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Abstract : 

 

This study examines the thermal behavior of a hemispherical electronic component 

subjected to a natural nanofluidic convective flow. This active dome generates a high power 

while operating, leading to values of the Rayleigh number reaching 4.56x109. It is contained in 

a hemispherical enclosure and the space between the dome and the cupola is filled with a 

monophasic Water base-Copper nanofluid whose volume fraction varies between 0 (pure water) 

and 10%. According to the intended application, the disc of the enclosure may be tilted at an 

angle ranging from 0° to 180° (horizontal disc with dome facing upwards and downwards 

respectively). The numerical solution has been obtained through the volume control method 

based on the SIMPLE algorithm. The average temperature of the outer surface of the dome has 

been determined for many configurations obtained through Rayleigh number variation. The tilt 

angle of the cavity and the volume fraction vary within wide ranges. The temperature fields 

presented for several configurations confirm the effects of natural convection. The results 

clearly highlight the effects of these parameters on the thermal state of the assembly. The study 

shows that some combinations Rayleigh-tilt angle-volume fraction are incompatible with a 

normal operating system at steady state and that a thermoregulation is required. The correlation 
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of the temperature-Rayleigh-Prandtl-angle type proposed in this work allows to easily carry out 

the thermal dimensioning of the considered electronic assembly.  

 

Keywords :  

Free convection, Copper-Water Nanofluid, Hemispherical cavity, Electronics applications. 

 

Nomenclature 

a  thermal diffusivity (m2s-1) 

b  exponent defined in Eq. (11) 

C  specific heat at constant pressure (J.kg-1K-1) 

g  gravity acceleration (m.s-2) 

h  average convective heat transfer coefficient (Wm-2K-1) 

ge


 dimensionless unit vector opposite to the gravity direction (-) 

k  coefficient defined in Eq. (11) 

m coefficient defined in Eq. (11) 

n  outgoing normal 

*n  dimensionless outgoing normal R/nn*   (-) 

Nu  average Nusselt Number (-) 

p  pressure (Pa) 

*p  dimensionless pressure (-) 

P  generated power (W) 

Pr  Prandtl Number (-) 

q  generated heat flux, hS/Pq   (Wm-3)  

r  coefficient defined in Eq. (11) 

R  radius of the external cupola (m) 

Ra  Rayleigh number (-) 

iR  radius of the active, (m) 

hS  exchange area of the active dome (m2) 

T  temperature (K) 

cT  temperature of the external cupola and initial temperature (K) 
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T
 

average temperature of the active dome’s surface (K) 

*T  dimensionless temperature (-) 

 T  average dome’s surface temperature obtained for 0  (K) 

  0T  average dome’s surface temperature obtained for 0  (pure water) (K) 

maxT  maximum temperature of the active dome (K) 

u


 velocity vector 

*u


 dimensionless velocity vector 

V  volume of the active dome (m3) 

 z,y,x  Cartesian coordinates (m) 

 

Greek symbols 

  inclination angle of the disc with respect to the horizontal plane (°) 

  volumetric expansion coefficient (K-1) 

  
temperature difference     0  TT

 
(K)

 
 

T  
difference of temperature ; cTTT   (K) 

*


 dimensionless nabla operator (-) 

2*  dimensionless Laplacian operator (-) 

  volume fraction (%) 

  thermal conductivity (Wm-1K-1) 

   dynamic viscosity (Pa.s)  

  density (kg.m-3) 

 

Subscripts 

f base fluid (pure water) 

h active dome  

nf nanofluid 

s solide nanoparticles 
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1. Introduction 

  

Hemispherical cavities are used in various engineering sectors such as nuclear 

techniques, solar energy, surveillance and security, lighting and building. This geometry is also 

used for the thermoregulation of electronic assemblies through natural convection considered 

in this work. Recent work has been devoted to this field with air-filled hemispherical enclosures 

[1-4] whose active base (disc) is subjected to various thermal boundary conditions (Neuman, 

Dirichlet) corresponding to different actual operations. For some applications, this base is tilted 

with respect to the horizontal plane between 0° (horizontal disc with dome facing upwards) and 

180° (horizontal disc with dome facing downwards). The dynamic and thermal phenomena 

occurring in each case are detailed in the works cited above. Correlations of the Nusselt-

Rayleigh type are proposed to determine the convective heat transfer corresponding to each 

configuration. They are synthesized in [5]. Some studies examine the thermal behavior of the 

active disk and correlations are proposed to calculate its surface temperature. Previous studies 

examine some aspects of the natural convective flows occurring in hemispherical cavities filled 

with fluids other than air. This is the case of [6] which considers a hemispherical assembly 

consisting of an active dome maintained isothermal and a horizontal active disk. The cavity is 

filled with a fluid whose Prandtl number varies between 6 and 13000. Natural convective heat 

exchanges are quantified by means of correlations of the Nusselt-Rayleigh-Prandtl type reduced 

to Nusselt-Rayleigh type. This shows that the thermophysical characteristics of the used fluid 

have no influence on convective heat transfer. Many other studies such as [7,8] applied to the 

field of nuclear techniques come to the same conclusion: the fluid’s quality has no effect on the 

convective heat transfer. Nanofluids are homogeneous mixtures consisting of a base fluid and 

high thermal conductivity nanoparticles. These are used in applications aimed at enhancing 

natural convective transfer in assemblies generating an important heat flux. The present work 

specifically deals with the electronics sector in which the generated volumetric heat flux could 

reach many GWm-3. Many documents such as [9-12] offer information about composition, 

manufacturing techniques, fields of application and physical characteristics of these nanofluids. 

Some reviews [13-15] are devoted to nanofluidic natural convection as an abundant scientific 

production is devoted to them recently, dealing with various aspects. The latter show that 

several physical parameters influence the dynamic and thermal characteristics of the convective 

flow. Among the most impacting ones stand the geometry and dimensions of the enclosure, the 

position of the active parts with respect to the field of gravity, the presence of obstacles, their 

shape and dimensions, the generated power and temperature. The composition of the used 
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nanofluid (base fluid, nanoparticles, volume fraction) plays an important role in heat exchanges. 

However, the conclusions of the studies dealing with natural convection through nanofluids are 

very different with regard to the enhancement of convective heat transfer [16-18]. The survey 

[19] deals with natural convection using a water-base Copper nanofluid contained in a square 

cavity including a heat-generating square solid. The study shows that average Nusselt Number 

representing the convective heat transfer increases of about 27% with increasing nanofluid 

volume fraction. The latter varies between 0 and 8% when the Rayleigh number is lower than 

105. Nevertheless, enhancement is only of 9.5% for a Rayleigh number higher than 107. By 

using the water-base CuO nanofluid, the same conclusion is reached in [20] dealing with the 

case of a rectangular cavity with two vertical walls differentially heated and in [21] examining 

a Rayleigh-Bénard convection where the better enhancement corresponds to low Rayleigh 

number of 103. The study [22] also shows that the convective heat transfer through Copper-

Water nanofluid is improved when the volume fraction increases in the 103-105 Grashof 

Number range. The tilt angle with respect to the gravity field significantly influences the free 

convective heat transfer. This aspect is confirmed in works concerning various forms of cavities 

such as [23, 24] dealing with a square cavities filled with a water-base Al2O3 nanofluid and in 

[25] using the same nanofluid and the TiO2–water in an inclined pipe. The choice of nanofluid 

model is very important to quantify heat transfer in the considered assembly, as confirmed by 

many works published in this area. According to the considered nanofluid, its thermophysical 

characteristics and fraction volume as well as other physical parameters, some works cited 

previously show that heat transfer is improved in some cases. However, it remains almost 

unchanged and is even decreased for some combinations, proving that the use of nanofluids is 

not always effective.  

Several models are proposed in many works to calculate the effective dynamic viscosity 

and thermal conductivity of various nanofluids. The excellent technical note [26] contains an 

interesting review on this subject. Based on data from available experimental works, the author 

proposes empirical correlations to better estimate the effective dynamic viscosity and thermal 

conductivity of nanofluids. As stated by the author, these essential characteristics depend on 

several physical parameters such as the nanoparticle diameter and the temperature of the 

suspension for the effective thermal conductivity which is either under or over-estimated by the 

Maxwell equation used in the present work. The Maxwell model used in many works estimates 

the thermal conductivity with an uncertainty of the same order of magnitude as the 

measurements available in the literature. This model thus appears to be suitable for the water-

based Copper nanofluid work considered in this work. This comment remains valid for the 
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Brinkman model concerning the viscosity. A state of the art concerning the thermal conductivity 

and viscosity models is presented in the recent work [27]. This interesting review clearly shows 

that the perfect models do not exist today and that research must continue in this area, 

particularly through the experimental approach, by examining the influence of many physical 

parameters. Research is currently very active in this field [28-30] and will soon lead to reliable 

models for these important thermophysical characteristics, thus making it possible a better 

modeling of the convective phenomena with nanofluids. Some recent studies are devoted to the 

natural convective phenomena occurring in the hemispherical cavities. The work [31] deals 

with the case of a hemispherical cavity filled with water-base ZnO nanofluid and containing an 

active cubic electronic device. The same cavity whose base (disc) is active and filled with the 

same nanofluid is treated in [32]. In both studies, the base of the cavity is inclined by an angle 

varying between 0 and 180° (dome oriented upwards and downwards respectively) by steps of 

15°. The correlations of the Nusselt-Rayleigh-Prandtl-tilt inclination type proposed in these 

studies allow calculating the convective heat exchanges for several configurations in wide 

Rayleigh ranges. The study [33] quantifies the convective heat transfer with a water-base 

Copper nanofluid contained between two concentric hemispheres. One is active and the other 

is kept isothermal, being the base of the assembly inclined between 0 and 180° with respect to 

the horizontal plane. The present work completes that study by examining the thermal behavior 

of the inner dome which generates power in a wide range resulting in high Rayleigh numbers 

up to 7.29x1010 corresponding to specific applications. The volume fraction of the monophasic 

water-base Copper nanofluid varies between 0 (pure water) and 10%. The numerical study done 

by means of the volume control method based on the SIMPLE algorithm confirms the 

effectiveness of the nanofluid for cooling purposes of the active hemispherical electronic 

component. Its average surface temperature decreases as the fraction volume increases. The 

temperature reduction may exceed 7K for some combinations Rayleigh-tilt angle-volume 

fraction. The study also shows that thermoregulation is necessary to avoid consequences 

incompatible with normal operation of the assembly. These may be boiling, degradation of the 

nanofluid properties or maximum admissible temperature exceeding for electronic components. 

An easy method to apply correlation is proposed, allowing to calculate the average surface 

temperature of the active component used in various engineering fields. 

 

2. The treated assembly 
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The hemispherical electronic component of radius iR  presented in Fig. 1(a) is soldered 

to the center of a disc of radius iRR 2  which constitutes the basis of the assembly. It is 

covered by concentric cupola maintained isothermal at temperature K300cT  and the space 

between the hemispheres is filled with a monophasic Water base-Copper nanofluid whose 

volume fraction varies between 0 (pure water) and 10%. According to the intended application, 

the disc of the enclosure may be tilted at an angle ranging between 0° and 180° (horizontal disc 

with dome facing upwards and downwards respectively as represented in Fig. 1(b). The outer 

face of the disk is thermally insulated (adiabatic). 

 

 

 

Figure 1. The nanofluid-filled and tilted hemispherical enclosure with its active dome 

 

During operation, the active dome of thermal conductivity h  generates a uniform power

P . The average temperature of its external surface hS  subjected to the natural convective 

phenomena is denoted as T . The thermophysical characteristics (conductivity, density, specific 

heat and volumetric expansion coefficient) of the Copper nanoparticles (subscript s) are 

presented in Table 1. The same physical parameters complemented by the dynamic viscosity 

concerning the pure Water (subscript f) are presented in Table 2. 
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Table 1. Thermophysical characteristics of the Copper nanoparticles [19] 

s  

(Wm-1K-1) 

s  

(kg.m-3) 

sC  

(J.kg-1K-1) 

s  

(1/K) 

401 8933 395 1.67x10-5 

 

 

Table 2. Thermophysical characteristics of the pure Water [19] 

f  

(Wm-1K-1) 

f  

(kg.m-3) 

fC  

(J.kg-1K-1) 

f  

(1/K) 

f  

(Pa.s) 

0.613 997 4180 2.1x10-4 8.91x10-4 

 

These data allow to calculate the characteristics of the resulting monophasic nanofluid by 

using the following models [19, 22] (Maxwell for the effective thermal conductivity and 

Brinkman for the effective viscosity), according to the considered volume fraction  .  
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The values of the Prandtl Number Pr  
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corresponding to the six   values considered in this work (0, 1, 3, 5, 7.5, 10%) are presented 

in Table 3. 

 

Table 3. Considered   and Pr values for the Water base-Copper nanofluid  

  0% 1% 3% 5% 7.5% 10% 

Pr  6.074 5.592 4.822 4.236 3.679 3.254 

 

3. Numerical solution, governing system 

 

The considered problem is governed by the following dimensionless system written in 

vector form, detailed in several documents [35,36] 

 

Continuity : 0 u* 
 

Momentum:   geTRaupuu
 **2****** PrPr   

Energy: ***** TTu
2


 (fluid); 0*2*  T  (cupola) 

(3) 

 

where  *


, 2*  and ge


 are the nabla operator, the Laplacian spherical operator and the unit 

vector opposite to the gravity direction respectively, while the dimensionless velocity vector 

*u


 and pressure *p  are defined as  

 

 
a
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u*




 ; 
2

2

a

pR
p*


   (4) 

 

being Ca   the thermal diffusivity, while the dimensionless temperature *T  is defined 

with 
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The Rayleigh Number Ra  is based on the liquid gap   ii RRR   as characteristic 

length and the uniform heat flux hS/Pq   generated by the active dome  

 

qgR
a

Ra i
4

f




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







 
 

(6) 

 

The volume control method used here and presented in [35,36] is associated to the 

SIMPLE algorithm. The unstructured mesh of the computational domain presented in Fig. 2 is 

composed of tetrahedral volumetric elements and triangular surface elements.  

 

 

 

Figure 2. The adopted mesh for the considered assembly 

 

A refinement of the mesh was carried out in the vicinity of the surfaces in contact with 

the fluid. This is required in order to take into account the variation of the nanofluid thermal 

characteristics versus the volume fraction, including the effects of viscosity on the dynamic and 

thermal characteristics of the boundary layer. This also makes it possible to calculate with 

precision the parietal thermal gradients and the distribution of the temperature on the surface 

 of the active dome of the assembly, the main objective of the present work.  

Initial dynamic and thermal boundary conditions are that the fluid is stationary. In 

addition, the entire computational domain including the nanofluid, the hemispheres and the disc 

hS
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is considered isothermal at temperature K300cT . Throughout the calculation process, the 

dynamic no-slip condition is imposed on all the surfaces of the domain in contact with the 

nanofluid, the external dome is kept isothermal  0*T , the outer face of the disk is adiabatic 

(perfect insulation) and the active dome generates a uniform heat flux q . Moreover, the 

condition of continuity of the flux and of the temperature at the fluid-solid interface 
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(7) 

 

is imposed. A heat balance is systematically carried out in steady state on the hot and cold 

surfaces (dome and dome respectively) for all the configurations processed. The convergence 

of the numerical solution obtained by means of a home-made software is considered to be 

reached when the relative deviation between the results of two successive iterations are lower 

than 10-5 for the velocity components and 10-6 for the energy. Preliminary calculations were 

carried out to optimize the mesh and control the mesh independence solution. They are done 

with an unfavorable configuration from the point of view of calculation time which corresponds 

to the horizontal cavity with the dome facing upwards  0 , associated to the maximal Ra  

and Pr  values. This work based on the field of temperature was carried out with an initial mesh 

of  342,812 elements which was increased by steps of 2%. The chosen mesh ensures a variation 

of the temperature of less than 0.5% after 3 successive increases of the mesh. This condition 

was obtained with 571,422 elements. This mesh has been preserved for all   ,,Ra  

configurations processed. 

 

4. Results 

 

Various configurations have been calculated by combining (i) 10 Ra values presented 

in Table 4 corresponding to the generated power  between 0.5 and 700W (ii) 13  values 

varying between 0 and 180° by steps of 15° and (iii) 6   values of Table 2 (0, 1, 3, 5, 7.5 and 

10%). 
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Table 4. Considered Ra  values 

 

 (W) 0.5 5 10 50 100 

Ra 3.25x106 3.25x107 6.51x107 3.25x108 6.51x108 

 

 (W) 200 300 400 500 700 

 1.30x109 1.95x109 2.60x109 3.25x109 4.56x109 

 

Fields of the dimensionless temperature *T  in (x,y) and (x,z) planes for the nanofluid are 

presented in Fig. 3 for %5 , 910x041 .Ra   and  18013590450 ,,,, .The dynamic and 

thermal phenomena concerning the natural convective flow taking place in the interstice 

between the two hemispheres as well as details of the corresponding convective heat transfer 

are presented in [33].  

 

 

 

 

Figure 3. Fields of the dimensionless temperature *T  (1) in (x,y) plane; (2) in (x,y) and 

(x,z) planes for %5 , 910x041 .Ra   and  18013590450 ,,,,  

 

The temperature fields in the (x, y) plane presented in Fig 3 (1) confirm that the hottest 

zones are systematically located in the upper parts of the cavity, for any  ,,Ra  combination. 

These fields influence those of the disk as clearly shown in Fig 3(2). The distribution is 

axisymmetric when the active dome is horizontal with the dome facing upwards  0  and 
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downwards   180 . The maximum and average temperature values decrease as   

increases, which highlight the influence of nanofluid on natural heat convective exchanges and 

its effectiveness on active dome cooling. When the cavity is inclined, the components of the 

total buoyancy force are different on the 3 coordinates and the dynamic phenomena are then 

modified. The nanofluidic thermal field is then no longer axisymmetric, which influences the 

surface temperature of the dome. On a large part of the disc not covered by the active dome, a 

quasi-stratification is observed for the lowest considered Ra  value  710x215 .
 
when  180

. In this case, the fluid activity is low in a large part of the interstice.  

 

 

 

Figure 4. Evolution of the difference temperature T  versus Ra  for %100    and 

 1800   

 

The difference between the average temperature of the dome T  and that of the cupola

K300cT  

 

cTTT   (8) 

 

was determined for all cases. It is presented versus  in Fig. 4 for some representative   

values varying between 0 (pure water) and 10%, and five tilt angles   between 0 and 180°. 
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The increase of T  versus Ra  is systematic for all  ,  combinations and the evolution 

shows a clear decrease in T  as  Pr  increases (  decreases).  

 

 

 

Figure 5. Evolution of the difference temperature  versus the volume fraction   for some 

 values and tilt angle  1800   

 

These trends are confirmed in Fig. 5 which also shows that the minimum difference T  

corresponds systematically to  0  while the maximum value concerns the cavity with the 

oriented dome downwards  180 . These effects are detailed in Fig. 6 in the overall  

range. For some  ,,Ra combinations, the temperature may reach high values incompatible 

with the correct operation of the electronic assembly. They can have various consequences such 

as 

 nanofluid boiling;  

 exceeding the maximum temperature recommended by the manufacturers for the 

electronic component. Maximum temperature of the dome maxT  is reached at 

 000  z,y,x . The temperature difference  TT max  depends on the thermal 

conductivity of the dome h , its radius iR and the generated heat flux q . It can reach 
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2-3K, added to the  value. The maximum permissible temperature can thus be 

exceeded for large Ra  values and large tilt angles  ; 

 early aging and even deterioration of the physical state of the nanofluid since the 

temperature affects its characteristics [37,38]. 

 

 

 

Figure 6. Evolution of the difference temperature  versus the tilt angle   for 

96 10x56.410x25.3  Ra  and  1800   

 

The surface average temperature of the dome obtained for a given value of the volume 

fraction 0  denoted as  T  was compared with that corresponding to 0  (pure water), 

denoted as   0T  . The temperature difference 

 

    0  TT  (9) 

 

was determined for all treated cases and is presented in Fig. 7 versus    for 

96 10x56.410x25.3  Ra  and . It shows a clear decrease of the surface 

temperature when the volume fraction increases, exceeding 7K for the combination

T
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 910x56.4,180%,10  Ra . This figure confirms the effectiveness of the nanofluid for 

hemispherical electronic component cooling purposes. 

 

 

 

Figure 7. Evolution of the temperature difference   versus the volume fraction   for 

96 10x56.410x25.3  Ra  and  

 

The temperature values obtained in the present study are in agreement with those of the 

recent study [33] which quantifies the average convective exchanges for all treated cases. The 

average convective heat transfer coefficient h  calculated by means of the correlation of the 

Pr RaNu  type proposed in [33] was used in the heat balance TShP h  for temperature 

difference T determination. The result compared with that of the present study leads to low 

deviations, ranging from 0.3 to 0.5% on average, with a marginal maximum deviation of 2.4% 

obtained for the lowest Ra  value. 

 

5. Correlations 

 

To optimize the thermal design of the considered assembly, a correlation of the 
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       rRabkT m   Pr  (10) 

 

type has been developed by considering the results to all the combinations treated in this study. 

Evolution of the  mbk ,,  parameters versus   are presented in Fig. 8.  

 

 

 

Figure 8. Evolution of the functions  m,b,k  versus the tilt angle   in the correlation 

       rPrRabkT m    

 

The well-known least square optimization method shows that they can be represented by 

the second order polynomial type functions shown in the figure, whose coefficients of 

determination are higher than 0.998. The parameter r  corresponds to the adjustment of the 

results with the reference temperature. 

 

Finally, the average temperature of the active dome could be easily calculated by means 

of the following correlation 
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(11) 

The values of T  obtained with this correlation slightly differ from those obtained 

through numerical approach. Relative deviations are low, varying between 0.2 and 0.6% on 

average. The maximum deviation of 2% corresponds to the lowest Ra  value considered in the 

study. 

 

6. Conclusion 

 

The aim of this work is to examine the thermal behavior of a hemispherical electronic 

component. This active dome generates high power leading to Rayleigh number values reaching 

4.56x109. It is covered by concentric cupola maintained isothermal and the space between the 

hemispheres is filled with a monophasic Water base-Copper nanofluid whose volume fraction 

varies between 0 (pure water) and 10%. The disc of the enclosure may be tilted at an angle 

ranging between 0° and 180° (horizontal disc with dome facing upwards and downwards). The 

numerical solution has been obtained by means of the volume control method based on the 

SIMPLE algorithm. The study shows that for some  ,,Ra  combinations, the temperature 

can reach high values with consequences such as nanofluid boiling, exceeding the maximum 

permissible temperature for the electronic device, early aging and even nanofluid physical state 

deterioration. These effects incompatible with normal operation of the electronic assembly 

confirm the need for thermoregulation. The surface temperature of the active component is 

therefore essential for thermal dimensioning of this assembly. This important data can be easily 

determined by means of the correlation proposed in this work valid in wide ranges of the 

Rayleigh number, enclosure tilt angle and nanofluid volume fraction. 
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