answer. The 2014 work by

Putra required one fewer clock cycles (latency of N/2) [60].

When using hardware implementations the power efficiency must be considered, as power

availability is often limited. A low power, yet high speed implementation of a non-restorative

square-root algorithm is shown in [62]. The research demonstrated total power for classical

and reduced Newton-Raphson methods of around 200µW. The proposed 8-bit non-restorative

implementation used only 100µW or lower. The proposed method also used less than 50%

of the space of traditional methods.

Another common method for implementing the square-root function in hardware, or small

microprocessors, is the COordinate Rotation DIgital Computer (CORDIC) method [63]. In

the absence of hardware multipliers, or when gate count must be minimised, CORDIC meth-

ods yield high throughput, smaller implementations. Conversely, look-up table or power

series based methods have a higher throughput than CORDIC methods when hardware mul-

tipliers are available. The CORDIC method is analogous to an analogue revolver that can

operate in one of two modes: Rotation or Vectoring. Rotation computes the co-ordinates of a

25

CHAPTER 2. REVIEW OF LITERATURE

given vector through an angle of rotation. In contrast, in Vectoring mode the magnitude and

original vector are computed from the input co-ordinate components of the vector. There has

been a large amount of research into CORDIC methods for computing other mathematical

functions, for example logarithms and exponential functions, trigonometric functions, multi-

plication and division [64]. CORDIC based implementations for floating-point mathematical

functions can be found in IP libraries from FPGA vendors, such as Intel FPGA.

It has been demonstrated that the square-root operation has been mapped to hardware

by use of more hardware efficient methods. The implications of this will be considered

further in Chapter 4. Other mathematical operations, such as the cube-root [65], can also be

accelerated.

Hardware acceleration is not limited to individual functions. ‘Big Data’ can also benefit

from hardware acceleration. Research was conducted by Microsoft into accelerating a server

centre using a bed of FPGAs to create a reconfigurable fabric for 1,632 servers [66]. Adding

FPGAs achieved a throughput increase of approximately 100%.

Mass file processing, such as in search algorithms, is time and resource intensive and

requires careful memory management. Parallel processing can reduce the time taken for op-

erations, especially using custom hardware architectures. Liu et. al. studied “pipeline based

parallel frameworks for mass file processing” for cloud-based systems [67]. The work consid-

ered threads and homogeneous parallelisation concluding that “one pipeline made of three

threads is more efficient than three homogeneous parallelisation threads” due to contention

over shared resources. This demonstrated that, although dedicated hardware will speed up

large data applications, the architecture must be carefully considered.

Data streaming [68] and analytics [69] are further examples of big data applications that

can be accelerated using dedicated hardware. Big data tasks will probably involve sensitive

data, so security is paramount. Shinde & Singh presented methods for extracting operations

suitable for parallelism and ensuring security by considering data semantics and dependen-

cies [68].

There is a large variety of applications that benefit from the inclusion of dedicated hard-

ware. Once custom hardware methods have been proven using FPGAs, they can be used

to emulate custom ASICs. The use of custom ASICs allows greater control over the pro-

cess node technology, removes configuration overhead, tailors performance, and reduces

power consumption, such as the threefold reduction shown between 65 nm and 40 nm process

nodes [70]. However, creating custom ASICs is a costly process; therefore it may be more

26

CHAPTER 2. REVIEW OF LITERATURE

beneficial to use off-the-shelf FPGAs. FPGAs are commonly implemented in the most ad-

vanced process nodes to offset the configuration overhead. Functions have been considered

from individual floating-point maths operations to the handling of big data such as the in-

ternet. Other applications include data mining [71]; deep learning [72]; Phase Shift Keying

(PSK) modems [73]; and video/audio synchronisation [74].

Some key themes have been observed, particularly an increase in throughput and a reduc-

tion in power consumption and resources. However, some limitations and design considera-

tions are starting to emerge, especially into how data is managed and ensuring the security

and synchronisation of data in parallel systems. The next Section will take an in-depth look

into how hardware can be used to accelerate image and graphics processing techniques. This

topic has been particularly highlighted due to the known computational intensity of the tasks.

It also constitutes a main theme for some of the research carried out during the Ph.D.

2.3.3 Acceleration of image, video and graphics processing

As screens become higher resolution the need for processing larger quantities of data in the

same time span increases. A 4K Ultra High Definition (UHD) image consists of 3840 pixels

x 2160 lines. If each of these pixels is a High Dynamic Range (HDR) 10-bit colour, a single

frame could contain 10 MB of data. Processing a single image is time-consuming enough; for

video it may need to process 60 or 120 frames every second. Therefore image and graphics

processing is a prime candidate for hardware acceleration.

Image processing applications consist largely of filtration, edge detection, pixel operations,

geometric and orthographic transforms, compression, and colour space manipulation. The

cost of these functions varies considerably. Often the higher intensity operations will require

order statistics [75] or convolution kernels [76]. These are computationally expensive and

are subject to change (filter weights, kernel size) across the image, which can lead to over-

processing in direct hardware implementations.

In order to increase the efficiency of image filtering techniques, ‘linear separability’ is

exploited. A filter is linearly separable when it can be split it into a series of simpler filters.

These individual filters tend to be a lot more hardware efficient.

Another way to increase the suitability of image processing techniques is to exploit par-

allelisms. There are two levels of parallelism, image and operation that can reduce power

consumption or resource use [77]. Jinghong et. al. used DSPs to integrate hardware into im-

age processing applications [78]. DSPs offer an improvement in performance over GPPs, while

27

CHAPTER 2. REVIEW OF LITERATURE

maintaining more flexibility than dedicated hardware. The flexibility of dedicated hardware

can be increased using dynamic reconfiguration, which is discussed later in this Chapter.

Pham & Vliet exploited the concept of separability to perform bilateral filtering. This

is a computationally expensive process as it must recalculate the kernel for every pixel [79].

Although the work presented did not have any implementation data, the premise presents a

method for fast video preprocessing.

Preprocessing a video does alleviate processing demand on a system. However, often

video must be processed in real-time. In order for this to happen at modern resolutions and

colour depths, parallel processing paradigms must be exploited. Neoh & Hazanchuk began

addressing these requirements in 2004. They presented a real-time edge detection system

using a high powered FPGA device, achieving 4000 fps [80]. The hardware has since been

surpassed.

Images and video data are computationally trivial compared to rendering graphics. In

order to render graphics, a set of primitives must be transformed into visual representations

tens or hundreds of times per second. Specialised GPUs have been designed with thousands

of cores to handle the task. However, the architecture can be replicated on other, more

flexible, devices. This allows task acceleration using specialised architecture.

A traditional graphics processor consists of an array of individual cores, memory in-

terfaces and a threading engine, as was shown in Chapter 1. They achieve a rapid data

throughput due to the Single Instruction Multiple Data (SIMD) architecture, allowing an

array of data points to be processed simultaneously. Although a GPU is constructed to

provide application-specific acceleration, it is still a collection of processing cores. As such

introduction of dedicated hardware can still provide performance increase.

A large volume of current literature focusses on two directions: accelerating a single part

of the graphic rendering process or replicating the SIMD processor using an FPGA.

Graphics pipelines can be thought of having three main sections: the vertex shader, the

geometry processor, and the fragment shader. Shaders consist of mathematical functions,

usually matrix based, to transform primitives or apply surface effects. The geometry processor

culls covered objects, removes clipping and converts primitives to pixels.

Custom hardware, for example ASICs, can be extremely expensive. Hence using a generic

platform, such as an FPGA, to provide acceleration for shaders seems reasonable. This was

the premise of the work presented by Goddard & Stephenson [81] and Middendorf et. al.

in [82]. These works demonstrate that, while it is true that FPGAs provide a versatile

28

CHAPTER 2. REVIEW OF LITERATURE

platform suited to shader operations there are still limitations. Shader implementations

attempt to mimic the construction of a GPU. This method was chosen as shaders are subject

to change. However, abstracting away from the hardware causes performance to suffer.

Building the full graphics pipeline on a single FPGA device has been researched [83, 84,

85, 86]. Similar to some of the implementations of single shaders using FPGAs, these full

pipelines produce co-processors from the FPGA’s fabric. All of these works had similar end

goals: a graphics processor built on a more flexible, low-cost device. Each implementation

has its own specialities and limitations. The majority of the examples presented use OpenGL

and Mesa libraries, making pre-existing code run on a number of different platforms. Pro-

cessing speeds from 100 MPixels/second [83] to 278 MPixels/second [85] have been reported.

Considering this research started in 2007, with the primary target being embedded systems,

this performance is reasonable.

In 2014 Liu used OpenGL to produce a graphics renderer on an FPGA [84]. The system

required an entire fixed-point mathematical library to be written. As FPGAs have very high

fixed-point mathematical throughput, with consideration there is no loss in output quality

caused by deviating from a floating-point system.

The works considered in this section have demonstrated the benefits of hardware acceler-

ation. In order to mitigate the rigidity of hardware acceleration, research has studied using

hardware-based topologies that more closely mimic GPPs, such as in the graphics render-

ing examples. Indeed, these solutions have proved successful and are adopted in industry.

For instance D/AVE NX is a series of rendering core Intellectual Properties (IPs) for im-

plementation on FPGA platforms that use the OpenGL Application Programming Interface

(API) [87].

Addressing the limitations of hardware, particularly that of flexibility and size [81], is a

key focus for the research presented in this Thesis.

2.4 Dynamic reconfiguration and context switching

The benefits of hardware acceleration have been demonstrated, but the drawback is the

rigidity of such systems. The ability to change task is vital if hardware acceleration is to

become mainstream. Tasks suitable for hardware acceleration are typically data processing

oriented. This Section will expand upon the uses of dynamic reconfiguration, along with

design considerations that must be made. This will be done in conjunction with context

switching, task scheduling and acceleratable code selection.

29

CHAPTER 2. REVIEW OF LITERATURE

Dynamic reconfiguration allows the configuration of FPGAs to be changed at runtime.

Jahiruzzaman et. al. demonstrated how a reconfiguration method for FPGAs could be used to

implement adaptable convolution kernels, instead of fixed implementations with parametrised

components such as weights [76]. This requires each filter to be known and compiled at the

design stage. The operation of both systems was the same. However, the selection of new

parameters for a fixed implementation can be complicated. Yao et. al. presented methods

of machine learning through use of an ‘Evolution Algorithm’. An embedded host calculated

new weights and passed them to the hardware [88]. Concerns were raised regarding efficiency

of the evolution algorithm. It was suggested that future implementations may consider other

bio-inspired algorithms such as particle swarm, ant colony and bee colony optimisation for

greater efficiency.

Reconfiguring an FPGA at runtime has promise. However, it is time-consuming which

potentially outweighs any gain obtained from using the hardware for acceleration.

2.4.1 Task scheduling

Generally the tasks being performed are a result of the user demands, so it is necessary to

be able to schedule them at runtime as it is not know at the design stage. Lack of task

scheduling reduces performance and can introduce bottlenecks.

Duplication can be an effective method to enable task scheduling on a multi-core pro-

cessor [89]. The optimal replication of tasks is an NP-hard∗ problem. Using a processor to

try and optimise its task scheduling, in addition to performing the tasks, adds additional

overhead. Li et. al. presented an algorithm with order O(v3log(v)) (v is the number of

nodes) to determine the optimal task scheduling approach, performing better than other

algorithms [89].

While task duplication works on processors, it is less transferable to (heterogeneous) sys-

tems that use hardware acceleration. In this instance the requirement becomes isolating

routines that would be best moved to the hardware. It has been shown subjecting tasks to

hardware acceleration or replacing software routines with equivalent hardware yields signifi-

cant performance increases, although it comes at a cost in terms of size and capital. Hence

it is important to select the subroutines of an application that yield maximum return on

investment. This requires additional information at the compilation stage.

A novel run-time approach for loop optimisation using Coarse Grain Reconfigurable Ar-

∗Non-deterministic, polynomial-time hardness

30

CHAPTER 2. REVIEW OF LITERATURE

rays (CGRA) is presented in [90]. A ‘Greedy’ approach was implemented to produce opti-

mised binaries describing processors that can be loaded and executed at runtime. It is claimed

that the optimisation is better than an off-line compiler for a 16-issue Very Long Instruction

Word (VLIW) processor when performing scheduling. The use of a VLIW processor abstracts

away from the hardware, reducing performance. However, the methodology is promising for

on-the-fly compilation, although it is not yet mapped to fine grain reconfigurable architec-

tures, like FPGAs. It is still the case that an off-line approach for selecting optimal hardware

accelerators for FPGAs may have to be used.

Prakash et. al. [91] have researched automatically selecting appropriate subroutines to be

translated into hardware. The work focussed on creating custom instruction sets, particularly

in area-constrained FPGAs. Previous work by Prakash et. al. detailed an “FPGA-aware

custom instruction enumeration and selection technique”. An expansion was designed to

maximise the logic utilisation in a confined FPGA design space. An area-time metric was

derived, which allowed the selection process to avoid compromising on the final solution’s

quality. This created the best cost/performance trade-off. It was noted that when “available

FPGA area is limited, it is prudent to choose smaller and frequently occurring patterns that

can efficiently utilize FPGA space as they provide more performance gain per unit area”.

Therefore, sometimes optimising smaller tasks, such as floating-point maths functions, would

be a better use of the FPGA.

Variables are often required in multiple locations; should the application be hardware

accelerated, two processes could both require access to the same variable. Prakash et. al.

studied the use of local memories in accelerated systems [92]. Having separate caches for the

processor and the hardware requires expensive cache-coherence and Direct Memory Access

(DMA) operations. The method proposed by Prakash et. al. removed the need for DMA

transfers, producing an architecture where a single local memory serves both the processor

and the hardware accelerator. This is shown in Figure 2.6. While both hardware and software

requiring access to the memory, the hardware component makes many more access than the

software. The research presented in [92] demonstrates a 47% increase in speed for a Secure

Hash Algorithm (SHA) implemented this way. The method used custom instructions and

memory operations.

Prakash et. al. published a third paper that modelled the communications overhead

for accessing memories from hardware accelerators [93]. Unlike the previous work, which

implemented un-cached memory structures, this modelled the read/write access penalties of

31

CHAPTER 2. REVIEW OF LITERATURE

Processor HardwareMemory
S

H1

H2

Figure 2.6: A local memory is accessible by both the hardware accelerator and the rest of
the application. For optimal performance the number of accesses made by the hardware to
memory must be far greater than the number made by the software, S << H1 +H2, in cases
such as bitcoin mining.

processor local memories. An accurate performance model could then be made. It would be

suitable for automating design space exploration for heterogeneous systems with hardware

accelerators, thus determining optimal system design.

2.4.2 Dynamic reconfiguration

Dynamic reconfiguration allows different hardware accelerators on the same FPGA, depen-

dent on the current environment. There are a number of implications when designing for a

partially reconfigurable system. At the beginning of this research, these systems were still in

their early conception. Design flow and techniques were still in early development.

There are two types of dynamic reconfiguration: full and partial. Full reconfiguration

blanks the entire FPGA then loads a new, complete configuration. Partial reconfiguration

is more complex, requiring a combination of static and reconfigurable logic. The static logic

is never reconfigured and must be integrated with the reconfigurable regions. This presents

problems at the boundaries between the two. It is necessary to manage communications

between a region that is operating and a region that is being reconfigured. Other concerns

are how to separate a design into reconfigurable and static regions and how to manage and

execute the reconfiguration process.

Di et. al. studied three existing dynamic reconfiguration technologies and performed a

case study using an encryption system [94]. Dynamic reconfiguration resulted in an improve-

ment of 40% for resource optimisation. The work used partial reconfiguration tools available

from Xilinx. The results showed how to implement a bus that communicates between static

and reconfigurable logic. The paper lacked a concrete design flow for all tool suites. However,

Di et. al. proposed a set of steps for bus macros that span reconfigurable regions using the

32

CHAPTER 2. REVIEW OF LITERATURE

Xilinx tool suite.

There are additional challenges for dynamic reconfiguration. Diessel noted that challenges

surround the validation, testing, and run-time system behaviour verification of dynamically

reconfigurable systems [95]. Diessel conducted work into increasing the model accuracy for

state-of-the-art reconfigurable systems to address these problems.

Dynamically reconfigurable systems are subject to change, increasing the difficulty of ther-

mal floor-planning. Pagano et. al. developed a thermal-aware floor-planning tool that consid-

ered descriptions of the heterogeneous resources and partially reconfigurable constraints [96].

The tool models thermal effects on a system with simulated annealing and mixed integer linear

programming. The results showed a reduction in power consumption and peak temperature

in several designs.

To make full use of dynamic reconfiguration, new configurations should be synthesised at

runtime. This introduces considerable overheads associated with place and route procedures.

A method that circumvents the place and route overhead is proposed by Diessel & Maskell

with the use of pre-defined blocks [97]. The proposed pre-routed cores have several features

for run-time fitting operations. They have a consistent interface for co-location that allows

them to be connected instantly, reducing fitting times. Additionally, they are scalable to

allow them to use the maximum available bandwidth of a system. This approach increased

the flexibility of generic reconfigurable FPGA systems. Chapter 6 will discuss a method for

runtime synthesis, optimisation and compilation of a Higher Level Language (HLL).

2.4.3 Context switching

Task scheduling and selecting the optimum parts of processes to undergo hardware acceler-

ation allows the development of high performing heterogeneous architectures. Modern pro-

cessors perform a number of tasks seemingly at once. This is done using context switching

to allow the processor to move the contents of the stack to memory so another process can

be run. Later the old process is returned to as though there has not been any interruption.

Running processes heterogeneously limits the ability to context switch. To overcome this, a

method for context switching hardware must be researched.

Context switching and pre-emption have been widely researched, albeit for different uses.

Pre-emptive techniques for processors are well founded, allowing time-multiplexing of CPUs.

It is becoming common to move from ‘soft’ context switching solutions that use a processor

and OS, to using ‘hard’ systems with dedicated logic. Dedicated logic systems introduce over-

33

CHAPTER 2. REVIEW OF LITERATURE

head from additional hardware but have significant benefits. Rafla & Gauba demonstrated

saving and reloading 12 registers of a MIPS processor [98]. When using internal registers to

perform switching 49% more data was processed.

Sawalha et. al. added ‘context sets’ to a multi-core processor to achieve low latency

switching [99]. The main drawback was that the number of context sets exceeded the number

of cores, therefore the resource cost grew with the number of device cores. The additional

cost was justified since only a couple of clock cycles were required to switch the executing

threads for all the cores, compared to thousands of cycles required using the OS. However, the

hardware added system constraints. There was an increase in latency to flush out all processor

pipe-lines. Additionally, thread assignment was dominated by the number of context sets

integrated into the processor.

The use of processor caches conflicts with context switching, causing context switch

misses. Context switch cache-misses occur due to the perturbation effect from a program

being restored to find some of its working set in the cache has been overwritten. Re-order

misses tend to peak when cache perturbation affects approximately half the cache [100].

Hardware systems can forgo the use of a caches in favour of data pipelines, therefore not

becoming subject to data perturbation. The development of hardware context switching

systems is discussed further in Chapter 6.

Context switching is not limited to GPPs. Other architectures, such as GPUs, present

further challenges for context switching. There is a high dependency on the kernel program

to control the context switching. This is not necessarily deterministic nor will it be able

to support all pre-emption techniques. Lin et. al. demonstrated a lightweight approach to

context switching in [101] that uses compiler and hardware co-design to enable instruction-

level pre-emption on Single Instruction, Multiple Thread (SIMT) architectures. Using the

proposed method of compression and analysis, register size and latency were reduced by

almost 92% and 60% respectively, compared to more complex approaches. The work by

Lin et. al. demonstrated that if a system has a kernel there is considerable overhead for

context switching. On average the context switch takes place in 4.0µs (2,800 clock cycles).

Therefore, context switching, even on advanced architectures, is still expensive and time-

consuming.

There are potential benefits from implementing context switching in hardware acceler-

ators. The flexibility of heterogeneous architectures can be increased by context switching

accelerators associated with current processor tasks. However, only certain tasks can be

34

CHAPTER 2. REVIEW OF LITERATURE

context switched. Primarily they must be mutually exclusive of each other, for instance

cryptography, software defined radio and protocol processing applications that are not at-

tempting to run in parallel with dependencies on each other.

2.4.4 Applications for dynamic reconfiguration and context switching on

FPGAs

Dynamic reconfiguration and context switching increase the flexibility and performance of

FPGA-based systems. These systems have many applications. Adding reconfiguration to the

embedded hardware further increases the desirability and number of potential applications,

although it introduces overheads.

Data mining is currently a topic of interest, especially since Bitcoin and Ethereum were

introduced. It is computationally expensive for a processor to perform. Dynamic reconfigu-

ration can allow spare FPGA resources to be used for performing these types of background

tasks.

Using FPGAs to accelerate data mining applications in embedded hardware is presented

by Perera & Li [102]. An FPGA was used for matrix computation. Reconfiguration allowed

three different implementations on one device, at different times. Without having all three

implementations running concurrently, the total power efficiency was shown to increase.

Langenbach et. al. used FPGA resources provided by ‘System-on-Chip’ (SoC) devices

for task acceleration. The research evaluated the performance of the Linux Kernel FPGA

Framework [103] and found that it provided low runtime overhead (<2%) when using an

FPGA as a Linux kernel accelerator. However, concern was raised regarding the initialisation

and deinitialisation time of the FPGA.

Reconfiguration can also be used in less obvious applications. Cetin et. al. explored the

use of dynamic reconfiguration to recover from Single Event Upsets (SEUs) by reconfiguring

corrupt FPGA portions [104]. Experimental results showed that modular reconfiguration is

more responsive and less energy consuming than scrubbing techniques. However, the overall

configuration required higher area, ran more slowly and had increased design complexity.

The control of event-driven robots using context switching techniques was presented

in [105]. Furthermore, a method for context switched security (vNative) was presented

in [106]. vNative was as a way to freeze unauthorised applications in a ‘Bring Your Own

Device’ scenario.

Life and safety-critical scenarios, such as military applications, are areas where context

35

CHAPTER 2. REVIEW OF LITERATURE

switching can further aid [107]. In these applications it is critical that the appropriate infor-

mation is delivered quickly to the operator and is able to mitigate human error. A level of

‘system self-learning’ can also be employed to help refine systems for greater performance.

Reinforcement learning systems, such as image and handwriting recognition, can use context

switching to load the appropriate context in quickly changing environments [108].

Digital Audio Broadcasting (DAB) receivers are a conventional application for dynamic

FPGAs. Sections of the receiver are partially reconfigured to produced resource-efficient

implementations [109]. The work presented by Feilen et. al. discussed the use of context-

aware data framing to reduce context switching overhead. The work they presented does not

consider performing context switching in the style of a processor.

The literature presents a prominent role for FPGA acceleration in heterogeneous comput-

ing. There are some design limitations and complexities associated with this technology that

need to be overcome. System design, verification and thermal planning are straightforward

challenges. More complex problems include communications and integration with GPPs. The

developments that have already been made to GPPs that allow task scheduling and multiple

thread handling should be kept. However, they may reduce gain from dedicated hardware

accelerators. Context switching needs to be performed with low latency to prevent bottle-

necks. Identifying which application routines are to be accelerated is important, especially

as there is currently a limitation on run-time synthesis and device fitting.

2.5 Code compilation and automatic optimisation techniques

Writing code that performs optimally on any architecture is almost impossible. Modern

devices are so complicated that compilers and tool-chains are used to apply optimisations.

A key optimisation for software is to handle loops in the most parallelised way possible.

HLLs support loop operations. Unrolling loops can result in hundreds or even thousands of

operations. A single-cored processor would have to execute these in sequence. However, there

are a number of techniques for reducing the impact of loops on throughput. Additionally,

using multiple cores can further exploit parallelisms to optimise data flow.

There are a number of optimisations that can be used to achieve dynamic data flow man-

agement on modern processor topologies. Santiago et. al. examined three methods: stack

tagged data flow, tag resetting, and loop skipping. The benefits and drawbacks of each were

reported [110]. Each method optimised the number of loop iterations by enabling simulta-

neous execution of instructions with different loop iterations. Each operand was tagged as it

36

CHAPTER 2. REVIEW OF LITERATURE

became available, and the associated loop was executed as soon as all operands were present.

The three optimisations all had different impacts on the stack. Stack tagged data flow re-

duced control overhead by using stacks of tags. For nested loops the overhead was increased.

Tag resetting allowed a return to zero whenever it was safe, reducing cost. Loop skipping was

used on loops of pre-determined length to avoid stack comparison. This final technique is

more interesting when considering heterogeneous architectures with hardware acceleration.

Loops of determinable size are prime candidates to be moved from the processor and onto

the hardware. The paper concluded that a hybrid approach that used all of the optimisation

techniques produced the best results.

There are constant developments being made to optimise compilers, especially for parallel

computing. Techniques such as simulated annealing are giving way more to bio-inspired and

artificial intelligence approaches, like the random walk method shown in [111]. Loke & Wang

showed that using ‘random walk’ allowed on-line iterative generation of permutation matrices

that helped the compiler to converge to an optimised answer faster.

These optimisation techniques are for traditional processor topologies, although some

techniques can be applied to heterogeneous architectures. Optimisations are also not limited

to loop unrolling and iterative generation on processors. It was reported that specialised

architectures, such as GPUs, show improvement from optimised code generation [112]. Op-

timising for the architecture reduced code size and execution cycles by 10.3% and 16.8%

respectively. Similar techniques can be used for optimising hardware synthesis from HLLs.

2.5.1 Coarse grain reconfigurable architectures

Reconfigurable targets are either Coarse Grain Reconfigurable Arrays (CGRA) or Fine Grain.

CGRA consist of a large number of functional units that are connected together to perform

a task. Fine grain arrays consist of individual logic blocks and look up tables. The different

devices have different uses and therefore different programming methodologies. However,

they are both parallel devices. This is their most appealing attribute.

Common methods for programming CGRAs use graph descriptions. DFGenTool, pre-

sented by Mukherjee et. al. [113], generated a data flow graph from a HLL input that can

be synthesised and implemented on a CGRA. The DFGenTool uses the DOT (a graph de-

scription language) format, a common CGRA programming method that is human readable.

Additional design constraints can be implemented after the automatic generation.

Creating a completely optimised output from a HLL for a reconfigurable architecture

37

CHAPTER 2. REVIEW OF LITERATURE

is challenging, especially for an unconstrained application. The DFGenTool is designed to

optimise for loops in the input sequential language and to map them to the CGRA architecture

in a parallel implementation. This cannot necessarily also optimise for scheduling, which is

where the additional input of the designer comes in once the DOT output has been generated.

Mi et. al. produced an Automatic Parallel Module (APM) [114], designed to generate

sub-functions and then schedule their execution to further exploit the architecture. The APM

was demonstrated to provide better performance than single-threaded execution, achieving

an almost two times speedup in some cases.

CGRA provide a platform suited to mapping HLLs to. The construction of a CGRA with

higher level functional blocks over a fine grain architecture removes some of the complexity

when applying optimisations. Implementing applications with a high level of parallelisation

on a CGRA leads to a performance increase.

2.5.2 Hardware compilers

Fine grain architectures offer more control over implementations. The additional control adds

additional design complexity, particularly for High Level Synthesis (HLS) tools. Program-

ming languages for FPGAs (Hardware Description Languages (HDL)) differ to conventional

software languages. HDLs are used to describe the desired architecture for the algorithm

being implemented. However, software languages describe the order in which instructions

from a pre-existing instruction set should be executed to achieve the desired outcome. There

are a number of tools that generate HDL from HLLs.

The intended uses, benefits, and limitations of a number of these tools were analysed by

Yankova et. al. [115]. The tools have since been improved, but it still provides a good starting

point. Yankova et. al. analysed three tools: SPARK, ROCCC, and DWARV. SPARK and

ROCCC had been in development for several years more than DWARV. SPARK provided

users with a toolbox of functions designed to optimise area and delay with a particular focus

on operation scheduling. This exploited instruction-level parallelisms for control-intensive

kernels. ROCCC was aimed at streaming applications, with its main focus being on op-

timising loop parallelisms and memory access. Since ROCCC was designed for streaming

application it worked on the premise that data can be windowed - operate on snapshots of

the incoming data. DWARV offered no optimisations; it was purely targeted as a straight

conversion from HLL to Very High Speed Integrated Circuit Hardware Description Language

(VHDL), with considerations for software/hardware co-operative architectures. DWARV’s

38

CHAPTER 2. REVIEW OF LITERATURE

lack of out-of-the-box optimisations made it a more appealing choice for integration into

other HLL synthesis projects where developers could apply their own optimisations.

The largest criticism of SPARK and ROCCC was that for optimisations to be applied the

designer needed to input additional parameters. This meant designers needed to understand

hardware as well as software. A primary role of these tools is to abstract away from the

nuances of hardware to make it simpler for software developers to design for them without

additional training.

With the increased move towards heterogeneous architectures and the co-execution of

programmes on both processors and hardware, toolchains such as DWARV that synthesise

for this environment become more useful. Bertels et. al. proposed an early evaluation

hArtes toolchain which focussed on co-design and co-verification for hardware/software en-

vironments [116].

It has also been shown in this Chapter that hardware accelerators can perform a key role

in alleviating computational load from recursive functions. Middendorf et. al. presented

work for the automatic generation of recursive functions in hardware through a technique

termed ‘partial stream rewriting’ [117]. They propose an algorithm that identifies and handles

recursion and indirect calls using a single type of rule. The simplicity of the rule allows

hardware with support for dynamic thread creation, parallel recursion and data dependent

branching to be synthesised.

2.5.3 Example applications for generated HDL

There are a number of existing applications that used HLS. The automatic synthesis of

microcode for VLIW processors [118] is a relatively mature and well-established task. Most

ASICs or Application Specific Integrated Processors (ASIPs) are formed from some sort of

VLIW processor. Designing these devices from scratch every time would be time-consuming.

Instead, similarities in them can be exploited. Kobayashi et. al. presented a synthesis tool

that allowed certain parameters, such as the number of slots, pipeline stages and instruction

behaviour, to be specified with a HLL [118].

Lattuada et. al. presented an aerospace system that was generated using HLS [119].

The researched used an already available synthesis project, TASTE [120], and extending the

functionality with Bambu [121]. Add-ons produced a tool capable of generating hardware

implementations from languages such as C, and automatically integrating them into the

aerospace system. Given the complexity and safety regulations of the aerospace industry this

39

CHAPTER 2. REVIEW OF LITERATURE

is a substantial achievement.

The automatic synthesis of combinational circuits has been considered. Previous discus-

sions noted that FPGAs can be susceptible to SEUs, particularly in high radiation environ-

ments like space. Partial reconfiguration has been shown as a way to repair the region of

the FPGA configuration that has developed an error. This requires the configuration files

for sections of the target device. Gorodilov proposed a method for automatically generating

these ‘combinational circuits sets’ using a tool that can take a single VHDL implementation

and generate a set of failure modes [122]. From these, new partial reconfiguration files can

be automatically generated.

2.6 Summary

This Chapter has explored literature regarding several key topics: processor technology de-

velopment, system architectures, hardware acceleration, task scheduling (including dynamic

reconfiguration and selection of application software to accelerate) and compiler optimisations

(particularly focussing on the automatic conversion of HLL to hardware). The discussions

have not been exhaustive due to the diversity of topics and the sheer volume of available

literature.

Processor topologies have undergone large development since their early inception as 4-bit

microprocessing devices. A need for task-specific devices was identified and addressed, for

example GPUs and DSPs. There is diminishing return with every new development - seen

in the decline of Moore’s Law - leading to new types of processors being researched, such as

photonic processors. These are unlikely to be a reality for some years to come.

Architectures can be classified as homogeneous or heterogeneous, each of which has dif-

ferent advantages and limitations. Spreading computational load over a number of different

cores has performance benefits, but communication overheads and memory accesses introduce

bottlenecks [123].

It has been shown that hardware acceleration has performance and efficiency benefits.

Hardware accelerators can cover a range of applications. Integrating these with GPPs creates

heterogeneous system architectures. Prakash et. al. researched selecting routines suitable

for being accelerated to give the greatest performance increase. The results showed that

accelerating frequent and small operations can bring about the biggest overall system gain,

particularly in area constrained situations. Additionally, new memory topologies for custom

architectures were used to mitigate the communication overhead.

40

CHAPTER 2. REVIEW OF LITERATURE

Dynamic reconfiguration allows FPGA configurations to be changed at runtime. Imple-

menting hardware accelerators on FPGAs that can adapt to the current environment increases

the overall system performance and flexibility.

Context switching techniques are implemented in traditional processors to allow tasks to

be swapped without loss of data. Similar techniques will be translated to hardware acceler-

ators in Chapter 6.

Finally, the complexity of producing the hardware designs has been introduced. Designing

for hardware, especially in hardware/software co-operation systems, requires specialisms in

both fields. Automating the process helps to reduce time to market and increase performance

and reliability. HLS tools attempt to optimise the conversion process, but are still limited

and require input from the designer.

From the literature it can be concluded that heterogeneous architectures that use flexible

hardware for accelerators could increase system performance. The next Chapters will present

work on the development and application of accelerators, introduce dynamic reconfiguration

techniques, apply techniques commonly found in processors to hardware and present the

design for a HLS tool that uses a OpenGL Shading Language (GLSL) input.

41

Chapter 3

Hardware Implementations of

Fundamental Maths Functions

Chapter 2 presented information on hardware acceleration and the implications this has for

hardware-based co-processing. Hardware accelerators ranging from the very small to the very

large have been discussed.

The question now becomes how to make the most efficient use of hardware accelerators.

The interaction between hardware and software requires careful planning. The situation

becomes more complicated when memory accesses and different clock domains are introduced.

This Chapter will implement a number of fundamental mathematical operations as hard-

ware floating-point accelerators. A number of floating-point mathematical functions are re-

quired to implement an OpenGL based graphics processor and a neuron model on an FPGA.

These functions will be implemented to create a library for use in this research. They will

be tailored for the presented case studies in Chapters 4 and 5, the context switching archi-

tectures presented in Chapter 6, and for use with the high-level synthesis tool presented in

Chapter 7. For silicon implementations, floating-point number formats do not necessarily

provide the most efficient implementation, [124]. Instead Constantinides asserts that custom

data formats provide a better solution. Despite their inefficiency, there are a number of open-

source and commercialised projects that provide floating-point IP cores for FPGAs. They

can be found in Xilinx [125] and Intel FPGA [126] libraries, among others. The libraries may

include FloPoCo (formally FPLibrary) [127], VFLOAT [128], and CORDIC based methods.

Implementations of floating-point functions from these libraries can support varying precision

and are optimised for certain parameters - area, throughput, power. As a result their flexi-

bility is limited. These libraries are not used in this research to allow complete control over

42

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

the implementation of the floating-point function. It also allows for better integration into

the applications and tools presented in future Chapters. The use of standard floating-point

formats allows easy communication between flexible FPGA technology and fixed processor

architectures.

Floating-Point Units (FPU) have been included in processors for many years, allowing

difficult mathematical operations to be off-loaded to more suitable hardware. The hardware

was designed to perform particular floating-point operations more efficiently than the host

processor could manage, hence improving the overall system performance. However, any

dedicated hardware accelerator has its limitations, the most obvious being on flexibility.

In this research the hardware is replaced by reconfigurable logic, FPGA fabric, in a het-

erogeneous arrangement with an embedded processor. Using the FPGA fabric to implement

the floating-point accelerators allows for the replacement of FPUs within processor imple-

mentations. The silicon area for the processor can be reduced without compromising on

floating-point performance.

3.1 The implementation of algorithms

Programs consist of data flow and control flow. An algorithm describes the order in which data

is manipulated. Moving from a conceptual understanding of a program to its implementation

usually requires several stages. Modern day programmers can choose from a number of

different programming languages. However, all languages are reduced to the same thing in

the end: the instruction set of the target architecture.

Consider a basic function: calculating the result of two numbers undergoing basic arith-

metic. The user enters numbers and the operation to be applied, which are stored in memory.

This requires some memory operations to load and store the information, and a mathematical

operation to process the numbers and create the output. Using this as the basic premise,

more complicated programmes can be realised by combining memory operations, Boolean

and mathematical functions.

High Level Languages (HLLs) allow difficult or repetitive tasks to be expressed in easy-to-

read instructions. These are compiled down to the available instructions for a given processor.

Modern processors are complicated, but, their instruction set is essentially just memory and

mathematical instructions.

In a simple Instruction Set Architecture (ISA) the number of instructions is very lim-

ited. Memory operations could include move, load, and store, and arithmetic operations

43

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

could include add, subtract, and divide. The most basic systems are Minimal Instruction

Set Computers (MISCs), which contain only fundamental instructions from which all other

instructions are built. If a processor architecture does not have a floating-point maths block,

the equivalent instruction requires a cascade of operations to achieve the result.

Early methods for enhancing the capability of a processor provided a separate copro-

cessor designed to perform floating-point operations. In the 1980s Intel launched the i8087

floating-point coprocessor to work alongside the i8086 microprocessor, which could achieve

a performance increase in excess of 500%. Processors include floating-point blocks. The

additional hardware requires additional instructions which increases the flexibility and per-

formance of the device. However, this does not always mean the architecture is the most

optimal for the program being implemented.

3.2 Processors versus dedicated hardware

Processors operate on binary numbers that can represent any type of data, such as numbers,

characters, or strings. Regardless of the type of the data, the stored information is always

binary. It is the interpretation of a number that makes it a floating-point number, for example

(shown in Figure 3.1). This particular interpretation breaks up the binary data into sections.

The floating-point interpretation increases the representable numeric range. The real value

of the floating-point number is calculated using equation (3.1). The Bias of a floating-point

number offsets the exponent, allowing both positive and negative exponents. Representing

floating-point numbers in this way provides a sliding window of precision to increase the

representable range.

......S E0 E1 En-1 En M2 M3 Mn-3 Mn-2M0 M1 Mn-1 Mn

Sign Exponent Mantissa

MSB LSB

Figure 3.1: Floating-point numbers take a standard width word (e.g. 16-, 32- or 64-bit) and
split it into a sign, exponent and mantissa. This is used to represent a number with increased
range over fixed-point binary. MSB - Most Significant Bit, LSB - Least Significant Bit.

(−1)sign × (1.mantissa)× (Exponent−Bias) (3.1)

44

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

For a processor to perform the operations to a floating-point number it must process the

binary word to extract the different floating-point elements, then perform the operation and

reconstruct the floating-point number. Combinations of integer operations can be used to

emulate floating-point operations in software. This is a complex and intensive process.

In certain areas the question as to whether floating-point emulation is more or less prac-

tical than including a hardware-based floating-point unit is still under debate. Additionally

the efficiency and performance of fixed versus floating-point operations are being examined.

Assertions have been made regarding how to ensure the highest performance from a proces-

sor. In 1996 Kraeling stated that using a fixed-point system “is the single largest improve-

ment a programmer can make in C to reduce execution time” [129]. In the general case,

for an architecture with no FPUs, this holds true. The amount of processing required for

the floating-point numbers compared to the fixed point versions is large. However, having a

fixed-point-only system has disadvantages, such as the range and precision of stored numbers.

Applications ranging from signal processing to graphics rendering will require the floating-

point system. Even considering just the basic quadratic formula, equation (3.2),

x1, x2 =
−b±

√
b2 − 4ac

2a
(3.2)

it can be seen that without the extended precision of a double floating-point system, depend-

ing on the problem compound error quickly makes the result unusable. Power, square-root

and division operations can result in large or small results that cannot be stored in lower

precision formats. There is the demand for high-performance computing, so a compromise

must be found.

Research into methods for converting floating-point functions and designs into a fixed-

point equivalent exists, [130, 131]. As designs become larger the time taken to pass informa-

tion between devices starts to impact significantly on runtime. Although difficult to imple-

ment, there is the immediate advantage of being able to perform all calculations quickly using

the same device, such as removing the need to communicate between two different devices.

There are limitations to floating-point emulation. The proposed method for implement-

ing floating-point algorithms on fixed-point, Single-Instruction Multiple-Data (SIMD) archi-

tectures presented in [131] relies on custom instruction and data formats. This increases

design complexity and time to market, and reduces portability between devices. Tradi-

tional hardware-based floating-point coprocessors still present the best option for processing

floating-point numbers. They are well understood and introduce little additional overhead.

45

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

Floating-point operations can be parallelised using dedicated hardware. This allows the

processing of the exponents and mantissa to occur simultaneously, minimising the number

of required clock cycles. Dedicated hardware can also provide native support for bitwise

operations, making processing certain elements of a word much faster.

Hardware accelerators are still relatively expensive to implement, and can only provide a

certain level of acceleration. The acceleration of a large number of tasks currently requires

large co-processors, for example the Intel Xeon Phi modules.

Having the ability to implement acceleration in a more flexible medium is of great interest.

FPGAs are renowned for their ability to implement a design with very high performance

and efficiency. This typically results in a co-processor implemented on FPGAs, such as the

vector/scalar design presented in [132]. These designs tend to trade-off ease of implementation

with throughput when compared to dedicated data processors.

Despite the complexity of implementation, the FPGA is a promising platform for accel-

erating mathematical operations. The FPGA reduces the hardware costs therefore removing

the need to implement operations in software.

This Chapter will examine the implications of implementing floating-point maths opera-

tions directly on FPGAs. The implementations will start with basic maths functions (add,

subtract and multiply) from which more complicated functions can be realised. Subsequently,

more complicated functions such as square-roots and exponents will be considered in Chap-

ter 4.

3.2.1 How can hardware make life better?

In Chapter 2 a number of architectures were presented. The concept of the ‘best’ architecture

was also considered. It was concluded that the ‘best’ architecture is dependent on the situ-

ation in which it is used. For instance, a mobile platform may not require high-performance

computing, instead having strict power limitations. In this case a low power architecture is

the ‘best’. Similar arguments can be made for area, power, and efficiency.

Implementing floating-point operations using hardware increases the performance due to

the inherent native support for bitwise and parallelised operations. Furthermore, it offers the

designer more control over aspects such as the area, performance, and efficiency of a system.

46

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

3.3 Implementing floating-point mathematical operations on

a hardware architecture

Mathematical functions range from the conceptually simple, such as add, to the complicated

such as exponential. Comprehending the simple functions is straight-forward, making their

implementation easy. However, complicated functions, like the exponential, become more

convoluted and their implementation becomes more complicated. In order to realise these

functions, they must be broken down into a series of simple operations. Complicated ap-

proximations such as Newton-Raphson, Taylor-series expansion and Euler work by breaking

down the operation into simple functions.

The IEEE-754R Standard [133] provides a comprehensive list of all functions that should

be implemented in floating-point format. The standard covers the form the operations should

take and how to indicate exceptions. The functions implemented for this research are not the

complete list of functions detailed in IEEE-754R; rather, they have been selected as being

important for the FPGA implementations provided in Chapters 4 and 5.

3.3.1 Basic mathematical functions in hardware

The functions that have been included for analysis as ‘basic’ functions are: add/subtract,

multiply, greater than, less than, floating-point to fixed-point, and fixed-point to floating-

point.

Functions have been implemented using a Hardware Description Language (HDL). HDLs

offer a number of pre-existing functions, much like any procedural language. In addition, they

also natively support ease of working with individual bits or groups of bits from registers.

Register widths can be selected to match the needs of the module, rather than being fixed

widths as they are in processors. This flexibility allows resource and performance optimised

designs to be created.

Floating-point modules make use of integer operations where possible due to the FPGA’s

high integer performance.

The following Sections will describe the operation of the modules. All modules are

pipelined to increase the performance and provide an issue rate of one (a new answer is

provided on every clock cycle). This can be done for relatively little resource cost.

47

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

3.3.2 Analysis methods

All hardware designs were subject to automation, allowing significant numbers of imple-

mentations to be tested under a wide range of scenarios. Important design metrics from

compilation and simulation were extracted. The metrics were then processed to produce

graphs and tables ready for comparison and analysis.

Determining the functionality of a floating-point operation was achieved by comparing

results to an IEEE-754R compliant processor (Core-i7 7700HQ) and measuring the error.

The error is given as a comparison between the results of the hardware implementation and

the processor. The error is measured in two ways: normalised error (ε) and relative error.

Normalised error is given by equation (3.3).

ε =
Sp − Sh
Sp

(3.3)

Where Sp is the answer calculated by the processor and Sh is the answer calculated by the

hardware implementation.

Relative error is given in Units of Least Precision (ULPs). A single ULP represents the

smallest expressible value of a floating-point number for a fixed exponent value. Relative

error in ULPs was calculated by comparing the two floating-point results. The exponents

were equalised before calculating the difference in the mantissas, as shown in Figure 3.2.

3.3.2.1 Add/subtract

Extract Sign,
Exponent and

Mantissa

 Input Al

 Input Bl

Add/
Subtract

select

Add Sign to
each Mantissa

Calculate
Exponent
difference

 Exponent Al
 Exponent Bl

 Sign Al

 Mantissa Bl
 Mantissa Al

Align
Mantissa and

Exponents

 Exponent Al
 Exponent Bl

Exponent
Difference

Signed
Mantissa A

Signed
Mantissa BAdd Sub

Select Sum aligned
Mantissas

Aligned
Mantissa A

Aligned
Mantissa B

Separate the
Sign of the

sum from the
result

Mantissa
Sum

Mantissa
Sum

Count leading
zeros

Unsigned
Sum

If no IEEE
exception:

normalise and
construct the

result

 Sum Signl

Unsigned
sum

Aligned
Exponent

Zero Count

 Resultl

 Sum Signl

Aligned
Exponent

Figure 3.3: Flow diagram of the stages performed by the hardware implementation of a
floating-point add/subtract module.

48

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

Simulated
Hardware Result

Processor Result

Exponents Match?

ULPs = Processors
Mantissa – Hardware

Mantissa

Yes

Balance Exponents:
Add in difference in

exponents until exponents
match and bit shift

mantissa respectively

No

Figure 3.2: Relative error requires the exponents of both floating point numbers to match.
If this is true the number of ULPs is given by a difference in the mantissas. If the exponents
do not match, one of the floating point numbers may be changed by simple addition until
they match so long as the mantissa is bit-shifted to compensate. Increasing the value of the
exponent requires a bit shift right; decreasing the exponent requires a bit shift left.

Figure 3.3 shows the flow of the addition/subtraction routine, which are accomplished using

almost identical logic. A select line changes which operation is performed. The input numbers

are broken into their component parts: sign, mantissa, and exponent. The difference in the

exponents is calculated. If the exponents are not the same magnitude, the mantissas are

aligned by bit-shifting by the difference in the exponents. Each mantissa is converted to a

signed integer. The greater of the two exponents is selected as it represents the exponent for

both mantissas.

The aligned mantissas are summed and the result is broken back into its sign and an

unsigned result. The number of zeros in the unsigned result is counted to determine the

location of the first ‘1’. This information is used to normalise the mantissa of the floating-

point number by bit-shifting the result left. The sign of the output comes from the sign of

the summed mantissas. The exponent of the output is the larger of the input exponents.

49

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

3.3.2.2 Multiply

Extract Sign,
Exponent and

Mantissa

 Input Al

 Input Bl

 Sign Al

 Mantissa Bl

 Mantissa Al Multiply
Mantissas

If no IEEE
exception:

sum
Exponents

and Mantissa
MSB, and
construct

result

 Resultl

 Exponent
Al

 Exponent
Bl

 Sign Al

Mantissa
Product

 Exponent
Al

 Exponent
Bl

Figure 3.4: Flow diagram of the stages performed by the hardware implementation of a
floating-point multiply module.

Figure 3.4 shows the flow of the multiply routine. Similar to addition, the floating-point

multiply starts by de-constructing the input numbers into their component parts. The in-

put mantissas are multiplied together, and the result is used to construct the output. The

exponent of the output is the sum of the input exponents and the MSB of the result of the

mantissa multiplication. The sign of the result is the XOR of the input signs. Finally, the

output mantissa is selected by checking the highest bit from the mantissa multiply operation

register. If this is true, the system must include the MSB of the mantissa multiply operation

in the result and loses the LSB. Otherwise the MSB is lost and the LSB is included. Unlike

addition, a floating-point multiply operation is very quick to perform.

3.3.2.3 Compare

Invert the
Sign bit of the

incoming
numbers

 Input Al

 Input Bl Local Bl

 Local Al
Compare local

values as if
they are
integers.
Construct

output

 Resultl

Figure 3.5: Flow diagram of the stages performed by the hardware implementation of a
floating-point compare module.

Figure 3.5 shows the flow of the compare routine. Due to the arrangement of a floating-point

number, a compare operation is easily achieved. HDLs allow operations on individual bits of

50

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

registers, which is used to invert the sign bit of the incoming values. The effect of inverting the

sign bit is to create two registers that can be compared as though they are fixed-point integer

values - the exponent and mantissa, Figure 3.1, no longer need to be evaluated separately,

as in equation (3.1). The output must have the sign bit inverted again to comply with the

floating-point standard.

3.3.2.4 Typecast

In HDLs there are no ‘typed’ variables, only registers. Only the interpretation of the variable

by the designer gives the data its type. Due to some of the applications that are demonstrated

in later Chapters, it is important to be able to convert between data ‘types’. Two ‘typecast’

modules that convert the contents of registers between the fixed-point and floating-point data

representations were developed.

3.3.2.5 Floating-point to fixed-point

Extract Sign,
Exponent and

Mantissa

 Inputl

 Exponentl

 Signl
Bit-shift the
Mantissa by

the Exponent
and required

number of
fractional bits

Shifted
Mantissa

 Mantissal

Truncate the
shifted

Mantissa

Sign the
register

Truncated
Mantissa

 Signl

 Resultl

Figure 3.6: Flow diagram of the stages performed by the hardware implementation of a
floating-point to fixed-point module.

Figure 3.6 shows the flow of the floating-point to fixed-point routine. This is the easier

conversion. The input is split into its component parts. The mantissa is bit shifted up or

down by an amount represented by the exponent. The result could then be converted to

two’s complement signed by examination of the input sign bit.

51

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

3.3.2.6 Fixed-point to floating-point

Extract Sign
and create

unsigned Int

 Inputl

 Signl
Count the

leading zeros
on the

unsigned int

 Unsigned
Intl

 Unsigned Intl

Bit-shift the
unsigned int to

move the first ‘1’
into the MSB.

Create exponent
value using zero

count

Construct
result

 Exponentl

 Signl

 Resultl

 Zero Countl Mantissal

Figure 3.7: Flow diagram of the stages performed by the hardware implementation of a
fixed-point to floating-point module.

Figure 3.7 shows the flow of the fixed-point to floating-point routine. To convert from fixed-

point to floating-point the sign of the input number has to be removed. The remaining

portion is converted to an unsigned register. If the sign was negative a bitwise inversion is

needed; otherwise there is no change. The number of leading zeros for the unsigned register

is counted. This information is used to bit shift the unsigned register to create the mantissa,

and is the exponent for the floating-point representation.

3.3.2.7 Compliance with IEEE-754R

Most commercial processors comply with IEEE-754R [133]. IEEE-754 details the way in

which numbers are stored; how the binary word is broken down to represent different parts

of the floating-point number; and the special cases resulting in certain operations. This was

later updated to IEEE-754R with the introduction of the half-precision or ‘float16’ format,

shown in Table 3.1.

As the modules presented here are to be used as hardware accelerators for processor

routines, compliance with the IEEE-754R standard is vital. This ensures that if an operation

results in a special case, for instance Not-a-Number (NaN) or ±infinity (Inf), it can be

handled correctly before being passed back to the processor.

Table 3.1: Bit configurations for IEEE-754R floating-point number formats.

Format Sign Exponent Mantissa Bias

Half-precision 1 5 10 15

Single-precision 1 8 23 127

Double-precision 1 11 52 1023

52

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

3.3.2.8 Analysis of resource cost and error

Note: In this research tables show the resource count as reported by the Quartus fitting tool

Version 15.0. Numbers outside of the parentheses refer to the total number of elements used

by the hierarchy, while numbers in the parentheses refer to the amount of that particular

resource used at that level of the hierarchy.

There are a few metrics that are important to consider: resources, throughput, and error.

Depending on the target architecture for which a design is synthesised, the resource count

and maximum operating frequency can vary. By synthesising the designs for a single device,

meaningful comparisons between different mathematical function implementations can be

made. Table 3.2 presents resource use and maximum operating frequencies when synthesised

for an Intel Cyclone V 5CSXFC6D6F31C6N. This is a low-cost FPGA-SoC device containing

a dual-core ARM Cortex-A9 processor. Additional information for resource use and operating

frequency of the designs synthesised for single- and half-precision floating-point numbers can

be found in Appendix A.

Intel FPGAs consists of Adaptive Logic Modules (ALMs). Each of these ALMs contains

an eight-input fracturable Look Up Table (LUT), two adders and two registers [134]. The

LUT can be split into a number of different arrangements to best suit the operations being

performed and use as few resources as possible. Typically LUTs are used with four- or

five-inputs, however the eight-input fracturable LUT can be configured with three-, six-,

and seven-inputs as well. Intel eight-input combinatorial LUTs can be divided between two

Adaptive Look-Up Table (ALUT).

The tables that report resource use for the Intel devices show a number of different values

of ALM used. The total ALM use is a combination of ALMs used by the final placement

operation, ALMs that can be recovered using dense packing operations and ALMs that remain

unavailable - for instance from routing restrictions or the fitter being unable to pair half-ALMs

together due to the number of inputs used. Hence it is the ‘ALMs Needed’ column that is of

most interest.

The basic operations presented here can be broken into mathematical functions and non-

mathematical functions. Add/subtract and multiply will be considered as mathematical

functions. Greater than, less than, floating-point to fixed-point, and fixed-point to floating-

point are comparative or typecast operations. There is a notable difference in the number of

resources required by the mathematical functions over other functions.

Ideally the resource use should be kept as minimal as possible. The smaller the number of

53

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

Table 3.2: Resource requirements and timing analysis for simple maths functions that do not
require other functions to implement. Implementations are using double-precision floating-
point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Add/Subtract
1034.5

(1034.5)
1487.5

(1487.5)
465.0 (465.0) 12.0 (12.0) 1099 (1099) 2280 (2280) 0 106.87 103.99

Multiply
241.0

(241.0)
328.0

(328.0)
87.0 (87.0) 0.0 (0.0) 408 (408) 521 (521) 4 107.03 101.84

Multiply with
no DSP

1414.5
(159.2)

1305.0
(236.6)

90.0 (88.2) 199.5 (10.8) 2418 (179) 521 (521) 0 82.56 81.85

Greater than
124.0

(124.0)
134.5

(134.5)
10.5 (10.5) 0.0 (0.0) 191 (191) 194 (194) 0 188.39 192.09

Less than
123.5

(123.5)
132.5

(132.5)
9.0 (9.0) 0.0 (0.0) 191 (191) 194 (194) 0 172.98 174.58

Float to integer
237.0

(237.0)
256.0

(256.0)
20.0 (20.0) 1.0 (1.0) 340 (340) 261 (261) 0 162.34 161.92

Integer to float
332.5

(332.5)
374.0

(374.0)
42.5 (42.5) 1.0 (1.0) 491 (491) 332 (332) 0 109.02 107.2

resources used per module (atom), the greater the number of hardware-accelerated functions

can be implemented on the same device. Additionally, smaller accelerators can have a greater

fmax. The addition function, Section 3.3.2.1 has the highest number of stages and contains

performance limiting stages such as integer addition and leading zero counting making it

have a higher resource use. The compare operations (Section 3.3.2.3) and typecast operations

(Sections 3.3.2.5 and 3.3.2.6), have very few stages. They can be accomplished using primarily

bit-shift and bit-select operations, both of which are very resource light, leading to small

atoms.

0

500

1000

1500

2000

2500

R
e
g
is

te
rs

Add Multiply Multiply
no

DSP

Greater
than

Less
than

Float
to int

Int to
float

half-precision
single-precision
double-precision

Figure 3.8: Registers required for hardware implementations of fundamental mathematical
operations.

54

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

0

500

1000

1500

A
L
M

s

Add Multiply Multiply
no

DSP

Greater
than

Less
than

Float
to int

Int to
float

half-precision
single-precision
double-precision

Figure 3.9: ALMs required for hardware implementations of fundamental mathematical op-
erations.

0

50

100

150

200

250

300

350

400

f m
a

x (
M

H
z)

Add Multiply Multiply
no

DSP

Greater
than

Less
than

Float
to int

Int to
float

half-precision
single-precision
double-precision

Figure 3.10: fmax of hardware implementations of fundamental mathematical operations.

From Table 3.2 it can be seen that Digital Signal Processing (DSP) blocks have been used

for the floating-point multiply. A double-precision implementation used four DSP blocks,

while single- and half- used only one (Appendix A). The use of DSPs is not problematic: the

inclusion of DSP blocks in FPGAs nominally allows the acceleration of specific functions and

uses fewer resources. In this case the DSP blocks are used for an integer multiplication of the

two input mantissas. DSP packing (allowing the synthesis tool to use the DSP blocks on the

55

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

device) can be turned off. This allows analysis of the effects of including the DSPs. Table 3.2

shows that the use of DSP blocks allowed the synthesis engine to save around 1200 ALMs and

2000 ALUTs. Although this will vary slightly between target devices, it demonstrates the

ability of dedicated architectures to save floor space and resources. The majority of modern

FPGAs from all vendors will include hard Intellectual Property (IP) blocks such as DSPs for

this purpose.

The resource use figures given in Table 3.2 demonstrates how intensive double-precision

floating-point operations are to perform in hardware. The introduction of the half-precision

floating-point format greatly reduces the number of required resources to implement functions

(Appendix A). The trade-off is the reduction in precision and range that can be represented,

although for the majority of applications this does not pose a problem.

Figures 3.8 and 3.9 show a side by side comparison for the different fundamental maths

functions at the three different floating-point precisions. These graphs show how costly

floating-point addition is compared to floating-point multiplication. Allowing the use of DSP

blocks reduces the number of ALMs for a multiply operation to approximately 40% of an

addition operation. However, it is also important to consider the overall system requirements

for the final implementation. Allowing use of DSPs for multiplication greatly reduces the

number of ALMs needed for this function but DSP blocks are a valuable resource that may

be better used in other parts of the system.

Intel provides a library of floating-point functions for implementation on their FPGAs,

such as the Cyclone V used in this Chapter. The library includes an implementation of

an add/subtract function and a multiply function that can both be implemented in single-

or double-precision. The functions provided by Intel FPGA have a non-zero latency value,

meaning they have an issue rate grater than one, whereas the implementations in this Chapter

are all designed to have an issue rate of one. The add/subtraction function has a latency of

twelve clock cycles in single-precision and 20 clock cycles in double-precision. The Intel FPGA

multiply function has a latency of six and eleven clock cycles for the respective precisions.

The resource count for the Intel FPGA add/subtract module is 880 LUTs in single-precision

and 2235 LUTs in double-precision. A single ALM for an Intel device contains an eight-input

fracturable LUT. The resource count for the implementation of the add/subtract module

given in this Chapter is 499.0 ALMs and 1034.5 ALMs for the respective precisions. Similarly,

the Intel floating-point multiply core in single-precision mode requires 286 LUTs and two

hardware multipliers (DSP blocks); in double-precision the requirements are 848 LUTs and 8

56

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

hardware multipliers.

The implementations in this Chapter for a floating-point multiplier are given with and

without DSP blocks. For implementations allowing DSP blocks to be used, a single-precision

multiplier requires 115 ALMs (1 DSP block) and a double-precision multiplier requires 241.0 ALMs

(four DSP blocks). Disabling the DSP blocks significantly increases the ALMs required to

implement the module, 318 ALMs and 1414.5 ALMs respectively.

The other key metric presented here is the maximum operating frequency of the modules.

A combination of fmax, Figure 3.10, and issue rate (number of clock cycles required between

valid results) determines the throughput of the implementations. Throughput is expressed in

Floating-Point Operations per Second (FLOPS). Since each implementation does not re-use

resources, the throughput is exactly the same as the maximum operating frequency. The

addition and multiplication modules achieve just over 100 MFLOPS in a double-precision

implementation. Reducing the precision of the implementation, increases the throughput.

When a half-precision adder is implemented the throughput becomes 246 MFLOPS and a

multiplier becomes 205 MFLOPS. The Intel FPGA floating-point implementations allow the

user to select the target frequency of operation. Increasing the target frequency consumes

more logic and increases the latency. When the core is set to a higher fmax, the latency

increases. If the design has a dependency on latency, the throughput will decrease. However,

applications will attempt to de-couple the dependency between latency and throughput, so as

to reduce the impact on maximum throughput. The throughput, therefore, becomes defined

as the maximum operating frequency divided by the issue rate (number of clock cycles between

valid data) of the module.

In summary, the benefits of compromising on range and precision can be seen in both

resource use and performance.

The implementations for floating-point functions detailed in this Chapter perform rea-

sonably, but they could be optimised significantly more. Indeed, adding just two pipeline

stages to the double-precision floating-point multiplier yields an increase in operating fre-

quency of more than 20%. FPGAs are highly parallelisable, deep pipeline devices; since the

floating-point operations are acyclic the pipelining can be extended to almost any depth.

This optimisation can be achieved at very low area cost since FPGAs typically have flip-flops

associated with the Look-up Tables (LUTs); these flip-flops would otherwise go unused.

This Chapter discussed a number of open source projects that provide floating-point

libraries for FPGA implementation. The functions in these libraries are the result of consid-

57

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

erable research into techniques for minimising resource use and increasing throughput.

There are a number of optimisations that may be implemented in libraries. Using a

leading zero detection algorithm for mantissa alignment in the floating-point addition/sub-

traction module presented in this Chapter has very high resource use (over 2200 registers and

1000 ALMs for double-precision). The latency of a floating-point adder can be greatly reduced

by using barrel shifters, and incorporating techniques to combine rounding and significand ad-

dition operations [135]. Other techniques for improving floating-point adder design include

Leading One Prediction (LOP); far and close data-path algorithms [136]; and end-around

carry techniques [137]. LOP predicts the position of the leading one in parallel with the 2’s

complement adder, rather than detect the leading one after the add stage. The LOP method

reduces the overall latency but at the cost of area. Far and close data-path algorithms are

used to determine when a leading zero count is necessary, significantly decreasing latency.

Similarly, there has been research into increasing the performance of other floating-point

operations such as splitting expensive multiply operations into a number of smaller parts,

and exploiting partial products [138]. It would be possible to apply similar optimisations to

the floating-point implementations presented by this Chapter. However this research is more

focused on how the presented implementations are used; particularly in conjunction with the

synthesis tool presented in Chapter 7.

3.3.2.9 Analysis of error

It has been shown that implementing these basic mathematical functions on an FPGA leads to

relatively small sets of logic, with relatively high throughput. The size can be further reduced

by reducing precision and numeric range. To validate the functionality of each module the

error is measured.

According to IEEE-754R [133], a successful floating-point operation is defined as having

one ULP or less relative error. Plots of relative and percentage error for the double-precision

adder and multiplier are given in Figures 3.11 and 3.12 respectively. (See Appendix B for

graphs of single- and half-precision error.)

Both the addition and multiplication functions have an error of one ULP or less over a

valid range. This makes them acceptable as implementations of floating-point functions as

per IEEE-754.

The multiplier, exhibits a large step change in error beyond a certain point. This is an

artefact of the number system. The range and precision of a floating-point number are given

58

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

by the expressible range of the exponent and length of the mantissa. For a given combination

of inputs, the output of the multiplier can quickly exceed the representable range of the

number system. For inputs that result in an invalid number in the output, the error becomes

large. However, as this is an artefact of the number system, these results are removed. The

x-axis on Figure 3.12 has been reduced to represent an input range where the output results

in a valid entry for the number system. Numbers that are not representable by the number

system are given as ‘Inf’ or ‘NaN’.

-10-300-10-200-10-100-100-10100-10200-10300
0

0.5

1

-1

-0.5

0

0.5

1
Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

0

0.5

1

-1

-0.5

0

0.5

1

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 3.11: Relative and absolute error for hardware adder in double-precision. The top
graph is negative input number. The bottom graph is positive input numbers.

The construction of floating-point numbers is given in equation (3.1) in Section 3.2. The

value of the highest bit of the mantissa is given as 2k, where k is the Exponent minus the Bias.

Therefore the lowest value the mantissa can represent is 2k−Lm where LM is the length of the

mantissa in bits. This is referred to as 1 ULP. IEEE-754R defines the maximum allowable

error that can be inserted by a floating-point function as 1 ULP. So long as the output of the

function satisfies equation (3.4) (that is the output of the function is representable by the

number system) the total error from the output of a floating-point mathematical function

can be calculated using equation (3.5). If the equality in equation (3.4) is not met, the error

is given as εT =∞.

Outputmin ≥ f(A,B) ≤ OutputMax (3.4)

59

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

-10-150-10-100-10-50-100-1050-10100-10150
-1

-0.5

0

0.5

1

0

1

2

3

4

5
Normalised
Relative

10-150 10-100 10-50 100 1050 10100 10150

Input Numbers

-1

-0.5

0

0.5

1

0

1

2

3

4

5

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 3.12: Relative and absolute error for hardware multiplier in double-precision. The top
graph is negative input number. The bottom graph is positive input numbers.

εT = εA + εB + εf (3.5)

Where εA,B is the relative error of the input values, εf is the relative error added by the

mathematical function, defined as being one or fewer ULPs (2k−Lm), and εT is the total error

in the output value of the function.

The implementations of floating-point functions from this Chapter satisfy these error

conditions.

3.3.3 Vector and matrix operators

While mathematical functions that operate on one or two scalar values are important, they

are only a small subsection of the functions that are possible. This Section will consider

vector and matrix operations.

Vector and matrix operations are a collection of addition, subtraction, multiplication, and

division operations performed a number of times. The output matrix is formed by iterating

through each element of the input matrix. This allows easy construction of the vector/matrix

functions using the functions discussed previously.

Despite this relative ease of design, several important factors - resource use and through-

put - must be considered. Their implications shall be made clear in Chapter 5. A design

for a matrix/vector multiplier will now be considered. Other matrix/vector functions can be

60

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

constructed in a similar way.

The module can be optimised for either resource use or performance, or a combination of

the two. Optimising the design for performance requires each operation to have a dedicated

block of logic. Consequently the result is large, but capable of delivering a new result vector

or matrix on each clock cycle. Alternatively, to conserve resources, fewer floating-point adders

and multipliers are used. Feedback allows resource re-use. This will reduce the size, but also

the throughput of the implementation.

Using the matrix/vector multiplier function as an example, Figure 3.13 shows methods

for both resource and performance optimisation. For any given m × n matrix and n × 1

vector, there are mn multiplications and m(n− 1) additions required to calculate the result.

Performance optimisation, shown in Figure 3.13a, generates each of these blocks separately.

For large values of m and n, this approach uses large numbers of resources. Alternatively,

resource optimisation can require as little as one multiplier and one adder. Figure 3.13b

shows a resource optimised solution can perform the same operation. This method requires

the incoming data to be registered locally and then iterated over until the entire result has

been calculated. If the input matrix width (n) is greater than two, a feedback path around

the adder is needed to sum the total number of elements in each row after the multiplication

operation. This can be scheduled to reduce execution time by using some registers and a

multiplexer. The latency of the adder and multiplier is fixed, therefore, it is possible to

schedule operations to minimise the number of unused clock cycles into the adder block.

Which form of implementation to use depends on the system. Using a more performance

optimised implementation offers better throughput but at a cost. Chapter 5 demonstrates

how performance optimisation is not always necessary and that other parts of the system will

govern the best type of implementation to use.

Table 3.3: Resource requirements and timing analysis for floating-point matrix and vec-
tor operations commonly performed by a GPU. Implementations are using double-precision
floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Normalise
21852.4
(23.5)

35572.5
(23.5)

14215.4 (0.0) 495.4 (0.0) 13506 (42) 70982 (34) 24 97.73 95.49

Dot
product

1648.4
(102.4)

2233.8
(115.5)

609.0 (22.8) 23.5 (9.7) 2059 (117) 4007 (164) 12 98.69 96.29

Vector
Length

18748.4
(291.3)

31787.1
(316.9)

13332.7 (39.5) 294.0 (13.9) 10820 (376) 62309 (166) 12 100.17 97.02

There are a number of matrix or vector operations that can be accomplished using simple

61

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

x
x
x
x

+

+
+

Column 1

Row 1

Row 2

Row 3

Row 4

Answer

Column 2

Column 3

Column 4

(a) Performance optimised

x +Input
Reg

Adder
Answer

Mult
Answer

M
u

x Out
Vector

Vector

Matrix

(b) Resource optimised

Figure 3.13: Calculating the result of a matrix/vector or matrix/matrix multiply requires a
series of multiply and add operations. To optimise this for performance the multiply and add
blocks can be replicated a sufficient number of times, resulting in an issue rate of one, 3.13a.
This can produce very large hardware designs and it may not be necessary to run the function
at such a high rate. In this situation it would be more prudent to reuse the resources and
iterate through the data, Figure 3.13b.

addition or multiplication operations. Additionally, there are also more complex functions,

such as those involving square-roots. Table 3.3 shows resource cost for three functions:

normalisation, dot product and vector length. These are matrix/vector operations that are

commonly used in graphics rendering. Implementations shown here use double-precision

floating-point format. (Appendix A shows the resource use for single- and half-precision

floating-point formats.)

Matrix/vector operations, often require potentially complicated functions. The more

complex mathematical functions are covered in Chapter 4. Decisions about resource re-

use versus performance optimisation become more important. The ‘best’ implementation

depends on the system and application. The location of the operation relative to the system

bottleneck is important. Deriving the most efficient system implementation is complicated;

62

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

methods to automate this are presented in Chapter 7.

The matrix/vector operations (normalisation, dot product and vector length) will now be

discussed in more detail. The vector length function needs a square-root function. This is

very resource intensive. Normalisation uses the vector length function, with a division stage

at the output. Division operations are also complex, have a high resource and time cost and

are expensive to perform, requiring iteration. Both the square-root and division operations

are covered in more detail in Chapter 4. The dot product function is achieved using only

multiplication and addition stages. This leads to a much smaller implementation for this

operation compared to normalisation and vector length, Figures 3.14 and 3.15.

0

1

2

3

4

5

6

7

8

R
e
g
is

te
rs

104

Normalised Dot product Vector length

half-precision
single-precision
double-precision

Figure 3.14: Number of registers required for hardware implementations of some example
vector operations.

63

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

0

0.5

1

1.5

2

2.5

A
L
M

s

104

Normalised Dot product Vector length

half-precision
single-precision
double-precision

Figure 3.15: Number of ALMs required for hardware implementations of some example vector
operations.

0

50

100

150

200

250

f m
a

x (
M

H
z)

Normalised Dot product Vector length

half-precision
single-precision
double-precision

Figure 3.16: fmax of hardware implementations of some example vector operations.

Despite the variations in resource count between the functions, the fmax of each of these

functions is similar for like precisions, Figure 3.16. At half-precision each of the functions can

run at almost 200 MHz. At double-precision they operate at 100 MHz. Table 3.3 provides

exact compilation metrics for each design at double-precision. (Appendix A provides these

metrics for half- and single-precision floating-point numbers.)

The presented method for calculating matrix/vector operations works when the sizes of

64

CHAPTER 3. HARDWARE IMPLEMENTATIONS OF FUNDAMENTAL MATHS FUNCTIONS

the matrix remain small; for instance in the graphics rendering applications in Chapter 5.

Graphics rendering typically limits matrices or vectors to a maximum of four elements in any

dimension. If the matrices become too big, the system becomes I/O bound, where there are

not enough pins on the device to implement the proposed schemes. In the cases of I/O bound

problems other techniques must be considered to partition the problem, such as polyhedral

compilation [139].

Chapter 5 will make use of these mathematical operations in an example application. This

application is a graphics processor built using the FPGA fabric of an FPGA-SoC device. This

off-loads the task from the processor, providing higher system throughput and efficiency.

3.4 Summary

This Chapter has focused on the implementation of fundamental floating-point mathematical

operations using reconfigurable hardware. Operations considered to be fundamental are ad-

dition, multiplication, comparison and typecast. The implementations of these fundamental

functions result in hardware that is accurate to 1 ULP or fewer, thus complying with IEEE-

754R. The Chapter has presented resource and performance metrics for each fundamental

function that has been implemented.

From these operations, matrix/vector operations are constructed. Each implementation

of the matrix/vector multiply operation demonstrated optimisation for either resource use

or performance. Fewer adders and multipliers reduces demand on resources. However, the

adders and multipliers must be reused, leading to feedback loops with higher end-to-end

latency and a lower issue rate.

Chapter 4 discusses more complicated functions, such as reciprocal, square-root and expo-

nent. A number of methods are presented for implementing the hardware. The benefits and

drawbacks of each implementation are considered. Chapter 4 also presents a case study that

implements the Hodgkin-Huxley model of a neuron using different methods to approximate

the exponential function. The functionality, size and performance of each neuron implemen-

tation will be analysed.

65

Chapter 4

Hardware Implementations of

Complicated Maths Functions

In Chapter 3 a number of implementations for fundamental floating-point mathematical func-

tions were presented. Using these implementations, methods of implementing vector and

matrix operations with different types of optimisations were considered. Matrix/vector op-

erations usually require iterating over the entire input space to create the output. Iteration

leads to either an increase in resource cost or a decrease in throughput.

This Chapter will present implementations for a number of complex mathematical func-

tions. These functions may be approximated from a combination of fundamental operations.

This Chapter will demonstrate that, while iterative approximations in hardware are possible,

it not always the most pragmatic approach. A number of alternative methods for implement-

ing some functions are presented. The effect on resource cost, performance and accuracy is

discussed.

This Chapter also presents a case study in which the exponential operation in the trans-

fer function of the Hodgkin-Huxley neuron model is replaced. The Hodgkin-Huxley model is

defined by sets of coupled ordinary differential equations. The dynamics are given by equa-

tions (4.1 to 4.4). This has been done before, such as the implementation presented in [140].

This used the Altera DSP builder to create a replacement that used approximations for the

exponential function that are better suited to a hardware implementation. In contrast, the

FPGA implementation of the Hodgkin-Huxley model presented by this Chapter will report

the resource cost for each implementation.

66

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

C
dVi
dt

= gmax
Na m3h(VNa − Vi) + gmax

k n4(VK − Vi) + gmax
CL (VCL − Vi) + Ii,jsyn (4.1)

dmi

dt
= αmi(1−mi)− βnini (4.2)

dni
dt

= αni(1− ni)− βnini (4.3)

dhi
dt

= αhi(1− hi)− βhihi (4.4)

Where Vi is the transmembrane potential of the ith neuron, t is time, ni, mi, and hi are

the gating variables for potassium activation, sodium activation and sodium inactivation, and

α and β are defined by equations (4.5 to 4.10).

αni =
0.01(Vi + 55)

1− exp(−(Vi + 55)/10)
(4.5)

βni = 0.125exp(−(Vi + 65)/80) (4.6)

αmi =
0.1(Vi + 40)

1− exp(−(Vi + 40)/10)
(4.7)

βmi = 4exp(−(Vi + 65)/18) (4.8)

αhi = 0.07exp(−(Vi + 65)/20) (4.9)

βhi =
1

exp(−(Vi + 35)/10) + 1
(4.10)

Neural computing, bio-inspired methods and artificial intelligence are currently receiving

a large amount of attention in research and industry due to their potential. While this may be

true, replicating biological methods in hardware can be computationally expensive [141]. In

addition, implementing neuron models in hardware present a network based problem; neural

networks have high interconnectivity requirements. A discussion of large-scale network-on-

67

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

chips were presented in [142]. The power dissipation, latency and area of a number of network

topologies was considered. This included circuit-switched networks, wormhole flow control

networks, virtual channel flow control-based networks, and a speculative, single cycle, virtual

channel network. Each network had different features and the choice of topology impacted

the key performance metrics. Hence to create a low-cost design, the network topology must

be carefully considered.

4.1 Iterative floating-point approximations and efficient hard-

ware implementations

4.1.1 Division

In Chapter 3, implementations of addition, subtraction and multiplication were presented.

The divide operation completes this set of basic mathematical operations. Implementing the

divide function is more complex as it requires iteration. This Chapter presents an implemen-

tation of the divide function using Newton-Raphson’s method.

Newton-Raphson’s method provides a method for calculating the result of an operation

based on a starting approximation. The method is not confined to calculating the inverse of

a number; it can also determine the roots of any real-valued function.

Equation (4.11) is the Newton-Raphson approximation for calculating the inverse of a

number using successive approximation. D is the divisor (input number) and Xi is the

successive approximation of the root of the equation. X0 has been set to 2.9142 as this has

been determined to provide a good starting point for quick convergence to the answer [143] .

Xi+1 = Xi −
f(Xi)

f ′(Xi)
= Xi −

1/Xi −D
−1/X2

i

= Xi(2−DXi) (4.11)

Increasing the accuracy has an associated cost since the Newton-Raphson method relies

on successive approximation. Table 4.1 shows resource count and performance metrics for

double-precision implementations of Newton-Raphson inversion and division. The division

function is implemented using a floating-point multiply after approximating the reciprocal of

the divisor. (See Appendix A for information on single- and half-precision implementations).

Each iteration of the Newton-Raphson method requires two floating-point multiply and

one floating-point subtraction operations. The implementation can be either performance or

resource optimisation. The performance optimised version instantiates two new multipliers

and a new subtraction module for every iteration. The result from one stage is fed into

68

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Table 4.1: Resource requirements and timing analysis for floating-point invert and division
operations using recursive a Newton Raphson approach to different numbers of iterations.
Implementations are using double-precision floating-point accuracy.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Newton-Raphson
inversion

1
3178.0
(423.7)

4717.5
(506.4)

1551.5 (82.8) 12.0 (0.1) 3067 (564) 8199 (261) 8 102.42 97.89

Newton-Raphson
inversion

2
5151.0
(591.9)

7632.5
(686.7)

2513.5 (94.7) 32.0 (0.0) 4939 (828) 13345 (261) 16 101.77 98.46

Newton-Raphson
inversion

3
7070.0
(749.9)

10499.0
(858.1)

3464.5 (108.6) 35.5 (0.4) 6812 (1092) 18491 (261) 24 97.13 93.99

Newton-Raphson
inversion

4
9047.5
(927.8)

13325.5
(1046.5)

4332.0 (119.0) 54.0 (0.3) 8682 (1356) 23637 (261) 32 96.87 93.62

Newton-Raphson
inversion

5
10978.0
(1093.2)

16283.5
(1220.9)

5358.5 (128.2) 53.0 (0.5) 10551 (1620) 28783 (261) 40 95.87 93.08

Newton-Raphson
inversion

6
12917.5
(1262.1)

19098.5
(1399.7)

6267.0 (141.8) 86.0 (4.2) 12422 (1884) 33929 (261) 48 100.43 96.39

Newton-Raphson
inversion

7
14864.5
(1422.6)

22050.1
(1586.4)

7285.5 (164.1) 100.0 (0.2) 14293 (2148) 39075 (261) 56 96.4 93.38

Newton-Raphson
inversion

8
16777.5
(1602.5)

24902.0
(1775.0)

8193.5 (173.5) 69.0 (1.1) 16164 (2412) 44221 (261) 64 98.93 96.04

Newton-Raphson
inversion

9
18740.6
(1760.8)

27721.1
(1941.8)

9069.0 (181.6) 88.5 (0.6) 18035 (2676) 49367 (261) 72 97.65 94.9

Newton-Raphson
inversion

10
20699.1
(1952.6)

30499.1
(2126.5)

9881.5 (174.9) 81.5 (1.0) 19916 (2940) 54513 (261) 80 97.02 93.91

Division 1
3867.0
(346.4)

5874.0
(364.2)

2020.0 (18.0) 13.0 (0.2) 3466 (523) 10531 (0) 12 97.24 94.49

Division 2
6095.0
(509.4)

9175.5
(547.5)

3098.5 (38.2) 18.0 (0.1) 5370 (787) 16717 (0) 20 95.9 92.64

Division 3
8323.0
(686.2)

12530.0
(728.4)

4235.0 (42.3) 28.0 (0.1) 7270 (1051) 22903 (0) 28 96.23 92.78

Division 4
10563.5
(850.0)

15996.5
(915.2)

5491.0 (65.5) 58.0 (0.3) 9175 (1315) 29089 (0) 36 96.3 94.24

Division 5
12769.5
(1013.3)

19226.0
(1094.8)

6503.0 (81.9) 46.5 (0.4) 11079 (1579) 35275 (0) 44 98.26 94.74

Division 6
14972.0
(1174.8)

22612.5
(1271.8)

7699.0 (97.4) 58.5 (0.4) 12978 (1843) 41461 (0) 52 97.74 94.99

Division 7
17194.5
(1348.4)

26065.0
(1434.9)

8958.5 (87.1) 88.0 (0.5) 14888 (2107) 47647 (0) 60 96.58 93.33

Division 8
19420.0
(1530.4)

29397.0
(1645.6)

10056.5
(115.8)

79.5 (0.5) 16792 (2371) 53833 (0) 68 97.39 93.66

Division 9
21636.0
(1699.2)

32584.1
(1799.6)

11020.5
(101.0)

72.5 (0.6) 18696 (2635) 60019 (0) 76 95.58 92.56

Division 10
23853.6
(1856.2)

35604.6
(1948.1)

11875.0 (92.9) 124.0 (0.9) 20602 (2899) 66205 (0) 84 93.94 90.79

the next stage, resulting in an issue rate of one (a new result is generated on every clock

cycle). The resource optimisation version re-uses the existing multipliers and adders, similar

to matrix/vector operations in Chapter 3. This means that a minimum number (one) of

each needs to be built. The latency increases as the module cannot accept a new input

while calculating the current answer. Table 4.1 shows metrics for performance optimised

implementations. The maximum throughput of the module is equal to its fmax. Increasing

the size of the implementation has a small impact on the fmax. The device has plenty of

resources so each stage is implemented using a new set of logic, which does not add routing

complications.

Figures 4.1 to 4.6 show the resource use and fmax for each implementation. As expected,

each additional stage increases the resource use linearly, Figures 4.1, 4.2, 4.4 and 4.5. A

double-precision implementation uses another approximately 2,000 Adaptive Logic Modules

(ALMs), 2,000 Adaptive Look-Up Tables (ALUTs), and 5,000 logic registers for each stage;

a half-precision implementation adds approximately 500 ALMs, 500 ALUTs, and 1,200 logic

69

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

0

1

2

3

4

5

6

R
e
g
is

te
rs

104

Invert
1

Invert
2

Invert
3

Invert
4

Invert
5

Invert
6

Invert
7

Invert
8

Invert
9

Invert
10

half-precision
single-precision
double-precision

Figure 4.1: Numbers of registers required for hardware implementations of Newton-Raphson
based inversion.

0

0.5

1

1.5

2

2.5

A
L
M

s

104

Invert
1

Invert
2

Invert
3

Invert
4

Invert
5

Invert
6

Invert
7

Invert
8

Invert
9

Invert
10

half-precision
single-precision
double-precision

Figure 4.2: Numbers of ALMs required for hardware implementations of Newton-Raphson
based inversion.

registers for each stage.

As mentioned in Chapter 3, the Intel FPGA floating-point library has an implementation

for a floating-point division operation that can be implemented on a Cyclone V device. The

Intel implementation is available in both single- and double-precision. The double-precision

divide module can be implemented using a polynomial approximation with Newton-Raphson.

70

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

0

50

100

150

200

250

f m
a

x (
M

H
z)

Invert
1

Invert
2

Invert
3

Invert
4

Invert
5

Invert
6

Invert
7

Invert
8

Invert
9

Invert
10

half-precision
single-precision
double-precision

Figure 4.3: fmax of hardware implementation of Newton-Raphson based inversion.

0

1

2

3

4

5

6

7

R
e
g
is

te
rs

104

Divide
1

Divide
2

Divide
3

Divide
4

Divide
5

Divide
6

Divide
7

Divide
8

Divide
9

Divide
10

half-precision
single-precision
double-precision

Figure 4.4: Number of registers required for hardware implementations of divide operation
using Newton-Raphson inversion.

The Intel floating-point division core is a multi-cycle block that adds latency to a design.

When configured for a similar fmax as the double-precision implementation given in this

Chapter (approx. 100 MHz) the latency for the Intel core is 26 cycles. Conversely, the

implementation presented by this Chapter has an issue rate of only one clock cycle. There is

a resource penalty associated with the higher issue rate; the implementation provided by Intel

uses only a quarter of the ALMs and almost half the DSP blocks. However, the Intel core

71

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

0

0.5

1

1.5

2

2.5

A
L
M

s

104

Divide
1

Divide
2

Divide
3

Divide
4

Divide
5

Divide
6

Divide
7

Divide
8

Divide
9

Divide
10

half-precision
single-precision
double-precision

Figure 4.5: Number of ALMs required for hardware implementations of divide operation
using Newton-Raphson inversion.

0

50

100

150

200

250

f m
a

x (
M

H
z)

Divide
1

Divide
2

Divide
3

Divide
4

Divide
5

Divide
6

Divide
7

Divide
8

Divide
9

Divide
10

half-precision
single-precision
double-precision

Figure 4.6: fmax of hardware implementations of divide operation using Newton-Raphson
inversion.

requires memory blocks (389,120 bits), while the implementation provided by this Chapter

does not. Similarly, the single-precision Intel divide block also introduces system latency (13

clock cycles at approx. 100 MHz) and requires memory blocks (34,303 bits). However, the

Intel function requires approximately a quarter of the ALMs required for the single-precision

implementation presented by this Chapter.

72

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Figures 4.3 and 4.6 show that adding additional stages to the performance optimised

implementation of the Newton-Raphson algorithm has negligible effect on the fmax of the

system. Routing delay between logic elements tends to be the limiting factor on performance

for modern Field Programmable Gate Arrays (FPGAs). There are sufficient resources on

modern FPGAs that each stage of the implementation can be placed without affecting the

performance of the previous stage.

Performance optimised implementations have an issue rate of one, so the maximum

throughput is always equal to fmax. Resource optimised implementations add an additional

16 clock cycles of latency for each iteration. The throughput for resource optimisation is

fmax/latency.

4.1.2 Analysis of error

It has been shown that adding more iterations is costly in terms of either resources or through-

put. Convergence for each implementation can be seen from plots of error with increasing

numbers of iterations.

Consider the double-precision implementation. From Figure 4.7 the relative error (Units

of Least Precision - ULPs) after a single iteration is on the order of 1013. This level of error is

too high for the implementation to be considered useful. Additionally, the normalised error

is shown to be one in some cases, meaning the result is 100% inaccurate.

Adding one more stage of the Newton-Raphson approximation to the implementation

reduces the error in the result by two orders of magnitude. The relative error is still too

large by the definition of acceptable error in a floating-point function (error ≤ oneULP)

for IEEE-754R. However, the normalised error is now in the order of 10−4. Therefore, the

mathematical value of the result is close to the ‘true’ answer.

After three iterations the normalised error is always below 10−9. Depending on the

application this error may not be problematic. Some applications may have other processes,

functions or constraints that add quantisation and therefore errors to the process. This can

eliminate the need for a mathematical result to have a relative error of less than, or equal to

one. Instead, area (resource use) is more important. In this situation it is sensible to use a

function with a low normalised error (but a high relative error) to save on resources. Other

applications will be more sensitive to relative error, but may not have constraints such as

area. In these cases greater numbers of iterations can be used.

Figures 4.8 and 4.9 plot the error in the inversion function with five iterations and ten

73

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-300-10-200-10-100-100-10100-10200-10300

0.2

0.4

0.6

0.8

1

1

2

3
1013

Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

0.2

0.4

0.6

0.8

1

1

2

3
1013

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.7: A Newton-Raphson iteration-based inverter realised in hardware with only a
single NR stage. Top half of the graph shows error for a negative input, bottom half shows
error for a positive input.

-10-300-10-200-10-100-100-10100-10200-10300

2

3

4

10-16

1

2

3Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

2

3

4

10-16

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.8: A Newton-Raphson iteration-based inverter realised in hardware with five NR
stages. Top half of the graph shows error for a negative input, bottom half shows error for a
positive input.

iterations respectively. The algorithm has converged - performing further iterations does not

change the answer and therefore the error - and has a maximum relative error of three ULPs.

(Single- and half-precision impelmentations are shown in Appendix C.) For single-precision

this convergence occurs after four iterations. The half-precision implementations of the

Newton-Raphson inversion shows convergence after three or fewer iterations. Due to the

74

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-300-10-200-10-100-100-10100-10200-10300

2

3

4

10-16

1

2

3Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

2

3

4

10-16

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.9: A Newton-Raphson iteration-based inverter realised in hardware with ten NR
stages. Top half of the graph shows error for a negative input, bottom half shows error for a
positive input.

reduction in accuracy of the half-precision number system, there are some anomalies. Inputs

that cause output values that are very close to the boundary of two different exponent values

can show a large amount of relative error. Despite this the normalised error for these results

is low for all results, in the order of 10−3 or better. Depending on the application, this is not

a problem.

For a relative error of three or fewer ULPs there is a large resource cost. The double-

precision implementation needs almost 11,000 ALMs and ALUTs, and 29,000 logic registers.

As before, reducing the floating-point precision, reduces the cost (Appendix A).

4.1.3 Square-root

Note: the research presented in this section has been accepted for publication in IET Com-

puters & Digital Techniques.

The implementation of the Newton-Raphson method has highlighted a number of prob-

lems. These same problems will occur in any other successive approximation algorithm. These

are used to evaluate complex, but common, mathematical functions such as square-root and

exponential functions. Successive approximation algorithms can result in large designs, have

a low throughput and suffer from compound errors. However, there are alternative meth-

ods that can mitigate these problems. This Section presents some ways of approximating a

square-root.

75

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

The square-root function is ubiquitous in modern computing, for applications such as

Computer Aided Design (CAD), graphics rendering and Artificial Intelligence (AI). The

square-root is calculated using methods such as Newton-Raphson [54], Taylor-series expan-

sion [53] or Goldschmidt’s expansions [53]. These techniques exhibit similar problems to the

reciprocal operations discussed previously in this Chapter.

There have been attempts to optimise successive approximation methods for hardware.

Wang & Schulte [54] proposed finding the inverse of the square-root of x using equation (4.12).

X is the number to be square-rooted and Ri is the iterative approximation of the result.

Ri+1 =
Ri

3
(3−X.R2

i) (4.12)

Although more optimised for maximum latency (210 clock cycles) and critical path (0.95 ns),

than implementations that approximate the square-root, this still exhibits many of the orig-

inal problems for implementing successive approximation in hardware.

Methods such as non-restoring algorithms and Dwandwa Yoga [56] are appealing due

to their low resource count and low latency. In particular there are non-restoring methods

that operate using a series of bit-wise operations, compares and shifts, which have a very

low resource cost. Non-restoring algorithms use equation (4.13). D is the input, Q is the

quotient and R is the remainder. Unfortunately, the non-restoring algorithms have a very

high relative and normalised error. Adaptations will be presented that reduce the relative

error in the hardware implementation to one ULP or fewer as per IEEE-754R.

D = Q2 +R (4.13)

76

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

1. if(DWIDTH %2 != 0) D={0,D},

else D = D,

2. Always Q0 = 0, F0 = 0,

3. Always t = 0, i = DWIDTH ,

4. Always Rt = Di:i−1,

5. iterate from i = DWIDTH to 0,

6. if((Ft << 1)|1 < Rt),

7. if((Ft << 1)|1 > Rt) Qt+1 = (Qt<<1)|0,

Ft+1 = ((Ft + Ft[0])<<1)|0,

else Qt+1 = (Qt<<1)|1,

Ft+1 = ((Ft + Ft[0])<<1)|1,

else Qt+1 = (Qt<<1)|0,

Ft+1 = ((Ft + Ft[0])<<1)|0,

8. Always

Rt+1 = (Rt - (Ft+1 × Ft+1[0]))<<2|Di−2:i−3,

9. Always t = t + 2, i = i - 2,

10. Repeat steps 6 to 8 until i = 0

Listing 4.1: Algorithm for calculating the square-root of a number using a non-restorative

method

The principle of operation for the non-restorative algorithm is given in Figure 4.10 and

Listing 4.1. D is the input number (radicand), Di:i−1 represents a sub-group of the radicand,

Ft is the partial factor, Rt is the partial remainder, Qt is the quotient, t is the time step, and

i is the bit-index. The input number is divided into sub-groups of two bits, which are parsed

from the Most Significant Bit (MSB) pair to the Least Significant Bit (LSB) pair.

Due to the nature of the non-restorative algorithm, converting each sub-group of bits into

a single bit for the quotient, there is a loss of accuracy. A mantissa of n + 1 bits - n is the

number of bits in the mantissa, n+ 1 represents the true mantissa - will result in a quotient

of n/2 bits. To increase accuracy, the mantissa is padded with zeros until it is 2(n+ 1) bits

in length. This is similar to a performing a successive approximation algorithm until every

bit of the mantissa is calculated.

Padding the mantissa to increase the precision of the non-restoring algorithm has trade-

offs. The improvements to the non-restorative algorithm can increase either the resource

count or the latency. Similar to the optimisation techniques proposed in Chapter 3, the

non-restorative algorithm can be either resource or performance optimised. If the resource

optimised implementation is considered, the resource count remains close to the original

77

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Di:i-1

Input

F

<< 1

OR

1

Comparator

Comparator

1 0

1 0

Ctrl

Select

Select

+

[0]

<< 1

OR OR

Q<< 1

OR

R

<< 2

+

X

[0]

-

Ctrl

Figure 4.10: The flow of the non-restorative algorithm can be expressed using a flow chart,
from which the required hardware operations and resources are derived.

algorithm. There is a slight overhead as the size of some registers must be increased to

accommodate the increase in precision. However, the latency (τ) is increased to 2(n+ 1) + 1

clock cycles from (n+ 1) + 1 for an odd length mantissa and (n+ 1) + 2 for an even length

mantissa.

If the performance optimised implementation is considered the issue rate remains as one.

The setup latency for the module is increased. Adding pipelining stages allows the design

to be clocked faster, thus increasing the overall throughput. However, each pipelining stage

78

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

adds additional latency (Np).

If the pipeline optimisations are applied to a traditional implementation of a non-restorative

algorithm, the latency is given by equation (4.14)

τ = (n+ 1) +
n

2
×Np (4.14)

for a mantissa with an odd number of bits, or equation (4.15)

τ = (n) +
n− 1

2
×Np (4.15)

for a mantissa with an even number of bits. The set-up latency for the improved algorithm

rises to equation (4.16)

τ = (2(n+ 1) + 1) + (n+ 1)×Np (4.16)

for an odd length mantissa or equation (4.17)

τ = (2(n+ 1)) + n×Np (4.17)

for an even length mantissa. Latencies for all implementations are summarised in Table 4.2.

Table 4.2: Latency calculations for resource and performance optimised implementations of
the non-restorative square-root module. Latency (τ) is given in clock cycles.

Traditional algorithm Improved accuracy algorithm

Resource optimised
Odd mantissa τ = (n+ 1) + 1 τ = 2(n+ 1) + 1

Even mantissa τ = (n+ 1) + 2 τ = 2(n+ 1) + 1

Performance optimised
Odd mantissa τ = (n+ 1) + ((n/2)×Np) τ = (2(n+ 1) + 1) + ((n+ 1)×Np)

Even mantissa τ = (n) + (((n− 1)/2)×Np) τ = (2(n+ 1)) + (n×Np)

The resource costs and performances of all non-restoring square-root designs have been

considered, shown in Figures 4.11 to 4.13. All designs were implemented in half-, single- and

double-precision, using both pipelined and non-pipelined methods. For pipelined designs,

data is shown for five pipeline stages.

Adding pipeline stages causes a significant increase in the resource use of both the tra-

ditional and new non-restorative algorithms, Figures 4.11 and 4.12. At double-precision the

increase in resource cost compared to half-, or single-precision is large. Each pipeline stage

is used to register data through D-type flip-flops for the next stage. When the module is

configured for double-precision, the widths of the registers used at each pipeline stage is con-

siderably longer than at half-, or single- precision, leading to a significant resource increase.

79

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

0

1

2

3

4

5

6

R
e
g
is

te
rs

104

Traditional
non-restoring

Pipelined
traditional

Increased
accuracy

Pipelined
increased
accuracy

half-precision
single-precision
double-precision

Figure 4.11: Registers required for hardware implementations of square-root operation.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
L
M

s

Traditional
non-restoring

Pipelined
traditional

Increased
accuracy

Pipelined
increased
accuracy

half-precision
single-precision
double-precision

Figure 4.12: ALMs required for hardware implementations of square-root operation.

Table 4.3 shows exact numbers for the resource cost at double-precision. (Appendix A shows

figures for half- and single-precision).

Figure 4.13 shows that when the module is arranged in a pipelined version of either the

traditional or the new non-restoring system, the overall fmax is increased over the respective

non-pipelined version. Pipelining stages allow the fitter to reduce routing delay, which allows

a faster clock to be used.

Increasing the accuracy with the new algorithm increases the number of resources re-

80

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

0

50

100

150

200

250

300

350

400

450

f m
a

x (
M

H
z)

Traditional
non-restoring

Pipelined
traditional

Increased
accuracy

Pipelined
increased
accuracy

half-precision
single-precision
double-precision

Figure 4.13: fmax of hardware implementations of square-root operation.

quired. The more resources that are required, the more complicated routing a design can

require. Even with pipelining stages, there is a decrease in fmax.

Importantly the additions to the algorithm, although at a cost, have reduced the error

to no more than a single ULP, shown in Figures 4.14 to 4.16. This also translates to an

1.36× 108 fold decrease in the normalised error for double-precision.

Table 4.3: Resource requirements and timing analysis for hardware friendly implemenatations
of a floating point square root operation. Implementations are using double-precision floating-
point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Traditional
without
pipeline

317.5
(317.5)

388.0
(388.0)

72.0 (72.0) 1.5 (1.5) 436 (436) 583 (583) 0 179.31 180.67

Traditional
with pipeline

5247.5
(5247.5)

9149.1
(9149.1)

3984.6
(3984.6)

83.0 (83.0) 2288 (2288)
18416

(18416)
0 183.59 185.91

Proposed new
design without

pipeline

455.5
(455.5)

577.5
(577.5)

126.5 (126.5) 4.5 (4.5) 589 (589) 901 (901) 0 132.21 133.92

Proposed new
design with

pipeline

16901.9
(16901.9)

29184.5
(29184.5)

12486.6
(12486.6)

204.0 (204.0) 8718 (8718)
58404

(58404)
0 121.74 124.29

FPGA vendors may provide Intellectual Property (IP) blocks for functions such as the

square-root of a floating-point number. Metrics for IP provided by Intel are given in Table 4.4.

Intel provide different IP for the Cyclone V and Stratix V range of devices, both of which

have been synthesised at single- and double-precision. The latency for the Cyclone V IP

is 16 clock cycles at single-precision and 30 clock cycles at double-precision. Metrics for the

81

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

10-300 10-200 10-100 100 10100 10200 10300

Input Number

2

2.5

3

10-8

N
or

m
al

is
ed

 E
rr

or

Normalised
Relative

5

10

107

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.14: Traditional non-restorative algorithms can only calculate a mantissa that is
half the width of the input. This creates significant error in the output, as shown with the
double-precision system here.

10-300 10-200 10-100 100 10100 10200 10300

Input Number

1.6

1.76

1.92

2.08

2.24

2.4
10-16

N
or

m
al

is
ed

 E
rr

or

Normalised
Relative

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.15: The amendments to the algorithm allow all the bits of the mantissa to be
calculated, drastically increasing the accuracy to a worst case of one ULP.

Cyclone V device come from the compilation report from Quartus II. For the high performing

Stratix V device the metrics may be found in [144].

The Intel IP does not provide the issue rate of one achievable by the performance optimised

non-restoring implementation. Additionally, for the high performance Stratix V device, the

megafunction uses Digital Signal Processing (DSP) blocks. DSP blocks are a valuable resource

that may be better used elsewhere in a design. Comparison can be drawn between the

82

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

10-300 10-200 10-100 100 10100 10200 10300

Input Number

1.6

1.76

1.92

2.08

2.24

2.4
10-16

N
or

m
al

is
ed

 E
rr

or

Normalised
Relative

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.16: Adding pipelining to the square-root calculation algorithm is not detrimental
effect to the accuracy of the output.

ALMs used for the Intel FPGA square-root function and the square-root function proposed

in this Chapter, both of which targeted Cyclone V technology. Without pipelining both

implementations from this Chapter require fewer ALMs than the Intel square-root cores for

both single- and double-precision implementations. The addition of pipelining significantly

increases the resource consumption of the proposed method, but it does achieve a much higher

throughput that the Intel cores.

Table 4.4: Intel provide a megafunction core to perform the square-root operation on floating-
point numbers. The resources used and performance vary depending on the width of the
floating-point number and the target device.

Single-Precision Double-Precision

Cyclone V

fmax (MHz) 135.94 104.88

Throughput (MFLOPs) 8.50 3.50

ALMs 192 888

Registers 396 1783

DSP 0 0

Stratix V

fmax (MHz) 393.7 274.12

Throughput (MFLOPs) 65 16

ALMs 112 458

Registers 136 1060

DSP 2 9

Non-restoring algorithms allow the square-root of a number to be calculated using very few

83

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

resources compared to successive approximation techniques, importantly the implementation

requires no DSPs. The use of DSP blocks in the IP cores from Intel FPGA results in smaller

implementations compared to the pipelined non-restoring method. However, the issue rate of

one allows the non-restoring implementation to have a much higher throughput. Traditional

methods for implementing the non-restorative method lead to a large relative error in the

output. Additions have been made to the algorithm that reduce the relative error to no more

than one ULP. This is in line with the maximum allowable error for floating-point functions.

(Additional plots of error for double-, single- and half-precision implementations can be seen

in Appendix D.)

4.1.4 Exponential

Evaluating the exponential function presents similar problems as the reciprocal or square-

root. There are a number of mathematical methods for calculating exponents that rely

on successive approximation. These are often bounded approximations designed for small

inputs, or require a large number of iterations to be accurate. Two common methods are the

Euler expansion of continued fraction approximation, equation (4.18), and the power series

approximation, equation (4.19).

ex = 1 +
x

1− x
x+2− 2x

x+3− 3x
x+4−...

(4.18)

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ ... (4.19)

From the equations, it can be seen that these approximations exhibit similar problems

to the Newton-Raphson methods. A large number of operations are required, and each

operation is potentially costly (particularly division, Table 4.1). Identifying other methods for

approximating the exponent of a number is therefore necessary for hardware implementation.

It is possible to rewrite the formula R = ex in the form of R = 2a. This is more

computationally friendly for a binary processor. In the rearrangement a is scaled version of

x using a factor of ln(2), for example R = 2x/ln(2). This is similar to the method used in the

math.h C library [145] where the exp(x) function uses the relationship 2xln(2).

84

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

4.1.4.1 Implementing the exponent function on a processor

It is possible to implement these approximations on a processor, but achieving high accuracy

is costly in terms of clock cycles. Processors actually use an alternative method, Chebyshev

approximation, without need for a large number of iterations - math.h [145]. The equivalent

function reduces the exp(x) to the form shown in equation (4.20) where |r| ≤ 0.5ln(2) ≈

0.34658.

x = k × ln(2) + r (4.20)

Where the exp(r) can be calculated using a bounded approximation for a small input

value, equation (4.21).

exp(r) = 1 +
2r

R− r
= 1 + r +

r ×R1(1)

2−R1(r)
(4.21)

R is approximated as a fifth order polynomial.

From equations (4.20) and (4.21), it is concluded that the exponent can be approximated

as in equation (4.22).

exp(x) = 2k + exp(r) (4.22)

The processor implementation uses both an approximation in the form 2a and a bounded

approximation for a small input value, equation (4.21), [145].

On a processor this method of approximating the exponent function leads to a highly

accurate answer for relatively little processor cost. However, due to evaluating a fifth order

polynomial and the division operation for the exp(r) approximation, implementing equa-

tion (4.22) in hardware is costly. Other approaches for estimating the exponential of a

number using hardware will now be presented.

4.1.4.2 Hardware implementations of the Euler and power series methods

It has already been proposed that the Euler and power series approximation methods are im-

practical for implementation both on a processor and in hardware, particularly when efficiency

or area are key criteria. However, for comparison the Euler and power series approximations

have been implemented in hardware. Tables 4.5 and 4.6 show the resources required for

Euler and power series methods using half-precision floating-point. Due to both methods

requiring division, two versions of each implementation have been synthesised. One version

85

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

uses a single stage Newton-Raphson division and the other uses five stages. The single stage

division implementation requires fewer resources but has higher error. Five stages ensures

the division result has converged; the effect of convergence of the division operation in the

error of the exponential function can then be analysed. (Synthesis data for double-, single-

and half-precision is in Appendix E.)

Table 4.5: Resource requirements and timing analysis for Euler and power series mathematical
expansions of ex. Implementations are using half-precision floating-point accuracy, using a
five stage Newton-Raphson inversion.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

euler 1
8789.0
(237.4)

13091.0
(257.7)

4359.5 (20.3) 57.5 (0.0) 7418 (383) 24728 (0) 24 192.46 192.75

euler 2
13807.5
(333.2)

20384.5
(352.7)

6671.0 (19.5) 94.0 (0.0) 11015 (545) 39709 (0) 35 193.91 193.87

euler 3
18757.0
(444.8)

27832.0
(481.4)

9188.0 (36.7) 113.0 (0.0) 14477 (721) 54786 (0) 46 192.94 189.9

euler 4
23841.5
(548.3)

35173.0
(575.2)

11517.5 (26.9) 186.0 (0.0) 18045 (884) 69863 (0) 57 195.2 193.65

euler 5
28486.5
(556.9)

34537.0
(605.1)

6133.0 (48.6) 82.5 (0.3) 21567 (1049) 84940 (0) 68 187.06 185.8

euler 6
33543.0
(639.4)

38554.0
(670.4)

5132.5 (31.0) 121.5 (0.0) 25069 (1225) 100017 (0) 79 174.19 170.15

power 1
4020.0
(132.4)

5893.0
(135.1)

1919.0 (2.7) 46.0 (0.0) 3685 (204) 10996 (17) 12 207.3 201.17

power 2
8209.5
(228.2)

12124.0
(252.9)

3983.0 (24.7) 68.5 (0.0) 7116 (360) 22783 (17) 24 191.68 187.06

power 3
12368.0
(329.3)

18186.0
(357.1)

5880.0 (27.8) 62.0 (0.0) 10528 (529) 34671 (17) 36 190.48 185.01

power 4
16575.0
(434.3)

24648.0
(468.7)

8161.0 (34.4) 88.0 (0.0) 14106 (697) 46557 (17) 48 198.26 196.08

power 5
20751.5
(531.9)

30338.5
(572.9)

9714.0 (41.0) 127.0 (0.0) 17567 (866) 58443 (17) 60 181.82 183.99

power 6
24982.0
(635.8)

36128.0
(670.1)

11267.0 (34.2) 121.0 (0.0) 21236 (1031) 70331 (17) 72 186.05 192.09

Table 4.6 shows a very high resource cost for an implementation that uses a resource-

optimised division stage. The size of each implementation grows rapidly as more iterations

are introduced. At half-precision floating-point each additional Euler iteration requires ap-

proximately 1800 ALMs, 5300 registers and three DSP blocks; each power series iteration

requires approximately 1500 ALMs, 4185 registers and four DSP blocks. Similar to methods

discussed in Chapter 3, these implementations can be arranged to reuse the same set of logic

multiple times, calculating the result to greater accuracy. The effect would be a decrease in

throughput.

Methods that use successive approximation suffer from truncation error. The more terms

that are truncated, the larger the error can be. The error can be expressed mathematically

using y(t) to denote the exact solution, y(tj) to denote the exact solution at step j, and yj

86

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Table 4.6: Resource requirements and timing analysis for Euler and power series mathematical
expansions of ex. Implementations are using half-precision floating-point accuracy, using a
single stage Newton-Raphson inversion.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

euler 1
3544.5
(126.2)

5137.0
(131.4)

1603.0 (5.2) 10.5 (0.0) 3293 (195) 9640 (0) 8 191.68 191.35

euler 2
5343.5
(176.6)

7900.5
(187.7)

2576.0 (11.1) 19.0 (0.0) 4617 (266) 14965 (0) 11 200.48 196.08

euler 3
7193.0
(207.1)

10775.0
(228.6)

3631.5 (21.5) 49.5 (0.0) 5932 (337) 20322 (0) 14 189.79 195.2

euler 4
8977.5
(250.2)

13540.0
(269.9)

4631.0 (19.8) 68.5 (0.0) 7266 (409) 25679 (0) 17 195.69 193.05

euler 5
10801.5
(291.9)

16036.0
(321.9)

5291.5 (30.0) 57.0 (0.0) 8653 (475) 31036 (0) 20 192.2 186.81

euler 6
12659.5
(340.9)

18795.0
(368.7)

6247.5 (27.8) 112.0 (0.0) 9997 (552) 36393 (0) 23 189.93 192.09

power 1
1712.0
(71.6)

2453.5
(74.3)

752.0 (2.8) 10.5 (0.0) 1628 (98) 4406 (17) 4 176.18 174.58

power 2
3169.5
(115.8)

4650.0
(123.2)

1498.0 (7.4) 17.5 (0.0) 2938 (175) 8591 (17) 8 206.83 200.4

power 3
4705.0
(164.8)

6886.0
(174.2)

2205.0 (9.4) 24.0 (0.0) 4277 (239) 12807 (17) 12 202.43 201.05

power 4
6196.0
(199.5)

9069.0
(218.7)

2905.5 (20.0) 32.5 (0.9) 5603 (315) 17021 (17) 16 199.4 194.48

power 5
7791.0
(247.3)

11399.0
(266.2)

3659.5 (18.9) 51.5 (0.0) 6997 (390) 21235 (17) 20 205.25 199.28

power 6
9325.5
(286.3)

13651.0
(313.4)

4385.5 (27.1) 60.0 (0.0) 8413 (458) 25451 (17) 24 196.89 193.39

to denote the numerical solution at j. Therefore the error is given by equation (4.23)

ej = |y(tj)− yj | (4.23)

Increasing the number of iterations of either the Euler or power series method will increase

the accuracy of the result. However, in order to get an accurate result for large input val-

ues, the number of iterations required tends to infinity. Figures 4.17 to 4.20 demonstrate

the error in the result of both Euler and power series methods over the representable range

of half-precision floating-point after ten iterations. Figures 4.17 and 4.18 use a five stage

Newton-Raphson division implementation compared to the single stage used in Figures 4.19

and 4.20. It can be seen from the Figures that increasing the accuracy of the division stage

has little effect on the accuracy of the exponential approximation due to the inaccuracy

incurred using only ten iterations of the algorithm. It can be concluded that both Euler ex-

pansion of continued fraction and power series approximations are inappropriate for hardware

implementation.

4.1.5 Hardware implementations of curve-fitting methods

Section 4.1.4 showed that exp(x) = 2a, where a is x scaled by a factor ln(2). Implementing 2a

is far more resource-friendly. To increase the accuracy of the result while using a small number

87

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-4-10-3-10-2-10-1- 100
0

0.5

1

105

106

Normalised
Relative

10-6 10-5 10-4 10-3 10-2 10-1 100

Input Numbers

0

0.5

1

100

105

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.17: Euler series approximation to 10 iterations in half-precision using a five stage
Newton-Raphson division implementation. Top half of the graph shows error for a negative
input, bottom half shows error for a positive input.

-10-4-10-3-10-2-10-1-100
0

0.5

1

100

105
Normalised
Relative

10-6 10-5 10-4 10-3 10-2 10-1 100

Input Numbers

0

0.5

1

100

105N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.18: Power series approximation to 10 iterations in half-precision using a five stage
Newton-Raphson division implementation. Top half of the graph shows error for a negative
input, bottom half shows error for a positive input.

of resources, curve-fitting techniques were applied. Figure 4.21 shows the proposed flow for

a curve-fitting approximation. The implementation converts the input floating-point number

to fixed-point so that integer multiplication can be used. The result of the multiplication

is de-constructed to obtain new exponent and mantissa values. Curve fitting is applied to

adjust the new mantissa to more closely map to the exponential curve.

88

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-4-10-3-10-2-10-1- 100
0

0.5

1

105

106

Normalised
Relative

10-6 10-5 10-4 10-3 10-2 10-1 100

Input Numbers

0

0.5

1

100

105

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.19: Euler series approximation to 10 iterations in half-precision using a single stage
Newton-Raphson division implementation. Top half of the graph shows error for a negative
input, bottom half shows error for a positive input.

-10-4-10-3-10-2-10-1-100
0

0.5

1

100

105
Normalised
Relative

10-6 10-5 10-4 10-3 10-2 10-1 100

Input Numbers

0

0.5

1

100

105N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.20: Power series approximation to 10 iterations in half-precision using a single stage
Newton-Raphson division implementation. Top half of the graph shows error for a negative
input, bottom half shows error for a positive input.

A number of different curve-fitting approaches have been used, detailed in Table 4.7.

Linear piecewise approaches break the problem space into a number of sections (one, two

and four) and use straight lines to map the output; quadratic and cubic approaches use a

single, continuous function for curve mapping. In addition, a number of ‘hybrid’ approaches

were also considered. These take the piecewise and continuous curve mapping approaches

89

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Extract Sign,
Exponent and

Mantissa

 Inputl

 Signl Bit-shift the
Mantissa by

the Exponent
to create an

integer

 Unsigned
Intl

 Exponentl

Perform
integer

division by
doing integer
multiplication

of the
unsigned int
with 1/ln(2)

Extract the
decimal and

fractional parts
of the ‘division’

result. This is
the power that
2 will be raised

to.

 New Powerl

 Signl

 Decimall

 Mantissal Fractionall

Apply curve
fitting and

construct the
result

 Resultl

Figure 4.21: Flow diagram of the stages performed by the hardware implementation of the
proposed hardware friendly exponential function.

and multiplex them with a small input approximation (1+x). Based on the magnitude of the

input the implementation switches between the two approximations. The result is therefore

highly accurate for small input values, but has a larger resource cost. All implementations

have also had pipelining stages added to increase fmax.

Table 4.8 shows the metrics for each implementation at half-precision to allow direct

comparison to the Euler and power series approximations. The curve fitting methods have

a very low resource cost compared to iterative methods. Some designs require fewer than

100 ALMs and registers. The maximum resource cost for any implementation is 107 ALMs

and 169 registers at half-precision. (Appendix E shows metrics for single- and double-precision

implementations.)

Figures 4.22 and 4.23 plot the number of registers and ALMs required in each of the

22 explored curve-fitting methods. Pipelining each design increases the required resources

by a marginal amount, particularly for linear piecewise approaches. The largest resource

penalty is incurred by the ‘hybrid’ designs (11-19), since they include a floating-point adder

and control logic to select which approximation to use. Chapter 3 has already shown

the costs for a floating-point adder (approximately 1000 ALMs, 500 ALMs and 250 ALMs

for double-, single- and half-precision implementations respectively). However, the largest

double-precision curve-fitting method presented still requires fewer resources than almost all

half-precision Euler and power series implementations presented previously.

From Figures 4.22 and 4.23 it can be seen that there is a significant additional resource cost

for quadratic and cubic curves, particularly when the design is pipelined. Increasing the order

of the polynomial nominally adds one extra addition and three additional multiplications;

when this is implemented in hardware it can be reduced to a single multiply-accumulate

stage, shown in equation (4.24). From this it can be extrapolated that solving a fifth-order

polynomial (as in standard C) would incur significant resource cost.

a+ bx+ cx2 + dx3 = x(x(dx+ c) + d) + a (4.24)

90

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Table 4.7: Types of approximation for the exponential function in hardware.

Index Description

1 Single piecewise linear approximation

2 Single piecewise linear approximation with pipelining stages

3 Double piecewise linear approximation

4 Double piecewise linear approximation with pipelining stages

5 Four piecewise linear approximation

6 Four piecewise linear approximation with pipelining stages

7 Quadratic approximation

8 Quadratic approximation with pipelining stages

9 Cubic approximation

10 Cubic approximation with pipelining stages

11 Hybrid approximation using 1+x and the single piecewise linear module
depending on the magnitude of the input

12 Hybrid approximation using 1+x and the single piecewise linear module
depending on the magnitude of the input with pipelining stages

13 Hybrid approximation using 1+x and the double piecewise linear module
depending on the magnitude of the input

14 Hybrid approximation using 1+x and the double piecewise linear module
depending on the magnitude of the input with pipelining stages

15 Hybrid approximation using 1 + x and the four piecewise linear module
depending on the magnitude of the input

16 Hybrid approximation using 1 + x and the four piecewise linear module
depending on the magnitude of the input with pipelining stages

17 Hybrid approximation using 1 + x and the quadratic module depending
on the magnitude of the input

18 Hybrid approximation using 1 + x and the quadratic module depending
on the magnitude of the input with pipelining stages

19 Hybrid approximation using 1 + x and the cubic module depending on
the magnitude of the input

20 Hybrid approximation using 1 + x and the cubic module depending on
the magnitude of the input with pipelining stages

21 Single piecewise linear approximation using a floating-point multiplier

22 2x

Figure 4.24 plots the maximum operating frequency of each implementation. Each im-

plementation has an issue rate of one, regardless of whether or not it is pipelined. Pipelining

is particularly important when using polynomials for curve-fitting. Increasing the order of

the polynomial without pipelining stages reduces fmax. This is due to having to perform

a number of addition and multiplication operations in sequence inside a single clock pe-

riod. Pipelining stages allow these operations to be spread over multiple periods, leading to

91

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

500

1000

1500

2000

2500

3000

3500

R
e
g
is

te
rs

half-precision
single-precision
double-precision

Figure 4.22: Registers required for hardware implementations of the exponential operation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

500

1000

1500

2000

2500

A
L
M

s

half-precision
single-precision
double-precision

Figure 4.23: ALMs required for hardware implementations of the exponential operation.

a greater fmax at the expense of resource. Extrapolating to a fifth-order polynomial in a

non-pipelined design results in a very low fmax, and consequently very low throughput. As

has been seen with other functions presented in Chapters 3 and 4, Intel FPGA provide a

floating-point exponential block that can be implemented on Cyclone V technology. Again

this is a multi-cycle block that adds latency to a design: 17 cycles for single-precision or

25 cycles for double-precision. The resource count for the single-precision Intel exponential

block is approximately 400 ALMs, and approximately 3,000 ALMs in double-precision. Both

92

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

50

100

150

200

250

300

f m
a

x (
M

H
z)

half-precision
single-precision
double-precision

Figure 4.24: fmax of hardware implementations of the exponential operation.

single- and double-precision implementations require DSP blocks, with them using 19 and 46

respectively.

4.1.6 Analysis of error

The error plots, Figures 4.25 and 4.26, demonstrate that the implementations do not achieve

one or fewer ULPs of error. The normalised error is always below one, often by several

orders of magnitude. The description of the exponential function in math.h, states that

the maximum error is bound to 2−59. To achieve this accuracy a fifth-order polynomial is

required. Depending on the application, the accuracy presented by these implementations

may be sufficient. A case study presented later in this Chapter will demonstrate a working

system using these approximations.

The implementation being used replaces ex with 2a, where a = x/ln(2). a may be

calculated using either a multiplication by 1/ln(2) (Figures 4.25 and 4.26) or a division by

ln(2). In the hardware, integer division has some limitations. The width of certain blocks on

the device, such as integer divide, have a limit of 32-bits - this is the lpm width. While it is

possible to divide the integers created from half-precision floating-point inputs, the integers

created from single- or double-precision are too wide for implementation in the hardware

used. Figure 4.27 gives the simulated error for a double-precision system, should the integer

division be realisable. The normalised error from the integer division implementation for

negative numbers is orders of magnitude worse than if multiplication is used.

93

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.25: Hardware friendly floating-point exponent approximation using a single line
curve fit in double-precision. The top graph is negative input numbers. The bottom graph
is positive input numbers.

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

1.5

2
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

1.5

2
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.26: Hardware friendly floating-point exponent approximation using a four line curve
fit in double-precision. The top graph is negative input numbers. The bottom graph is
positive input numbers.

Chapter 3 presented designs for floating-point multipliers. Since the implementation

shown here is for a floating-point exponential function, Figure 4.28 gives the error for an

implementation that replaces the integer multiplication with a floating-point multiplication.

Comparing this with the equivalent curve fitting implementation that uses integer multipli-

cation, Figure 4.25, shows no difference in the error of the two techniques. However, the use

of a floating-point multiplier incurs additional resource cost, shown in Figures 4.22 and 4.23.

The integer multiplication method is considered better.

94

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.27: Hardware friendly floating-point exponent approximation using a single line
curve fit with fixed-point integer division operation double-precision. The top graph is neg-
ative input numbers. The bottom graph is positive input numbers.

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.28: Hardware friendly floating-point exponent approximation using a single line
curve fit with a floating-point multiply in double-precision. The top graph is negative input
numbers. The bottom graph is positive input numbers.

Figures 4.29 and 4.30 show the error for two of the ‘hybrid’ exponential implementations.

As expected the 1+x approximation for small inputs gives greater accuracy in the output over

the small input region. The boundaries of the regions were calculated by finding the crossing

points in error of each implementation and the 1 + x approximation. Greater accuracy for

small inputs may be necessary for some applications, but this has a higher resource cost.

Hardware-friendly approximations of the exponential function are problematic. Methods

for approximating the result are resource and time intensive. For systems that wish to

95

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.29: Hardware friendly floating-point exponent hybrid approximation single line curve
fit and 1 + x in double-precision. The top graph is negative input numbers. The bottom
graph is positive input numbers.

-10-4-10-3-10-2-10-1- 100- 101- 102

5

10

15

10-4

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

5

10

15

10-4

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure 4.30: Hardware friendly floating-point exponent hybrid approximation cubic curve fit
and 1 + x in double-precision. The top graph is negative input numbers. The bottom graph
is positive input numbers.

benefit from hardware acceleration, this is impractical. The method used by a processor to

increase the calculation speed and achieve one ULP or fewer relative error is still considered

intensive for hardware implementation. Curve fitting methods that use piecewise or low-

order polynomials were examined. Although the normalised error of these methods is low;

the relative error can be large. A cubic polynomial curve-fit gives a relative error of four

96

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

or fewer ULPs for very small inputs (less than −1014). For inputs greater than −1014, the

relative error is zero ULPS (shown in Appendix E). The trade-off is these systems can be run

quickly, with an issue rate of one. The addition of pipelining resources adds overhead and

allows a throughput of up to 200 Mega Floating-Point Operations Per second (MFLOPs).

Depending on the application, saving resources - at the expense of accuracy - may be more

important.

4.2 Case study: implementing a neuron in hardware

Hardware light methods for approximating exp(x) use a re-arrangement of the function to

the form 2a. To test the validity of the approximation, a hardware implementation of the

Hodgkin-Huxley neuron model was created [146]. The model uses several exponent functions.

This case study will show the effect of the inaccuracy on a system that is governed by the

shape of a non-linear function, rather than exact output values of the function.

Neural networks and the modelling of biological neurons are notoriously difficult. Biolog-

ical neurons are analogue systems that do not map well to discrete digital architectures. A

number of models for neurons exist (Hodgkin-Huxley [146] and Izhikevich [147]). This case

study will focus on the Hodgkin-Huxley model. They are discrete approximations.

4.2.1 Training neural networks using approximations to the exponential

function

For evaluation three identical neural networks that use different methods for the exponential

in their transfer function were trained and evaluated against the MNIST database [148].

The three different networks use either a normal exponential, the single piecewise linear

approximation or the quadratic curve approximation. Each network has an input layer, a

hidden layer and an output layer. Each network was trained and tested 100 times. Figure 4.31

shows the scores of each network.

From Figure 4.31 it can be seen that using approximations for the exponential function

produces a network that functions at least as well as a neuron that uses the traditional

exponential function implementation, despite the large relative error. This confirms that the

shape of the function is more important than the accuracy.

97

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

exp(x) Single Quadrant Approximation Cubic Approximation

93

93.5

94

94.5

95

95.5

N
et

w
or

k
sc

or
e

(%
)

Figure 4.31: Performance of neutral networks that replace the exponential function with
approximations of the exponential function that are more hardware friendly. Networks are
trained and tested on the MNIST database. The network score is the number of times the
network produced the expected answer while processing the test set after being trained.

4.2.2 Implementing the Hodgkin-Huxley model on an FPGA

Note: All results for double-precision floating-point implementations can be seen in Ap-

pendix F.

The Hodgkin-Huxley model of a neuron was implemented on an FPGA, using each of the

exponential approximations. The implementations have been simulated to plot the output

and membrane voltages. From the results it can be seen that the method for approximating

the exponential function is application dependent.

Figures 4.32 to 4.35 show the resource and performance metrics for the implementations.

The indices on the x-axis refer to the type of approximation being used for the exponential

function as per Table 4.7.

The only variation between implementations is the exponent approximation; the resources

being used for the rest of the model are constant. This is reflected by Figures 4.32 and 4.33.

The resources required for the rest of the design dominates the resource variation introduced

by changing the exponential approximation. Using Euler and power series methods for the

exponent results in a design that is too large for the target Stratix V device. The curve fitting

methods shown here require only approximately 40-50% of the ALMs available.

Even targeting a high-end Stratix device the operating frequency is very low, sub 0.35 MHz.

However, the model is a discrete time model of a biological system, so the performance met-

ric becomes ‘simulated time per unit time’. At every time step the internal and resultant

potentials of the neuron are calculated for a given stimulus. The timestep is a user input (a

typical value is 0.1 s).

98

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

1 2 3 4 5 6 7 8 9 10111213141516171819202122
Method for approximating exp(x)

0

0.5

1

1.5

2

A
L
M

s

105

Figure 4.32: Using an array of different methods for implementing the exponential function
on an FPGA, a study of the required number of ALMs for each model was performed. The
models all work in double-precision floating-point.

1 2 3 4 5 6 7 8 9 10111213141516171819202122
Method for approximating exp(x)

0

0.5

1

1.5

2

2.5

3

3.5

R
e
g
is

te
rs

105

Figure 4.33: Using an array of different methods for implementing the exponential function
on an FPGA, a study of the required number of registers for each model was performed. The
models all work in double-precision floating-point.

Each implementation takes a fixed number of clock cycles to produce the next answer.

The number of clock cycles for each design varies slightly due to the different latencies of

the exponential approximations. For the different approximations this is between four and

twelve clock cycles. Other factors that determine the latency of the design is the number

99

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

1 2 3 4 5 6 7 8 9 10111213141516171819202122
Method for approximating exp(x)

0

0.5

1

1.5

2

2.5

3

3.5

f m
a
x

105

Figure 4.34: Using an array of different methods for implementing the exponential function
on an FPGA, a study of the maximum operating frequency of each model was performed.
The models all work in double-precision floating-point.

of any Newton-Raphson stages for reciprocation calculations (Number of stages × 80 clock

cycles). Fixed delay through the system is 186 clock cycles. From this the total latency of

the implementation is calculated. Using some typical values: Newton-Raphson stages equals

two, fmax equals 320 kHz and exponential latency equals 8 the total system latency becomes:

186 + (2× 80) + 8 = 354 clock cycles

A new value is produced approximately every 0.001 seconds. With a typical time step

of 0.1 s the performance of the system is 100 s.s−1; 100 times faster than real time. This

is equivalent to simulating 100 neurons in real time using time division multiplexing of the

network, assuming it is deeply pipelined.

Osorio presented an approach to creating a hardware implementation of the Hodgkin-

Huxley model in their 2018 paper [149]. Osorio’s implementation used the ‘Runge-Kutta’

method to calculate the exponent, a cyclic method that iterates over itself until an answer is

formed. Since the Runge-Kutta method can require many cycles, this is a very time-costly

approach. Osorio says for the folded implementation, “32 cycles are needed for obtaining

the initial values n, m, and h; 41 for the core of the iteration; and twelve cycles for equa-

tion (4.25)”.

x′ = x+ (x1 + 2× x2 + 2× x3 + x4)/6 (4.25)

100

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

x is replaced by the membrane voltages m, n and h.

Further the unfolded architecture requires “141 cycles” for the core. This leads to a large

number of required clock cycles. Unfortunately the paper does not report the fmax of any of

the designs, so it is unclear how this translates to real term functionality.

Osorio’s implementation also required DSP blocks for both the folded and unfolded ver-

sions: 305 and 1196 respectively. From Figure 4.35 it can be seen that the maximum number

of DSP blocks used in any implementation presented here is below 150.

1 2 3 4 5 6 7 8 9 10111213141516171819202122
Method for approximating exp(x)

0

50

100

150

D
S

P
 B

lo
ck

s

Figure 4.35: Using an array of different methods for implementing the exponential function
on an FPGA, a study of the required number of DSP blocks for each model was performed.
The models all work in double-precision floating-point.

The implementations of the Hodgkin-Huxley model presented in this Chapter have sig-

nificant resource use and a very low fmax. Implementations 21 and 22 from Figure 4.35 have

significantly higher DSP use compared to the other presented implementations. This is due

to them using curve-fitting methods in the exp(x) approximation. The high resource use for

this model is unavoidable to an extent. As can be seen from equations (4.1 to 4.10), the

Hodgkin-Huxley model comprises of a large number of operations, particularly exponential

and division operations, which have high resource cost and lead to a low fmax. To mitigate

the high resource count and low fmax, other methods for approximating exp(x) could be used:

for example, the implementations found in the Intel FPGA IP library that use a CORDIC

algorithm. These implementations achieve an fmax of 284 MHz and 279 MHz, with 19 or 46

DSP blocks, for single- or double-precision respectively [126].

101

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

The FPGA implementation shown in this Section uses double-precision floating-point

numbers. In practise a double-precision implementation is unlikely to be needed. In [149]

Osorio discusses how the required precision for a mathematical function to remain correct

can be analysed. This allows only the necessary level of precision to be used, hence saving

resources. In Chapters 3 and 4 it is shown that lowering the precision yields a smaller

implementation with higher fmax values. Therefore, a more practical implementation would

use a mixture of precisions for each floating-point operation to provide the most optimal

result in terms of throughput and area. The implementations for floating-point operations

given in Chapters 3 and 4 are designed to operate with variable precision, set by a number

of parameters during instantiation. Additionally, the design can be implemented with a deep

pipeline to increase the fmax.

4.2.3 Outputs from the neuron simulation

Simulated outputs of the implementations are shown in Figures 4.36 to 4.38. The black line

shows the stimulating current injected into the neuron. There are three internal potentials

plotted for each neuron, labelled m, n and h, caused by the movement of sodium, potassium

and calcium ions. The output voltage (v) of the neuron is plotted on the top graph. Fig-

ure 4.36 uses a single piecewise linear approximation which causes a mis-fire. However, the

implementation does recover from this and continues to operate as expected. Figure 4.37 uses

a piecewise linear approximation with two lines for curve fitting. There is now no mis-firing

of the neuron and the output pulse train remains uniform. Increasing the accuracy of the

approximation to the exponential function has no further impact on the functionality of the

neuron. Figure 4.38 shows the impulse response of the same neuron as shown in Figure 4.37.

The output matches the expected characteristic curve of the Hodgkin-Huxley model.

Neural networks represent an ideology in computing where a system can not only train

itself to perform the desired task but has computational power equal to that of a human. The

reality is that to achieve this level of power a vast number of processing resources are required.

The SpiNNaker research project [150] is attempting to create specialist Application Specific

Integrated-Circuit (ASIC) device that is modelled on the brain by networking together a

number of ARM processor nodes. Although their devices are tailored for neural applications

and are therefore better than processors at neural network applications, this technology still

needs a significant amount of development.

102

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure 4.36: Hardware implementation of a Hodgkin-Huxley neuron using single line piecewise
linear approximation for the exponential function. The neuron’s response to a step input of
0.2 A (black trace, bottom graph). m, n, and h are the membrane potentials internal to the
neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure 4.37: Hardware implementation of a Hodgkin-Huxley neuron using two line piecewise
linear approximation for the exponential function. The neuron’s response to a step input of
0.2 A (black trace, bottom graph). m, n, and h are the membrane potentials internal to the
neuron.

103

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure 4.38: Hardware implementation of a Hodgkin-Huxley neuron using two line piecewise
linear approximation for the exponential function. The neuron’s response to a impulse of
0.2 A (black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials
internal to the neuron.

4.3 Considerations for the implementations of other arbitrary

complex functions

This Chapter has presented implementations for the reciprocal, square-root and exponential

functions. It may be considered that if x ∈ R,C in which case the magnitude of the Imaginary

part of x is stored as a separate floating-point number. Computation for both the Real and

Imaginary parts of the number may then be performed.

The Chapter discussed implementing a method for computing the exponential of a num-

ber. The inverse on the exponential function can also be approximated as in equation (4.26).

ln(x) = log

(
1 + y

1− y

)
= 2

∞∑
k=0

y2k+1

2k + 1
(4.26)

where x = A×10n−1 and y = A−1
A+1 . A is a number between one and ten, and n is the number

of digits before the decimal point. Additionally, for small values x ≤ 1, a Taylor-series

expansion could be used equation (4.27).

ln(x) = (x− 1)− 1

2
(x− 1)2 + ... (4.27)

As before, hardware may be implemented to calculate the approximations.

104

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

4.4 Summary

Chapter 3 presented fundamental mathematical operations implemented in hardware. In

this Chapter implementations for more complicated mathematical operations have been dis-

cussed. These functions were: reciprocal, divide, square-root and exponential. Three different

methods of implementations have been examined. The reciprocal and divide operations were

implemented using Newton-Raphon iteration. The square-root used non-restoring algorithms

and the exponential used curve-fitting methods.

Successive approximation methods, such as the Newton-Raphson, used can lead to an

answer that is within one ULP. The number of iterations required for convergence can be large.

This results in either a high resource cost or low throughput. The Newton-Raphson method

for double-precision floating-point converged within five iterations, however, the relative error

was three ULPs.

Methods for approximating functions without iteration have been discussed. The square-

root can be found using non-restoring algorithms. The non-restoring method splits the input

number into pairs of bits and evaluates each pair in turn to extract the answer. Literature

regarding non-restoring algorithms claims that the most accurate these algorithms can be

is only half the number of bits of the input. This research has shown that if the mantissa

is padded to double its length and the algorithm is adapted to reflect this, a much greater

accuracy is achieved. Results from tests show a one ULP or smaller error in the result. It is

now compliant with IEEE-754R. Additionally, the nature of non-restoring algorithms requires

only very simple, logical functions that lend themselves well to hardware and achieve high

throughput for low resource counts.

Implementing the exponential function is more challenging. Euler’s number (e) does not

lend itself to easy implementation in a binary system. It has been seen from math.h that

ex may be re-written in the form of 2a, where a is scaled by the ln(2), which is a constant.

Processors work using base two, therefore 2a is far easier to compute. Similar methods have

been used for a hardware implementation. Separating the floating-point number into its

exponent and mantissa allows the curve-fitting technique to be used over a small region,

1 ≥ x < 2. A number of curve-fitting techniques have been proposed and evaluated. These

range from single linear piece-wise approximation to a cubic. Increasing the number of

sections on a piece-wise approximation increases the accuracy at a trade-off in the number of

resources. Curve-fitting using low order polynomials reduces the overall number of resources

required compared to increasing the number of sections for a piece-wise approach. Most of

105

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

the approximations give a relative error more than one ULP, apart from the cubic curve-fit

which gives a relative error of four or fewer ULPs. However, all implementations have a low

resource count and high throughput. For a number of applications this error may not cause

a problem. This has been demonstrated by the neuron case study.

Chapter 5 will use the hardware implementations from this Chapter and Chapter 3 to

create a graphics processor on an FPGA. The FPGA-GPU is a heterogeneous system that

uses the FPGA fabric for hardware acceleration. Trading-off accuracy for resource use for

implementing a GPU on an FPGA will be discussed.

106

CHAPTER 4. HARDWARE IMPLEMENTATIONS OF COMPLICATED MATHS FUNCTIONS

Table 4.8: Resource requirements and timing analysis for hardware efficient implementations
of approximations of ex. Implementations are using half precision floating point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Single
quadrant

81.5 (81.5) 85.5 (85.5) 4.0 (4.0) 0.0 (0.0) 136 (136) 53 (53) 2 148.08 147.6

Single
quadrant

with
pipeline

86.0 (86.0)
111.5

(111.5)
25.5 (25.5) 0.0 (0.0) 144 (144) 102 (102) 2 206.1 199.2

Double
quadrant

79.5 (79.5) 82.0 (82.0) 3.0 (3.0) 0.5 (0.5) 136 (136) 54 (54) 2 126.06 126.49

Double
quadrant

with
pipeline

87.0 (87.0)
108.0

(108.0)
21.0 (21.0) 0.0 (0.0) 149 (149) 107 (107) 2 205.51 197.82

Four
quadrant

82.0 (82.0) 83.5 (83.5) 1.5 (1.5) 0.0 (0.0) 141 (141) 54 (54) 2 125.96 125.39

Four
quadrant

with
pipeline

92.5 (92.5)
116.0

(116.0)
23.5 (23.5) 0.0 (0.0) 161 (161) 115 (115) 2 209.91 202.51

Quadratic
fit

77.0 (77.0) 86.5 (86.5) 9.5 (9.5) 0.0 (0.0) 129 (129) 53 (53) 4 90.07 88.44

Quadratic
fit with
pipeline

91.5 (91.5)
126.0

(126.0)
34.5 (34.5) 0.0 (0.0) 147 (147) 127 (127) 4 179.08 181.39

Cubic fit 77.0 (77.0) 84.0 (84.0) 7.0 (7.0) 0.0 (0.0) 129 (129) 53 (53) 6 68.68 67.62

Cubic fit
with

pipeline

106.5
(106.5)

153.0
(153.0)

46.5 (46.5) 0.0 (0.0) 180 (180) 169 (169) 6 169.55 172.18

Hybrid
using single

quadrant

356.0
(39.0)

471.0 (43.3) 115.0 (4.3) 0.0 (0.0) 450 (49) 740 (35) 2 145.99 146.41

Hybrid
using single

quadrant
with

pipeline

356.5
(41.0)

478.5 (53.2) 123.5 (12.2) 1.5 (0.0) 454 (51) 741 (51) 2 207.21 201.25

Hybrid
using

double
quadrant

353.5
(38.8)

477.5 (44.2) 124.0 (5.3) 0.0 (0.0) 451 (48) 745 (35) 2 123.56 123.61

Hybrid
using

double
quadrant

with
pipeline

362.5
(41.7)

494.0 (52.1) 132.0 (10.4) 0.5 (0.0) 462 (51) 746 (51) 2 205.93 202.63

Hybrid
using four
quadrant

359.0
(39.4)

481.0 (44.7) 122.0 (5.3) 0.0 (0.0) 458 (50) 745 (35) 2 125.13 125.49

Hybrid
using four
quadrant

with
pipeline

365.5
(41.8)

513.0 (53.3) 147.5 (11.6) 0.0 (0.0) 475 (51) 754 (51) 2 211.37 205.72

Hybrid
using

quadratic
fit

348.5
(38.0)

473.0 (45.2) 124.5 (7.2) 0.0 (0.0) 443 (49) 740 (35) 4 85.62 84.21

Hybrid
using

quadratic
fit with
pipeline

360.0
(39.3)

495.5 (45.9) 139.0 (7.9) 3.5 (1.3) 454 (49) 750 (35) 4 163.32 165.84

Hybrid
using cubic

fit

351.5
(36.8)

468.5 (41.8) 118.0 (5.0) 1.0 (0.0) 443 (49) 740 (35) 6 67.87 66.76

Hybrid
using cubic

fit with
pipeline

388.0
(39.0)

526.5 (43.2) 138.5 (4.2) 0.0 (0.0) 495 (49) 826 (35) 6 167.53 166.75

Single
quadrant

with
floating
point

multiply

127.5
(74.2)

163.0 (79.0) 35.5 (4.8) 0.0 (0.0) 225 (120) 189 (52) 1 196.58 196.0

Two to the
power x

72.5 (72.5) 81.0 (81.0) 8.5 (8.5) 0.0 (0.0) 122 (122) 52 (52) 0 290.11 287.85

single
quadrant

using
integer
divide

489.0
(87.3)

493.5 (91.5) 4.5 (4.2) 0.0 (0.0) 948 (128) 81 (81) 0 24.78 24.27

107

Chapter 5

Case Study: Creating an OpenGL

Compliant GPU on an FPGA-SoC

In Chapters 3 and 4, a number of hardware implementations of mathematical functions were

presented. In isolation, these functions can provide floating-point acceleration for a processor.

While there are many applications that can make use of reconfigurable logic, this Chapter

will explore graphics processing. Graphics processing is accepted to be computationally

intensive. The architecture of a Graphics Processing Unit (GPU) differs from a General

Purpose Processor (GPP) in that it is optimised for processing large amounts of data in

parallel. Moreover, due to the GPU’s high data processing capability more tasks are being

implemented on the architecture, seeking better performance. However, as they are not native

graphics tasks, there is a loss in performance compared to native GPU tasks.

This Chapter will demonstrate the construction of an OpenGL compliant GPU using the

reconfigurable fabric of the Field Programmable Gate Array (FPGA). Discussions will be

presented regarding the benefits and limitations of using the reconfigurable fabric.

5.1 Replacing processors with dedicated hardware

Processors and dedicated hardware are different platforms. Processors are formed from a set

of ‘blocks’. At the basic level these blocks include an Arithmetic Logic Unit (ALU), program

counter, registers and Input/Output (I/O). Creating these blocks provides a level of abstrac-

tion which reduces the efficiency of the device - for instance a processor requires memory

operations. Hardware can increase the efficiency by implementing dedicated architectures,

tailored to solving a specific problem, at the cost of flexibility.

108

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

It is possible to create a processor using reconfigurable hardware: [151, 152, 153] are a

few examples. Dedicated hardware functions very quickly and efficiently but at the cost of

flexibility.

5.1.1 Overview of a GPU

A GPU uses the Single Instruction Multiple Data (SIMD) topology, allowing the same oper-

ation to be applied to an array of data in parallel, increasing the throughput. Operations for

GPUs are constructed as ‘shaders’ that are loaded to the device at runtime.

The general construction of an Open Graphics Language (OpenGL) based graphics pipeline

can be seen in Figure 5.1a. The graphics pipeline consists of three basic stages: vertex pro-

cessing, geometry processing, and pixel processing [154].

Vertex Processing (vertex shader): this section is responsible for co-ordinate space trans-

forms. These include the world transform for positioning and rotating objects in world space;

the view transform to move the vertices in the view space; and the projection transform to

convert the 3D triangles and polygons into a 2D image. Additionally, the vertex shader can

be responsible for animation techniques and light and colour computations.

Geometry Processing : the geometry processing stage converts vertex data into pixel data

using rasterization - scanning through each pixel location and performing calculations to

determine if it lies inside the triangle. It can also be used to perform clipping and culling

operations that remove objects or parts of objects that are off screen or obscured by something

else.

Pixel Processing (fragment shader): this is used to compute the colour of a single pixel.

Colour computations consider a variety of different sources such as textures, ambient light,

directional light, shadows and materials.

The functionality of these blocks has been replicated using hardware, shown in Figure 5.1b.

There are a number of differences between the OpenGL pipeline and the FPGA based pipeline.

The FPGA implementation includes a rasterization block (part of the geometry processing

section). A separate module is used to control the type of rendering being used, for example

GL TRIANGLES, GL TRIANGLE STRIP or GL TRIANGLE FAN.

Graphics rendering processes often apply textures to a surface that has been drawn.

Textures are passed to the graphics processor as an image file. For the FPGA implementation,

these would be stored in either on- or off-chip memory (currently not implemented).

109

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Vertex
data

Primitive
data

Tessellation
Vertex

processing
Geometry
processing

Pixel
processing

Pixel
rendering

Texture
samples

Textures

(a) OpenGL pipeline

Vertex
data

Primitive
data

Vertex
processing

Rasterizer
input shift

register
Rasterizer

Pixel
processing

Pixel
rendering

Texture
samples

Textures On-chip or off-chip
memory

(Not implemented)

(b) FPGA pipeline

Figure 5.1: The OpenGL pipeline can be broken down into a simple flow consisting of front
end vertex processing, geometric processing (including rasterizing) and fragment process-
ing, 5.1a. Primitive, or vertex, data describe the location of the triangles using co-ordinates
which are generated by the host processor. To replicate this behaviour and create a compat-
ible FPGA based implementation a similar system flow was used, 5.1b.

5.2 Implementing the FPGA-GPU

Before designing for the FPGA, a basic OpenGL render engine was constructed. Additionally,

implementations of individual routines were modelled using C. The design was simulated using

Model-Sim and implemented on an Intel Cyclone V FPGA [155].

5.2.1 Basic render engine

The basic render engine was constructed based on the guides found in [156]. The render

engine consists of several managers to control the scene, models, and shader. The managers

110

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

were used to create a variety of simple objects that were transformed in the view space,

coloured and textured.

The render engine was used to investigate the effects of different methods of shader con-

struction. The engine was ported between different platforms and architectures, allowing for

measurements of performance and power consumption of a variety of embedded platforms

performing graphics rendering. This data was used to compare the performance of the FPGA

implementation of a GPU later in this Chapter.

An example of the render engine’s output can be seen in Figure 5.2.

Figure 5.2: The OpenGL engine rendering a rotating cube. The faces are gradient shaded
based on the Red-Green-Blue (RGB) values of the vertices.

5.2.2 Modelling the system

The graphics pipeline includes a process that converts primitive or vertex data into an array

of pixels. The pixels are members of the object described by the vertices. This process is

performed by the rasterization function. Before implementation in Hardware Description

Language (HDL), it was first modelled in a procedural language.

Rasterization can be achieved using a number of different algorithms. The process used

in the FPGA implementation is based on the Barycentric co-ordinate system [157]. The

Barycentric co-ordinate system determines if a pixel lies inside a triangle and provides data

111

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

for interpolating the exact location inside the triangle. Data from the interpolation is used

in the fragment shader when applying surface effects that are positionally dependent, such

as light or texture maps.

5.2.3 FPGA implementation of the GPU

The complete FPGA implementation for the pipeline can be broken down into the following

modules:

• Communication between processor and FPGA

• Vertex shader

• Vertex assembler (rasterizer feed)

• Rasterizer

• Fragment shader

• Pixel buffer and display controller

Everything between the vertex shader and the fragment shader constitutes the hardware

equivalent implementation of the GPU. The front- and back-end processes are used to stream

the data between different domains. The design was implemented on a FPGA-SoC device

that contains a Hard Processor System (HPS), in this case an ARM Cortex-A9 processor.

The processor streamed vertex values into the FPGA. The devices are on different clock

domains, so clock domain crossing techniques were used to move the data safely without loss.

At the back end of the GPU, data was fed into a soft processor to write to external memory.

A pre-designed Video Graphics Array (VGA) controller and dual clock First-In, First-Out

(FIFO) from the Altera IP library were used. The decision to use pre-existing IP was made

to save time as memory interfaces are already known and it was not considered to be part of

the FPGA-GPU design. There were further restrictions in the external memory and video

interface due to the availability of development equipment.

5.2.3.1 Rasterizing unit

The rasterization unit converts the vertices, after they have been transformed by the vertex

shader, into a stream of pixel values for the fragment shader. The fragment shader then

applies lighting, colour and texture to each pixel.

112

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Code listing 5.1 describes the algorithm for the rasterizer. Each mathematical operation

has already been implemented in Chapters 3 and 4. The rasterization module receives sets of

three vertices, each of which is in floating-point format. The output pixel values are integers.

1. Always find max X & Y and min X & Y,

2. Always find corner vertex ,

3. Always select raster scan direction ,

4. Always calculate edge vectors (vs1 & vs2),

5. Raster scan over triangle bounding box

6. Always calculate Q vector

(i− p(0), j − p(1)),

7. Always calculate cross products ,

8. Always calculate Barycentric co -ordinate pair ,

9. if(S ≥ 0, T ≥ 0, S+T ≤ 1)

Pixel inside triangle ,

else Pixel outside triangle ,

10. Repeat steps 6 - 9 over entire triangle

Listing 5.1: Algorithm for the operation of the rasterization unit to convert a set of three

vertices to a stream of pixel value: Q is a vector; i, j and p are pixel locations; S and T

are two of the three Barycentric co-ordinate values.

A traditional Barycentric rasterizer determines a bounding box for the input triangle,

reducing the pixels values to be scanned through. Each position inside the bounding box are

used in equations (5.1) to (5.3) to determine if the pixel is a member of the triangle.

The Barycentric method calculates two edge vectors, vs1 and vs2. These vectors remain

constant over the entire triangle. A third vector, Q, represents a vector made from the

current pixel being analysed and one of the input vertices, equation (5.1). The Barycentric

method does not rely on the vertices being in a certain order. This reduces the complexity

of implementation, using fewer resources.

vs1 = (v2(x)− v1(x), v2(y)− v1(y))

vs2 = (v3(x)− v1(x), v3(y)− v1(y))

Q = (i− v1(x), j − v1(y))

(5.1)

vx is a vertex of the input set and i, j is the location of the current pixel. Cross product

values (CPx) of the vectors (vs1, vs2, and Q) are calculated, as per equation (5.2). The cross

113

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

product of two 2× 1 vectors (x× y) is given by CP = x(1).y(2)− x(2).y(1).

CP1 = Q× vs2

CP2 = vs1 ×Q

CP3 = vs1 × vs2

(5.2)

The ratio of the cross products, equation (5.3), are used to form two members of the Barycen-

tric co-ordinate. If these fulfil the conditions that S ≥ 0, T ≥ 0, and S + T ≤ 1 the pixel is

known to be inside the triangle.

S = CP1/CP3

T = CP2/CP3

(5.3)

All the mathematical functions required by the rasterizing algorithm have been covered by

the functions given in Chapters 3 and 4, including the comparison and typecast operations.

5.2.3.2 Optimisations for the rasterizer

The rasterization operation is a computationally intensive process. There are a significant

number of calculations with a potentially large search space. The throughput of this module

can create a system bottleneck for the entire implementation. The system cannot move

on to rendering the next triangle before completing a raster scan of the current triangle.

Consequently, it was important that the implementation was optimised.

There are a number of optimisations that can be applied: drawing the bounding box,

identifying calculations that can be performed once, and parallelisation.

The bounding box reduces the number of pixels subject to the raster scan, hence saving

computation time. This can be taken further: placing a bounding box around a triangle

will result in at least one vertex of the triangle existing in the corner of the box. This is

set as the start position of the raster scan and the scan directions are updated to reflect

this. The gradient of the triangle’s edges are then determined by noting the i and j values

when crossing into and out of the triangle. This information is fed back to update the start

locations for new rows, shown in Figure 5.3. This eliminates processing pixels that are known

to be outside of the triangle, reducing computation and increasing throughput.

It has also been identified that certain calculations (location of the bounding box, start

position of the scan and the edge vectors vs1 and vs2) need to only be performed once per

triangle. Other calculations such as the cross products (CPx) and the Barycentric pair (S

114

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

j d
ir

ec
ti

o
n

Start Position (i,j)

Update starting i

Bounding box

Figure 5.3: The heart of a graphics processor, a rasterizer is used to translate vertex data
into the fragment (triangle) that is represented. Optimising this process reduces the number
of redundant calculations performed by the system and increases throughput. This design
uses gradients to reset the start or end points of the raster scan on a line by line basis.

and T) can be performed in parallel with each other.

Even with the optimisations and designing for an issue rate of one, the rasterization

process creates a bottleneck. To further reduce bottlenecking, multiple rasterization modules

can be instantiated. Multiplexing allows the system to select which rasterizer to feed a vertex

set into.

5.2.3.3 Shaders and a common interfacing system

Graphics processors use ‘shaders’. Shaders define the transformations and surface effects to

be applied to an object being rendered. Shaders are compiled and loaded to the graphics

processor at runtime. The FPGA implementation uses a standard interface to which all

shaders conform. The standard interface allows a variety of shaders to be loaded without

changing other parts of the design.

The port list for the shader implementation is broken into two sections: one controls the

hardware flow and one controls the data flow. The hardware control ports are consistent

across all the modules. The control signals are: clock, reset, enable, valid, busy and wait.

115

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

All modules have a synchronous reset. When a module is presented with the enable signal,

data on the ports is considered valid and to be operated on. Once the module has completed

calculations, it drives a valid signal high to indicate that the data on the output ports is

ready. The valid signal is fed into the next module’s enable port.

The busy and wait ports allow modules that reuse logic to be instantiated. The busy

signal indicates that a module that reuses logic is currently operating and that no further

information should be passed to it. The busy signal is back propagated to the wait port

of all parent modules. The remaining ports to any shader are equivalent to the inputs and

outputs for a graphics shader, such as vertex and colour data.

Shaders can range in complexity. This complicates the conversion of a graphics pipeline

design for use in a reconfigurable logic environment. There can be a large number of data

ports or a large number of operations that can be performed. Graphics often work using

matrix operations which can demand a large numbers of resources, as discussed in Chapter 3.

It is also necessary to monitor the data being passed into or out of modules, ensuring it is

used appropriately. Complex designs quickly translate to large resource use.

5.2.3.4 Vertex shaders

The vertex shader is responsible for moving input vertices within the 3D space based on a

transformation matrix. Graphics rendering and computer vision systems use homogeneous

co-ordinates, (xw, yw, zw, w), where w is a scalar which allows the point to be moved in the

projective space. The vectors that represent the co-ordinate are multiplied by the transform

matrices. There are three types of linear transformation that can occur: translation, scaling

or rotation [158]. Each of these has an associated matrix. Equation (5.4) is the translation

matrix that allows an object to be moved in 3D space.

T =

1.0 0.0 0.0 tx

0.0 1.0 0.0 ty

0.0 0.0 1.0 tz

0.0 0.0 0.0 1.0

(5.4)

116

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Equation (5.5) is the scale matrix that allows the size of object to be changed in 3D space.

S =

Sx 0.0 0.0 0.0

0.0 Sy 0.0 0.0

0.0 0.0 Sz 0.0

0.0 0.0 0.0 1.0

(5.5)

Equation (5.6) are the rotation matrices that allows the angle of an object to be changed

in 3D space. There is a different form for each direction the rotation is to be applied in.

Rx(θ) =

1.0 0.0 0.0 0.0

0.0 cos(θ) sin(θ) 0.0

0.0 −sin(θ) cos(θ) 0.0

0.0 0.0 0.0 1.0

Ry(θ) =

cos(θ) 0.0 −sin(θ) 0.0

0.0 1.0 0.0 0.0

sin(θ) 0.0 cos(θ) 0.0

0.0 0.0 0.0 1.0

Rz(θ) =

cos(θ) −sin(θ) 0.0 0.0

sin(θ) cos(θ) 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

(5.6)

Vertex shaders often perform more than one transformation on incoming vertices. The

individual matrices are multiplied together to create a complete world transformation matrix.

Chapter 3 demonstrated implementing matrix operations from scalar operations. A design

for an m× n matrix and n× 1 vector multiplier was presented. The same design techniques

can also be applied to create matrix-matrix multipliers. These techniques create a set of

‘matrix function atoms’ for use in hardware design. The greater the number of dimensions

of the inputs, the greater the resource use or latency.

The use of transformation matrices significantly increases the flexibility of the shader.

Table 5.1 shows metrics for different types of vertex shader. (Shaders are referred to by

numerical reference to the row in the Table.) Shaders are used to apply the same translation

to a vertex.

Two approaches are assessed here: dedicated functions and transformation matrices. For

117

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

example, consider a rotation of an object about its center in the Z-plane. This requires three

transformation operations: the object is translated to the origin of the co-ordinate system;

rotated about the Z plane and translated back to the object’s origin. Shader one from

Table 5.1 has been made by evaluation of the complete transformation matrix, extracting

the functions to apply to x, y, and z and then implementing those individual functions

(dedicated function implementation). Shaders two perform a matrix/vector multiplication

(transformation matrix implementation). The transformation matrix is loaded by the host.

Table 5.1: Resource requirements and timing analysis for a selection of vertex shaders imple-
mentation on an FPGA. Implementations are using half-precision floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Dedicated Z
rotate

2586.2
(0.0)

3614.5 (0.0) 1028.3 (0.0) 0.0 (0.0) 3006 (0) 6480 (0) 8 202.51 199.04

Generic world
matrix vector

multiplier
838.7 (0.0) 1012.5 (0.0) 175.8 (0.0) 2.0 (0.0) 1134 (0) 1780 (0) 1 214.04 206.48

Constraining shader two to use a world transformation matrix lowers the total number of

resources. However, the world transformation matrix must be constructed elsewhere. Once

constructed, the world transformation matrix can be stored in on- or off-chip memory to be

loaded by the hardware. Alternatively, the shader could be constructed from a number of

matrix multiplication elements. The resource use would then be dependent on the number

of add and multiply elements required. Implementing the shader as two matrix-matrix mul-

tipliers (to multiply the three transformation matrices together) followed by a matrix-vector

multiplier would have significant overhead. Consequently, the implementation would become

bigger than using the dedicated shader, entry one in Table 5.1.

Using the matrix/vector multiplication method has two benefits. Firstly, there is a much

greater comparison between a GPU and the hardware. Secondly, the hardware becomes

much more flexible as values for the transformation matrices may be updated by passing

new values into the hardware. Table 5.1 also compares the performance of the two methods,

demonstrating that the matrix method has a higher throughput.

5.2.3.5 Fragment shaders

Fragment shaders are used after geometric processing. The input is a stream of pixel values

and the output is an RGB (colour) value to be written to the memory location associated

with the pixel. The colour value includes texturing and lighting. The shaders implemented

118

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Table 5.2: Resource requirements and timing analysis for a selection of fragment shaders im-
plementation on an FPGA. Implementations are using half-precision floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Flat colour
shader

34.5 (34.5) 51.0 (51.0) 16.5 (16.5) 0.0 (0.0) 5 (5) 130 (130) 0 603.5 653.17

Gradient
interpolation

shader

2731.5
(294.1)

4062.5
(343.2)

1340.0 (49.1) 9.0 (0.0) 2522 (428) 7293 (438) 4 194.93 194.59

Point light
shader

21811.5
(8458.1)

28226.0
(7774.7)

7384.1 (249.7) 969.6 (933.1) 13390 (1894)
53568

(13941)
30 124.46 126.1

here are a flat colour, gradient shade and point light source illumination. Computational

problems have an associated computational complexity, which is defined as the minimum

number of resources required solve a given problem, using the smallest solution from all of

the possible algorithms. Examples from graphics processing include tasks such as the flat

fragment shader. This has a very low computational complexity (34.5 ALMs in Table 5.2).

Conversely lighting tasks have a very high computational complexity (21811.5 ALMs). How-

ever, there may be many different algorithms for the same problem. The different algorithms

will have a different associated resource cost. To maximise the potential of the FPGA, the

algorithm that leads to the lowest computational complexity for a problem should be used,

provided it meets all other criteria such as throughput. In an FPGA architecture, resources

such as mathematical function blocks can be reused. Doing this wherever possible will reduce

computational complexity.

A fragment shader could be as simple as writing a constant RGB value into the pixel loca-

tions. Implementing this in hardware requires minimal resources and has a high throughput,

in this case limited to the switching speed of the FPGA fabric, Table 5.2. However, basic

shaders such as this result in flat images that lack vibrancy and so are not widely used.

Interpolation is a common technique that uses the location of the pixel within the object

(relative to the boundaries of the object) to apply more interesting colouring. Shader two in

Table 5.2 uses interpolation to mix two colours and achieve a smooth transition from one to

the next. Similarly, if an image was being used to texture a triangle, the interpolation data

would be used to select the part of the image the pixel represents. Even the simple colour

mix performed here requires significantly more resources than applying a flat colour to an

object so the performance is much lower.

Lighting is common in modern computer graphics. Introducing lighting calculations has

the potential to cause the hardware to grow rapidly. There area number of types of lighting

that can be applied, such as point and directional light sources. These cause objects to cast

119

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

shadows which change the RGB value of nearby objects. Calculating all these ray paths is

resource and time intensive. Shader three in Table 5.2 demonstrates there is an almost eight

fold demand in ALMs above the gradient interpolation shader. The increase in calculations

has also caused a reduction in the performance of the shader.

It has been shown how the complexity of a shader causes a rapid increase in the number

of resources required. The more complex shaders can also suffer a reduction in performance.

(Appendix G presents resource and performance metrics for the individual elements of the

FPGA-GPU implemented using double- and single-precision floating-point functions.) The

increase in precision also increases resource use. Later, this Chapter will discuss whether

higher floating-point precision is necessary.

5.2.4 Considerations for designing and implementing the FPGA-GPU

5.2.4.1 Forward rendering

There are two types of rendering that can be performed in a graphics system: deferred and

forward. Deferred rendering performs calculations at the end of the processing chain [159,

160]. Deferred rendering tends to be a computationally intensive process as calculations are

performed for every pixel of an object. This results in a very smooth and lifelike image.

Forward rendering moves some of the computation to the beginning of the processing chain

(the vertex shader). Calculations are performed on the vertices that define an object. The

number of calculations is reduced and they can be performed more slowly saving resources

and power; however the image has coarser detailing.

The density of the triangles used to make up an object is important in forward rendering,

Figure 5.4. Colours, textures and lighting are applied uniformly across a triangle. Larger

triangles will cause big patches of an object to have the same colour applied, shown in

Figure 5.4a. Reducing the size of the triangles reduces areas of uniform colour but increases

the number of calculations, shown in Figure 5.4b.

Using deferred rendering can lead to large fragment shaders, Table 5.3. The top two rows

of the Table are a deferred rendering system; the bottom two rows are a forward rendering

implementation. The combined resource use for the vertex and fragment shader using for-

ward rendering is 2,500 fewer Adaptive Logic Modules (ALMs) and 758 fewer registers than

the deferred rendering counterparts. Using smaller shader implementations allows parallel

instantiation of hardware that can increase throughput by distributing tasks.

Chapter 6 will discuss how dynamic reconfiguration can be used to implement multiple

120

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

(a) Low triangle density

(b) High triangle density

Figure 5.4: When textures or lighting are being forward rendered a high primitive density
is required for a smooth effect. A low triangle density, 5.4a, produces a blocky texture
with sharp transitions between colours. A high triangle density, 5.4b, allows for a smoother
transition and more subtle effects.

accelerators in the same device at runtime, so long as they are mutually exclusive. Allowing

the FPGA to switch between deferred and forward rendering allows resources to be freed for

other hardware accelerators, without stopping the rendering process.

121

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Table 5.3: Comparison of resource requirements and timing analysis for forward and deferred
rendering of graphics on an FPGA. Implementations are using half-precision floating-point
accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Generic world
matrix vector

multiplier
838.7 (0.0) 1012.5 (0.0) 175.8 (0.0) 2.0 (0.0) 1134 (0) 1780 (0) 1 214.04 206.48

Point light
shader

21811.5
(8458.1)

28226.0
(7774.7)

7384.1 (249.7) 969.6 (933.1) 13390 (1894)
53568

(13941)
30 124.46 126.1

Generic world
matrix vector

multiplier with
forward lighting

calculations

12060.5
(251.5)

18372.2
(322.3)

6369.7 (71.0) 58.0 (0.2) 10356 (344) 35391 (539) 18 151.88 157.53

Point light
shader using

forward lighting
calculations

7955.2
(5728.1)

9920.9
(6742.7)

2130.1
(1173.6)

164.5 (159.0) 4101 (1407)
19199

(13533)
13 111.78 112.08

5.2.4.2 Passing data between the vertex and fragment shaders

Values calculated in the vertex shader will be needed in the fragment shader. This can be

done with a delay register chain that matches the latency of the rasterizer. However, this is

a very resource-costly approach. Alternatively, data can be store in on- or off-chip memory.

The amount of memory required for this approach is minimal as only two sets of data need

to be stored at any one time. The first set corresponds with the vertices being processed by

the rasterizer, the second set corresponds with the vertices waiting to be processed. Once the

rasterizer begins to stream out pixel data, the fragment shader loads the associated values

from the memory. This results in a method where data is moved efficiently between the two

shaders without resort to pipelining.

There are a number of approaches for communicating data between the vertex and frag-

ment shaders. They include registers, distributed memory, block RAM and external memory.

To choose which method is to be used, the amount of data and the available FPGA resource

must be considered. The decision of which can be used is determined by a number of equa-

tions (5.7 and 5.8).

Dbits ×Np << Rff (5.7)

Dbits < FPGAmemory (5.8)

Dbits is the total number of bits required to represent the data being moved, Np is the

number of pipeline stages required, Rff is the total number of spare FPGA flip-flops, and

122

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

FPGAmemory is the total number of spare memory bits left on the FPGA.

A register chain between the source and destination is the sensible choice if the delay (in

clock cycles) and the amount of data to be moved is significantly less than the remaining

flip-flops on the FPGA equation (5.7). The difference must be significant to ensure the FPGA

design still meets timing closure.

If equation (5.7) cannot be satisfied but equation (5.8) can, then the data should be stored

in the FPGAs internal memory. Internal memory has a much higher read/write speed than

external memory. As a result, the system will not suffer from bottlenecks caused by memory

accesses.

In the third case, when both equations (5.7 and 5.8) cannot be satisfied, the only option

is to store the data in external memory. As external memory has a significant access time

penalty, the data should be separated into frequently and infrequently accessed data. The

frequently accessed data is stored internally on the FPGA (where possible) to mitigate the

bottleneck.

5.2.5 Designing for system bottlenecks; maximising performance for min-

imal resource cost

There are a number of limitations to be considered in the FPGA design. Graphics rendering

processes are computationally intensive; the more intensive a process, the larger the hardware.

Larger shaders also incur a performance cost. The maximum throughput of the system is

determined by its slowest part. Additionally, the different shaders work on different amounts

of data. The vertex shader only processes vertices (three per triangle), while the fragment

shader must process all pixel values. The larger the triangle being rendered, the greater the

number of pixel values that must be processed.

Consider a render that transforms vertices by a world matrix and illuminates objects

from a point light source. From Tables 5.1 and 5.2 it is seen that the operating frequency of

the vertex shader (206.48 MHz) is greater than that of the fragment shader (126.1 MHz). In

addition the fragment shader is processing greater numbers of data points than the vertex

shader. It is concluded that the vertex shader is performing faster; the fragment shader

is creating a bottleneck. Chapter 3 demonstrated that there are many ways in which a

matrix/vector function can be implemented, trading-off resource use with performance. When

the system’s throughput is below the throughput of a performance optimised implementation,

using resource optimised implementations is sensible. In some cases, resource optimised

123

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

designs will still have a higher throughput than the bottleneck. Furthermore, using resource

optimised implementations helps to offset the high resource use from other modules and

limits unnecessary resource use. Additionally, bottlenecks can be overcome by implementing

multiple computationally intense modules in parallel. Multiplexing between the instantiations

increases the throughput of the stage.

These optimisations techniques are only effective until the throughput exceeds the next

slowest stage in the system. The new bottleneck must then be evaluated for. Repeating

these design optimisations until all the resources have been used will give the best possible

performing design.

5.3 Performance of the FPGA implementation compared to

embedded GPU devices

Comparisons of performance have been made between the FPGA-GPU implementation and

several commercial embedded processors. To compare the performance, the OpenGL render

engine was updated to function across a variety of platforms. The render engine was con-

figured to provide an indexed list of vertices which would be subjected to the same vertex

transform as the FPGA implementation. Culling and screen refresh were turned off and the

number of vertices in the indexed list was increased until the framerate started to drop. This

ensured that the vertex shader was the system bottleneck for the embedded processor. Power

measurements were obtained for the different devices by measuring the power consumption

of the complete system before its idle state. The power consumption was then measured

again while the OpenGL load was being performed. The difference in the measurements is

taken to be the increase in required power to perform the OpenGL operation. The vertices

per second and power consumption of the embedded devices were measured and compared

with the throughput and power consumption of the FPGA. Embedded devices chosen for the

comparison were an NVIDIA Tegra K1 [161], a ARM Cortex-A9 on the FPGA-SoC (software

rendering) [162], an Allwinner A13 using a Mali-400 GPU [163] and an Allwinner A13 using

the Cortex-A8 processor (software rendering). Three different configurations for the FPGA

were tested, each of which used a different optimisation technique. The results are shown in

Table 5.4.

The embedded processor devices (those with ARM cores, and the NVIDIA Tegra) have

a much higher total power consumption when compared to running on the FPGA alone. As

124

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

OpenGL is a software-based task the embedded processors must also support a complete

operating system, as well as the associated I/O and memory; all of this increase the total

required system power. The FPGA-GPU implementation benefits greatly from not requiring

an operating system or additional memory overhead; instead the ARM core embedded in

the device runs a bare metal application to stream vertices into the FPGA-GPU. Therefore,

despite the high static power of FPGAs, there is a reduction in total power from the FPGA

implementation that results in an increased throughput per unit power. Table 5.4 shows

the power consumption of each system before and during running the OpenGL task as a

demonstration.

Commercially available embedded GPUs provide a reasonable throughput for a low power

and financial cost. The NVIDIA Tegra K1 is the most powerful embedded device tested.

It processed the greatest number of vertices per second. However, it also used the most

power, over four Watts to process when running at maximum throughput. To normalise

performance metrics, the throughput per Watt is calculated. From the efficiency metric the

FPGA implementation out-performs all of the embedded GPUs and processors.

The lowest efficiency FPGA configuration provides a six fold efficiency increase over the

most efficient embedded GPU (Tegra). The highest throughput FPGA configuration performs

almost as many calculations per second as the NVIDIA Tegra K1.

Metrics for an NVIDIA GTX 780 have been included for scaling. Throughput and effi-

ciency data has been extrapolated from [164, 165]. Desktop consumer GPUs have access to a

large amount of memory that is used to increase the performance of the device; this is shown

from the metrics with pre-loading enabled. However, the FPGA implementation is still more

efficient than the NVIDIA GTX 780 device.

5.4 Complete FPGA-GPU implementation

The complete FPGA implementation of the GPU has been assessed. Table 5.5 shows the

resource use for each implementation in half-precision floating-point. (Implementations for

single-precision floating-point can be seen in Appendix H.) The target device was a low-cost

Cyclone V System-on-Chip (SoC) from Intel. The Cyclone V device only provides 110 K

Logic Elements (LEs) which limited the size of design that could be implemented. Single-

∗Number of vertices and fps given in [164]
∗∗Total power dissipation of device from NVIDIA [165]
†Traditional rendering (streamed data)
‡Rendering with pre-loading vertex data to the GPU

125

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Table 5.4: System power consumption and performance per Watt for all vertex shader im-
plementations.

Shader
Static Power

(W)
Dynamic

Power (W)
System

Power (W)
Vertices per

second
Vertex

Rate/W

Performance optimised
vertex shader

5.0796 0.052 5.1316 199M 3.87G

Hybrid vertex shader 5.0796 0.037 5.1166 33.3M 895M

F
P
G
A
-G

L

Resource optimised vertex
shader

5.0796 0.036 5.1156 10.5M 292M

Cyclone V embedded
ARM Cortex-A9 Software

Rendering
8.352 1.271 9.623 170k 134k

Allwinner A13 device
using Cortex-A8 Software

Rendering
4.44 0.397 4.837 32.73k 77k

Allwinner A13 device
comprising Cortex-A8

CPU with Mali 400 GPU
4.44 0.618 5.058 35M 56.6M

NVIDIA Tegra K1 5.646 4.704 10.35 215M 45.7M

- - 1.98G† 7.9M

O
p
en
G
L

NVIDIA GTX 780∗
- -

250∗∗
56.4G‡ 225.6M

and double-precision floating-point implementations required far greater resources.

Graphics processors commonly use half-precision floating-point in order to increase through-

put. This technique was used in the FPGA implementation, allowing more complex func-

tionality with higher throughput for lower resource cost. The reduction in precision was not

observed to degrade the quality of the output. The screen and VGA protocol introduce a

number of quantisation factors, using discrete pixels to draw images and the restriction in

number of representable colour levels. A GPU retains some of the flexible characteristics of

a GPP and is able to increase and decrease the precision of operations where necessary. This

is more complicated in hardware, but still possible. Mixed precision implementations would

be interesting to explore in future works.

Figure 5.5: Output from the FPGA implementation of a graphics processor. The vertex
shader is configured to rotate the object around the object’s centre and the fragment shader
applies a gradient fill to the object, from black to white.

126

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

Table 5.5: Resource requirements and timing analysis for a variety of full graphics processors
implemented on an FPGA using the individual components listed earlier. Implementations
are using half-precision floating-point accuracy.

Pipeline Type

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85circC
Restricted

FMax (MHz)

0circC
Restricted

FMax
(MHz)

Flat colour
fragment shader

with generic
matrix/vector

multiplier vertex
shader

17626.5
(380.6)

23351.0
(477.4)

5857.5 (96.8) 133.0 (0.0) 22588 (464) 38036 (323) 13 54.41 57.36

Gradient colour
fragment shader

with generic
matrix/vector

multiplier vertex
shader

20227.0
(477.8)

27233.0
(564.0)

7121.0 (86.4) 115.0 (0.2) 24961 (609) 45171 (323) 17 54.94 57.82

Point light
source colour

fragment shader
with generic

matrix/vector
multiplier vertex

shader

41317.0
(85.0)

39756.0
(87.5)

387.5 (2.5) 1948.5 (0.0) 36180 (14) 91131 (323) 43 55.71 57.93

Point light source
fragment shader

with generic
matrix/vector
multiplier and

forward rendered
light calculation

vertex shader

36777.5
(84.7)

39715.9
(96.0)

3654.9 (11.5) 716.5 (0.3) 36406 (12) 90751 (323) 43 58.02 60.58

Flat colour
fragment shader
with dedicated Z

rotate vertex
shader

18211.5
(431.0)

24432.0
(481.2)

6357.5 (50.7) 137.0 (0.5) 22364 (639) 40387 (99) 20 50.81 52.8

Gradient colour
fragment shader
with dedicated Z

rotate vertex
shader

20801.5
(516.7)

28078.5
(570.5)

7418.5 (53.8) 141.5 (0.0) 24751 (783) 47543 (99) 24 52.58 55.14

5.5 Summary

In this Chapter, an FPGA implementation of a GPU was presented. Previous literature

has used FPGA technology to accelerate parts of graphics processes or replicate a GPU by

building a Very Long Instruction Word (VLIW) architecture processor. The implementation

in this Chapter differs from these as the entire pipeline has been implemented using floating-

point hardware accelerated functions.

The FPGA implementation has been designed to replicate an OpenGL pipeline. A host

processor loads vertex values to the hardware which are then operated on to fill a frame

buffer. The modules use a standard control interface so that shaders can be easily swapped

with each other, similar to how they would be loaded to a GPU at runtime. The next Chapter

will discuss using dynamic reconfiguration to change FPGA configurations at runtime.

A number of different configurations have been explored. Increasing the functionality

(for example adding interpolation or lighting) quickly increases the resource requirements.

A number of optimisation techniques were presented and discussed. Using the optimisation

127

CHAPTER 5. CASE STUDY: CREATING AN OPENGL COMPLIANT GPU ON AN FPGA-SOC

techniques allows computationally intense designs to fit into resource restricted devices - for

example the low-cost Intel Cyclone range. Optimisation techniques included trading deferred

rendering for forward rendering and exploiting bottlenecks to identify where to implement

resource optimised accelerators without compromising overall system throughput. System

performance can be enhanced by identifying where bottlenecks occur and implementing mul-

tiple modules in parallel, resources permitting.

Comparisons of vertex process rate and efficiency between FPGA and Commercial Off-

The-Shelf (COTS) processors was also presented. Similarly priced embedded units were

chosen, the most powerful being an NVIDIA Tegra K1. The Tegra was able to process

more vertices per second but had a higher power requirement. The power required by the

Tegra exceeded that of the FPGA by two orders of magnitude. Measuring performance as

throughput per Watt demonstrated that the FPGA out-performed the embedded GPUs. The

resource optimised FPGA had a six fold efficiency gain over the Tegra.

Implementation of a graphics processor on an FPGA demonstrated how designs for

hardware-based mathematical functions, Chapters 3 and 4, can be integrated into a com-

plete system.

Chapter 6 will present changing the FPGA’s configuration at runtime. Discussions will

be presented regarding changing the nature of the graphics rendering or allow a different task

to be accelerated. Chapter 6 will further discuss context switching methods for hardware

accelerators.

128

Chapter 6

Dynamic Task Allocation and

Context Switching

This research has presented work regarding flexible, reconfigurable logic used as hardware

accelerators. A key topic this Thesis wishes to address is the benefits and limitations of using

hardware acceleration in a dynamically reconfigurable environment. An environment

that is dynamically reconfigurable can change its functionality at runtime. This is similar to

a processor: the task being performed can be changed quickly. Unlike a processor, hardware

must be physically altered to change the task being performed.

This Chapter will consider a number of concepts that are important for dynamic reconfigu-

ration in heterogeneous environments. These consideration are the different types of dynamic

reconfiguration, examples of architectures, and context switchable hardware accelerators.

6.1 Dynamic reconfiguration

Dynamic reconfigurability has the potential to increase the flexibility of hardware. Dynamic

reconfiguration has great appeal as it would allow both the hardware’s speed and efficiency

and the flexibility of software. Early (pre turn of the century) uses of FPGAs to provide

dynamically reconfigurable platforms are discussed by Butts, [166]. The work by Butts

highlights the use of large arrays of FPGAs and Programmable Interconnect Arrays (PIA) in

reconfigurable computers. It is asserted that reconfigurable computers have fewer limitations

than conventional CPUs, such as parallelism. Early FPGAs, such as the Xilinx XC6200,

supported dynamic reconfiguration to help compensate for their low resource count. There

are a number of publications that examine uses cases and the performance of devices such

129

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

as the XC6200 [167, 168]. Although the research is not extensive, there is initial analysis is

performed for using the devices in a partially reconfigurable manner. McKay et. al. present

methods for transforming logic cells (such as AND or OR functions) into wiring cells, and

use this to evaluate circuits including adders, multipliers and FIR filters [167]. However,

as commercial FPGAs increased in size, the partial reconfiguration support was dropped.

Modern FPGAs are starting to re-introduce support for dynamic reconfiguration to increase

the flexibility of the device by allowing architectural changes at run-time. Xilinx presented

dynamic reconfiguration at the Field Programmable Logic (FPL) conference in 2006 [169],

and Altera released documentation in 2010 [170]. Consequently, the technology is still in its

infancy. There are two types of dynamic reconfiguration - full and partial.

6.1.1 Full reconfiguration

Full dynamic reconfiguration completely erases the configuration of an FPGA and loads a

new configuration in its place. This is the more simple of the two reconfiguration types. It

does not need to separate the floor plan of the FPGA or provide clock wrappers and standard

interfaces to regions.

The full reconfiguration is not dissimilar to loading an FPGA configuration on power

up. The main advantage is that this can be performed at any point during the system’s

execution without re-writing the configuration memory and power cycling the device. Full

reconfiguration requires a host capable of configuring the FPGA. In a modern FPGA-SoC

device, there is always a host within the FPGA that can perform these tasks.

6.1.2 Partial reconfiguration

Partial dynamic reconfiguration targets isolated parts of the FPGA, allowing a change in

configuration while the rest of the design still operates.

Partial reconfiguration presents a more complicated design problem. In an example ap-

plication, sections of a design are edited at runtime to change the type of a filter in a signal

processing chain. In order to accomplish this, sections subject to partial reconfiguration must

be identified at the design stage. The reconfigurable parts of the design must be isolated from

the static logic. Additionally, each reconfigurable variation must have a common interface.

Furthermore, control signals, such as clocks and resets, must be moved into a known state

to prevent toggling which could cause configuration errors. These control signals must not

impede function of the rest of the design.

130

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

1. Create the base revision. This is the configuration that will be

loaded into the FPGA at startup.

2. Identify the parts of the base revision that are subject to partial

reconfiguration.

3. Instruct the tool that these locations must be locked and the regions

are partially reconfigurable.

4. Create new revisions that keep the static logic the same but detail

the new logic for the reconfigurable regions.

5. Ensure all revisions are compiled.

6. Generate full and partial programming streams for the base and

partially reconfigurable revisions.

Listing 6.1: Design flow for partial reconfiguration

Listing 6.1 shows the steps that must be performed to set up a partially reconfigurable

design using an Integrated Design Environment (IDE). The Listing does not cover specific

design nuances.

In this research partial reconfiguration was achieved using an Intel Cyclone V SoC. Designs

in which partial reconfiguration was enabled also required:

• A freeze wrapper that controls the clock and reset signals for the reconfigurable region

• A partial reconfiguration controller

• A host to pass the reconfiguration files to the reconfiguration controller

Note: For the Cyclone V SoC device there was a silicon fault preventing the internal

reconfiguration controller from working - as confirmed by Intel FPGA. This was circumvented

by using a controller designed for the Stratix series of devices. The Intellectual Property (IP)

had to be edited to work internally on a Cyclone V device.

6.1.3 Continuous end-to-end data flow

Some applications require the continuous processing of data. For example, data may need

some pre-processing before being used by a processor. Real-world data is likely to be con-

tinuous and subject to change. The type of data processing required may need to change.

Alternatively, the user may wish to change the type of processing being applied to a signal.

Figure 6.1 shows a potential hardware arrangement for processing a signal. In this case

each reconfigurable processing region has a bypass stage. The bypass serves two purposes:

131

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

System Bus Interface

Bypass

Reconfigurable
Processing

Region

Bypass

Reconfigurable
Processing

Region

Bypass

Reconfigurable
Processing

Region

ARM Cortex-A9 Embedded Processor

Key

Reconfigurable logic regions

Static logic regions

FPGA

In
te

rf
ac

e

In
te

rf
ac

e

In
te

rf
ac

e

In
te

rf
ac

e

Figure 6.1: An architecture for reconfigurable hardware that accepts a signal and applies a
series of functions to it. Each function region can be either bypassed or included in the design
depending on the number of processes required. Multiplexors must be used to swap between
the different data paths.

maintaining data flow while no transform is to be applied, and providing a pathway for data

while a region undergoes reconfiguration. When the system broadcasts a message that the

configuration of a region must be changed, data is diverted through the bypass region. This

ensures the data stream is maintained.

Bypass regions are easy to implement and require few resources. However, if data must be

kept continuous, there is also the potential that the data must always be processed. Figure 6.2

presents an adaptation that increases the number of reconfigurable regions. When a message

to reconfigure a region is broadcast, the system identifies which block of a pair is currently

not being used. The new configuration is then loaded into the empty block and the data path

is switched once reconfiguration is complete. The old configuration can then be erased once

any remaining data in that process block has left. This ensures there is never a drop in the

output.

6.2 Context switchable hardware

In a heterogeneous system, FPGA fabric would be used as a reconfigurable hardware accel-

erator, as shown in Chapter 5.

Figure 6.3 shows an FPGA broken into a set of regions. Each region can support a

hardware accelerator. The location of each accelerator is determined by the processor based

on the current system demands. This allows the processor to make the most optimal use of

the flexible hardware by ensuring the most useful accelerators are always implemented.

Interfacing the processor with the hardware adds a number of design complexities. The

132

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

System Bus Interface

Reconfigurable
Processing

Region

Reconfigurable
Processing

Region

Reconfigurable
Processing

Region

ARM Cortex-A9 Embedded Processor

Reconfigurable
Processing

Region

Reconfigurable
Processing

Region

Reconfigurable
Processing

Region

FPGA

In
te

rf
ac

e

In
te

rf
ac

e

In
te

rf
ac

e

In
te

rf
ac

e

Key

Reconfigurable logic regions

Static logic regions

Figure 6.2: Two reconfigurable regions can be placed back to back, ensuring that data can
always be subject to processing even while reconfiguration occurs. Multiplexors must be used
to swap between the different data paths.

System Bus Interface
For Region 1

Reconfigurable Region 1

ARM Cortex-A9 Embedded Processor

System Bus Interface For Region 3

Reconfigurable Region 3

System Bus Interface
For Region 2

Reconfigurable Region 2

FPGA

Key

Reconfigurable logic regions

Static logic regions

Figure 6.3: The floor space of an FPGA may be split into a number of sections. These
sections can either be all the same size or a variety of sizes, depending on the designer. Each
section can then be used to load a hardware accelerator.

processor and the hardware are unlikely to be in the same clock domain. Consideration

must be given to what happens to data in the accelerator if a processor changes task; what

properties determine how important an accelerator is compared to other accelerators; and

how to deal with accelerators that become fragmented over the FPGA, causing sub-optimal

use of the floorspace and preventing new accelerators from being placed.

Modern processors tend to operate in the region of hundreds of MHz if not GHz; FPGA

fabric is typically limited to a few hundred MHz. The difference in operating clocking fre-

quencies creates a barrier between the two that data must cross without being lost. Crossing

over a clock domain can be achieved in several ways [171]. The simplest way is to create a

synchroniser chain from a series of flip-flops. The incoming signal comes from the original

clock domain whereas the clock for the flip-flop chain is provided by the destination domain.

133

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Synchroniser chains can be constructed from any number of flip-flops (greater than one).

Synchroniser chains are relatively basic methods of moving data across a clock domain but

have associated pitfalls. Other strategies include the use of muxes or dual clock First-In,

First-Out (FIFO) buffers.

In order to handle multiple tasks, processors perform context switching. Context switch-

ing allows a processor to change task by storing current information, perform a new task and

then return to the original task as though there was no interruption. Context switching in a

processor is relatively straightforward. There is usually plenty of memory for storing register

contents. If the processor is using hardware acceleration, part of the information related to a

task is currently stored in the hardware. Consideration must be made as what information is

hardware accelerated, to mitigate data perturbation effects from context switching. Alterna-

tively, the processor could wait for the hardware to run to completion before performing the

switch. However, this adds latency to the design. This Chapter will present a novel method

for performing context switching in hardware accelerators.

The size of hardware accelerators can vary hugely depending on the task to be accelerated.

(In Chapters 3, 4 and 5, the Thesis has presented accelerators that range from single math-

ematical operations to complete systems.) An FPGA has a limited amount of floor space in

which to implement the accelerators. Partial reconfiguration requires a continuous area in the

FPGA. Constantly changing between accelerators of different sizes may cause fragmentation

in the FPGA. Context switchable hardware allows de-fragmentation (discussed in the next

Section) to restore continuous FPGA resources.

Careful selection of which elements of the reconfigurable hardware are context switchable

significantly reduces resource overhead and latency by creating shorter scan chains - this

is termed ‘partial extraction’. By ensuring context switches only occur at certain times,

for instance only after the entire frame in a convolution kernel has been processed and not

during the frame, limits the number of registers whose states require saving. Registers that

contain the current state of a state machine, or control flow registers are likely to need to be

saved; whereas registers in a data pipeline can be ignored as the data in these get flushed

through with a control line being used to indicate if the output data is valid or not. The

selection of hardware checkpoints for reconfigurable systems was discussed by Bourge et.

al., [172], where methods are presented to analyse a design and extract the checkpoints based

on latency requirements. A finite state machine identifies a number of checkpoints from the

134

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

design and a greedy heuristic is used to minimise the NP-Complete∗ problem and obtain a

set of checkpoints the minimal area overhead.

Determining which accelerator should be loaded into which area of the FPGA presents

a significant management task. The embedded host could be running several of tasks, par-

ticularly if it is capable of multi-core or multi-thread processing. Additionally, there may

be more than one accelerator for a given task. Calculating which accelerators should take

precedence requires the system to rank tasks based on importance. Ranking tasks automati-

cally could lead to situations where the system prioritises tasks incorrectly. Instead, having a

method where the user can indicate the priority of a task upon launch would give far greater

control to the user, limiting the potential for the incorrect tasks to become prioritised. Tasks

that have the same level of priority associated with them when launched could still have the

potential for the ‘wrong’ task to be accelerated as the system manager would have to deduce

which are the ‘best’ tasks to accelerated. Deducing the ‘best’ accelerator could be based on

the order the tasks were executed in, or the number of FPGA resources available. If a task

that was executed first requires an accelerator that cannot fit, the manager should implement

a smaller accelerator for a later task.

6.2.1 De-fragmenting hardware accelerators

There are situations where certain hardware accelerators require more than one contiguous

reconfigurable region. Fragmentation of hardware accelerators across the FPGA’s floor space

could result in inefficient use of the FPGA. A method to move the hardware accelerators

around the fabric of the FPGA allows de-fragmentation. Simply moving an accelerator can

cause issues: data could be lost or calculations may have to be repeated. This either adds

latency or corrupts operations.

In this Section a new method to replicate context switching in hardware is proposed. The

method uses standard D-type flip-flop with additional ports. The additional ports allow data

to be scanned in to and out of the flip-flop. The proposed flip-flop is termed a ‘pre-emptible

flip-flop’, shown in Figure 6.4. The scan in and scan out ports work like a scan chain. Data

is passed in and out of the flip-flop while the hardware is not functioning. The state port

controls the operation of the flip-flop, switching between the running and save/load modes.

Netlist views of a D-type and the proposed pre-emptible flip-flop are shown in Figures 6.5

and 6.6 respectively. It can be seen the pre-emptible flip-flop requires an additional four

∗NP-Complete problems are in the Nondeterministic Polynomial time (NP) set of all decisions problems
whose solutions can be verified in polynomial time.

135

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Standard D-Type

Figure 6.4: The pre-emptible flip-flop builds on the basic D-type flip-flop common in modern
logic circuits. Additional ports are added that give control to the user to add in or remove
data while the circuit is not functioning. A state port allows the flip-flop to toggle between
running and save/load mode.

muxes. The design for the pre-emptible flip-flop has been re-developed from the originally

proposed design in [173]. The main benefit of this new design is that the resource overhead

has been reduced.

The pre-emptible flip-flop adds minimal logic overhead. Table 6.1 shows the resources

for the new flip-flop. The fitting tool reports an increase of half an Adaptive Logic Module

(ALM) and one additional Adaptive Look-Up Table (ALUT) for the four muxes. Table 6.1

also shows that the maximum operating frequency for the pre-emptible flip-flop is > 500 MHz,

restricted by the switching speed of the FPGA’s fabric.

Table 6.1: Comparisons of the resource requirements and timing analysis between a standard
D-Type flip flop and the augmented pre-emptive D-Type flip flop used for context switching.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

Regular D-type
flip flop

2.5 (2.5) 2.5 (2.5) 0.0 (0.0) 0.0 (0.0) 5 (5) 1 (1) 0 - -

Pre-emptible
D-type flip flop

3.0 (3.0) 3.5 (3.5) 0.5 (0.5) 0.0 (0.0) 6 (6) 1 (1) 0 530.79 542.59

6.2.2 Controlling context switching in hardware

Chapter 2 presented existing methods of context switching. Context switching can be per-

formed using the operating system of a processor to move register contents around. This

136

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

D Q
pre

clr

Q

aclr

apre

clk

d

qi~0

qi

Figure 6.5: The netlist view of a standard D-type flip-flop as described by the Cadence tool
suite for the synthesis of hardware designs.

scan_in

scan_out

D

Q
pre

clr

Q

aclr

apre

clk

state

d

Decoder0

0

1

IN[0] OUT[0]

qi~0

qi~3

qi

Figure 6.6: The netlist view of a pre-emptible flip-flop. The state line controls whether the
flip-flop is being used for normal operation or whether its contents is being loaded/saved.
Realising the flip-flop with the additional ports requires only a small overhead in terms of
logic components.

is extremely time-consuming, requiring thousands of clock cycles to complete. The original

version of the hardware context switching in this research used a similar method [173]. The

Hard Processor System (HPS) on the FPGA managed the load and store operations. Data

was chained through the pre-emptible flip-flops and passed to the HPS which saved the data

to accessible memory. Similarly, a load used the HPS to read the data from memory and feed

it back into the FPGA. However, this method was slow and added additional overhead and

complexity to the system. The use of the HPS also prevented the processor from executing

additional tasks while the hardware was context switched. Implementing dedicated hardware

based units to manage context switching significantly decreases execution time [98, 99].

To overcome these limitations, a revised context switching controller is proposed. The

processor issues a context switch request to the control bus. The request details whether

137

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

a load or a store is required, and the length of the data. Once the processor receives an

acknowledgement from the hardware it continues executing other routines. The manager

provides a wait signal to ensure it is not interrupted while a save or load operation is being

executed.

The manager directly interfaces to on- or off-chip memory. Internal memory has the

benefit of lower latency access but requires additional FPGA resources. For the purposes

of testing, the context switching manager was implemented using external Synchronous Dy-

namic Random Access Memory (SDRAM).

Table 6.2: Resource requirements and timing analysis for two different FPGA based con-
trollers to enable hardware based context switching. Arrangments are either in serial or
parallel.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

Parallel
context

switching
controller

266.0
(125.8)

302.5
(143.6)

43.0 (24.2) 6.5 (6.5) 392 (172) 354 (119) 0 94.05 96.67

Serial
context

switching
controller

325.5
(180.8)

354.0
(191.9)

29.0 (11.6) 0.5 (0.5) 472 (241) 411 (180) 0 106.64 109.63

The manager interfaces to the FPGA with either a serial or a parallel bus, shown in

Figures 6.7 and 6.8 respectively. Table 6.2 provides metrics for both interfaces. The serial

arrangement requires additional control logic to construct the memory packets. Data is

scanned into the manager one bit at a time. It is loaded into a shift register until the entire

packet is constructed. Similarly, when loading the state of registers from memory, the data

is read as a packet and loaded back into the FPGA one bit at a time. Although the serial

interface is capable of operating at a higher frequency, the parallel interface allows a higher

throughput by reducing the latency. The parallel interface matches the data width of the

memory device. One clock cycle can be used to read or write a full word from or to the

FPGA.

The scan chain poses an important architectural consideration. High fan-out nets have

a high resource costs and make meeting timing closure difficult. Partial extraction methods,

discussed in Section 6.2, help to reduce the number of end-points for the net to reduce

routing demands and make meeting timing closure easier. Additionally, having the scan

chain interface as part of the FPGA primitives, with a dedicated routing layer in the device,

would make implementing the scan chain easier by not requiring standard routing resources.

138

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Without special resources built-in, the architecture of the design must be carefully considered.

Pre-emptible
Flip Flop

scan_out scan_in

state

D Q

pre clr

Q

Pre-emptible
Flip Flop

scan_out scan_in

state

D Q

pre clr

Q

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Data From Bus
Mater

Data To Bus
Master

Bus Master Control

Figure 6.7: To control the saving and loading of context from the pre-emptible flip-flops, a
master is implemented. The flip-flops are arranged in a serial pattern.

6.2.3 Effects of using pre-emptible flip-flops on resources and performance

The pre-emptuble flip-flop requires four additional muxes. While these may be available in

a standard ALM, it is not guaranteed that the fitter will use muxes from the ALM that

contain the normal D-type. The fitter will attempt to minimise the path delay between all

elements to balance area against performance. This can result in muxes from other ALMs

being required to implement the pre-emptible flip-flop design.

To analyse the effect on resource consumption and performance from using the pre-

emptible flip-flop, a number of hardware designs were compiled and analysed. Each design

had an increasing number of flip-flops. When a parallel scan chain is implemented, the num-

ber of flip-flops can be increased to provide the padding flip-flops, ensuring each chain is the

same length. This is shown on Figures 6.9 to 6.11 by the multiple star markers for single

quantities of flip-flops. Each compilation was performed a number of times using different

fitter seeds to obtain a representative result. The number of registers used for a design with

pre-emptible flip-flops is unchanged, shown in Figure 6.9.

139

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Pre-emptible
Flip Flop

scan_in scan_out

state

D Q

pre clr

Q

Bus Master Control

Data From Bus
Master [0]

Data From Bus
Master [1]

Data To Bus
Master [0]

Data To Bus
Master [1]

Figure 6.8: Alternatively the pre-emptible flip-flops can be arranged in parallel, where the
number of parallel chains can be determined by the data width of the memory device.

0 50 100 150 200
Number of flip-flops

0

50

100

150

200

R
e
g
is

te
rs

No pre-emption
Serial
Parallel

Figure 6.9: Registers used for implementing designs of increasing size before and after pre-
emptible flip-flops are inserted. The registers requirements from adding pre-emption, ar-
ranged in either serial or parallel, is given by the black and blue markers respectively.

The maximum operating frequency, fmax, of a design varies with its size, although pipelin-

ing can be used to reduce the routing delay at the expense of requiring additional resources.

Figure 6.10 shows that using pre-emption has a far smaller effect on the operating frequency

140

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

0 50 100 150 200
Number of flip-flops

100

200

300

400

500

600

700

800

f m
a
x

No pre-emption
Serial
Parallel

Figure 6.10: fmax of designs of increasing size before and after pre-emptible flip-flops are
inserted. The fmax of the design after adding pre-emption, arranged in either serial or parallel,
is given by the black and blue markers respectively. Timing data given by TimeQuest.

0 50 100 150 200
Number of flip-flops

0

50

100

150

200

A
L
M

s

No pre-emption
Serial
Parallel

Figure 6.11: ALMs used for implementing designs of increasing size before and after pre-
emptible flip-flops are inserted. The ALM requirements from adding pre-emption, arranged
in either serial or parallel, is given by the black and blue markers respectively.

than changing the fitter seed. It is concluded that the pre-emptible flip-flop has a negligible

fmax penalty.

The biggest impact of the pre-emptible flip-flops is the number of ALMs required, shown

in Figure 6.11. The additional muxes may not be available in the original ALM. If they

141

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

are not available the fitter uses other ALMs on the device. From Figure 6.11, it can be

seen that the increase in ALMs needed as the number of flip-flops increases is linear. For

a given number of flip-flops, the equivalent pre-emptible design requires approximately 1.6

times more ALMs. Some fluctuations are seen depending on whether the scan chain is serial

or parallel, and with widths of registers. This is to be expected since some designs result in

register sizes that do not fit inside an ALM, so the fitter compensates.

6.2.4 Including pre-emptible resources in hardware designs

Synthesising a behavioural level design to hardware results in the synthesis engine using

standard D-type cells. Replacing the original D-type flip-flops with the new cell can be done

at gate level by hand. This is a difficult process that is prone to error. Alternatively, the

process was automated.

The automated process works on gate level Verilog and could be included as part of the

synthesis chain. In this research, the tools have been run separately as the synthesis toolchains

(Intel) are manufacturer protected IP. Further, most synthesis tools prevent access to the

gate level Verilog files. The research had access to the Cadence tool suite has allowed the

generation of gate level Verilog files that can be accessed and edited. The flow for automating

the replacement of the flip-flops is given in Listing 6.2.

The program for automated conversion accepts a user flag to switch between a serial and

a parallel implementation. The user can specify the memory width for the parallel interface.

For a parallel implementation the program will automatically arrange the flip-flops to produce

scan chains with the minimum number of additional padding registers. Padding registers are

necessary to ensure each scan chain in the context switchable design is the same length. The

maximum number of padding registers can never exceed datawidth− 1.

142

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

1. Synthesise behavioural level HDL to gate level HDL.

2. Read gate level HDL file.

3. Parse the file to identify the module to be adapted and the number of

flip -flops requiring replacement.

4. Update the port list of the module to include the new scan_out ,

scan_in , and state ports.

5. Update the local declarations to include the connections between the

scan ports of the pre -emptive flip -flops.

6. Replace each D-type flip -flop with its pre -emptive equivalent.

7. Connect together the scan chain.

8. Re -synthesis the new gate level file. This can now be included in the

design just as any behavioural level description file can be.

Listing 6.2: The pseudocode for automating the replacement of the standard D-type

flip-flops with the new pre-emptible flip-flop.

The system has been implemented and tested. Designs for hardware were converted from

behavioural level Verilog to gate level Verilog using Genus from Cadence. The Cadence

standard design for a D-type was then replaced with the pre-emptible flip-flop using the

automated method. The resulting file was then included in a Quartus design. The embedded

ARM processor on the Cyclone V SoC loaded data into the hardware and made context switch

requests. Once the context switch had finished, the ARM core then probed the hardware to

ensure the data had been removed from the system. Context was then loaded back into the

system and the ARM core confirmed operation by comparing the result from the hardware

with the expected result.

To increase the rigour of the test, dynamic reconfiguration was also used. Full reconfigu-

ration was performed after data was context switched out. This ensured no erroneous data

was causing the context switching system to appear to be working. It also demonstrated the

possibility of saving the context of an FPGA configuration before dynamically reassigning

the hardware accelerators. The original task can be returned to as though there had been no

interruption.

Partial reconfiguration demonstrated moving a configuration on the FPGA while the rest

of the FPGA was functioning. The context was saved to memory before the configuration

was moved from one area of the FPGA to another. The context was then loaded into the

configuration in the new region on the FPGA and the ARM core probed the result. All

tests validated the operation of the pre-emptible flip-flop, the pre-emption manager, and the

143

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

ability to de-fragment or reassign hardware accelerators in FPGA fabric.

Table 6.3: Resource requirements and timing analysis for a complete example system. The
system includes the control master for loading and saving the state of flip-flops, an accelerator,
the hard processor system, and the required peripheral logic.

System ALMs Registers fmax (MHz)

Serial bus master in isolation 475 327 151

Parallel bus master in isolation 409 267 178

Adder in isolation 49 26 309

Adder with pre-emptible flip-flop in serial
arrangement in isolation

49 44 365

Adder with pre-emptible flip-flop in parallel
arrangement in isolation

52 45 326

Non-context switchable adder with HPS 6,605 5,113 67

Context switchable adder with serial interface
with HPS

7,204 5,730 60

Context switchable adder with parallel
interface with HPS

7,130 5,422 60

Table 6.3 gives metrics for the individual modules and the complete design. As can

be seen, the overhead from adding the pre-emption logic and control is small compared to

including the hard processor and its peripherals. It has been concluded that the additional

system requirements for pre-emption are negligible.

6.2.5 Pre-empting hard IP blocks

This Chapter has discussed replacing D-type flip-flops with pre-emptible flip-flops. However,

FPGAs contain a number of IP blocks designed to improve the performance of the device.

Scanning data in and out of these hardware blocks poses further challenges. The use of IP

blocks varies based on the device and complete design, and is determined by the compilation

tool. While it is possible to prevent fitting tools from using Digital Signal Processing (DSP)

blocks or memory cells, this often reduces performance or increases cost (As demonstrated

with the design of a floating-point multiplier in Chapter 3). Instead, the IP blocks can be

included in the scan chain. If a vendor provide scan chain ports into and out of these IP

blocks then the system will work identically to before. An alternative method for some IP

blocks is to add a soft logic wrapper. The wrapper is used around memory blocks to provide

read and write capability when a context switch is requested.

It is important that the pre-emption insertion tool knows the length of the scan chain

through the IP blocks. This information can then be included in the calculations for the

144

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

lengths of other scan chains, ensuring the pre-emptible flip-flop scan chain and the IP block

scan chain are balanced.

There are alternative methods for including blocks such as memory and DSP. The contents

of memory are easy to save and restore. The location and size of used memory must be

extracted. This information can be passed to the hardware manager which can connect to

memory blocks to execute read and write operations. DSP blocks present more of a challenge.

These require a pre-load to restore context. Performing a pre-load requires the system to

save previous entries that have been sent to the DSP, on a rolling basis. When a context

save is requested this information must be saved. When a context load is requested, this

information is clocked back into the DSP, restoring its original state, before the hardware is

run.

6.3 On-line compilation and configuration of reconfigurable

devices

Being able to perform on-line synthesis and compilation would allow reconfigurable devices

to be altered at run-time without pre-compiling source code. Compilation time, particularly

from place and route operations, makes this extremely difficult. Place and route algorithms

take a synthesised HDL file and iteratively place the components onto the fabric of the

target device until the design constraints are satisfied. The development of an efficient, run-

time, place and route procedure for reconfigurable devices is far from reality. However, it is

possible to break down this problem into smaller, sub-problems and create systems that can

approximate on-line synthesis of reconfigurable logic.

Figure 6.12 shows the generic view of the floor plan of an FPGA divided into identical

regions of FPGA resources. Similar approaches have been explored on Xilinx technology in

the past [174], but the implementation in this research is targeting Intel FPGA technology.

The homogeneity of FPGAs makes creating regions of identical resources possible. Each

has a standard interface to its neighbouring regions. Each region is also connected to the

embedded processor on another interface bus, allowing the processor to communicate with

all areas of the reconfigurable fabric. A reconfiguration controller loads configurations into

these regions on the FPGA. In some FPGAs, such as Arria 10 SoC or Stratix 10 SoC, there

is a reconfiguration controller implemented in the silicon of the device.

The island style reconfigurable solution, shown in Figure 6.12, was demonstrated using

145

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

HPS
H

P
S

TO
 F

P
G

A
 IN

TE
R

FA
C

E

INTERFACE INTERFACE INTERFACE INTERFACE INTERFACE

INTERFACE INTERFACE INTERFACE INTERFACE INTERFACE

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

IN
T

ER
FA

C
E

RECONFIGURATION MASTER

RL RL RL RL RL

RL RL RL RL RL

RL RL RL RL RL

KEY

RL – Reconfigurable
Logic Region

HPS – Hard Processing
System

Figure 6.12: The FPGA-SoC device can be divided into a set of reconfigurable regions with
common interfaces. Each region can be configured with a hardware atom at run-time, en-
abling on-line compilation.

an Intel FPGA Cyclone V SoC device. Figure 6.13 is the floorplan for the initial FPGA test

scheme. The FPGA is configured with two small reconfigurable islands capable of containing a

hardware mathematical accelerator. Connections to the reconfigurable regions are controlled

by the embedded ARM core; Figure 6.14 shows an expansion on the system, the regions

are increased in both size and number. The total number of regions that the FPGA can

be divided into is dependent on the total number of resources within the FPGA, less the

required resources for the static logic, such as the reconfiguration manager, context switch

controller and interfaces.

The processor can take an input file written in a HLL and use the reconfigurable fabric

to construct accelerators from ‘functional blocks’. This introduces a caveat, namely that

each functional block needs to be pre-synthesised for each region of the FPGA. If there are

a functional blocks and b regions on the FPGA and each block can go in any region, there

are a × b partial configurations for the device. In some cases, for example floating-point

mathematical functions, as in Chapters 3 and 4, the number of configurations for each region

can be large. The requires large computational overhead to generate all configurations before

they can be used. A large amount of memory is required to store all the configurations. All

the partial configuration files are generated off-line and do not add to the computational load

on the embedded processor.

146

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Figure 6.13: Intel FPGA floor plan view with two partial reconfigurable regions

The location of each functional block must be determined on a case-by-case basis at

runtime. Chapter 7 will present a HLL synthesis tool that synthesises GLSL code into HDL.

The tool constructs flow graphs where each node is a floating-point hardware accelerator. The

on-line compilation method presented here uses similar techniques to extract control and data

flow graphs from the source code. Each atom - base hardware unit - is then located based on

constraints from the FPGA floor plan, shown in Figure 6.12. Additional constraints are added

if FPGA regions are in use: the accelerator must be placed around the used blocks. This

‘place and route’ routine is coarser than traditional FPGA place and route. This processes

adds some overhead to the on-line compilation, but it is far smaller than the time required for

conventional FPGA synthesis. FPGA reconfiguration time adds further delay to the on-line

compilation and configuration.

147

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Figure 6.14: Intel FPGA floor plan view with six partial reconfigurable regions

6.3.1 Mapping to the FPGA’s floor plan

Using methods similar to those that will be proposed in Chapter 7, flow graphs detailing

program execution are generated. These flow graphs are re-mapped to match constraints of

the FPGA chequerboard arrangement shown in Figure 6.12. Each reconfigurable region has

a set number of interfaces. The local interfaces allow the logic to pass information only to its

four neighbours. Hence a node can only influence, or be influenced by, a maximum of four

other nodes. Global interfaces allow any region to talk to the HPS. The on-line compilation

tool identifies nodes that are unable to support or be supported by the proposed chequerboard

arrangement. Clones of unsupportable logic are made. The number of nodes to be cloned is

determined by the number of nodes driven by parent nodes.

Figure 6.15 shows an example flow graph. It has already been identified that operations

O3, O4, O5 and O6 can be fed by O2 and their respective variable V4 to V7. O2 is connected

to five other nodes. It is not possible to connect one node with five other nodes, hence a clone

must be made. The parent node of O2 (O1) only interacts with one node (O2) (V1 and V2

148

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

N2N3

O4

V5

O3

O2

V4

O1V3

V1V2

N2

O5

V6

N2

O6

V7

O2
CLONE NODE

PA
R

EN
T

N
O

D
ES

Figure 6.15: The control flow graph has been optimised to remove duplicated logic and
save resources. The graph is rearranged based on the requirements of the chequerboard
arrangement of the FPGA. Clones of nodes are made until each node is influenced by four or
fewer nodes.

are found on the global bus). Therefore O1 has spare connections available so O2 is cloned

and the clone is connected to O1. The children nodes O3 to O6 are distributed, as pictured.

All nodes in the system now conform to the constraints imposed by the system.

The same logic can be applied even when V1 to V7 cannot be on the global bus. Including

these additional connections to the system requires the nodes being driven by O2 and the

clone of O2 to split differently. Node O5 is now moved to be connected to the clone of O2.

Once all the nodes satisfy the influence conditions, a suitable arrangement of the hardware

is found. A flow chart of the algorithm used can be found in Figure 6.16. Each branch of

the flow graph has a number of parent and children nodes, Figure 6.15. Each node on the

graph contains its placement co-ordinates (default is (0, 0)). The placement algorithm starts

with the top node of the first branch. A raster scan - scan through each horizontal position

for a given vertical position, at the end of the horizontal, increment the vertical position and

restart the horizontal scan - finds the first free node in the grid. At each empty square the

number of adjacent free nodes is counted. If this number is equal to or exceeds the number

of nodes influenced by the node to be placed, the node is placed. The co-ordinates in the

149

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

Start at the parent of the

first branch

Count adjacent

free squares

Enough

empty

squares?

Move to next

adjacent

square

Place node

Influence

more than

one node?

Select next

node to place

Move to

adjacent

square and

count adjacent

free squares

Enough

empty

squares?

Place node and

return to parent

One child

node left?

Select child

node

Move to

adjacent

square and

count adjacent

free squares

Enough

empty

squares?

Tried all

adjacent

squares?

Return to

grandparent

node

Another

direction

available?

Rip up node

Affected

children

nodes?

Rip up children

Place node

End of

branch?

Children

removed?

Move to next

branch

Reset to first

branch

Move to current

co-ordinate

stored at node

No

Yes

Yes

Yes

No

Yes

Yes

No Yes

No

Yes

No

No

Set grid co-

ordinates to

grandparent

node position

Yes

No

YesYes

No

No

End of flow

graph?

Finish

No

Yes

Figure 6.16: The algorithm used to map the control flow graph to the FPGA’s floor plan. If
the program reaches an error position, it is reported to the host and exits gracefully.

structure are updated. A boolean grid is used to represent the FPGA’s floor plan, with a

false entry denoting an empty square and a true entry a full square.

Once the parent node is placed all the children of that parent are also be placed. Each

150

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

child is systematically chosen and the squares adjacent to the parent are analysed to ensure

they match the requirements of the child. When only one child is left, the process is repeated

using the child as a starting point.

It is unlikely that this approach will result in a successful first-pass fitting. When a dead-

end is reached the placements are back-tracked, and nodes are removed. If a node with more

than one available direction for children is encountered the new direction is tested. If the

new direction is suitable, nodes are relaid using the new path. If the top of the branch is

reached, the next free space in the grid is chosen and placement restarts.

If nodes that influence more than one node are removed, all children are also removed.

In situations where this occurs, the next pass will reset to the start of the flow structure to

ensure any removed children may be replaced.

The system continues until all nodes are located. Once completed, each node holds a

unique co-ordinate for instantiation in the FPGA. The associated files are passed to the

reconfiguration controller to be loaded. Therefore, compilation of high level languages into

FPGA logic at runtime is achieved.

6.4 Summary

This Chapter has discussed a number of considerations for the use of FPGAs as flexible

hardware accelerators in heterogeneous systems. Dynamic reconfiguration provides the user

with the ability to change the configuration of an FPGA at runtime. There are two types of

dynamic reconfigurability: full and partial. Full reconfiguration completely scrubs the FPGAs

original configuration and replaces it with a new configuration. Partial reconfiguration allows

sections of the device to be reconfigured while the rest remains active.

Dynamic reconfiguration allows an FPGA to provide accelerators that would otherwise

not fit on the device at the same time. A number of potential architectures for hardware

accelerators implemented on FPGAs have been proposed, evaluated and discussed. Some

architectures provide continuous end-to-end functionality, while others compartmentalise the

FPGA for individual accelerators.

Novel context switching techniques for hardware have been presented. These allow de-

fragmentation, or reassigning the FPGA’s accelerators. Context switching allows the old

tasks to be reinstated later, as though there was no interruption. Context switching was

achieved by replacing D-type flip-flops with a proposed pre-emptible flop-flop. A hardware

based manager was implemented to reduce save and load times. Discussions of methods to

151

CHAPTER 6. DYNAMIC TASK ALLOCATION AND CONTEXT SWITCHING

context switch IP blocks were presented.

On-line compilation of hardware designs from a HLL input has been presented. The

methodology allows an embedded processor to be passed a design file and generate the re-

quired hardware at runtime. The use of pre-synthesised atoms reduces overhead. Currently,

synthesis tools can take hours to complete but the proposed method allows compilation to

be mimicked at a higher level, reducing compilation time. The FPGA is divided into regions

of reconfigurable logic with common interfaces to allow any configuration to be loaded, using

dynamic reconfiguration, and communicated with its neighbours. However, each functional

block must be pre-synthesised and loadable into each region. Input files are converted into

flow graphs, as will be presented in Chapter 7. The flow graphs are re-mapped for the limi-

tations of the chequerboard architecture. Although this still has computational overhead, it

is significantly reduced from traditional HDL synthesis.

There are a number of limitations to be overcome. Data must be passed between clock

domains and FPGA reconfiguration times are long. This technology is still in its infancy

and reconfiguration times are likely to reduce with development. There is a vast amount of

investment in this field, especially given the buy-out of a major FPGA manufacturer (Altera)

by Intel in 2015.

The next Chapter will discuss the high level synthesis of OpenGL Shading Language

(GLSL). The high level synthesis tool applies optimisations and produces HDL for inclusion

in hardware design. The tool removes the need for a developer to be specialised in both

hardware and software design.

152

Chapter 7

Automatic Synthesis of Hardware

from High-Level Languages

Chapters 3 and 4 presented a number of floating-point accelerators. The efficiency and

throughput of FPGAs makes them ideal as hardware accelerators. Chapter 5 used the

floating-point accelerators to implement a Graphics Processing Unit (GPU) on a Field Pro-

grammable Gate Array (FPGA). From the GPU implementation it is clear there are chal-

lenges in developing custom hardware. Some approaches synthesise programmable Single

Instruction, Multiple Data (SIMD) architectures to provide a more user friendly platform for

programming [175]. This Chapter will present a High Level Synthesis (HLS) tool that ac-

cepts OpenGL Shading Language (GLSL) and produces the equivalent Hardware Description

Language (HDL). The presented tool optimises the output HDL using critical path analysis

and task scheduling.

To develop routines and procedures for a processor, a developer needs to only understand

the procedural language. The compiler will interpret the procedural code and efficiently

map it to the target architecture. The abstraction helps the designer and streamlines the

design flow. Conversely, when designing hardware, the developer needs to both know the

desired functionality and understand how to create the architecture. These are very different

disciplines. Therefore, the barrier to entry for this technology is high.

There are a number of tools that are available designed to reduce the barrier to entry.

A review of the performance of a number of these tools has been performed in [176]. These

tools include: Bambu [121], LegUp [177], Vivado HLS [178], Intel (formally Altera) OpenCL

compiler [179], Handel-C [180], Impulse-C [181] and Catapult-C [182]. Commercial tools are

designed to use ANSI-C, or OpenCL-C in the case of the Altera OpenCL compiler. As the

153

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

tools abstract further from the target device and application, it becomes harder to produce

an ideal implementation. Code optimisation is made harder due to there being multiple ways

to express a function that give the same result. This can result in sub-optimised code.

Some of these tools are classed as real HLS tools and some are compilers. High level syn-

thesis tools interpret the description of desired hardware behaviour, often given in algorithmic

form, and produce the necessary hardware. Compilers take the description of hardware and

convert this into primitives found on a target device. An extensive survey into various HLS

tools and compilers is presented by Cordoso et. al. where a number of key features of the var-

ious tools are highlighted, [183]. The tool presented by this Chapter sits somewhere between

the two tool types by interpreting the description of the graphics language and compiling this

down for the target architecture.

A comparison of HLS tools [176] concludes that “no single tool produced the best results

for all benchmarks” and “optimisations that are necessary to realise high performance in

hardware differ significantly from software-oriented ones”. Different tools apply different

optimisations. There is no ‘correct’ way for the tools to perform operations. However, for a

given application one tool may work better than another.

7.1 High level versus low level

High-level and low-level describe the amount of abstraction offered by a programming lan-

guage. Very high-level languages, such as Java, abstract the user away from the platform to

such a level that any application can run on any platform. Applications are not pre-compiled

for a target device. Languages such as C still offer a high level of abstraction, but are subject

to some architectural dependencies.

Assembly language is very low-level. There is no abstraction from the target architecture,

and designs must use the instruction set for the target device. Unless two devices have the

same instruction set, it is not possible to move code between devices. Modern processors

tend to share a minimal working instruction set, helping to increase the portability of lower

level languages. In general, the lower the level of a language, the more optimised the result

(assuming the developer knows what they are doing).

154

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

7.2 Traditional design flows and optimisation techniques

Traditional compilation tools use languages designed to run on a specific platform and compile

them down for the target architecture. For example, gcc and g++ target General Purpose

Processors (GPPs) and Spectra-Q [184] targets FPGA architectures. The language syntax

and specific compilation chain help to make optimisation easier.

There are a number of areas that lend themselves to optimisations: loops, recursion, and

memory. Loops and recursion can form bottlenecks. Common techniques for evaluating loops

use unrolling to express the complete contents of a loop (gcc compiler). Memory accesses

pose a different optimisation problem. Limiting the number of memory accesses decreases

the execution time of a procedure.

When synthesising custom hardware from High-Level Languages (HLLs), similar opti-

misations must be performed. Unrolling loops in hardware leads to large resource cost, as

shown in the performance optimised implementations in Chapter 3. Chapter 3 presents an

alternative method to implement a loop that reduces resource cost but increases latency.

Loops with a large number of operations will still incur a high resource cost. Methods for

performing behavioural synthesis from HLLs that include recursion and looping are discussed

in [185].

Recursion can be considered to be similar to loops. A number of tasks are called in

sequence, which can result in the size of the program growing. When tasks are called re-

cursively, data can be placed in memory as the processor moves through the recursive calls.

Modern processors have a reasonable amount of memory, making recursion possible, despite

the potential to cause memory leaks and access violations. In a hardware environment, every

single resource has to be accounted for. Recursion can use significant numbers of resources.

Synthesising an FPGA equivalent of a heap with automatically generated interfaces is pre-

sented in [186]. The more a hardware implementation looks like a processor, the greater the

abstraction, and the smaller the performance gained from using hardware.

7.3 High-level synthesis of OpenGL shading language

A HLS tool converts code written in a procedural language for implementation in hardware.

The use of commercial HLS tools still requires an appreciation for the different architecture.

Chapter 5 presented a design for a GPU on an FPGA. The performance metrics demon-

strated the FPGA performing faster or more efficiently than similar, embedded GPUs. GPUs

155

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

use shading language (GLSL, HLSL). Designing equivalent hardware for a GLSL shader

presents challenges. Using a HLS tool mitigates design challenges for the designer, producing

hardware shaders for reconfigurable architectures.

GPUs and FPGAs are parallel devices, therefore the FPGA lends itself to performing

graphics processing. The FPGA is also a highly versatile device. Due to the FPGA’s re-

configurability, it can be used to accelerate a range of tasks, as discussed in Chapter 6. To

get the greatest performance benefit, the FPGA’s architecture is reconfigured to match the

task. Similarly, a GPU can be used to perform non-graphics tasks. However, the task must

be reformed to match the GPU’s architecture, losing performance.

A compiler starts by extracting data and control flow for the input file. The flow is

represented as a graph. Representing the information as a flow graph makes performing

optimisations easier. Figure 7.1 shows the algorithm for parsing the input GLSL file and

building the initial flow graph structure.

Figure 7.2 shows the construction of the flow graph before optimisations. All optimisations

are performed on the flow graph. In the example flow graph, Figure 7.2, three types of

operation are shown. Node 1 (N1) is an assignment operation where Variable 1 (V1) is

copied to another variable. Node 2 (N2) is a single step mathematical operation, such as

a = b × c. Operation node O1 contains the operation to be applied to the two inputs, V2

and V3. The result is placed in the output node, N2. Node 3 (N3) represents how the graph

stores a series of consecutive operations. The top of the tree consists of two variables, V6

and V7, which are subject to the operation in O4. The result from O4 is fed to the next

operation, O3, along with V5. This is repeated until the answer is formed and passed to

the root node, N3. Operations that feed new operations have a temporary register assigned,

Figure 7.3.

Figure 7.4 demonstrates how the flow graph represents data flow - values - and control

flow - operations. The graph models the functionality described by the GLSL file that is to

be mapped to reconfigurable hardware. Performing the synthesis at this point would result

in a potentially inefficient solution.

7.4 Optimising the flow graphs before synthesis of hardware

The tool applies a series of optimisations to the graph before writing out the HDL. Figure 7.5

shows the optimisation algorithm for removing redundant hardware and for performing crit-

ical path analysis.

156

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Start

Read Port List

Read

Functions

Comma

separated list of

variables?

Direction?

Store

variable type

Associated

dimensions?

Extract

dimensions

Store

variable

names

Yes

Yes

No

Port List

Yes

End of port list?
No

Error

Yes

No

Compare

string

against key

words

Variable

type?

Port list or

function?

No

Yes

Function

Function?

Variable?

Scan in

entire

function call

Operand?

End of line?

Separate

function

Push to

operand list

Push to

variable list

No

No

No

No

Yes

Yes

Yes Separate

arguments

Parsing

function call?

Yes

No

No

Push to flow

graph

Push first

variable to

root of graph

Operation list

empty?

Push last

variable onto

graph

Push

Operation

onto graph

one variable

in list?

Push

variable to

‘next b’

Push

variable to

‘next a’

Increment

variable

pointer

Increment

variable

pointer

Increment

operation

pointer

End op and

variables?
Pop all lists

Yes

No

No

Yes

Yes

No
EOF?

Go to

Optimise

Yes

No

Check

compatibility

Figure 7.1: Flow diagram depicting the parsing and interpretation of the GLSL file to con-
struct the data flow graphs.

GPU’s have a high throughput, therefore it is important that the FPGA retains a high

throughput. The flow graph is analysed for operations that can be implemented in parallel.

Despite the need for high throughput, resources are limited and care must be taken. It

157

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

N1 N2 N3

V1

Nn

O1

V2 V3

O2

O3V4

O4V5

V7V6

Key

Variable

Operator

Answer

Memory Root

Figure 7.2: Example flow graph created by the initial parse of the input files. The graph has
root nodes that are linked to a tree containing information about the variables and operations
required to generate the root.

N2 N3 Nn

O1

V2 V3

O2

O3V4

O4V5

V7V6

Temporary
variable 1

Temporary
variable 2

Figure 7.3: Variables that require more than one operation to create will have temporary vari-
ables assigned to each operation. When this is translated to hardware it allows construction
of the GLSL code using a library of pre-defined blocks.

is possible to implement dynamic memory in hardware [186], however, this can reduce the

performance of the system. It is vital to identify every location where resources can be saved.

This includes delay chains and removal of repeated functions. Critical path analysis identifies

158

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

N2 N3 Nn

O2

O3V4

O4V5

V7V6

N2 N3 Nn

O2

O3V4

O4V5

V7V6

N2 N3 Nn

O2

O3V4

O4V5

V7V6

Data Flow
Control

Flow
Flow

Graph

Figure 7.4: From the initial flow graph the data and control flow of the input file can be
extracted.

Start

Optimisation

Remove

duplicated

hardware

Set master

and slave

pointers

Move master

pointer to

top of first

flow graph

Set slave to

be one graph

ahead of

master

Same

operation?

Move both

pointers

down their

respective

structures

Yes

Mark match
Still Same

operation?

Yes

No

End of

structure

(slave)?
No

Move master

pointer to

top of next

graph

Yes

End of

structure

(master)?No

Increment

slave pointer

Connect all

matched

hardware

blocks

Pop

redundant

flow graph

entries

Yes

Critical path

analysis

Set pointer

to first graph

Longest

latency?

Update

critical

latency

Increment

pointer

End of

graphs?

Yes

No

Reset

pointer to

start

Work up

graph

Yes

multiple

latencies?

Replace

atom with

lower

resource

cost version

Update total

latency

Yes

No

End of

graph?

No

End of

structure?

Finish

Yes

Yes

Increment

pointer

No

No

No

Figure 7.5: The two key optimisations performed are used to remove duplicated hardware
and to schedule tasks based on critical path analysis. This flow diagram gives an overview of
their operation.

which nodes can be replaced with more resource efficient variations without increasing the

overall latency.

The synthesis tool uses ‘base’ units called atoms. The atoms represent the hardware’s

instruction set. In this case study the atoms are the hardware accelerated functions discussed

159

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

N2 N3

O1

V2 V3

O2

O3V4

O4V5

V7V6

L: 8

L: 8

L: 8L: 10 or 20?

Total L: 24Chosen L: 20

Figure 7.6: The synthesis engine has a set of predefined atoms that are used to build the
HDL from. Each of these atoms has a known latency. By parsing the control flow structure,
the total latency of each chain and hence the critical path is found. This information is used
to select which version of an atom to use that keeps the overall resource count minimal.

in Chapters 3 and 4. The floating-point maths functions are independent of a particular

vendors architecture, meaning the synthesis tool can be included as the front end of any

synthesis chain. The atoms have been especially designed to work with this tool. When the

tool is run, a custom data path is constructed that is tailored to the graphics shader being

implemented. A number of optimisations are performed to reduce the resource overhead,

such as identifying where lower cost atoms may be used for functions not on the critical data

path.

7.4.1 Critical path analysis

Each atom has an associated latency value. These values are known by the synthesis tool

and are used for critical path analysis. The critical path analysis is used to make an informed

decision about task scheduling for functions not in the critical path.

Chapter 3 demonstrated methods for optimising hardware implementations for either

resource or performance. In the example in Chapter 3, a resource optimised implementation

used as few as one adder and one multiplier. It is possible to increase the number of adders

and multipliers, reducing the latency. This can be done until enough multipliers and adders

are added to create the performance optimised implementation. Each implementation has a

160

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

different resource cost and latency. Figure 7.6 shows the critical path of a flow graph to be

the path with the highest latency; latency values are given in clock cycles and the issue rate

(iteration interval) of implementations is one unless otherwise specified by the tool. In this

path, all implementations will use the lowest latency versions of nodes if there is a choice.

Elements on other paths may also have a choice of implementations. On the non-critical

paths, the chosen implementation has the the highest latency (and therefore lowest resource

count) so long as the overall path latency does not exceed the critical path. This scheduling

operation makes the best use of resources while keeping the overall execution time as low as

possible.

7.4.2 Removing repeated hardware

N2
N3

O1

V2 V3

O2

O3V4

V5
O1

V2 V3

Figure 7.7: Analysis of the flow graphs is used to determine repeated structures. The graph
is rearranged to re-use hardware and fan the output out to multiple locations the overall
resource use is reduced. The shaded out nodes (V2, V3, and O1) have been removed to save
on resources.

Resources in hardware are limited. Modern FPGAs are significantly larger than their

predecessors, however, every resource still counts. Implementing several sets of identical

logic that process the same information and create the same result is redundant. It is not

161

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

uncommon for a program to calculate a variable for use in multiple locations. This is identified

and marked to ensure only one set of logic is used in the final implementation.

Repeated operations can be created in more than one way. Operations can create tempo-

rary variables that are used later in the code. Otherwise compound operations may repeat

the same operations on the same variables. If this is the case the flow graph has a set of re-

peated nodes. The flow graph is parsed and comparisons are made between all operations and

their associated data. If a match is discovered this is marked so that the tool knows to only

implement one set of logic and fan-out the output to many locations, shown in Figure 7.7.

7.5 Synchronising the data path

Processing the inputs to the outputs takes time. Not all data paths are the same length. On

paths that are not on the critical path, modules are selected to have the highest latency pos-

sible. This will give the most resource optimised final implementation. There is no guarantee

the path latency will be the same for every path. The final structure is analysed for mis-

matching latency and delay chains are used for re-synchronisation. Synchronising the data

creates pipelines where data is moved on every clock cycle. The timing and synchronisation

for the FPGA is less complicated and the overall performance is improved. The required

delay for each path is stored in a control flow graph, shown in Figure 7.8.

Input data and generated data may also need to be delayed. If incoming data is not used

right away, accepting new data on the next clock edge causes the previous data to be lost.

When the original data is required the new data would be used instead, resulting in invalid or

unexpected results. Figure 7.2 shows some variables are not needed until previous operations

have been completed. Similarly, some operations use variables created by other operations,

but the preceding operations may have latency mis-match. Implementing a delay structure

propagates the original data through a set of registers until it is required by the function.

The length of this set of registers is determined by the latency of the operations that are

performed before the data is required.

Some data is required in more than one location at different times. Figure 7.9a presents

a method for delaying data by different numbers of clock cycles. Each delay has its own

delay line. Although functional this is an inefficient way to use resources due to duplication.

The control flow graph for delay, Figure 7.8, groups matching variables together. Matching

variables are sorted in ascending delay length. New entries are appended to the structure

with their required delay length, therefore creating the delay control graph. Any variables

162

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Memory
Root

VarA
Delay: 6

VarB
Delay: 5

VarN
Delay: 7

VarB
Delay: 8

VarB
Delay:

10

Figure 7.8: Ensuring the module is synchronous is key to pipelining. It is unlikely that each
data path through the module has the same latency. Analysis of the control flow graph gives
the critical path. From this any additional latency that needs to be applied to a variable can
be determined and stored in another control flow graph.

that have more than one associated delay length have the difference in each delay calculated.

The delay structure is created as a single delay pipeline with multiple tap points for all the

stages where the variable is required, shown in Figure 7.9b.

Similar techniques are used to store delay values for the output. Variables will only ever

need a single delay length. Figure 7.10 shows the insertion of delays for the output stage.

7.6 Pipelines and resource reuse

The previous two Sections (7.4 and 7.5) discussed both saving resources and using more

resources. Pipelining allows faster switching of the FPGA fabric and therefore higher overall

performance but increases resource use. However, resource reuse is required to limit the

size of a design. Chapter 3 demonstrated the use of feedback to create a resource optimised

matrix-vector multiplier. In order for this to work the atom cannot accept new data on every

clock edge while it is busy. This violates the pipeline requirement. Similarly, dividers and

multipliers sometimes have early exit conditions.

Creating implementations that do not reuse logic is not always practical. Inexpensive

devices, such as the Intel Cyclone range, have limited resources and it has already been

163

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Delay Stage 1
5 Clock Cycles

Delay Stage 2
8 Clock Cycles

Delay Stage 3
10 Clock Cycles

Data In

Data In

Data In Data Out

Data Out

Data Out

Data
Valid

Data
Valid

Data
Valid

Delay Stage 1
Valid

Delay Stage 2
Valid

Delay Stage 3
Valid

Enable

Enable

Enable

Valid

Valid

Valid

(a) Duplicated delay chains of varying lengths.

Delay Stage 1
5 Clock Cycles

Delay Stage 2
3 Clock Cycles

Delay Stage 3
2 Clock CyclesData In

Tap Point 1 Tap Point 2

Data Out

Enable Enable EnableValid ValidValid

Data
Valid

Delay Stage 1
Valid

Delay Stage 2
Valid

Delay Stage 3
Valid

(b) Single delay chain with multiple tap points.

Figure 7.9: Managing the amount of resources used when pipelining signals is important.
Implementing multiple delay chains that duplicate each other leads to a resource inefficient
implementation, 7.9a. Instead using a single delay chain with tap points at the required
lengths uses fewer resources, 7.9b.

shown that graphics rendering designs can grow in size very rapidly (Chapter 5). Further,

using performance optimised implementations on the non-critical paths wastes resources and

increases power consumption with no performance gain. In order to maintain an effective

pipeline while allowing resource reuse, a ‘wait’ signal is generated. The wait signal is back

propagated from modules that reuse resources to all parent modules, shown in Figure 7.11.

This was discussed in Chapter 5.

Information for nodes that require a wait signal is stored by the HLS tool presented here.

164

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Operation 1
Latency: 4 Cycles

Operation 2
Latency: 8 Cycles

Operation 3
Latency: 10 Cycles
(Longest latency)

Delay 1
Delay: 6 Cycles

Delay 2
Delay: 2 Cycles

O
u

tp
u

t
R

eg
is

te
rs

Data 3

Data 2

Data 1

Figure 7.10: To maintain synchronisation through out the graphics processor, the outputs
for each module are delayed such that they all occur on the same clock edge.

Latency values also take into account the effect of the wait signal. The synthesis tool uses

stored information that details if a module requires a wait signal, generates it and connects

the appropriate busses.

7.7 Using the automated synthesis tool

The synthesis tool is designed to be used in the same way as a GLSL compiler would be

used for a target GPU. It works from an input GLSL file. The tool can be used at the

start of hardware synthesis and the output is a binary file that can be loaded straight into an

FPGA. This allows the replacement of GPU-SoC devices with FPGA-SoC devices. Chapter 6

discussed the use of dynamic reconfiguration to change FPGA configurations at runtime. The

binaries created with this tool can be used for dynamic reconfiguration.

For the purposes of testing the tool, the types of functions used in GLSL are categorised

by data type and format. GLSL works primarily using vector and matrix data types, along

with the conventional types such as boolean, signed and unsigned integers, and single- and

double-precision floating-point. Operations are in: variable operand variable, or ReturnType

function(argument list), or a combination thereof. A number of tests were performed where

the input GLSL files covered functions in these formats, Table 7.1. The output HDL was

synthesised, simulated and tested.

165

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Wait

Wait

Wait

Wait

Data In

Data In

Data In Data InData Out

Data Out

Data Out

Data Out

Valid

Enable

Valid

Valid

ValidEnable

Enable

Enable

Busy

Busy

Busy

Busy

System Wait

Figure 7.11: Some modules re-use resources due to size constraints. In this situation they must
prevent data being loaded into them before they are ready. This is achieved by generating a
‘wait’ signal that is propagated backwards through the system to pause operation of earlier
modules.

Table 7.1: GLSL shaders can range from straight-forward operations such as moving data
from the input to the output side for use in a later shader, to complicated matrix and vector
operations. A number of increasingly complicated GLSL operations have been implemented
as GLSL shaders that have been converted by the HLS tool.

Shader Registers ALMs fmax MHz

Assignment 2 2 580.04

Floating-point
multiplication

299 135 244.32

Vector-Matrix
multiplication

11,556 4,808 155.62

Matrix-Matrix
multiplication

143,298 61,455 135.85

Vector-Matrix-Matrix
multiplication

154,420 66,377 139.45

Square-root 473 205 276.63

Exponential 76 48 82.17

Vector length 55,166 16,224 209.42

Vector normalisation 62,238 18,785 220.17

Vector dot product 11,667 3,555 349.04

166

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Chapter 5 presented, tested and implemented a number of shaders. These have been used

to further demonstrate the functionality of the synthesis tool. Metrics are given in Table 7.2,

which also gives the throughput of the same operations performed on embedded platforms.

The matrix-matrix and vector-matrix-matrix operations have a high resource count as they

are implemented as fully unrolled pipelined designs with an issue rate of one, as per Chapter 3.

It can be seen that the throughput of the hardware synthesised by the tool is comparable to

hardware designed in Chapter 5.

The generated hardware has a higher resource cost than the hand-designed hardware.

This is attributed to the rules regarding synchroniser chains that must be followed by the

synthesis tool. If a set of data is presented on the input of the module and required on

the output, such as an RGB colour value, the synthesis tool creates a delay chain to ensure

this appears in time with the rest of the outputs. In the case of the modules designed in

Chapter 5, the design considered the whole system. When hand designing, a decision was

made to not delay the RGB value for static, constant shading.

All the examples presented here function as expected under simulation and real-world

implementation.

7.8 Summary

In this Chapter the high-level synthesis of hardware was discussed. The design for a HLS

tool for synthesising hardware accelerators from GLSL was presented. The tool is designed

to reduce the barrier to entry for FPGA technology in heterogeneous environments.

There are a number of research and commercial available tools that exist which allow

ANSI-C or OpenCL-C to be used with reconfigurable hardware. However, the more abstract

a tool becomes, the harder it can be to get the ‘perfect’ solution from it. HLS tools can

perform a number of optimisations but this does not always provide the best result for all

situations.

The tool presented in this Chapter uses a different input language to the commercially

tools, with a specific target application. It is believed this is the first example of its type. The

tool uses a number of specially designed atoms. The atoms are optimised for the purpose of

the hardware acceleration of floating-point mathematical functions.

The synthesis tool produces and optimises flow graphs that represent the input GLSL file.

Optimisations include critical path analysis, task scheduling, data pipelining and identifying

areas where resource reuse can be implemented. Critical path analysis informs decisions

167

CHAPTER 7. AUTOMATIC SYNTHESIS OF HARDWARE FROM HIGH-LEVEL LANGUAGES

Table 7.2: Automatic generation of vertex shaders are compared to ‘hand-written’ variants
for the same function. Three different resource/performance optimisations were chosen to
compare FGPA resources and throughput. Included are some throughput figures for other
embedded technologies.

Shader Registers ALMs fmax MHz
Vertices per

second

Hand-Written
(Performance)

17,624 7,485 154.15 154.15M

Automatically Generated
(Performance)

20,236 8,266 151.08 151.08M

Hand-Written (Hybrid) 5,756 2,524 150.29 37.57M

Automatically Generated
(Hybrid)

8,368 3,196 158.58 39.65M

Hand-Written (Resource) 3,177 1,474 161.71 8.09M

Automatically Generated
(Resource)

5,789 2,187 163.51 8.180M

Cyclone V embedded
ARM Cortex-A9 Software

Rendering

- - - 170k

Allwinner A13 device
comprising Cortex-A8

CPU with Mali 400 GPU

- - - 35M

Allwinner A13 device
using Cortex-A8 Software

Rendering

- - - 32.73k

about delay chains to ensure data remains pipelined and synchronised. The output of the

tool can be included directly into the FPGA-GPU design presented in Chapter 5. Further,

the tool does not require the designer to have any specific hardware knowledge.

The next Chapter will present the conclusions from the topics covered by this research.

The benefits and limitations of FPGA based heterogeneous systems are summarised, and

future works are presented.

168

Chapter 8

Conclusions and Further Work

This research has covered a number of topics. Chapter 3 demonstrated implementations for

a number of basic floating-point accelerators in hardware. Two case studies for using these

accelerators were given. The operations in Chapter 3 are easily implemented in FPGA tech-

nology. The implementations have a maximum relative error of one Unit of Least Precision

(ULP), which complies with IEEE-754R. For almost all the functions, with the exception of

floating-point addition, only a few FPGA resources are required, even at double-precision.

Floating-point addition is known to be a costly operation compared to fixed-point addition.

All operations have a high throughput, in excess of 100 MFLOPS at double-precision.

Chapter 4 presented hardware implementations of more complicated mathematical func-

tions that are more challenging to implement. Implementing iterative approximations is

resource or time intensive. Two alternative approaches, non-recursive and curve-fitting al-

gorithms, were presented. These have a much lower resource cost, while maintaining a high

throughput. The non-restoring algorithm achieved a relative error of one or fewer ULPs.

Curve-fitting methods exhibited much higher relative error, but maintained a low normalised

error. Implementations that used curve-fitting techniques had a considerably lower resource

use than Euler expansion or power series methods. Chapter 4 also presented an implemen-

tation of the Hodgkin-Huxley model of a neuron on the FPGA.

Chapter 5 created an graphics processor in hardware that was based on a standard

OpenGL graphics pipeline. The FPGA-GPU consisted of a vertex shader, a rasterizer and

a fragment shader. Each stage was created using the floating-point accelerators presented in

Chapters 3 and 4. The throughput and efficiency of the FPGA implementation was com-

pared with other embedded processors: an ARM Cortex-A8, an ARM Cortex-A9, an ARM

Mali-400 GPU, an NVIDIA Tegra K1 and an NVIDIA GTX 780. The metrics demonstrated

169

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

that the throughput of the FPGA implementation was greater than the ARM devices and

always more efficient all the embedded devices. Chapter 5 discussed methods for increasing

the throughput of the design instantiating multiple modules in parallel to remove bottle-

necks, and compared throughput and resource use between forward and deferred rendering

techniques.

Chapter 6 detailed the use of full and partial dynamic reconfiguration of FPGAs. Dy-

namic reconfiguration allows the FPGA to change which hardware accelerator is implemented

at runtime. In addition, Chapter 6 presented methods for context switching hardware ac-

celerators and on-line compilation and synthesis of FPGA configurations. Context switching

the hardware allows the accelerators in the FPGA to be de-fragmented or swapped out and

returned to without loss of data. The on-line synthesis method requires a pre-defined FPGA

arrangement and pre-synthesised nodes. The nodes are arranged by extracting and optimising

program flow from an input file.

Chapter 7 discusses High Level Synthesis (HLS) of hardware. A number of commercial

tools that all take C based languages (ANSI-C and OpenCL-C) were discussed. The de-

sign for a new tool that accepts OpenGL Shading Language (GLSL) has been presented.

The presented tool applies optimisations to the flow graph representation of the GLSL file.

Optimisations use critical path analysis, task scheduling and resource reuse identification to

increase the performance and limit the resource cost of the output hardware.

This research has highlighted a number of benefits and limitations of using FPGA-SoC

devices as flexible hardware accelerators in a heterogeneous architecture.

8.1 Benefits

Hardware acceleration provides higher throughput or more efficient performance compared to

processor-based implementations. However, there is a trade-off between hardware flexibility

and how often the hardware is used. Increasing the flexibility of the hardware accelerator

reduces the performance gain.

This research asserted that a wide variety of applications can be created from combinations

of mathematical operations. To demonstrate this a number of implementations of floating-

point mathematical operations have been used to create two different applications: neuron

modelling and graphics rendering.

The Hodgkin-Huxley model of a neuron uses the exponent in the transfer function. The

hardware implementation of the exponent function had a high relative error due to the curve-

170

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

fitting technique. The case study demonstrated that a high relative error in certain applica-

tions does not prevent function. The trade-off between accuracy and resources allowed large,

complicated systems to be implemented with a smaller number of resources while maintaining

functionality.

The implementation of a Graphics Processing Unit (GPU) on an FPGA demonstrated a

case where being able to change the hardware’s functionality at runtime is beneficial. The

performance of the FPGA implementation was compared against a number of commercial

processors: ARM Cortex-A8 and A9, Mali-400 GPU, NVIDIA Tegra and NVIDIA GTX 780.

A normalised metric of vertices processed per second per Watt showed the FPGA imple-

mentations, even configured for lowest resource cost, are more efficient than the commercial

processors. It is shown that FPGAs provide a platform that is, at worst, comparable to

similarly priced commercial devices.

Dynamic reconfiguration allows the configuration of the FPGA to be changed at runtime.

In a heterogeneous environment, this allows tasks from the processor to be off-loaded to the

FPGA for acceleration. The accelerators in the FPGA can be changed to match the current

processor tasks, increasing the flexibility of the FPGA. Unlike using a GPU-SoC device

to accelerate processor tasks, using an FPGA-SoC allows customisation of the hardware

architecture to match the task being accelerated, maximising the performance gain from the

FPGA.

8.2 Limitations

This research has highlighted a number of limitations yet to be overcome.

Chapter 4 detailed implementations of floating-point functions that require iteration to

approximate the answer. Conforming with IEEE-754R by iteration in hardware results in

a resource or time intensive design. A number of alternative methods were proposed that

reduced the resource use. However, these did not always conform to a relative error of one

or fewer ULPs. It was demonstrated through case studies that a high relative error did not

prevent functionality of the application. In some applications, there are quantising factors

that make the high relative error insignificant.

Reconfiguration times for FPGAs are still significant. Dynamic reconfiguration requires

the reconfiguration file to be loaded to the reconfiguration controller. Moving the file to the

reconfiguration controller is slow, even with Direct Memory Access (DMA), increasing the

reconfiguration time. It is likely that future revisions from vendors of FPGA-SoC devices will

171

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

address the speed limitations of dynamic reconfiguration. For applications that are being run

for a prolonged period, a reconfiguration time of a second is negligible.

Managing the hardware accelerators implemented in the FPGA is a considerable task.

The most optimal use of the FPGA allows the accelerators to be changed based on the cur-

rent processor’s application. A single application could have a number of accelerators and

multi-cored processors can run multiple applications. Chapter 6 presented methods to con-

text switch and change the accelerators at runtime, and even compile new accelerator chains

from an input file at runtime. However, the accelerators need to be ranked based on impor-

tance and which accelerators are currently implemented needs to be tracked. Additionally,

the FPGA resources are limited. It is not always possible to implement all the most ‘impor-

tant’ accelerators, although smaller, less important accelerators may still fit. Determining

which accelerators to use adds complexity and computational overhead. FPGA-SoC devices

with multiple processor cores could dedicate an entire core to managing the implemented

accelerators and processing requests from the processor.

Moving data between the FPGA and the processor often requires crossing a clock domain.

There are a number of techniques for safely crossing clock domains, for example synchroniser

chains and dual-clock First-In, First-Out (FIFO) buffers. Unfortunately these add latency

and reduce the effective performance gain of the system. Additionally, implementing accel-

erators that work on data that is frequently accessed by the processor increases overhead in

maintaining cache coherence. Ideally, accelerators will work on data that is never, or infre-

quently, required by the processor. It must be ensured that any gain from using the FPGA

for acceleration is not off-set from moving data around or maintaining cache coherence. This

adds a further condition when identifying which routines are most beneficial to accelerate.

Designing custom hardware for an FPGA presents a high barrier to entry. Using FPGA

technology requires the designer to specialise in both hardware and software development.

HLS attempts to remove the barrier to entry by synthesising hardware from other languages,

for example ANSI-C. Optimising designs from procedural code for implementation in hard-

ware is a challenge. Commonly used procedural constructs, such as loops, recursion and

memory access do not map to FPGA technology without considerable cost. Iterative func-

tions, like loops and recursion, can unroll creating large hardware. The tool presented in

Chapter 7 restricts the end application to greater allow optimisations to be applied to the

hardware. The use of GLSL as an input language helps with mapping to FPGA technology,

due to similarities between GPUs and FPGAs - both are parallel architectures. Further,

172

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

GLSL is designed to work with vector maths and does not support loop constructs.

8.3 Future work

8.3.1 Hardware accelerated functions

From this research a number of future works are identified. Chapters 3 and 4 present imple-

mentations for a set of mathematical operations. The operations that have been implemented

do not constitute a full library of floating-point functions. The implemented functions should

be expanded upon to cover all known mathematical functions. The performance and re-

source cost for all functions should also be analysed. For a number of functions, for example

logarithms and trigonometric functions, alternative methods may need to be researched to

decrease resource cost and increase throughput. Chapter 3 discussed optimising implementa-

tions for different properties, resource use and performance. It has been shown that a number

of floating-point functions, such as matrix-vector operations, can be created using a repeated

pattern of smaller functional units. Research into developing tools to automate this process

based on a number of parameters, resource cost, issue rate and power consumption, could be

conducted. A complete library would cover all possible optimisations for all implementations.

8.3.2 High level synthesis

The HLS tool presented in Chapter 7 uses the implementations from Chapters 3 and 4.

Completing the library of implemented functions means the HLS tool support can be extended

to cover the complete GLSL function list. Additionally, the library of floating-point functions

will provide a number of latency options that the HLS tool will be able to use when performing

critical path analysis and task scheduling. Further, investigation into HLS support for other

languages and optimisation techniques could be conducted.

8.3.3 Dynamic reconfiguration of FPGAs

8.3.3.1 Context switching and hardware accelerator management

Chapter 6 presented a number of techniques for use in a dynamically reconfigurable envi-

ronment. It has been identified that managing dynamically reconfigurable accelerators is

complex. Further research will implement a full heterogeneous manager that determines

which accelerators are the ‘best’ to implement given current processor tasks, and maximises

performance gain from the FPGA. Context switching methods covered by Chapter 6 pre-

173

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

sented the pre-emptible flip-flop to replace conventional D-type flip-flops. Discussions were

presented for extending this to context switching hard IP blocks. With the aid of FPGA ven-

dors to remove the IP barrier, these methods will be further explored and developed. This

research topic extends to exploring ways to interface the FPGA and processor to minimise

overhead while moving data between the two.

8.3.3.2 On-line synthesis and reconfiguration time

Chapter 6 also discussed methods for on-line compilation and synthesis of hardware acceler-

ator chains. The individual components of this have been implemented and shown working.

Future research will combine all the individual aspects to present the continuous end-to-end

on-line flow, using a next generation FPGA-SoC device. A variety of FPGA architectures

can be developed that will allow coarse grain on-line reconfiguration. This forms the basis

of finer grain on-line reconfiguration. This will require research into methods for decreasing

expensive place and route algorithms. In addition, it has been identified that reconfiguration

times for FPGA-SoC devices are a limiting factor. Methods to decrease reconfiguration time

will be explored with the aid of FPGA vendors.

8.3.3.3 Thermal planning

It was noted in Chapter 2 that thermal planning is critical for ensuring the life time of the

FPGA. The thermal effects of over-using the same areas of a partially dynamically recon-

figurable FPGA architecture should be explored and methods to mitigate these should be

devised.

174

Acknowledgements

First to my family for their love and support throughout my time in education and without

whom I would not be here today.

To Lizzie for all her help in proof reading this Thesis.

To my supervisors Dr. Chris Clarke, Dr. Rob Watson and Dr. Adrian Evans for their support

and supervision throughout this Ph.D. Particular thanks are given to Dr. Rob Watson for

stepping in at the last minute.

To Intel FPGA and NVIDIA who kindly donated hardware for this research.

To the Engineering and Physical Science Research Council (EPSRC) for funding this research

under grant number EP/M50645X/1.

175

References

[1] R. Meghana, “An overview of the 6th generation intel core processor (code-

named skylake),” 2018, [Online]. Available: https://software.intel.com/en-us/articles/

an-overview-of-the-6th-generation-intel-core-processor-code-named-skylake. Accessed:

27/11/2018.

[2] E. K. amd H. Moreton, N. Stam, and B. Bell, “NVIDIA turing ar-

chitecture in-depth,” 2018, [Online]. Available: https://devblogs.nvidia.com/

nvidia-turing-architecture-in-depth/. Accessed: 27/11/2018.

[3] Intel, “Cyclone V FPGAS features,” 2018, [Online]. Available: https://www.intel.

co.uk/content/www/uk/en/products/programmable/fpga/cyclone-v/features.html.

Accessed: 27/11/2018.

[4] Intel, “Intel ark,” 2017, [Online]. Available: http://ark.intel.com/. Accessed:

23/11/2017.

[5] Intel, “The story of the Intel 4004 Intel’s first microprocessor,” [Online]. Available:

https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.

html. Accessed: 23/11/2017.

[6] Intel, “The evolution of a revolution,” [Online]. Available: http://download.intel.com/

pressroom/kits/IntelProcessorHistory.pdf. Accessed: 23/11/2017.

[7] H. Xuejue, L. Wen-Chin, K. Charles, D. Hisamoto, C. Leland, J. Kedzierski, E. An-

derson, H. Takeuchi, C. Yang-Kyu, K. Asano, V. Subramanian, K. Tsu-Jae, J. Bokor,

and H. Chenming, “Sub 50-nm FinFET: PMOS,” in International Electron Devices

Meeting. Technical Digest, 1999, pp. 67–70.

[8] C. Walker and T. Campbell, “Intel completes acquisition of Altera,” Tech.

Rep., 28/12/15 2015, [Online]. Available: http://newsroom.altera.com/press-releases/

nr-intel-acquisition-altera.htm.

176

https://software.intel.com/en-us/articles/an-overview-of-the-6th-generation-intel-core-processor-code-named-skylake
https://software.intel.com/en-us/articles/an-overview-of-the-6th-generation-intel-core-processor-code-named-skylake
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/cyclone-v/features.html
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/cyclone-v/features.html
http://ark.intel.com/
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf
http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf
http://newsroom.altera.com/press-releases/nr-intel-acquisition-altera.htm
http://newsroom.altera.com/press-releases/nr-intel-acquisition-altera.htm

REFERENCES

[9] AMD, “AMD Ryzen desktop processors,” 2018, [Online]. Available: https://www.amd.

com/en/ryzen. Accessed: 08/03/2018.

[10] Intel, “Intel unveils the 8th gen intel core processor family for desktop, featuring intels

best gaming processor ever,” 2017, [Online]. Available: https://newsroom.intel.com/

news-releases/intel-unveils-8th-gen-intel-core-processor-family-desktop/. Accessed:

26/01/2017.

[11] Intel, “8th gen intel core,” 2017, [Online]. Available: https://newsroom.intel.com/

press-kits/8th-gen-intel-core/. Accessed: 26/01/2017.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008, [Online]. Avail-

able: https://bitcoin.org/bitcoin.pdf. Accessed: 23/11/2017.

[13] Ethereum project, “A next-generation smart contract and decentralized applica-

tion platform,” 2017, [Online]. Available: https://github.com/ethereum/wiki/wiki/

White-Paper. Accessed: 23/11/2017.

[14] NVIDIA, “What is GPU computing?” 2017, [Online]. Available: http://www.nvidia.

co.uk/object/cuda-parallel-computing-uk.html. Accessed: 23/11/2017.

[15] Khronos, “OpenCL overview,” 2017, [Online]. Available: https://www.khronos.org/

opencl/. Accessed: 23/11/2017.

[16] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Transactions

on Computers, vol. C-21, no. 9, pp. 948–960, 1972.

[17] Intel, “Hardened floating-point processing in Arria 10 FPGAs and SoCs,” [Online].

Available: https://www.altera.com/products/fpga/features/dsp/arria10-dsp-block.

html. Accessed: 28/02/2018.

[18] G. E. Moore, “Cramming more components onto integrated circuits,” IEEE Solid-State

Circuits Society Newsletter, vol. 11, no. 5, pp. 33–35, 2006, reprinted from Electronics,

volume 38, number 8, April 19, 1965, pp.114 ff.

[19] G. Moore, “Are we really ready for VLSI2?” in IEEE International Solid-State Circuits

Conference. Digest of Technical Papers, vol. XXII, 1979, pp. 54–55.

[20] G. E. Moore, “Lithography and the future of Moore’s law,” IEEE Solid-State Circuits

Society Newsletter, vol. 20, no. 3, pp. 37–42, 2006.

177

https://www.amd.com/en/ryzen
https://www.amd.com/en/ryzen
https://newsroom.intel.com/news-releases/intel-unveils-8th-gen-intel-core-processor-family-desktop/
https://newsroom.intel.com/news-releases/intel-unveils-8th-gen-intel-core-processor-family-desktop/
https://newsroom.intel.com/press-kits/8th-gen-intel-core/
https://newsroom.intel.com/press-kits/8th-gen-intel-core/
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.altera.com/products/fpga/features/dsp/arria10-dsp-block.html
https://www.altera.com/products/fpga/features/dsp/arria10-dsp-block.html

REFERENCES

[21] G. E. Moore, “No exponential is forever: but “forever” can be delayed! [semiconductor

industry],” in IEEE International Solid-State Circuits Conference. Digest of Technical

Papers. ISSCC., 2003, pp. 20–23 vol.1.

[22] P. Matherat, D. Bouteaud, N. Forget, J. Lebrun, and J. P. Moreau, “A high-

performance integrated true graphic processor,” in ESSCIRC: 6th European Solid State

Circuits Conference, 1980, pp. 271–273.

[23] C. K. Liu and C. M. Eastman, “Design of a graphic processor for computer-aided

drafting,” in 19th Design Automation Conference, 1982, pp. 514–520.

[24] I. Nishimura, A. Shonaka, M. Morimoto, M. Asao, H. Mizukami, Y. Ohmari, O. Suzuki,

and S. Yanase, “A color graphic processor for television broadcasting,” IEEE Transac-

tions on Broadcasting, vol. BC-29, no. 4, pp. 127–134, 1983.

[25] P. Geneste and D. Auger, “Real time graphics processor,” in [Proceedings] EURO ASIC

‘90, 1990, pp. 314–316.

[26] Y. Suzuki and L. E. Atlas, “A comparison of processor topologies for a fast train-

able neural network for speech recognition,” in International Conference on Acoustics,

Speech, and Signal Processing, 1989, pp. 2509–2512 vol.4.

[27] R. Ahrons, “Industrial research in microcircuitry at RCA: The early years, 1953-1963,”

IEEE Annals of the History of Computing, vol. 34, no. 1, pp. 60–73, 2012.

[28] T. S. Engine, “1963: Complementary MOS circuit configuration is in-

vented,” [Online]. Available: http://www.computerhistory.org/siliconengine/

complementary-mos-circuit-configuration-is-invented/. Accessed: 30/11/2017.

[29] M. Lapedus, “What’s after CMOS?” 20th Oct 2017 2014.

[30] L. Guo, L. Ye, C. Chen, Q. Huang, L. Yang, Z. Lv, X. An, and R. Huang, “Benchmark-

ing TFET from a circuit level perspective: Applications and guideline,” in Circuits and

Systems (ISCAS), IEEE International Symposium on. IEEE, 2017, pp. 1–4.

[31] E. R. Hsieh, Y. C. Fan, K. Y. Chang, C. H. Chien, and S. S. Chung, “A novel design of P-

N staggered face-tunneling TFET targeting for low power and appropriate performance

applications,” pp. 1–2, 24-27 April 2017 2017.

[32] R. C. Johnson, “FeFET to extend Moore’s law,” 20th Oct. 2017 2015.

178

http://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/
http://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/

REFERENCES

[33] Y. Qin, Y. Xiong, K. Li, and M. Tang, “Simulation of FeFET-based basic logic cir-

cuits and current sense amplifier,” in Solid-State and Integrated Circuit Technology

(ICSICT), 12th IEEE International Conference on. IEEE, 2014, pp. 1–3.

[34] X. Mou, L. F. Register, and S. K. Banerjee, “Interplay among bilayer pseudospin field-

effect transistor (BiSFET) performance, BiSFET scaling and condensate strength,” in

Simulation of Semiconductor Processes and Devices (SISPAD), International Confer-

ence on. IEEE, 2014, pp. 309–312.

[35] X. Mou, L. F. Register, A. H. MacDonald, and S. K. Banerjee, “Bilayer pseudospin

junction transistor (BiSJT) for “beyond-CMOS” logic,” IEEE Transactions on Electron

Devices, vol. PP, no. 99, pp. 1–4, 2017.

[36] H. Xuejue, L. Wen-Chin, C. Kuo, D. Hisamoto, C. Leland, J. Kedzierski, E. Ander-

son, H. Takeuchi, C. Yang-Kyu, K. Asano, V. Subramanian, K. Tsu-Jae, J. Bokor,

and H. Chenming, “Sub-50 nm p-channel FinFET,” IEEE Transactions on Electron

Devices, vol. 48, no. 5, pp. 880–886, 2001.

[37] V. Stojanovi, A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, S. Chen, and K. Asanovi,

“Design-space exploration for CMOS photonic processor networks,” in Conference on

Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engi-

neers Conference, 2010, pp. 1–3.

[38] V. Stojanovi, A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, S. Chen, and K. Asanovi,

“CMOS photonic processor-memory networks,” in IEEE Photonics Society Winter Top-

icals Meeting Series (WTM), 2010, pp. 118–119.

[39] P. K. Shen, C. T. Chen, C. H. Chang, C. Y. Chiu, S. L. Li, C. C. Chang, and M. L.

Wu, “Implementation of chip-level optical interconnect with laser and photodetector

using SOI-based 3-D guided-wave path,” IEEE Photonics Journal, vol. 6, no. 6, pp.

1–10, 2014.

[40] Y. Lin, J. Hao, D. Jianfeng, and Z. Lei, “Silicon optical matrix processor for parallel

computing,” in Progress in Electromagnetic Research Symposium (PIERS), 2016, pp.

791–791.

[41] Q. Vinckier, A. Bouwens, M. Haelterman, and S. Massar, “Autonomous all-photonic

processor based on reservoir computing paradigm,” in Conference on Lasers and

Electro-Optics (CLEO), 2016, pp. 1–2.

179

REFERENCES

[42] Z. Xiao and B. M. Baas, “Processor tile shapes and interconnect topologies for dense on-

chip networks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 22, no. 6, pp. 1377–1390, 2014.

[43] O. F. Yousif, M. H. Salih, R. B. Ahmed, L. A. K. Hasnawi, and R. K. Al-Janabi,

“FPGA based embedded homogenous and hetrogenous multi-processor SoC design: A

review,” in IEEE Conference on Open Systems (ICOS), 2014, pp. 99–104.

[44] R. Soleymanpour, S. Mohammadi, and H. Rajabi, “A synthesis algorithm for cus-

tomized heterogeneous multi-processors,” in International SoC Design Conference

(ISOCC), 2012, pp. 151–154.

[45] S. Sarma and N. Dutt, “Cross-layer exploration of heterogeneous multicore processor

configurations,” in 28th International Conference on VLSI Design, 2015, pp. 147–152.

[46] Z. Xiao and B. Baas, “A hexagonal shaped processor and interconnect topology for

tightly-tiled many-core architecture,” in IEEE/IFIP 20th International Conference on

VLSI and System-on-Chip (VLSI-SoC), 2012, pp. 153–158.

[47] M. Nakajima, T. Yamamoto, M. Yamasaki, K. Kaneko, and T. Hosoki, “Homogenous

dual-processor core with shared L1 cache for mobile multimedia SoC,” in IEEE Sym-

posium on VLSI Circuits, 2007, pp. 216–217.

[48] S. Sarma and N. Dutt, “Cross-layer exploration of heterogeneous multicore processor

configurations,,” in 28th International Conference on VLSI Design, 2015, pp. 147–152.

[49] J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, “A reconfigurable heteroge-

neous multicore with a homogeneous ISA,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2016, pp. 1598–1603.

[50] Y. Ge and Q. Qiu, “Task allocation for minimum system power in a homogenous multi-

core processor,” in International Conference on Green Computing, 2010, pp. 299–306.

[51] P. Xiang, Y. Yang, M. Mantor, N. Rubin, and H. Zhou, “Revisiting ILP designs for

throughput-oriented GPGPU architecture,” in 15th IEEE/ACM International Sympo-

sium on Cluster, Cloud and Grid Computing, 2015, pp. 121–130.

[52] M. P. Wachowiak, M. C. Timson, and D. J. DuVal, “Adaptive particle swarm optimiza-

tion with heterogeneous multicore parallelism and GPU acceleration,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2017.

180

REFERENCES

[53] K. Taek-Jun, J. Sondeen, and J. Draper, “Floating-point division and square root

using a taylor-series expansion algorithm,” in 50th Midwest Symposium on Circuits

and Systems, 2007, pp. 305–308.

[54] W. Liang-Kai and M. J. Schulte, “Decimal floating-point square root using Newton-

Raphson iteration,” in IEEE International Conference on Application-Specific Systems,

Architecture Processors (ASAP), 2005, pp. 309–315.

[55] M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein, “Correctness proofs out-

line for Newton-Raphson based floating-point divide and square root algorithms,” in

Proceedings 14th IEEE Symposium on Computer Arithmetic, 1999, pp. 96–105.

[56] P. Kachhwal and B. C. Rout, “Novel square root algorithm and its FPGA implemen-

tation,” in International Conference on Signal Propagation and Computer Technology

(ICSPCT), 2014, pp. 158–162.

[57] A. Amaricai and O. Boncalo, “FPGA implementation of very high radix square root

with prescaling,” in 19th IEEE International Conference on Electronics, Circuits, and

Systems (ICECS), 2012, pp. 221–224.

[58] A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, and D. Bhattacharjee, “A fast FPGA

based architecture for computation of square root and inverse square root,” in Devices

for Integrated Circuit (DevIC), 2017, pp. 383–387.

[59] L. Yamin and C. Wanming, “A new non-restoring square root algorithm and its VLSI

implementations,” in Proceedings International Conference on Computer Design. VLSI

in Computers and Processors, 1996, pp. 538–544.

[60] R. V. W. Putra and T. Adiono, “A register-free and homogenous architecture for square

root algorithm,” in Computer, Control, Informatics and Its Applications (IC3INA),

International Conference on. IEEE, 2014, pp. 64–68.

[61] R. V. W. Putra, “A novel fixed-point square root algorithm and its digital hardware

design,” in International Conference on ICT for Smart Society, 2013, pp. 1–4.

[62] K. N. Vijeyakumar, V. Sumathy, P. Vasakipriya, and A. D. Babu, “FPGA implemen-

tation of low power high speed square root circuits,” in IEEE International Conference

on Computational Intelligence and Computing Research, 2012, pp. 1–5.

181

REFERENCES

[63] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Transactions

on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, Sept 1959.

[64] J. E. Volder, “The birth of CORDIC,” The Journal of VLSI Signal Processing-Systems

for Signal, Image, and Video Technology, vol. 25, pp. 101–105, June 2000.

[65] R. V. W. Putra and T. Adiono, “Optimized hardware algorithm for integer cube root

calculation and its efficient architecture,” in International Symposium on Intelligent

Signal Processing and Communication Systems (ISPACS), 2015.

[66] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,

A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Y. Xiao, and D. Burger, “A reconfigurable fabric for accelerating large-scale data-

center services,” Micro, IEEE, vol. 35, no. 3, pp. 10–22, 2015.

[67] T. Liu, Q. Wang, X. Wang, and F. Gao, “Pipeline-based parallel framework for mass

file processing,” in International Conference on Cloud and Service Computing, 2013,

pp. 42–48.

[68] B. Shinde and S. T. Singh, “Data parallelism for distributed streaming applications,”

in International Conference on Computing Communication Control and automation

(ICCUBEA), 2016, pp. 1–4.

[69] E. Sitaridi, “Hardware acceleration of database analytics,” in IEEE 33rd International

Conference on Data Engineering (ICDE), 2017, pp. 1616–1616.

[70] S. Suresh, S. F. Beldianu, and S. G. Ziavras, “FPGA and ASIC square root designs

for high performance and power efficiency,” in IEEE 24th International Conference on

Application-Specific Systems, Architectures and Processors, 2013, pp. 269–272.

[71] D. G. Perera and L. Kin Fun, “FPGA-based reconfigurable hardware for compute inten-

sive data mining applications,” in P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC), International Conference on, 2011, pp. 100–108.

[72] G. Hegde, Siddhartha, N. Ramasamy, V. Buddha, and N. Kapre, “Evaluating embedded

FPGA accelerators for deep learning applications,” in IEEE 24th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), 2016, pp.

25–25.

182

REFERENCES

[73] A. M. Lalge, A. Shrivastav, and S. U. Bhandari, “Implementing PSK modems on FPGA

using partial reconfiguration,” in Computing Communication Control and Automation

(ICCUBEA), International Conference on, 2015, pp. 917–921.

[74] S. Mosharafa, G. Ebrahim, and A. Zekry, “A novel algorithm for synchronizing audio

and video streams in MPEG-2 system layer,” pp. 142–147, 2014.

[75] A. C. Bovik, T. S. Huang, and J. Munson, D. C., “A generalization of median filtering

using linear combinations of order statistics,” Acoustics, Speech and Signal Processing,

IEEE Transactions on, vol. 31, no. 6, pp. 1342–1350, 1983.

[76] M. Jahiruzzaman, S. Saha, and M. A. K. Hawlader, “Dynamically reconfigurable par-

allel architecture implementation of 2D convolution for image processing over FPGA,”

in Electrical Engineering and Information Communication Technology (ICEEICT), In-

ternational Conference on, 2015, pp. 1–6.

[77] L. Ye, Y. Qingming, T. Bin, and X. Wencong, “Fast double-parallel image processing

based on FPGA,” in Vehicular Electronics and Safety (ICVES), IEEE International

Conference on, 2011, pp. 97–102.

[78] J. Duan, Y. Deng, and K. Liang, “Development of image processing system based on

DSP and FPGA,” in Electronic Measurement and Instruments, ICEMI. 8th Interna-

tional Conference on, 2007, pp. 2–791–2–794.

[79] T. Q. Pham and L. J. van Vliet, “Separable bilateral filtering for fast video preprocess-

ing,” in Multimedia and Expo, ICME IEEE International Conference on, 2005, p. 4.

[80] H. S. Neoh and A. Hazanchuk, “Adaptive edge detection for real-time video processing

using FPGAs,” Global Signal Processing, vol. 7, no. 3, pp. 2–3, 2004.

[81] L. Goddard and I. Stephenson, “Hardware accelerated shaders using FPGAs,” in

TPCG.

[82] L. Middendorf, F. Mühlbauer, G. Umlauf, and C. Bobda, “Embedded vertex shader in

fpga,” in Embedded System Design: Topics, Techniques and Trends, A. Rettberg, M. C.

Zanella, R. Dömer, A. Gerstlauer, and F. J. Rammig, Eds. Boston, MA: Springer US,

2007, pp. 155–164.

183

REFERENCES

[83] K. Kyungsu, L. Hoosung, C. Seonghyun, and P. Seongmo, “Implementation of 3D

graphics accelerator using full pipeline scheme on FPGA,” in International SoC Design

Conference, vol. 02, 2008, pp. II–97–II–100.

[84] Y. Liu, “A novel mesa-based OpenGL implementation on an FPGA-based embedded

system,” in International Conference on Audio, Language and Image Processing, 2014,

pp. 78–83.

[85] R. T. Gu, T. C. Yeh, W. S. Hunag, T. Y. Huang, C. H. Tsai, C. N. Lee, M. C. Chiang,

S. F. Hsiao, Y. N. Chang, and I. J. Huang, “A low cost tile-based 3D graphics full

pipeline with real-time performance monitoring support for OpenGL ES in consumer

electronics,” in IEEE International Symposium on Consumer Electronics, 2007, pp.

1–6.

[86] L. Middendorf and C. Haubelt, “A novel graphics processor architecture based on

partial stream rewriting,” in Design and Architectures for Signal and Image Processing

(DASIP), Conference on, 2013, pp. 38–45.

[87] TES Electronic Solutions, “D/AVE NX - preliminary product brief,” Tech. Rep., Au-

gust 9th 2016.

[88] Y. Rui, S. Yanmei, H. Kun, and Y. Yang, “Online evolution of image filters based

on dynamic partial reconfiguration of FPGA,” in Natural Computation (ICNC), 11th

International Conference on, 2015, pp. 999–1005.

[89] G. Li, D. Chen, D. Wang, and D. Zhang, “Task clustering and scheduling to mul-

tiprocessors with duplication,” in Proceedings International Parallel and Distributed

Processing Symposium, 2003, p. 8 pp.

[90] R. Ferreira, W. Denver, M. Pereira, S. Wong, C. A. Lisboa, and L. Carro, “A dynamic

modulo scheduling with binary translation: Loop optimization with software compat-

ibility,” Journal of Signal Processing Systems for Signal Image and Video Technology,

vol. 85, no. 1, pp. 45–66, 2016.

[91] A. Prakash, S. K. Lam, C. T. Clarke, and T. Srikanthan, “Instruction set customization

for area-constrained FPGA designs,” in IEEE International SOC Conference, 2011, pp.

329–334.

184

REFERENCES

[92] A. Prakash, C. T. Clarke, and T. Srikanthan, “Custom instructions with local memory

elements without expensive DMA transfers,” in 22nd International Conference on Field

Programmable Logic and Applications (FPL), 2012, pp. 647–650.

[93] A. Prakash, S. K. Lam, T. Srikanthan, and C. T. Clarke, “Modelling communication

overhead for accessing local memories in hardware accelerators,” in IEEE 24th Interna-

tional Conference on Application-Specific Systems, Architectures and Processors, 2013,

pp. 31–34.

[94] X. Di, S. Fazhuang, D. Zhantao, and H. Wei, “A design flow for FPGA partial dynamic

reconfiguration,” in Instrumentation, Measurement, Computer, Communication and

Control (IMCCC), Second International Conference on, 2012, Conference Proceedings,

pp. 119–123.

[95] O. Diessel, “Opportunities and challenges for dynamic FPGA reconfiguration in elec-

tronic measurement and instrumentation,” in IEEE 11th International Conference on

Electronic Measurement & Instruments, vol. 1, 2013, pp. 258–263.

[96] D. Pagano, M. Vuka, M. Rabozzi, R. Cattaneo, D. Sciuto, and M. D. Santambrogio,

“Thermal-aware floorplanning for partially-reconfigurable FPGA-based systems,” in

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pp.

920–923.

[97] T. F. Oliver and D. L. Maskell, “Execution objects for dynamically reconfigurable

FPGA systems,” in Field Programmable Logic and Applications, FPL. International

Conference on, 2006, pp. 1–4.

[98] N. I. Rafla and D. Gauba, “Hardware implementation of context switching for hard real-

time operating systems,” in IEEE 54th International Midwest Symposium on Circuits

and Systems (MWSCAS), 2011, pp. 1–4.

[99] L. Sawalha, M. P. Tull, and R. D. Barnes, “Hardware thread-context switching,” Elec-

tronics Letters, vol. 49, no. 6, pp. 389–391, 2013.

[100] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker, “Characterizing and modeling the be-

havior of context switch misses!” in International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2008, pp. 91–101.

185

REFERENCES

[101] Z. Lin, L. Nyland, and H. Zhou, “Enabling efficient preemption for SIMT architec-

tures with lightweight context switching,” in SC16: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2016, pp. 898–908.

[102] D. G. Perera and L. Kin Fun, “Similarity computation using reconfigurable embedded

hardware,” in Dependable, Autonomic and Secure Computing, DASC. Eighth IEEE

International Conference on, 2009, pp. 323–329.

[103] U. Langenbach, S. Wiehler, and E. Schubert, “Evaluation of a declarative linux kernel

FPGA manager for dynamic partial reconfiguration,” in International Conference on

FPGA Reconfiguration for General-Purpose Computing (FPGA4GPC), 2017, pp. 13–

18.

[104] E. Cetin, O. Diessel, G. Lingkan, and V. Lai, “Towards bounded error recovery time

in FPGA-based TMR circuits using dynamic partial reconfiguration,” in Field Pro-

grammable Logic and Applications (FPL), 23rd International Conference on, 2013, pp.

1–4.

[105] A. L. Silva, M. C. Lorencena, R. Ribeiro, M. A. C. Barbosa, and M. Teixeira, “Supervi-

sory control of multiple robots subject to context switching,” in 12th IEEE International

Conference on Industry Applications (INDUSCON), 2016, pp. 1–7.

[106] Y. Dong, J. Mao, H. Guan, J. Li, and Y. Chen, “A virtualization solution for BYOD

with dynamic platform context switching,” IEEE Micro, vol. 35, no. 1, pp. 34–43, 2015.

[107] K. T. Durkee, C. Shabarekh, C. Jackson, and G. Ganberg, “Flexible autonomous sup-

port to aid context and task switching,” in IEEE International Multi-Disciplinary Con-

ference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA),

2011, pp. 204–207.

[108] E. Chalmers, E. B. Contreras, B. Robertson, A. Luczak, and A. Gruber, “Context-

switching and adaptation: Brain-inspired mechanisms for handling environmental

changes,” in 2016 International Joint Conference on Neural Networks (IJCNN), 2016,

pp. 3522–3529.

[109] M. Feilen, A. Iliopoulos, M. Ihmig, and W. Stechele, “Partitioning and context switch-

ing for a reconfigurable FPGA-based DAB receiver,” in Proceedings of the Conference

on Design and Architectures for Signal and Image Processing, Conference Proceedings,

pp. 1–8.

186

REFERENCES

[110] L. Santiago, L. A. J. Marzulo, A. C. Sena, T. A. O. Alves, and F. M. G. Frana,

“Optimising loops in dynamic dataflow,” IET Circuits, Devices & Systems, vol. 11,

no. 2, pp. 113–122, 2017.

[111] T. Loke and J. B. Wang, “OptQC v1.3: An (updated) optimized parallel quantum

compiler,” Computer Physics Communications, vol. 207, pp. 531–532, 2016.

[112] S. Im and D. Shin, “OpenGL ESSL optimizing compiler for embedded 3D graphic

processor,” in The 1st IEEE Global Conference on Consumer Electronics, 2012, pp.

724–725.

[113] M. Mukherjee, A. Fell, and A. Guha, “DFGenTool: A dataflow graph generation tool

for coarse grain reconfigurable architectures,” in 30th International Conference on VLSI

Design and 16th International Conference on Embedded Systems (VLSID), 2017, pp.

67–72.

[114] M. Ping, Z. Zhongyuan, S. Weiguang, and H. Weifeng, “An automatic parallelizer for

coarse-grained reconfigurable processor,” in 13th IEEE International Conference on

Solid-State and Integrated Circuit Technology (ICSICT), 2016, pp. 215–217.

[115] Y. Yankova, K. Bertels, S. Vassiliadis, R. Meeuws, and A. Virginia, “Automated HDL

generation: Comparative evaluation,” in IEEE International Symposium on Circuits

and Systems, 2007, pp. 2750–2753.

[116] K. Bertels, G. Kuzmanov, E. M. Panainte, G. Gaydadjiev, Y. Yankova, V. M. Sima,

K. Sigdel, R. Meeuws, and S. Vassiliadis, “Hartes toolchain early evaluation: Pro-

filing, compilation and HDL generation,” in 2007 International Conference on Field

Programmable Logic and Applications, 2007, pp. 402–408.

[117] L. Middendorf, C. Bobda, and C. Haubelt, “Hardware synthesis of recursive func-

tions through partial stream rewriting,” in Design Automation Conference (DAC),

49th ACM/EDAC/IEEE, 2012, pp. 1203–1211.

[118] Y. Kobayashi, S. Kobayashi, K. Okuda, K. Sakanushi, Y. Takeuchi, and M. Imai,

“Synthesizable HDL generation method for configurable VLIW processors,” in ASP-

DAC: Asia and South Pacific Design Automation Conference, 2004, pp. 843–846.

187

REFERENCES

[119] M. Lattuada, F. Ferrandi, and M. Perrotin, “Computer assisted design and integration

of FPGA accelerators in aerospace systems,” in IEEE Aerospace Conference, 2016, pp.

1–11.

[120] “taste,” [Online]. Available: http://taste.tuxfamily.org/. Accessed: 06/03/2018.

[121] P. Team, “Bambu: A free framework for the high-level synthesis of complex applica-

tions,” 2017, [Online]. Available: https://panda.dei.polimi.it/?page id=31. Accessed:

31/10/2017.

[122] A. Romanov, M. Romanov, and A. Kharchenko, “FPGA-based control system reconfig-

uration using open source software,” in IEEE Conference of Russian Young Researchers

in Electrical and Electronic Engineering (EIConRus), 2017, pp. 976–981.

[123] G. M. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 3,

pp. 19–20, 2007, reprinted from the AFIPS Conference Proceedings, Vol. 30, 1967.

[124] G. A. Constantinides, “Massively parallel numerical computation on FPGAs,” in 2007

Institution of Engineering and Technology FPGA Developers’ Forum, Oct 2007, pp.

1–14.

[125] Xilinx, “Floating-point operator v7.1,” 2018, [Online]. Available: https:

//www.xilinx.com/support/documentation/ip documentation/floating point/v7 1/

pg060-floating-point.pdf. Accessed: 22/11/2018.

[126] Intel, “Floating-point IP cores user guide,” 2018, [Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/

ug/ug altfp mfug.pdf. Accessed: 22/11/2018.

[127] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,”

IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18–27, Jul. 2011.

[128] X. Fang and M. Lesser, “Open-source variable-precision floating-point library for major

commercial FPGAs,” ACM Transactions on Reconfigurable Technology and Systems,

vol. 9, no. 3, pp. 1–17, July 2016.

[129] M. B. Kraeling, “Fixed-point math in time-critical C applications,” in WESCON96,

1996, pp. 587–593.

188

http://taste.tuxfamily.org/
https://panda.dei.polimi.it/?page_id=31
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf

REFERENCES

[130] F. A. Nothaft, L. Fernandez, S. Cefali, N. Shah, J. Rael, and L. Darnell, “Pragma-based

floating-to-fixed point conversion for the emulation of analog behavioral models,” in

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2014, pp.

633–640.

[131] L. Gerlach, G. Pay-Vay, and H. Blume, “Efficient emulation of floating-point arithmetic

on fixed-point SIMD processors,” in IEEE International Workshop on Signal Processing

Systems (SiPS). IEEE, 2016, pp. 254–259.

[132] E. Manikandan, K. A. Karthigeyan, and K. I. A. James, “Design of parallel vector/s-

calar floating point co-processor for reconfigurable architecture,” in Computing, Elec-

tronics and Electrical Technologies (ICCEET), International Conference on, 2012, pp.

841–845.

[133] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70, 2008.

[134] Altera, “FPGA architecture,” Report, 2006, [Online]. Available: https://www.altera.

com/en US/pdfs/literature/wp/wp-01003.pdf. Accessed: 13/03/2018.

[135] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. C. Lim, “Reduced latency IEEE

floating-point standard adder architectures,” in Proceedings 14th IEEE Symposium on

Computer Arithmetic (Cat. No.99CB36336), April 1999, pp. 35–42.

[136] A. Malik and S. Ko, “A study on the floating-point adder in FPGAs,” in 2006 Canadian

Conference on Electrical and Computer Engineering, May 2006, pp. 86–89.

[137] S. Veeramachaneni and M. B. Srinivas, “Floating point adder/subtractor units real-

ization by efficient arithmetic circuits,” in 2015 11th Conference on Ph.D. Research in

Microelectronics and Electronics (PRIME), June 2015, pp. 244–246.

[138] S. Palekar and N. Narkhede, “High speed and area efficient single precision floating

point arithmetic unit,” in 2016 IEEE International Conference on Recent Trends in

Electronics, Information Communication Technology (RTEICT), May 2016, pp. 1950–

1954.

[139] P. Chatarasi, J. Shirako, and V. Sarkar, “Polyhedral optimizations of explicitly parallel

programs,” in 2015 International Conference on Parallel Architecture and Compilation

(PACT), Oct 2015, pp. 213–226.

189

https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf

REFERENCES

[140] M. Lu, J.-L. Wang, J. Wen, and X.-W. Dong, “Implementation of hodgkin-huxley

neuron model in FPGAs,” in 2016 Asia-Pacific International Symposium on Electro-

magnetic Compatibility (APEMC), vol. 01, May 2016, pp. 1115–1117.

[141] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R. Alvarez-Icaza,

P. Datta, J. Sawada, T. M. Wong, V. Feldman, A. Amir, D. B. D. Rubin, F. Akopyan,

E. McQuinn, W. P. Risk, and D. S. Modha, “Cognitive computing building block: A

versatile and efficient digital neuron model for neurosynaptic cores,” in International

Joint Conference on Neural Networks (IJCNN), 2013, pp. 1–10.

[142] A. Banerjee, P. T. Wolkotte, R. D. Mullins, S. W. Moore, and G. J. M. Smit, “An energy

and performance exploration of network-on-chip architectures,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 17, no. 3, pp. 319–329, March 2009.

[143] B. Land, “Simplified floating point for DSP,” 2018, [Online]. Available: people.ece.

cornell.edu/land/courses/ece5760/FloatingPoint/index.html. Accessed: 27/11/2018.

[144] Intel, “Floating-point IP cores user guide,” 2015, [Online]. Available:

https://www.altera.com/en US/pdfs/literature/ug/archives/ug-altfp-mfug-15.0.pdf.

Accessed: 06/02/2018.

[145] Sun Microsystems, “e exp.c,” 2004, [Online]. Available: http://www.netlib.org/fdlibm/

e exp.c. Accessed: 30/11/2017.

[146] W. A. Catterall, I. M. Raman, H. P. C. Robinson, T. J. Sejnowski, and O. Paulsen,

“The Hodgkin-Huxley heritage: from channels to circuits.” The Journal of neuroscience

: the official journal of the Society for Neuroscience, vol. 32, no. 41, pp. 14 064–73, 2012.

[147] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural

Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[148] Y. LeCun, C. Cortes, and C. J. Burge, “The MNIST database of handwritten digits,”

[Online]. Available: http://yann.lecun.com/exdb/mnist/. Accessed: 23/11/2017.

[149] R. R. Osorio, “Pipelined FPGA implementation of numerical integration of the

Hodgkin-Huxley model,” in IEEE 27th International Conference on Application-specific

Systems, Architectures and Processors (ASAP), 2016, pp. 202–206.

190

people.ece.cornell.edu/land/courses/ece5760/FloatingPoint/index.html
people.ece.cornell.edu/land/courses/ece5760/FloatingPoint/index.html
https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-altfp-mfug-15.0.pdf
http://www.netlib.org/fdlibm/e_exp.c
http://www.netlib.org/fdlibm/e_exp.c
http://yann.lecun.com/exdb/mnist/

REFERENCES

[150] APT Advanced Processor Technologies Research Group, “SpiNNaker home page,”

2017, [Online]. Available: http://apt.cs.manchester.ac.uk/projects/SpiNNaker/. Ac-

cessed: 23/11/2017.

[151] A. E. Hindborg, P. Schleuniger, N. B. Jensen, and S. Karlsson, “Hardware realization

of an FPGA processor - operating system call offload and experiences,” in Proceedings

of the 2014 Conference on Design and Architectures for Signal and Image Processing,

2014, pp. 1–8.

[152] A. Jafari, M. Ghovanloo, and T. Mohsenin, “A real-time embedded FPGA processor

for a stand-alone dual-mode assistive device,” pp. 199–199, 2017.

[153] V. Brost, C. Meunier, D. Saptono, and F. Yang, “Flexible VLIW processor based on

FPGA for real-time image processing,” in Proceedings of the Conference on Design &

Architectures for Signal & Image Processing (DASIP), 2011, pp. 1–8.

[154] C. Zima-Zegreanu, “Crash course in HLSL,” p. A brief overview of HLSL, [On-

line]. Available: http://www.catalinzima.com/xna/tutorials/crash-course-in-hlsl/. Ac-

cessed: 10/03/2016.

[155] Intel, “Cyclone V FPGAs & SoCs,” 2016, [Online]. Available: https://www.altera.

com/products/fpga/cyclone-series/cyclone-v/overview.html. Accessed: 19/01/2016.

[156] S. Craitoiu, J. Popa, R. Postolache, and M. Krieger, “in2gpu,” 2018, [Online]. Available:

http://in2gpu.com/. Accessed: 17/03/2018.

[157] W. Tao, C. Chang Wen, and W. Changhu, “Barycentric coordinates based soft as-

signment for object classification,” in IEEE International Conference on Multimedia &

Expo Workshops (ICMEW), 2016, pp. 1–6.

[158] G. Sellers, R. S. Wright Jr, and N. Haemel, OpenGL SuperBible, 7th ed. Addison-

Wesley, 2016.

[159] A. L. Petrescu, F. Moldoveanu, V. Asavei, and A. Moldoveanu, “Virtual deferred ren-

dering,” in 20th International Conference on Control Systems and Computer Science,

2015, pp. 373–378.

[160] S. Schneegans, F. Lauer, A. C. Bernstein, A. Schollmeyer, and B. Froehlich, “Gua-

camole - an extensible scene graph and rendering framework based on deferred shad-

191

http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://www.catalinzima.com/xna/tutorials/crash-course-in-hlsl/
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
http://in2gpu.com/

REFERENCES

ing,” in IEEE 7th Workshop on Software Engineering and Architectures for Realtime

Interactive Systems (SEARIS), 2014, pp. 35–42.

[161] NVIDIA, “TEGRA,” 2017, [Online]. Available: http://www.nvidia.com/object/

tegra-k1-processor.html. Accessed: 26/01/2017.

[162] Intel, “Cyclone V SoCs: Lowest system cost and power,” 2017, [Online]. Avail-

able: https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html.

Accessed: 26/01/2017.

[163] ARM, “Mali-400 ultra low power GPU,” 2017, [Online]. Available: https://

developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-400-gpu. Ac-

cessed: 30/06/2017.

[164] K. C. Kwan, X. Xu, L. Wan, T. T. Wong, and W. M. Pang, “Packing vertex data into

hardware-decompressible textures,” IEEE Transactions on Visualization and Computer

Graphics, vol. PP, no. 99, pp. 1–1, 2018.

[165] NVIDIA, “NVIDIA home,” 2016, [Online]. Available: http://www.nvidia.co.uk/page/

home.html.

[166] M. Butts, “Future directions of dynamically reprogrammable systems,” in Proceedings

of the IEEE 1995 Custom Integrated Circuits Conference, May 1995, pp. 487–494.

[167] N. McKay, T. Melham, and K. W. Susanto, “Dynamic specialisation of XC6200 FP-

GAs by partial evaluation,” in Proceedings. IEEE Symposium on FPGAs for Custom

Computing Machines (Cat. No.98TB100251), April 1998, pp. 308–309.

[168] C.-F. Wu and C.-W. Wu, “Testing interconnects of dynamic reconfigurable FPGAs,” in

Proceedings of the ASP-DAC ’99 Asia and South Pacific Design Automation Conference

1999 (Cat. No.99EX198), Jan 1999, pp. 279–282 vol.1.

[169] H. Kwok-Hay So, “Dynamic reconfiguration of Xilinx FPGAs,” 2006, [Online]. Avail-

able: https://www.xilinx.com/univ/FPL06 Invited Presentation PLysaght.pdf. Ac-

cessed: 30/11/2017.

[170] Altera, “Increasing design functionality with partial and dynamic re-

configuration in 28-nm FPGAs,” 2010, [Online]. Available: https://

www.altera.com/content/dam/altera-www/global/en US/pdfs/literature/wp/

wp-01137-stxv-dynamic-partial-reconfig.pdf. Accessed: 30/11/2017.

192

http://www.nvidia.com/object/tegra-k1-processor.html
http://www.nvidia.com/object/tegra-k1-processor.html
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-400-gpu
https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-400-gpu
http://www.nvidia.co.uk/page/home.html
http://www.nvidia.co.uk/page/home.html
https://www.xilinx.com/univ/FPL06_Invited_Presentation_PLysaght.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01137-stxv-dynamic-partial-reconfig.pdf

REFERENCES

[171] VLSI n EDA, “Synchronizers,” 2018, [Online]. Available: http://vlsiuniverse.blogspot.

co.uk/2013/09/synchronization-schemes.html. Accessed: 19/03/2018.

[172] A. Bourge, O. Muller, and F. Rousseau, “Automatic high-level hardware checkpoint

selection for reconfigurable systems,” in 2015 IEEE 23rd Annual International Sympo-

sium on Field-Programmable Custom Computing Machines, May 2015, pp. 155–158.

[173] A. Beasley, L. Walker, and C. Clarke, “Developing and implementing dynamic partial

reconfiguration for pre-emptible context switching and continuous end-to-end dataflow

applications,” pp. 1–10, Nov. 2015.

[174] M. X. Yue, D. Koch, and G. G. F. Lemieux, “Rapid overlay builder for xilinx FPGAs,”

in 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom

Computing Machines, May 2015, pp. 17–20.

[175] Y. Wu and J. McAllister, “Architectural synthesis of multi-SIMD dataflow accelerators

for FPGA,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 1, pp.

43–55, 2018.

[176] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown,

F. Ferrandi, J. Anderson, and K. Bertels, “A survey and evaluation of FPGA high-level

synthesis tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 35, no. 10, pp. 1591–1604, 2016.

[177] A. Canis, “LegUp high-level synthesis,” 2017, [Online]. Available: http://legup.eecg.

utoronto.ca/. Accessed: 31/10/2017.

[178] Xilinx, “Vivado high-level synthesis,” 2017, [Online]. Available: https://www..com/

products/design-tools/vivado/integration/esl-design.html. Accessed: 31/10/2017.

[179] Intel, “What is OpenCL?” 2017, [Online]. Available: https://www.altera.com/

products/design-software/embedded-software-developers/opencl/overview.html. Ac-

cessed: 31/10/2017.

[180] Mentor, “Handel-C synthesis methodology,” [Online]. Available: https://www.mentor.

com/products/fpga/handel-c/. Accessed: 27/04/2017.

[181] Impulse, “Optimize your FPGA applications,” 2017, [Online]. Available: http://www.

impulsec.com/. Accessed: 27/04/2017.

193

http://vlsiuniverse.blogspot.co.uk/2013/09/synchronization-schemes.html
http://vlsiuniverse.blogspot.co.uk/2013/09/synchronization-schemes.html
http://legup.eecg.utoronto.ca/
http://legup.eecg.utoronto.ca/
https://www. .com/products/design-tools/vivado/integration/esl-design.html
https://www. .com/products/design-tools/vivado/integration/esl-design.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.mentor.com/products/fpga/handel-c/
https://www.mentor.com/products/fpga/handel-c/
http://www.impulsec.com/
http://www.impulsec.com/

REFERENCES

[182] Mentor, “High-level synthesis and RTL low-power,” [Online]. Available:

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls. Ac-

cessed: 27/04/2017.

[183] J. a. M. P. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for reconfigurable

computing: A survey,” ACM Comput. Surv., vol. 42, no. 4, pp. 13:1–13:65, Jun. 2010.

[Online]. Available: http://doi.acm.org/10.1145/1749603.1749604

[184] Intel, “Spectra-Q engine,” 2015, [Online]. Available: https://www.altera.

com/content/dam/altera-www/global/en US/pdfs/literature/backgrounder/

spectra-q-engine-backgrounder.pdf. Accessed: 30/11/2017.

[185] A. D. Brown, D. J. D. Milton, A. J. Rushton, and P. R. Wilson, “Behavioural synthesis

utilising recursive definitions,” IET Computers & Digital Techniques, vol. 6, no. 6, pp.

362–369, 2012.

[186] D. J. D. Milton, A. D. Brown, M. Zwolinski, and P. R. Wilson, “Behavioural synthesis

utilising dynamic memory construct,” in IEE Proceedings - Computers and Digital

Techniques, vol. 151. IET, 2004, pp. 252–264.

194

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls
http://doi.acm.org/10.1145/1749603.1749604
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/spectra-q-engine-backgrounder.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/spectra-q-engine-backgrounder.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/backgrounder/spectra-q-engine-backgrounder.pdf

Appendices

195

Appendix A

Resource use and performance for

single and half precision

implementations of floating point

maths in hardware

A.1 Fundemental operators

Table A.1: Resource requirements and timing analysis for simple maths functions that do
not require other functions to implement. Implementations are using single-precision floating-
point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Add/Subtract
499.0

(499.0)
712.0

(712.0)
216.5 (216.5) 3.5 (3.5) 561 (561) 1138 (1138) 0 162.15 155.38

Multiply
115.0

(115.0)
149.0

(149.0)
34.0 (34.0) 0.0 (0.0) 177 (177) 265 (265) 1 196.43 189.57

Multiply with
no DSP

318.0
(85.5)

356.0
(136.1)

61.5 (58.1) 23.5 (7.5) 586 (113) 265 (265) 0 108.57 106.33

Greater than 57.5 (57.5) 66.0 (66.0) 8.5 (8.5) 0.0 (0.0) 98 (98) 98 (98) 0 214.73 214.22

Less than 58.5 (58.5) 64.0 (64.0) 5.5 (5.5) 0.0 (0.0) 98 (98) 98 (98) 0 209.86 210.93

Float to integer
102.0

(102.0)
119.0

(119.0)
17.0 (17.0) 0.0 (0.0) 136 (136) 133 (133) 0 230.79 232.99

Integer to float
156.0

(156.0)
182.0

(182.0)
26.0 (26.0) 0.0 (0.0) 246 (246) 171 (171) 0 137.19 131.93

196

APPENDIX A. RESOURCE USE AND PERFORMANCE FOR SINGLE AND HALF PRECISION
IMPLEMENTATIONS OF FLOATING POINT MATHS IN HARDWARE

Table A.2: Resource requirements and timing analysis for simple maths functions that do not
require other functions to implement. Implementations are using half-precision floating-point
accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Add/Subtract
255.0

(255.0)
364.0

(364.0)
109.0 (109.0) 0.0 (0.0) 285 (285) 588 (588) 0 243.31 246.73

Multiply 62.0 (62.0) 84.0 (84.0) 22.0 (22.0) 0.0 (0.0) 97 (97) 137 (137) 1 212.95 205.89

Multiply with
no DSP

111.5
(61.2)

140.0 (88.9) 29.0 (28.1) 0.5 (0.3) 215 (99) 137 (137) 0 164.72 158.81

Greater than 32.5 (32.5) 33.5 (33.5) 1.0 (1.0) 0.0 (0.0) 56 (56) 50 (50) 0 265.46 261.71

Less than 33.5 (33.5) 34.5 (34.5) 1.0 (1.0) 0.0 (0.0) 56 (56) 50 (50) 0 248.76 245.1

Float to integer 45.5 (45.5) 56.5 (56.5) 11.0 (11.0) 0.0 (0.0) 69 (69) 69 (69) 0 353.98 353.36

Integer to float 67.0 (67.0) 86.0 (86.0) 19.0 (19.0) 0.0 (0.0) 110 (110) 90 (90) 0 268.17 259.88

197

APPENDIX A. RESOURCE USE AND PERFORMANCE FOR SINGLE AND HALF PRECISION
IMPLEMENTATIONS OF FLOATING POINT MATHS IN HARDWARE

A.2 Iterative operations

Table A.3: Resource requirements and timing analysis for hardware friendly implemenata-
tions of a floating point square root operation. Implementations are using single-precision
floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Traditional
without
pipeline

162.0
(162.0)

191.0
(191.0)

29.0 (29.0) 0.0 (0.0) 237 (237) 309 (309) 0 202.27 207.47

Traditional
with pipeline

1142.5
(1142.5)

1801.0
(1801.0)

716.0 (716.0) 57.5 (57.5) 566 (566) 3769 (3769) 0 259.74 260.28

Proposed new
design without

pipeline

238.5
(238.5)

293.5
(293.5)

55.5 (55.5) 0.5 (0.5) 336 (336) 452 (452) 0 174.16 178.25

Proposed new
design with

pipeline

3584.5
(3584.5)

5719.0
(5719.0)

2355.5
(2355.5)

221.0 (221.0) 1913 (1913)
11564

(11564)
0 189.68 194.1

Table A.4: Resource requirements and timing analysis for hardware friendly implemenata-
tions of a floating-point square-root operation. Implementations are using half-precision
floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Traditional
without
pipeline

79.5 (79.5) 92.5 (92.5) 13.0 (13.0) 0.0 (0.0) 123 (123) 153 (153) 0 288.02 290.36

Traditional
with pipeline

250.5
(250.5)

413.5
(413.5)

164.5 (164.5) 1.5 (1.5) 167 (167) 836 (836) 0 410.34 407.5

Proposed new
design without

pipeline

127.0
(127.0)

169.0
(169.0)

42.0 (42.0) 0.0 (0.0) 182 (182) 232 (232) 0 211.6 214.0

Proposed new
design with

pipeline

727.5
(727.5)

1230.5
(1230.5)

504.0 (504.0) 1.0 (1.0) 477 (477) 2465 (2465) 0 235.79 236.52

198

APPENDIX A. RESOURCE USE AND PERFORMANCE FOR SINGLE AND HALF PRECISION
IMPLEMENTATIONS OF FLOATING POINT MATHS IN HARDWARE

Table A.5: Resource requirements and timing analysis for floating-point invert and division
operations using recursive a Newton Raphson approach to different numbers of iterations.
Implementations are using single-precision floating-point accuracy.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Newton-Raphson
inversion

1
1577.0
(146.2)

2358.5
(175.4)

783.5 (29.2) 2.0 (0.0) 1571 (180) 4123 (133) 2 156.81 152.84

Newton-Raphson
inversion

2
2562.0
(192.3)

3806.5
(231.7)

1246.5 (39.4) 2.0 (0.0) 2528 (254) 6719 (133) 4 159.69 153.63

Newton-Raphson
inversion

3
3518.5
(227.1)

5196.5
(279.1)

1685.5 (51.9) 7.5 (0.0) 3463 (329) 9315 (133) 6 161.66 155.01

Newton-Raphson
inversion

4
4499.0
(285.5)

6642.5
(331.8)

2150.0 (46.3) 6.5 (0.0) 4398 (404) 11911 (133) 8 163.05 156.32

Newton-Raphson
inversion

5
5463.0
(340.1)

8092.5
(388.1)

2637.0 (48.0) 7.5 (0.0) 5333 (479) 14507 (133) 10 159.21 153.14

Newton-Raphson
inversion

6
6446.0
(396.7)

9564.0
(445.9)

3133.5 (49.2) 15.5 (0.0) 6268 (554) 17103 (133) 12 155.45 149.97

Newton-Raphson
inversion

7
7391.0
(441.5)

10988.0
(484.6)

3606.0 (43.1) 9.0 (0.0) 7203 (629) 19699 (133) 14 157.85 151.22

Newton-Raphson
inversion

8
8315.0
(492.5)

12448.5
(539.8)

4144.0 (47.3) 10.5 (0.0) 8138 (704) 22295 (133) 16 161.84 154.73

Newton-Raphson
inversion

9
9319.5
(529.6)

13823.0
(597.1)

4519.0 (67.5) 15.5 (0.0) 9073 (779) 24891 (133) 18 157.78 152.07

Newton-Raphson
inversion

10
10283.5
(553.2)

15176.0
(618.5)

4904.5 (65.3) 12.0 (0.0) 10008 (854) 27487 (133) 20 157.58 150.81

Division 1
1928.0
(100.3)

2883.5
(106.0)

961.5 (5.7) 6.0 (0.0) 1764 (152) 5303 (0) 3 156.25 152.79

Division 2
3052.5
(153.3)

4618.0
(155.0)

1572.0 (1.7) 6.5 (0.0) 2755 (226) 8427 (0) 5 158.45 158.98

Division 3
4165.5
(199.7)

6303.0
(213.3)

2149.0 (13.7) 11.5 (0.0) 3722 (301) 11551 (0) 7 162.65 155.26

Division 4
5263.0
(250.5)

7935.0
(264.5)

2678.0 (14.0) 6.0 (0.0) 4689 (376) 14675 (0) 9 159.95 152.98

Division 5
6382.5
(304.2)

9637.0
(315.3)

3265.5 (11.1) 11.0 (0.0) 5652 (451) 17799 (0) 11 158.28 153.87

Division 6
7490.0
(353.2)

11382.0
(369.7)

3912.5 (16.5) 20.5 (0.0) 6623 (526) 20923 (0) 13 159.82 153.68

Division 7
8603.5
(403.4)

13099.0
(424.0)

4514.5 (20.7) 19.0 (0.0) 7590 (601) 24047 (0) 15 161.37 154.63

Division 8
9693.0
(453.2)

14727.0
(473.3)

5048.0 (20.2) 14.0 (0.0) 8557 (676) 27171 (0) 17 155.47 150.76

Division 9
10795.0
(505.0)

16408.5
(517.7)

5642.5 (12.7) 29.0 (0.0) 9524 (751) 30295 (0) 19 163.11 156.79

Division 10
11925.5
(555.6)

18000.5
(571.7)

6098.5 (16.1) 23.5 (0.0) 10492 (826) 33419 (0) 21 158.18 151.68

199

APPENDIX A. RESOURCE USE AND PERFORMANCE FOR SINGLE AND HALF PRECISION
IMPLEMENTATIONS OF FLOATING POINT MATHS IN HARDWARE

Table A.6: Resource requirements and timing analysis for floating-point invert and division
operations using recursive a Newton-Raphson approach to different numbers of iterations.
Implementations are using half-precision floating-point accuracy.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Newton-Raphson
inversion

1
837.5
(57.2)

1200.5
(66.3)

364.5 (9.1) 1.5 (0.0) 862 (67) 2127 (69) 2 207.77 201.78

Newton-Raphson
inversion

2
1356.5
(74.8)

1946.5
(86.7)

596.0 (11.8) 6.0 (0.0) 1388 (91) 3469 (69) 4 195.85 190.11

Newton-Raphson
inversion

3
1868.5
(89.7)

2696.0
(100.3)

840.0 (10.7) 12.5 (0.0) 1915 (115) 4811 (69) 6 193.57 187.69

Newton-Raphson
inversion

4
2364.0
(109.8)

3428.5
(134.0)

1076.0 (24.2) 11.5 (0.0) 2351 (146) 6153 (69) 8 193.42 196.0

Newton-Raphson
inversion

5
2884.0
(130.7)

4139.0
(150.2)

1269.0 (19.5) 14.0 (0.0) 2858 (171) 7495 (69) 10 198.65 198.49

Newton-Raphson
inversion

6
3398.0
(148.4)

4911.0
(172.4)

1528.5 (24.0) 15.5 (0.0) 3365 (196) 8837 (69) 12 203.96 197.55

Newton-Raphson
inversion

7
3901.5
(161.0)

5601.5
(192.6)

1702.0 (31.6) 2.0 (0.0) 3872 (221) 10179 (69) 14 201.01 201.21

Newton-Raphson
inversion

8
4416.0
(185.7)

6427.0
(202.9)

2019.0 (17.2) 8.0 (0.0) 4379 (246) 11521 (69) 16 203.0 196.7

Newton-Raphson
inversion

9
4942.0
(204.2)

7147.0
(222.6)

2223.0 (18.3) 18.0 (0.0) 4886 (271) 12863 (69) 18 201.9 199.28

Newton-Raphson
inversion

10
5433.5
(223.4)

7829.5
(242.4)

2415.5 (19.0) 19.5 (0.0) 5393 (296) 14205 (69) 20 196.7 191.46

Division 1
1020.5
(33.8)

1492.5
(35.3)

473.0 (1.5) 1.0 (0.0) 998 (48) 2731 (0) 3 193.91 194.33

Division 2
1624.0
(49.6)

2369.5
(52.8)

748.5 (3.2) 3.0 (0.0) 1555 (72) 4345 (0) 5 200.12 200.32

Division 3
2210.0
(74.6)

3211.0
(75.8)

1010.0 (1.3) 9.0 (0.0) 2041 (102) 5959 (0) 7 201.05 200.92

Division 4
2808.5
(91.3)

4108.0
(91.8)

1307.5 (0.4) 8.0 (0.0) 2580 (127) 7573 (0) 9 203.21 196.93

Division 5
3397.0
(107.5)

4966.5
(111.7)

1585.0 (4.2) 15.5 (0.0) 3119 (152) 9187 (0) 11 200.92 195.05

Division 6
3974.5
(125.3)

5844.0
(132.0)

1880.5 (6.7) 11.0 (0.0) 3658 (177) 10801 (0) 13 193.61 188.36

Division 7
4580.0
(143.2)

6702.5
(150.3)

2157.0 (7.2) 34.5 (0.0) 4197 (202) 12415 (0) 15 193.76 188.57

Division 8
5180.0
(161.3)

7608.5
(168.7)

2454.0 (7.3) 25.5 (0.0) 4736 (227) 14029 (0) 17 191.2 191.31

Division 9
5795.5
(182.8)

8468.5
(188.3)

2709.0 (5.5) 36.0 (0.0) 5275 (252) 15643 (0) 19 193.09 186.74

Division 10
6366.5
(199.3)

9353.0
(203.8)

3005.0 (4.5) 18.5 (0.0) 5814 (277) 17257 (0) 21 199.44 197.28

200

APPENDIX A. RESOURCE USE AND PERFORMANCE FOR SINGLE AND HALF PRECISION
IMPLEMENTATIONS OF FLOATING POINT MATHS IN HARDWARE

A.3 Vector and matrix operators

Table A.7: Resource requirements and timing analysis for floating-point matrix and vec-
tor operations commonly performed by a GPU. Implementations are using single-precision
floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Normalise
6524.5
(265.3)

10130.5
(327.6)

3828.0 (68.6) 222.0 (6.3) 4976 (349) 19034 (292) 6 156.91 150.6

Dot
product

913.5
(119.7)

1251.5
(143.0)

349.5 (29.7) 11.5 (6.3) 1121 (165) 2066 (133) 3 163.24 159.01

Vector
Length

4417.0
(114.6)

6919.0
(126.7)

2673.0 (15.3) 171.0 (3.2) 3014 (161) 13473 (102) 3 156.64 158.53

Table A.8: Resource requirements and timing analysis for floating-point matrix and vector
operations commonly performed by a GPU. Implementations are using half-precision floating-
point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Normalise
2353.0
(134.2)

3496.0
(168.5)

1163.5 (35.8) 20.5 (1.5) 2177 (184) 6481 (180) 6 178.95 177.62

Dot
product

501.0
(75.5)

687.5 (78.3) 187.0 (2.8) 0.5 (0.0) 643 (95) 1084 (85) 3 190.88 186.05

Vector
Length

1236.0
(70.1)

1897.5
(71.3)

669.5 (2.1) 8.0 (1.0) 1114 (92) 3511 (70) 3 200.4 199.44

201

Appendix B

Floating point adders and

multipliers in single and half

precision

-10-30-10-20-10-10-100-1010-1020-1030
0

0.5

1

-1

-0.5

0

0.5

1
Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

0

0.5

1

-1

-0.5

0

0.5

1

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure B.1: Relative and absolute error for floating-point adder in single-precision

202

APPENDIX B. FLOATING POINT ADDERS AND MULTIPLIERS IN SINGLE AND HALF PRECISION

-10-15-10-10-10-5-100-105-1010-1015
-1

-0.5

0

0.5

1

0

1

2

3

4

5
Normalised
Relative

10-15 10-10 10-5 100 105 1010 1015

Input Numbers

-1

-0.5

0

0.5

1

0

1

2

3

4

5

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure B.2: Relative and absolute error for floating-point multipler in single-precision

-10-4-10-3-10-2-10-1-100-101-102-103-104
0

2

4

10-5

-1

-0.5

0

0.5

1
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

0

2

4

10-5

-1

-0.5

0

0.5

1

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure B.3: Relative and absolute error for floating-point adder in half-precision

203

APPENDIX B. FLOATING POINT ADDERS AND MULTIPLIERS IN SINGLE AND HALF PRECISION

-10-2-10-1-100-101-102

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

104

Normalised
Relative

10-2 10-1 100 101 102

Input Numbers

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

104

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure B.4: Relative and absolute error for floating-point muliplier in half-precision

204

Appendix C

Accuracy of Newton-Raphson

inversion algorithm implemented in

hardware for IEEE-754R standard

input formats

-10-300-10-200-10-100-100-10100-10200-10300

0.2

0.4

0.6

0.8

1

1

2

3
1013

Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

0.2

0.4

0.6

0.8

1

1

2

3
1013

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.1: A double-precision Newton-Raphson iteration-based inverter realised in hardware
with only a single NR stage. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

205

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-300-10-200-10-100-100-10100-10200-10300

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5
1011

Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5
1011

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.2: A double-precision Newton-Raphson iteration-based inverter realised in hardware
with only two NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input.

-10-300-10-200-10-100-100-10100-10200-10300

1

2

3
10-9

2

4

6

8

10

12

14
106

Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

1

2

3
10-9

2

4

6

8

10

12

14
106

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.3: A double-precision Newton-Raphson iteration-based inverter realised in hardware
with only three NR stages. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

206

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-300-10-200-10-100-100-10100-10200-10300
2

4

6

10-16

1

2

3

4Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

2

4

6

10-16

1

2

3

4

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.4: A double-precision Newton-Raphson iteration-based inverter realised in hardware
with only four NR stages. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

-10-300-10-200-10-100-100-10100-10200-10300

2

3

4

10-16

1

2

3Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

2

3

4

10-16

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.5: A double-precision Newton-Raphson iteration-based inverter realised in hardware
with only five NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input.

207

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-300-10-200-10-100-100-10100-10200-10300

2

3

4

10-16

1

2

3Normalised
Relative

10-300 10-200 10-100 100 10100 10200 10300

Input Numbers

2

3

4

10-16

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.6: A double-precision Newton-Raphson iteration-based inverter realised in hardware
with only ten NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input.

-10-30-10-20-10-10-100-1010-1020-1030

0.2

0.4

0.6

0.8

1

1

2

3

4

5

104

Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

0.2

0.4

0.6

0.8

1

1

2

3

4

5

104

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.7: A single-precision Newton-Raphson iteration-based inverter realised in hardware
with only a single NR stage. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

208

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-30-10-20-10-10-100-1010-1020-1030

0.2

0.4

0.6

0.8

1

100

200

300

400

500
Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

0.2

0.4

0.6

0.8

1

100

200

300

400

500

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.8: A single-precision Newton-Raphson iteration-based inverter realised in hardware
with only two NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input.

-10-30-10-20-10-10-100-1010-1020-1030

0.2

0.4

0.6

0.8

1

1

2

3

4Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

0.2

0.4

0.6

0.8

1

1

2

3

4

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.9: A single-precision Newton-Raphson iteration-based inverter realised in hardware
with only three NR stages. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

209

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-30-10-20-10-10-100-1010-1020-1030

5

10

15

10-8

1

2

3Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

5

10

15

10-8

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.10: A single-precision Newton-Raphson iteration-based inverter realised in hardware
with only four NR stages. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

-10-30-10-20-10-10-100-1010-1020-1030

5

10

15

10-8

1

2

3Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

5

10

15

10-8

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.11: A single-precision Newton-Raphson iteration-based inverter realised in hardware
with only five NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input.

210

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-30-10-20-10-10-100-1010-1020-1030

5

10

15

10-8

1

2

3Normalised
Relative

10-30 10-20 10-10 100 1010 1020 1030

Input Numbers

5

10

15

10-8

1

2

3

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.12: A single-precision Newton-Raphson iteration-based inverter realised in hardware
with only ten NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input.

-10-4-10-3-10-2-10-1-100-101-102-103-104

2

4

6

8

10-3

200

400

600
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

2

4

6

8

10-3

200

400

600

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.13: A half-precision Newton-Raphson iteration-based inverter realised in hardware
with only a single NR stage. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input. Relative error is marked in blue. Normalise error is
marked in black.

211

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-4-10-3-10-2-10-1-100-101-102-103-104

0.5

1

1.5

2

2.5

10-3

200

400

600
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

0.5

1

1.5

2

2.5

10-3

200

400

600

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.14: A half-precision Newton-Raphson iteration-based inverter realised in hardware
with only two NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input. Relative error is marked in blue. Normalise error is marked
in black.

-10-4-10-3-10-2-10-1-100-101-102-103-104

5

10

15

10-4

200

400

600
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

5

10

15

10-4

200

400

600

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.15: A half-precision Newton-Raphson iteration-based inverter realised in hardware
with only three NR stages. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input.

212

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-4-10-3-10-2-10-1-100-101-102-103-104

5

10

15

10-4

200

400

600
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

5

10

15

10-4

200

400

600

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.16: A half-precision Newton-Raphson iteration-based inverter realised in hardware
with only four NR stages. Top half of the graph shows error for a negative input, bottom
half shows error for a positive input. Relative error is marked in blue. Normalise error is
marked in black.

-10-4-10-3-10-2-10-1-100-101-102-103-104

5

10

15

10-4

100

200

300
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

5

10

15

10-4

100

200

300

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.17: A half-precision Newton-Raphson iteration-based inverter realised in hardware
with only five NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input. Relative error is marked in blue. Normalise error is marked
in black.

213

APPENDIX C. ACCURACY OF NEWTON-RAPHSON INVERSION ALGORITHM IMPLEMENTED IN
HARDWARE FOR IEEE-754R STANDARD INPUT FORMATS

-10-4-10-3-10-2-10-1-100-101-102-103-104

5

10

15

10-4

200

400

600
Normalised
Relative

10-6 10-4 10-2 100 102 104

Input Numbers

5

10

15

10-4

200

400

600

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure C.18: A half-precision Newton-Raphson iteration-based inverter realised in hardware
with only ten NR stages. Top half of the graph shows error for a negative input, bottom half
shows error for a positive input. Relative error is marked in blue. Normalise error is marked
in black.

214

Appendix D

Square root accuracy for single and

half precision inputs

10-30 10-20 10-10 100 1010 1020 1030

Input Number

2.5

3

3.5

4

4.5

5

N
or

m
al

is
ed

 E
rr

or

10-4

Normalised
Relative

0

1000

2000

3000

4000

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure D.1: Relative and absolute error for a traditional non-restoring algorithm in single-
precision.

215

APPENDIX D. SQUARE ROOT ACCURACY FOR SINGLE AND HALF PRECISION INPUTS

10-30 10-20 10-10 100 1010 1020 1030

Input Number

6

8

10

12
N

or
m

al
is

ed
 E

rr
or

10-8

Normalised
Relative

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure D.2: Relative and absolute error for the new non-restoring algorithm in single-
precision.

10-3 10-2 10-1 100 101 102 103 104

Input Number

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

is
ed

 E
rr

or

Normalised
Relative

0

20

40

60

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure D.3: Relative and absolute error for a traditional non-restoring algorithm in half-
precision.

216

APPENDIX D. SQUARE ROOT ACCURACY FOR SINGLE AND HALF PRECISION INPUTS

10-4 10-3 10-2 10-1 100 101 102 103 104

Input Number

6

7

8

9

10

11

N
or

m
al

is
ed

 E
rr

or

10-4

Normalised
Relative

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure D.4: Relative and absolute error for the new non-restoring algorithm in half-precision.

10-30 10-20 10-10 100 1010 1020 1030

Input Number

6

8

10

12

N
or

m
al

is
ed

 E
rr

or

10-8

Normalised
Relative

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure D.5: Adding pipelining to the new method has no impact on the accuracy of the
result. Graph shows single-precision.

217

APPENDIX D. SQUARE ROOT ACCURACY FOR SINGLE AND HALF PRECISION INPUTS

10-4 10-3 10-2 10-1 100 101 102 103 104

Input Number

6

7

8

9

10

11

N
or

m
al

is
ed

 E
rr

or

10-4

Normalised
Relative

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure D.6: Adding pipelining to the new method has no impact on the accuracy of the
result. Graph shows half-precision.

218

Appendix E

Approximating exp(x) using both

traditional mathematical

expansions and hardware friendly

interpretations

E.1 Traditional mathematical expansions

E.1.1 Double precision

Table E.1: Resource requirements and timing analysis for Euler and power series mathemat-
ical expansions of ex. Implementations are using double-precision floating-point accuracy,
using five stage Newton-Raphson inversion.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

euler 1
33222.5
(2194.4)

37591.5
(2320.7)

4492.0 (127.0) 123.0 (0.7) 27293 (4185) 95000 (0) 96 94.82 92.35

power 1
15307.5
(1353.0)

22792.5
(1459.5)

7568.0 (106.8) 83.0 (0.3) 13555 (2090) 41764 (65) 48 96.98 93.74

power 2
30590.0
(2106.4)

35357.0
(2279.6)

4900.0 (174.3) 133.0 (1.1) 25544 (3936) 86803 (65) 96 95.06 92.28

219

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

Table E.2: Resource requirements and timing analysis for Euler and power series mathemat-
ical expansions of ex. Implementations are using double-precision floating-point accuracy,
using a single stage Newton-Raphson inversion.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

euler 1
13799.5
(1313.4)

20799.0
(1424.9)

7062.5 (111.7) 63.0 (0.3) 12342 (2071) 37192 (0) 32 98.26 94.67

euler 2
20734.6
(1845.7)

31373.1
(1981.0)

10764.0
(135.9)

125.5 (0.6) 17022 (2861) 57769 (0) 44 97.1 93.05

euler 3
27344.5
(1930.0)

31808.0
(2078.0)

4566.0 (148.3) 102.5 (0.3) 21818 (3622) 78378 (0) 56 92.81 89.76

euler 4
34218.5
(2335.0)

38249.9
(2460.5)

4176.0 (125.9) 144.5 (0.5) 26455 (4412) 98987 (0) 68 93.08 89.61

power 1
6502.5
(686.2)

9698.0
(748.0)

3222.5 (61.8) 27.0 (0.1) 6215 (1042) 16892 (65) 16 99.46 96.4

power 2
12219.0
(1166.9)

18351.5
(1266.2)

6201.0 (99.4) 68.5 (0.2) 10981 (1817) 32963 (65) 32 94.53 90.48

power 3
18076.0
(1698.2)

26978.0
(1834.0)

9021.0 (136.0) 119.0 (0.3) 15819 (2609) 49071 (65) 48 95.54 93.08

power 4
23842.0
(2191.3)

35512.5
(2324.5)

11849.0
(133.6)

178.5 (0.4) 20459 (3392) 65177 (65) 64 91.7 90.23

power 5
29265.0
(2217.7)

33969.5
(2401.7)

4869.5 (184.6) 165.0 (0.6) 25452 (4205) 81283 (65) 80 95.21 91.73

power 6
35123.5
(2660.6)

38743.0
(2763.6)

3782.5 (104.4) 163.0 (1.3) 30404 (4976) 97391 (65) 96 93.72 91.91

220

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

E.1.2 single precision

Table E.3: Resource requirements and timing analysis for Euler and power series mathe-
matical expansions of ex. Implementations are using single-precision floating-point accuracy,
using five stage Newton-Raphson inversion.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

euler 1
16660.0
(713.9)

25132.0
(779.0)

8531.0 (65.1) 59.0 (0.1) 13590 (1205) 47928 (0) 24 154.58 149.5

euler 2
26103.5
(1039.9)

38734.0
(1070.7)

12736.0 (30.8) 105.5 (0.0) 19762 (1735) 77063 (0) 35 154.11 148.32

euler 3
35520.0
(1102.6)

39150.0
(1148.8)

3690.5 (46.5) 60.5 (0.3) 26041 (2251) 106294 (0) 46 155.74 149.25

power 1
7595.5
(390.5)

11388.5
(418.8)

3820.5 (28.3) 27.5 (0.0) 6686 (605) 21140 (33) 12 160.0 154.37

power 2
15416.0
(687.0)

23306.5
(757.5)

7967.0 (70.5) 76.5 (0.0) 12795 (1128) 43913 (33) 24 156.57 151.65

power 3
23267.5
(996.9)

34802.5
(1079.3)

11642.0 (82.6) 107.0 (0.2) 18971 (1653) 66787 (33) 36 151.13 144.74

power 4
30991.5
(1083.9)

36237.5
(1186.2)

5322.0 (102.9) 76.0 (0.6) 24978 (2179) 89661 (33) 48 155.79 150.97

power 5
41110.5
(1485.9)

41026.5
(1485.9)

180.5 (0.0) 264.5 (0.0) 31432 (2712) 112533 (33) 60 144.32 140.88

221

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

Table E.4: Resource requirements and timing analysis for Euler and power series mathe-
matical expansions of ex. Implementations are using single-precision floating-point accuracy,
using a single stage Newton-Raphson inversion.

Module Iterations

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
recoverable
by Dense
Packing

[C]
Estimate of

ALMs
unavailable

Combinational
ALUTs

Dedicated
logic

Registers

DSP
Blocks

85◦C
Restricted
fmax (MHz)

0◦C
Restricted
fmax (MHz)

euler 1
6841.0
(393.1)

10262.5
(420.0)

3442.5 (26.9) 21.0 (0.0) 6135 (601) 18712 (0) 8 162.76 156.35

euler 2
10197.0
(527.3)

15416.5
(554.3)

5241.0 (27.0) 21.5 (0.0) 8505 (834) 29079 (0) 11 151.93 149.59

euler 3
13671.5
(627.0)

20910.0
(697.1)

7274.0 (70.1) 35.5 (0.0) 10901 (1055) 39478 (0) 14 159.74 153.3

euler 4
17135.0
(771.7)

26261.5
(848.0)

9187.5 (76.2) 61.0 (0.0) 13258 (1284) 49877 (0) 17 155.74 149.54

euler 5
20559.5
(888.8)

31251.5
(970.8)

10804.5 (82.0) 112.5 (0.0) 15648 (1501) 60276 (0) 20 156.69 151.1

euler 6
23982.9
(1024.1)

36177.9
(1096.1)

12283.0 (72.0) 88.0 (0.0) 18041 (1726) 70675 (0) 23 147.91 143.76

euler 7
27358.0
(962.9)

32248.5
(1077.0)

4920.5 (114.1) 30.0 (0.0) 20386 (1951) 81074 (0) 26 157.46 151.95

euler 8
30824.0
(1070.8)

35870.5
(1188.1)

5104.5 (117.5) 58.0 (0.2) 22772 (2176) 91473 (0) 29 150.53 144.18

euler 9
34284.0
(1184.4)

38666.5
(1268.0)

4447.0 (84.2) 64.5 (0.6) 25228 (2401) 101872 (0) 32 148.13 144.7

euler 10
37310.9
(1485.8)

40781.4
(1485.8)

3675.0 (0.0) 204.5 (0.1) 27666 (2626) 112271 (0) 35 151.35 145.14

power 1
3217.0
(209.7)

4718.0
(223.4)

1517.5 (13.7) 16.5 (0.0) 3062 (303) 8516 (33) 4 150.49 144.51

power 2
6067.0
(353.3)

9040.0
(365.7)

3004.0 (12.4) 31.0 (0.0) 5450 (528) 16617 (33) 8 156.59 150.67

power 3
8945.0
(483.4)

13376.5
(516.5)

4490.5 (33.1) 59.0 (0.0) 7934 (760) 24755 (33) 12 155.64 150.08

power 4
11853.5
(599.0)

17666.0
(656.3)

5891.5 (57.3) 79.0 (0.0) 10333 (983) 32893 (33) 16 157.26 152.46

power 5
14774.0
(753.1)

22179.0
(812.7)

7489.5 (59.6) 84.5 (0.0) 12837 (1216) 41029 (33) 20 150.65 144.84

power 6
17659.0
(866.6)

26342.0
(959.8)

8765.0 (93.2) 82.0 (0.0) 15323 (1433) 49167 (33) 24 154.25 148.43

power 7
20452.0
(988.2)

30551.5
(1088.0)

10210.5 (99.8) 111.0 (0.0) 17588 (1653) 57305 (33) 28 154.08 148.02

power 8
23379.0
(1129.2)

34786.0
(1225.8)

11544.5 (96.8) 137.5 (0.3) 20110 (1879) 65441 (33) 32 154.13 148.92

power 9
26272.5
(1262.7)

38053.5
(1321.2)

11899.5 (58.5) 118.5 (0.0) 22550 (2104) 73577 (33) 36 150.38 146.2

power 10
29000.5
(1174.3)

34240.5
(1308.0)

5311.5 (133.6) 71.5 (0.0) 25011 (2337) 81713 (33) 40 152.91 148.77

222

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

E.2 Hardware friendly implementations

E.2.1 Double precision

Table E.5: Resource requirements and timing analysis for hardware efficient implementations
of approximations of ex. Implementations are using double precision floating point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Single
quadrant

714.0
(714.0)

723.0
(723.0)

16.5 (16.5) 7.5 (7.5) 1139 (1139) 197 (197) 17 69.94 69.17

Single
quadrant

with
pipeline

702.0
(702.0)

728.5
(728.5)

46.5 (46.5) 20.0 (20.0) 1093 (1093) 390 (390) 17 92.79 90.5

Double
quadrant

694.5
(694.5)

702.5
(702.5)

13.5 (13.5) 5.5 (5.5) 1090 (1090) 198 (198) 17 68.06 67.36

Double
quadrant

with
pipeline

704.0
(704.0)

734.0
(734.0)

36.0 (36.0) 6.0 (6.0) 1106 (1106) 397 (397) 17 92.92 89.29

Four
quadrant

725.0
(725.0)

727.0
(727.0)

10.0 (10.0) 8.0 (8.0) 1128 (1128) 198 (198) 17 65.87 64.82

Four
quadrant

with
pipeline

722.5
(722.5)

765.0
(765.0)

53.0 (53.0) 10.5 (10.5) 1125 (1125) 421 (421) 17 92.29 89.31

Quadratic
fit

764.0
(764.0)

756.0
(756.0)

14.0 (14.0) 22.0 (22.0) 1222 (1222) 197 (197) 25 45.22 44.4

Quadratic
fit with
pipeline

869.5
(869.5)

922.0
(922.0)

71.0 (71.0) 18.5 (18.5) 1440 (1440) 505 (505) 28 80.48 80.19

Cubic fit
847.0

(847.0)
837.5

(837.5)
17.5 (17.5) 27.0 (27.0) 1377 (1377) 197 (197) 33 32.41 31.51

Cubic fit
with

pipeline

1167.0
(1167.0)

1240.5
(1240.5)

99.0 (99.0) 25.5 (25.5) 1994 (1994) 747 (747) 42 79.81 79.2

Hybrid
using single

quadrant

1701.5
(367.5)

2249.5
(389.3)

572.5 (24.5) 24.5 (2.7) 2274 (505) 2864 (131) 17 71.13 70.02

Hybrid
using single

quadrant
with

pipeline

1708.0
(370.1)

2196.0
(422.0)

518.5 (52.8) 30.5 (1.0) 2228 (507) 2865 (195) 17 93.55 90.32

Hybrid
using

double
quadrant

1692.0
(361.8)

2203.0
(387.4)

532.5 (25.6) 21.5 (0.0) 2234 (505) 2869 (131) 17 67.67 66.88

Hybrid
using

double
quadrant

with
pipeline

1681.5
(370.4)

2188.0
(419.3)

523.5 (52.0) 17.0 (3.1) 2255 (506) 2872 (195) 17 92.69 89.74

Hybrid
using four
quadrant

1684.0
(384.4)

2302.0
(400.3)

640.5 (20.2) 22.5 (4.3) 2268 (509) 2869 (131) 17 65.52 64.54

Hybrid
using four
quadrant

with
pipeline

1706.5
(371.2)

2214.5
(429.5)

523.5 (60.5) 15.5 (2.2) 2273 (506) 2896 (195) 17 92.58 88.89

Hybrid
using

quadratic
fit

1745.0
(372.5)

2343.0
(393.5)

609.0 (25.7) 11.0 (4.6) 2361 (505) 2864 (131) 25 43.7 42.8

Hybrid
using

quadratic
fit with
pipeline

1817.5
(371.1)

2383.5
(399.2)

583.0 (31.5) 17.0 (3.4) 2570 (505) 2916 (131) 28 86.43 85.99

Hybrid
using cubic

fit

1854.0
(372.8)

2371.0
(392.6)

545.0 (24.3) 28.0 (4.5) 2515 (505) 2864 (131) 33 32.07 31.41

Hybrid
using cubic

fit with
pipeline

2153.0
(373.0)

2754.5
(395.3)

640.0 (28.1) 38.5 (5.7) 3145 (505) 3288 (131) 42 78.76 77.7

Single
quadrant

with
floating
point

multiply

639.5
(425.8)

741.5
(452.7)

103.0 (27.8) 1.0 (1.0) 967 (596) 717 (196) 4 99.16 96.22

Two to the
power x

426.5
(426.5)

447.0
(447.0)

30.0 (30.0) 9.5 (9.5) 577 (577) 196 (196) 0 171.29 173.58

223

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

E.2.2 Single precision

Table E.6: Resource requirements and timing analysis for hardware efficient implementations
of approximations of ex. Implementations are using single precision floating point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Single
quadrant

220.5
(220.5)

228.0
(228.0)

7.5 (7.5) 0.0 (0.0) 345 (345) 121 (121) 4 120.44 119.47

Single
quadrant

with
pipeline

218.0
(218.0)

254.0
(254.0)

36.5 (36.5) 0.5 (0.5) 334 (334) 218 (218) 4 127.44 122.64

Double
quadrant

209.5
(209.5)

216.5
(216.5)

7.0 (7.0) 0.0 (0.0) 312 (312) 122 (122) 4 110.77 111.58

Double
quadrant

with
pipeline

218.5
(218.5)

249.0
(249.0)

31.5 (31.5) 1.0 (1.0) 320 (320) 225 (225) 4 127.34 122.55

Four
quadrant

218.5
(218.5)

226.5
(226.5)

8.0 (8.0) 0.0 (0.0) 324 (324) 122 (122) 4 110.11 110.28

Four
quadrant

with
pipeline

225.0
(225.0)

258.5
(258.5)

33.5 (33.5) 0.0 (0.0) 341 (341) 244 (244) 4 126.81 122.25

Quadratic
fit

206.5
(206.5)

211.5
(211.5)

5.0 (5.0) 0.0 (0.0) 321 (321) 121 (121) 6 87.74 86.9

Quadratic
fit with
pipeline

235.0
(235.0)

300.5
(300.5)

65.5 (65.5) 0.0 (0.0) 371 (371) 272 (272) 7 127.58 122.76

Cubic fit
207.0

(207.0)
215.5

(215.5)
9.0 (9.0) 0.5 (0.5) 321 (321) 121 (121) 8 64.17 63.07

Cubic fit
with

pipeline

285.0
(285.0)

351.5
(351.5)

66.5 (66.5) 0.0 (0.0) 458 (458) 359 (359) 11 128.02 122.84

Hybrid
using single

quadrant

742.0
(130.3)

982.5
(138.4)

242.5 (9.6) 2.0 (1.5) 936 (164) 1454 (67) 4 121.01 118.71

Hybrid
using single

quadrant
with

pipeline

726.0
(135.8)

984.0
(155.3)

260.0 (21.3) 2.0 (1.8) 916 (166) 1455 (99) 4 127.49 121.82

Hybrid
using

double
quadrant

733.5
(124.1)

1023.5
(136.7)

291.0 (13.0) 1.0 (0.4) 928 (163) 1459 (67) 4 110.41 111.41

Hybrid
using

double
quadrant

with
pipeline

735.0
(135.9)

1001.0
(146.3)

270.0 (11.5) 4.0 (1.1) 931 (166) 1462 (99) 4 126.81 121.68

Hybrid
using four
quadrant

734.5
(128.7)

1009.5
(139.3)

277.0 (12.2) 2.0 (1.5) 936 (166) 1459 (67) 4 109.31 110.17

Hybrid
using four
quadrant

with
pipeline

745.5
(127.6)

1012.0
(155.7)

267.0 (28.2) 0.5 (0.1) 947 (166) 1481 (99) 4 126.84 121.65

Hybrid
using

quadratic
fit

715.0
(125.4)

1012.0
(141.2)

297.5 (16.2) 0.5 (0.4) 910 (164) 1454 (67) 6 87.42 85.79

Hybrid
using

quadratic
fit with
pipeline

744.5
(127.7)

1002.0
(136.3)

260.5 (10.2) 3.0 (1.5) 952 (164) 1477 (67) 7 125.88 120.93

Hybrid
using cubic

fit

727.5
(128.1)

990.0
(131.9)

266.0 (5.4) 3.5 (1.6) 910 (164) 1454 (67) 8 63.53 62.48

Hybrid
using cubic

fit with
pipeline

813.0
(127.5)

1119.5
(143.4)

307.0 (15.9) 0.5 (0.0) 1073 (164) 1630 (67) 11 125.08 120.05

Single
quadrant

with
floating
point

multiply

279.0
(188.5)

339.0
(197.3)

60.0 (8.8) 0.0 (0.0) 454 (289) 365 (100) 1 175.25 174.58

Two to the
power x

189.0
(189.0)

198.5
(198.5)

9.5 (9.5) 0.0 (0.0) 288 (288) 100 (100) 0 219.83 224.42

224

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

E.2.3 Error plots for the hardware friendly exp(x) implementations

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.1: Hardware friendly floating-point exponent approximation using a single line curve
fit in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.2: Hardware friendly floating-point exponent approximation using a single line curve
fit with integer divide in double-precision.

225

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.3: Hardware friendly floating-point exponent approximation using a single line curve
with floating-point multiply in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.4: Hardware friendly floating-point exponent approximation using a single line curve
fit with pipelining in double-precision.

226

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

2

4

6

8

10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

2

4

6

8

10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.5: Hardware friendly floating-point exponent approximation using a double line
curve fit in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

2

4

6

8

10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

2

4

6

8

10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.6: Hardware friendly floating-point exponent approximation using a double line
curve fit with pipelining in double-precision.

227

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

1.5

2
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

1.5

2
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.7: Hardware friendly floating-point exponent approximation using a four line curve
fit in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

1.5

2
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

1.5

2
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.8: Hardware friendly floating-point exponent approximation using a four line curve
fit with pipelining in double-precision.

228

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

1

2

3

4
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

1

2

3

4
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.9: Hardware friendly floating-point exponent approximation using a quadratic curve
fit in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

1

2

3

4
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

1

2

3

4
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.10: Hardware friendly floating-point exponent approximation using a quadratic
curve fit with pipelining in double-precision.

229

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
10-10

10-5

0

2

4Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

10-10

10-5

0

2

4

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.11: Hardware friendly floating-point exponent approximation using a cubic curve
fit in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
10-10

10-5

0

2

4Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

10-10

10-5

0

2

4

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.12: Hardware friendly floating-point exponent approximation using a cubic curve
fit with pipelining in double-precision.

230

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
100

1020

1040

1060

2

4

6

8

1015

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

10-10

100

2

4

6

8

1015

N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.13: Hardware floating-point two to the x approximation in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.14: Hardware friendly floating-point exponent hybrid approximation single line
curve fit and 1 + x in double-precision.

231

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.01

0.02

0.03

0.04

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.01

0.02

0.03

0.04

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.15: Hardware friendly floating-point exponent hybrid approximation single line
curve fit and 1 + x with pipelining in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

2

4

6

8

10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

2

4

6

8

10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.16: Hardware friendly floating-point exponent hybrid approximation double line
curve fit and 1 + x in double-precision.

232

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

2

4

6

8

10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

2

4

6

8

10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.17: Hardware friendly floating-point exponent hybrid approximation double line
curve fit and 1 + x with pipelining in double-precision.

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

1.5

2
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

1.5

2
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.18: Hardware friendly floating-point exponent hybrid approximation four line curve
fit and 1 + x in double-precision.

233

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1-100-101-102
0

0.5

1

1.5

2
10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

0

0.5

1

1.5

2
10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.19: Hardware friendly floating-point exponent hybrid approximation four line curve
fit and 1 + x with pipelining in double-precision.

-10-4-10-3-10-2-10-1- 100- 101- 102

1

2

3

10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

1

2

3

10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.20: Hardware friendly floating-point exponent hybrid approximation quadratic
curve fit and 1 + x in double-precision.

234

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1- 100- 101- 102

1

2

3

10-3

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

1

2

3

10-3

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.21: Hardware friendly floating-point exponent hybrid approximation quadratic
curve fit and 1 + x with pipelining in double-precision.

-10-4-10-3-10-2-10-1- 100- 101- 102

5

10

15

10-4

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

5

10

15

10-4

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.22: Hardware friendly floating-point exponent hybrid approximation cubic curve fit
and 1 + x in double-precision.

235

APPENDIX E. APPROXIMATING EXP (X) USING BOTH TRADITIONAL MATHEMATICAL EXPANSIONS

AND HARDWARE FRIENDLY INTERPRETATIONS

-10-4-10-3-10-2-10-1- 100- 101- 102

5

10

15

10-4

100

1010

Normalised
Relative

10-4 10-3 10-2 10-1 100 101 102

Input Numbers

5

10

15

10-4

100

1010N
or

m
al

is
ed

 E
rr

or

R
el

at
iv

e
E

rr
or

 (
U

LP
s)

Figure E.23: Hardware friendly floating-point exponent hybrid approximation cubic curve fit
and 1 + x with pipelining in double-precision.

236

Appendix F

Hardware Implementations of the

Hodgkin-Huxley Model of a Neuron

F.1 Step responses

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.1: Hardware implementation of a Hodgkin-Huxley neuron using single line piecewise
linear approximation for the exponential function. The neurons response to a step input of
0.2 A (black trace, bottom graph). m, n, and h are the membrane potentials internal to the
neuron.

237

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.2: Hardware implementation of a Hodgkin-Huxley neuron using two line piecewise
linear approximation for the exponential function. The neurons response to a step input of
0.2 A (black trace, bottom graph). m, n, and h are the membrane potentials internal to the
neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.3: Hardware implementation of a Hodgkin-Huxley neuron using four line piecewise
linear approximation for the exponential function. The neurons response to a step input of
0.2 A (black trace, bottom graph). m, n, and h are the membrane potentials internal to the
neuron.

238

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.4: Hardware implementation of a Hodgkin-Huxley neuron using quadratic curve
fitting approximation for the exponential function. The neurons response to a step input of
0.2 A (black trace, bottom graph). m, n, and h are the membrane potentials internal to the
neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.5: Hardware implementation of a Hodgkin-Huxley neuron using cubic curve fitting
approximation for the exponential function. The neurons response to a step input of 0.2 A
(black trace, bottom graph). m, n, and h are the membrane potentials internal to the neuron.

239

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.6: Hardware implementation of a Hodgkin-Huxley neuron using hybrid single line
piecewise linear approximation and 1 + x small input approximation for the exponential
function. The neurons response to a step input of 0.2 A (black trace, bottom graph). m, n,
and h are the membrane potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.7: Hardware implementation of a Hodgkin-Huxley neuron using hybrid two line
piecewise linear approximation and 1 + x small input approximation for the exponential
function. The neurons response to a step input of 0.2 A (black trace, bottom graph). m, n,
and h are the membrane potentials internal to the neuron.

240

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.8: Hardware implementation of a Hodgkin-Huxley neuron using hyrbid four line
piecewise linear approximation and 1 + x small input approximation for the exponential
function. The neurons response to a step input of 0.2 A (black trace, bottom graph). m, n,
and h are the membrane potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.9: Hardware implementation of a Hodgkin-Huxley neuron using hybrid quadratic
curve approximation and 1 + x small input approximation for the exponential function. The
neurons response to a step input of 0.2 A (black trace, bottom graph). m, n, and h are the
membrane potentials internal to the neuron.

241

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.10: Hardware implementation of a Hodgkin-Huxley neuron using hybrid cubic curve
approximation and 1+x small input approximation for the exponential function. The neurons
response to a step input of 0.2 A (black trace, bottom graph). m, n, and h are the membrane
potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.11: Hardware implementation of a Hodgkin-Huxley neuron using single line piece-
wise linear approximation with an integer division step for the exponential function. The
neurons response to a step input of 0.2 A (black trace, bottom graph). m, n, and h are the
membrane potentials internal to the neuron.

242

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.12: Hardware implementation of a Hodgkin-Huxley neuron using single line piece-
wise linear approximation with a floating-point multiplication step for the exponential func-
tion. The neurons response to a step input of 0.2 A (black trace, bottom graph). m, n, and
h are the membrane potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.13: Hardware implementation of a Hodgkin-Huxley neuron using a 2x approximation
for the exponential function. The neurons response to a step input of 0.2 A (black trace,
bottom graph). m, n, and h are the membrane potentials internal to the neuron.

243

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

-1

0

1

2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.14: Hardware implementation of a Hodgkin-Huxley neuron using Euler’s approxi-
mation for the exponential function. The neurons response to a step input of 0.2 A (black
trace, bottom graph). m, n, and h are the membrane potentials internal to the neuron.

-15

-10

-5

0

5

N
eu

ro
n

V
ol

ta
ge

 (
m

V
) 10253

V

Time
-4

-3

-2

-1

0

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

10188

-1

0

1

2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.15: Hardware implementation of a Hodgkin-Huxley neuron using a power series
approximation for the exponential function. The neurons response to a step input of 0.2 A
(black trace, bottom graph). m, n, and h are the membrane potentials internal to the neuron.

244

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

F.2 Impulse responses

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.16: Hardware implementation of a Hodgkin-Huxley neuron using single line piece-
wise linear approximation for the exponential function. The neurons response to a impulse
of 0.2 A (black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials
internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.17: Hardware implementation of a Hodgkin-Huxley neuron using two line piecewise
linear approximation for the exponential function. The neurons response to a impulse of
0.2 A (black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials
internal to the neuron.

245

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.18: Hardware implementation of a Hodgkin-Huxley neuron using four line piecewise
linear approximation for the exponential function. The neurons response to a impulse of
0.2 A (black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials
internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.19: Hardware implementation of a Hodgkin-Huxley neuron using quadratic curve
fitting approximation for the exponential function. The neurons response to a impulse of
0.2 A (black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials
internal to the neuron.

246

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.20: Hardware implementation of a Hodgkin-Huxley neuron using cubic curve fitting
approximation for the exponential function. The neurons response to a impulse of 0.2 A
(black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials internal
to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.21: Hardware implementation of a Hodgkin-Huxley neuron using hybrid single line
piecewise linear approximation and 1 + x small input approximation for the exponential
function. The neurons response to a impulse of 0.2 A (black trace, bottom graph) lasting
50µs. m, n, and h are the membrane potentials internal to the neuron.

247

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.22: Hardware implementation of a Hodgkin-Huxley neuron using hybrid two line
piecewise linear approximation and 1 + x small input approximation for the exponential
function. The neurons response to a impulse of 0.2 A (black trace, bottom graph) lasting
50µs. m, n, and h are the membrane potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.23: Hardware implementation of a Hodgkin-Huxley neuron using hyrbid four line
piecewise linear approximation and 1 + x small input approximation for the exponential
function. The neurons response to a impulse of 0.2 A (black trace, bottom graph) lasting
50µs. m, n, and h are the membrane potentials internal to the neuron.

248

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.24: Hardware implementation of a Hodgkin-Huxley neuron using hybrid quadratic
curve approximation and 1 + x small input approximation for the exponential function. The
neurons response to a impulse of 0.2 A (black trace, bottom graph) lasting 50µs. m, n, and
h are the membrane potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.25: Hardware implementation of a Hodgkin-Huxley neuron using hybrid cubic curve
approximation and 1+x small input approximation for the exponential function. The neurons
response to a impulse of 0.2 A (black trace, bottom graph) lasting 50µs. m, n, and h are the
membrane potentials internal to the neuron.

249

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-80

-60

-40

-20

0

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.26: Hardware implementation of a Hodgkin-Huxley neuron using single line piece-
wise linear approximation with an integer division step for the exponential function. The
neurons response to a impulse of 0.2 A (black trace, bottom graph) lasting 50µs. m, n, and
h are the membrane potentials internal to the neuron.

-100

-50

0

50

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)
m
n
h

Figure F.27: Hardware implementation of a Hodgkin-Huxley neuron using single line piece-
wise linear approximation with a floating-point multiplication step for the exponential func-
tion.The neurons response to a impulse of 0.2 A (black trace, bottom graph) lasting 50µs.
m, n, and h are the membrane potentials internal to the neuron.

250

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-80

-60

-40

-20

0

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.28: Hardware implementation of a Hodgkin-Huxley neuron using a 2x approximation
for the exponential function. The neurons response to a impulse of 0.2 A (black trace, bottom
graph) lasting 50µs. m, n, and h are the membrane potentials internal to the neuron.

-80

-60

-40

-20

0

N
eu

ro
n

V
ol

ta
ge

 (
m

V
)

V

Time
0

0.2

0.4

0.6

0.8

1

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.29: Hardware implementation of a Hodgkin-Huxley neuron using Euler’s approxi-
mation for the exponential function.The neurons response to a impulse of 0.2 A (black trace,
bottom graph) lasting 50µs. m, n, and h are the membrane potentials internal to the neuron.

251

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

-3

-2

-1

0

N
eu

ro
n

V
ol

ta
ge

 (
m

V
) 10223

V

Time

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5

M
em

br
an

e
P

ot
en

tia
l (

m
V

)

1010

0

0.05

0.1

0.15

0.2

S
tim

ul
us

 (
A

)

m
n
h

Figure F.30: Hardware implementation of a Hodgkin-Huxley neuron using a power series
approximation for the exponential function. The neurons response to a impulse of 0.2 A
(black trace, bottom graph) lasting 50µs. m, n, and h are the membrane potentials internal
to the neuron.

252

APPENDIX F. HARDWARE IMPLEMENTATIONS OF THE HODGKIN-HUXLEY MODEL OF A NEURON

F.3 Resource and performance metrics

Table F.1: Resource and performance metrics for FPGA implementations of the Hodgkin-
Huxley model of a nuron using different hardware approximators for the exponential function.
Implementations are in double floating-point precision and the fitter seed is 1.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted

FMax (MHz)

0◦C
Restricted

FMax (MHz)

single
line

128488.6
(11244.7)

194178.5
(12194.7)

66488.4
(950.4)

798.5 (0.4) 156445 (17480) 297656 (64) 352 99.29 96.8

single
line
pipe

129675.7
(11260.5)

195699.5
(12246.1)

66888.2
(986.1)

864.5 (0.5) 156302 (17489) 301926 (64) 352 109.57 108.27

double
line

130210.7
(11274.1)

196758.5
(12162.4)

67466.4
(888.8)

918.5 (0.5) 161463 (17491) 297666 (64) 352 85.74 85.96

double
line
pipe

131597.4
(11346.1)

198380.2
(12247.0)

67859.8
(901.4)

1077.0 (0.6) 161764 (17496) 301996 (64) 352 105.84 102.69

four
line

130295.8
(11241.3)

197115.0
(12133.8)

67789.2
(893.0)

970.0 (0.5) 161953 (17529) 297666 (64) 352 83.04 83.44

four
line
pipe

131812.4
(11323.5)

198828.2
(12245.9)

68020.3
(922.8)

1004.5 (0.4) 162195 (17501) 302236 (64) 352 105.35 100.87

quad
136385.6
(11241.6)

206629.9
(12174.2)

71186.8
(932.9)

942.5 (0.4) 181351 (17480) 298142 (64) 352 55.49 54.87

quad
pipe

141810.7
(11401.4)

213894.3
(12391.2)

73083.1
(991.8)

999.5 (2.0) 193867 (17475) 304943 (64) 352 99.95 101.3

cubic
147903.3
(11210.4)

224752.7
(12179.2)

78414.0
(969.1)

1564.5 (0.3) 218993 (17480) 298223 (64) 352 36.09 35.25

cubic
pipe

162429.5
(11430.7)

244593.2
(12300.9)

85138.1
(872.7)

2974.5 (2.5) 254142 (17480) 311003 (64) 352 93.34 95.1

hybrid
single
line

140860.6
(12820.1)

212048.0
(13864.6)

72214.9
(1046.0)

1027.5 (1.4) 167931 (20119) 329006 (64) 352 93.36 90.53

hybrid
single
line
pipe

141097.3
(12919.8)

212273.0
(14031.6)

72147.2
(1112.5)

971.5 (0.7) 167652 (20122) 329016 (64) 352 112.35 111.62

hybrid
double

line

142574.6
(12873.3)

215236.5
(13935.4)

73683.4
(1062.5)

1021.5 (0.4) 172916 (20122) 329056 (64) 352 84.98 83.44

hybrid
double

line
pipe

143041.6
(12870.2)

214989.5
(13985.0)

72947.5
(1116.2)

999.5 (1.4) 173245 (20120) 329086 (64) 352 104.42 101.15

hybrid
four
line

142677.2
(12916.3)

215450.0
(13936.7)

73681.3
(1020.9)

908.5 (0.5) 173576 (20162) 329056 (64) 352 84.05 82.35

hybrid
four
line
pipe

143180.6
(12892.8)

215388.6
(14027.8)

73123.4
(1135.5)

915.5 (0.5) 173605 (20129) 329326 (64) 352 104.87 100.88

hybrid
quad

148718.8
(12821.2)

224683.2
(13930.9)

76999.5
(1110.1)

1035.0 (0.4) 192715 (20125) 329492 (64) 352 57.31 57.44

hybrid
quad
pipe

152677.5
(12992.5)

229721.5
(14095.5)

78027.0
(1104.4)

983.0 (1.4) 205213 (20123) 330613 (64) 352 100.88 102.18

hybrid
cubic

160470.3
(12838.2)

242596.9
(13916.5)

84026.7
(1078.6)

1900.0 (0.3) 230349 (20123) 329573 (64) 352 35.5 34.48

hybrid
cubic
pipe

173782.0
(13017.1)

260793.0
(14017.5)

90105.0
(1002.9)

3094.0 (2.4) 265491 (20108) 337973 (64) 352 92.08 92.54

single
line fp
mult

115529.7
(11091.8)

174032.3
(12090.2)

58930.2
(999.4)

427.5 (0.9) 110213 (17174) 304713 (64) 352 122.19 120.48

two to
the x

110896.2
(11047.6)

167182.5
(12030.2)

56758.3
(983.3)

472.0 (0.6) 101750 (17156) 296383 (64) 320 141.1 134.44

253

Appendix G

Graphics shaders and rasterization

unit resource demand using

different floating point precisions

G.1 Vertex shader

Table G.1: Resource requirements and timing analysis for a selection of vertex shaders imple-
mentated on an FPGA. Implementations are using double-precision floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Dedicated
Z rotate

9314.1
(0.0)

13701.7
(0.0)

4466.2 (0.0) 78.7 (0.0) 9878 (0) 25008 (0) 32 93.55 90.49

Generic
world
matrix
vector

multipler

2643.5
(0.0)

3421.2 (0.0) 806.7 (0.0) 29.0 (0.0) 3182 (0) 6064 (0) 4 97.32 94.2

Table G.2: Resource requirements and timing analysis for a selection of vertex shaders imple-
mentated on an FPGA. Implementations are using single-precision floating-point accuracy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Dedicated Z
rotate

4820.3
(0.0)

6995.4 (0.0) 2204.6 (0.0) 29.5 (0.0) 5302 (0) 12544 (0) 8 158.03 153.4

Generic world
matrix vector

multipler

1442.8
(0.0)

1809.6 (0.0) 377.3 (0.0) 10.5 (0.0) 1831 (0) 3194 (0) 1 158.15 153.82

Generic world
matrix vector
multipler with

forward lighting
calculations

32390.5
(462.1)

36707.2
(498.2)

4419.4 (47.3) 102.7 (11.1) 23482 (600)
102548
(1067)

18 145.71 147.93

254

APPENDIX G. GRAPHICS SHADERS AND RASTERIZATION UNIT RESOURCE DEMAND USING
DIFFERENT FLOATING POINT PRECISIONS

G.2 Fragment shader

Table G.3: Resource requirements and timing analysis for a selection of fragment shaders
implementated on an FPGA. Implementations are using double-precision floating-point ac-
curacy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Gradient
interpolation

shader

8911.9
(387.0)

13927.5
(415.9)

5063.3 (29.4) 47.7 (0.5) 7130 (741) 27073 (774) 16 90.66 87.9

Point light
shader using

forward lighting
calculations

28981.4
(20663.9)

36545.7
(25046.1)

7709.1
(4474.6)

144.8 (92.4) 12194 (2599)
74881

(53325)
52 79.9 83.64

Table G.4: Resource requirements and timing analysis for a selection of fragment shaders
implementated on an FPGA. Implementations are using single-precision floating-point accu-
racy.

Module

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85◦C
Restricted fmax

(MHz)

0◦C
Restricted
fmax (MHz)

Flat colour
shader

85.5 (85.5)
104.5

(104.5)
19.0 (19.0) 0.0 (0.0) 115 (115) 226 (226) 0 614.25 660.5

Gradient
interpolation

shader

4708.3
(275.8)

7150.1
(290.6)

2462.7 (14.7) 21.0 (0.0) 3961 (517) 13831 (550) 4 133.71 130.77

Point light
shader using

forward lighting
calculations

14892.8
(10715.6)

19231.4
(13126.6)

4456.1
(2506.5)

117.5 (95.4) 6599 (1797)
37704

(26797)
13 109.99 112.88

255

Appendix H

FPGA based implementation of a

GPU using different floating point

precisions

Table H.1: Resource requirements and timing analysis for a variety of full graphics processors
implemented on an FPGA using the individual components listed earlier. Implementations
are using single-precision floating-point accuracy.

Pipeline Type

ALMs
Needed

[=A-
B+C]

[A] ALMs
used in
Final

Placement

[B]
Estimate of

ALMs
Recoverable

by Dense
Packing

[C]
Estimate of

ALMs
Unavailable

Combinational
ALUTs

Dedicated
Logic

Registers

DSP
Blocks

85circC
Restricted

FMax (MHz)

0circC
Restricted

FMax
(MHz)

Flat colour
fragment shader

with generic
matrix/vector

multiplier vertex
shader

26079.5
(167.0)

35322.0
(298.8)

9484.0 (131.8) 241.5 (0.0) 29655 (15) 61209 (643) 13 48.74 51.29

Gradient colour
fragment shader

with generic
matrix/vector

multiplier vertex
shader

30982.0
(172.5)

36060.5
(235.5)

5284.5 (63.0) 206.0 (0.1) 33936 (25) 74695 (643) 17 45.79 47.94

256

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Systems with multiple processors
	Current processing technologies
	General Purpose Processor - GPP
	Graphics Processing Unit - GPU
	Accelerated Processing Unit - APU
	Digital Signal Processor - DSP
	Field Programmable Gate Array - FPGA
	Application Specific Integrated Circuit - ASIC

	Aims and Organisation of this Thesis

	Review of Literature
	Processor topologies
	The early years
	Specific hardware for specific tasks
	The history of CMOS
	The FinFET
	The photonic processor
	What is the next step?

	Architectures
	What makes the `best' architecture?
	Homogeneity and heterogeneity
	How multiple devices interact

	Hardware acceleration
	The beginnings of hardware acceleration and the introduction of co-processors
	Modern acceleration
	Acceleration of image, video and graphics processing

	Dynamic reconfiguration and context switching
	Task scheduling
	Dynamic reconfiguration
	Context switching
	Applications for dynamic reconfiguration and context switching on FPGAs

	Code compilation and automatic optimisation techniques
	Coarse grain reconfigurable architectures
	Hardware [comment=section title better reflects its contents]compilersdescription languages
	Example applications for generated HDL

	Summary

	Hardware Implementations of Fundamental Maths Functions
	The implementation of algorithms
	Processors versus dedicated hardware
	How can hardware make life better?

	Implementing floating-point mathematical operations on a hardware architecture
	Basic mathematical functions in hardware
	Analysis methods
	Vector and matrix operators

	Summary

	Hardware Implementations of Complicated Maths Functions
	Iterative floating-point approximations and efficient hardware implementations
	Division
	Analysis of error
	Square-root
	Exponential
	Hardware implementations of curve-fitting methods
	Analysis of error

	Case study: implementing a neuron in hardware
	Training neural networks using approximations to the exponential function
	Implementing the Hodgkin-Huxley model on an FPGA
	Outputs from the neuron simulation

	Considerations for the implementations of other arbitrary complex functions
	Summary

	Case Study: Creating an OpenGL Compliant GPU on an FPGA-SoC
	Replacing processors with dedicated hardware
	Overview of a GPU

	Implementing the FPGA-GPU
	Basic render engine
	Modelling the system
	FPGA implementation of the GPU
	Considerations for designing and implementing the FPGA-GPU
	Designing for system bottlenecks; maximising performance for minimal resource cost

	Performance of the FPGA implementation compared to embedded GPU devices
	Complete FPGA-GPU implementation
	Summary

	Dynamic Task Allocation and Context Switching
	Dynamic reconfiguration
	Full reconfiguration
	Partial reconfiguration
	Continuous end-to-end data flow

	Context switchable hardware
	De-fragmenting hardware accelerators
	Controlling context switching in hardware
	Effects of using pre-emptible flip-flops on resources and performance
	Including pre-emptible resources in hardware designs
	Pre-empting hard IP blocks

	On-line compilation and configuration of reconfigurable devices
	Mapping to the FPGA's floor plan

	Summary

	Automatic Synthesis of Hardware from High-Level Languages
	High level versus low level
	Traditional design flows and optimisation techniques
	High-level synthesis of OpenGL shading language
	Optimising the flow graphs before synthesis of hardware
	Critical path analysis
	Removing repeated hardware

	Synchronising the data path
	Pipelines and resource reuse
	Using the automated synthesis tool
	Summary

	Conclusions and Further Work
	Benefits
	Limitations
	Future work
	Hardware accelerated functions
	High level synthesis
	Dynamic reconfiguration of FPGAs

	Appendices
	Resource use and performance for single and half precision implementations of floating point maths in hardware
	Fundemental operators
	Iterative operations
	Vector and matrix operators

	Floating point adders and multipliers in single and half precision
	Accuracy of Newton-Raphson inversion algorithm implemented in hardware for IEEE-754R standard input formats
	Square root accuracy for single and half precision inputs
	Approximating exp(x) using both traditional mathematical expansions and hardware friendly interpretations
	Traditional mathematical expansions
	Double precision
	single precision

	Hardware friendly implementations
	Double precision
	Single precision
	Error plots for the hardware friendly exp(x) implementations

	Hardware Implementations of the Hodgkin-Huxley Model of a Neuron
	Step responses
	Impulse responses
	Resource and performance metrics

	Graphics shaders and rasterization unit resource demand using different floating point precisions
	Vertex shader
	Fragment shader

	FPGA based implementation of a GPU using different floating point precisions

