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Abstract8

In nature, selection varies across time in most environments, but we lack an understanding of how9

specific ecological changes drive this variation. Ecological factors can alter phenotypic selection coef-10

ficients through changes in trait distributions or individual mean fitness, even when the trait-absolute11

fitness relationship remains constant. We apply and extend a regression-based approach in a population12

of Soay sheep (Ovis aries) and suggest metrics of environment-selection relationships that can be com-13

pared across studies. We then introduce a novel method which constructs an environmentally-structured14

fitness function. This allows calculation of full (as in existing approaches) and partial (acting separately15

through the absolute fitness function slope, mean fitness, and phenotype distribution) sensitivities of16

selection to an ecological variable. Both approaches show positive overall effects of density on viability17

selection of lamb mass. However, the second approach demonstrates that this relationship is largely18

driven by effects of density on mean fitness, rather than on the trait-fitness relationship slope. If such19

mechanisms of environmental dependence of selection are common, this could have important implica-20

tions regarding the frequency of fluctuating selection, and how previous selection inferences relate to21

longer-term evolutionary dynamics.22
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Introduction23

Variation in selection is key to understanding the dynamics of adaptive evolution (Bell, 2010; Uyeda et24

al., 2011; Chevin & Haller, 2014; Estes & Arnold, 2007; Hadfield, 2016). If variation in selection occurs,25

any estimate from a single episode of selection, or over short timescales, will be insufficient, or potentially26

misleading, for predicting how that trait will evolve. While the existence and some aspects of variation in27

selection have been documented (Morrissey & Hadfield, 2012; Siepielski et al., 2013), relating selection to28

environmental variables is likely to provide a much more complete picture of how and why selection varies and29

the likely effects on the evolutionary timescales involved (Wade & Kalisz, 1990; MacColl, 2011). However,30

until recently, despite many studies describing selection in natural populations (Endler, 1986; Kingsolver et31

al., 2001), little progress has been made in understanding the ecological causes of selection (MacColl, 2011).32

Temporal replication provides information on how selection fluctuates over time (Morrissey & Hadfield,33

2012; Siepielski et al., 2009) and as a consequence provides the opportunity to investigate the importance of34

particular ecological factors.35

Any description of selection is a representation of some aspects of a fitness landscape. This landscape re-36

lates different phenotypic or genetic combinations to population mean fitness in a given environment (Wright,37

1932; Arnold, 2003). For quantitative traits, this idea can be visualised as a (potentially multi-dimensional)38

surface relating phenotype to fitness (Lande, 1979). The idea of a fitness landscape allows visualisation of39

the concept but can potentially lead to an over simplified view. For example, fitness landscapes may change40

as a function of environmental conditions. This has led to suggestions that the idea of a fitness landscape can41

be enhanced by adding extra dimensions for relevant environmental variables (Chevin et al., 2010; MacColl,42

2011). Key information about the fitness landscape that a population is experiencing can be gained through43

the calculation of fitness functions which relate individual fitness to genotype or phenotype (Arnold, 2003).44

Although fitness functions are central to many theoretical approaches (Geroldinger & Bürger, 2015; Slatkin,45

1978), visualisations of fitness functions, or how they change in relation to changing environmental conditions46

are surprisingly rarely used in empirical studies (but see for e.g. Chevin et al., 2015; Grant, 2002; Sinervo et47

al., 2000).48

Phenotypic selection coefficients, i.e. selection differentials (Lush, 1937; Robertson, 1966) and gradients49

(Lande, 1979; Lande & Arnold, 1983), provide information on the strength, shape and direction of selection50

on a particular trait (Phillips & Arnold, 1989) by linking relative fitness to trait values. Consequently, they51

have been widely used to characterise selection (Kingsolver et al., 2001) and variation in selection (Morrissey52

& Hadfield, 2012; Siepielski et al., 2013). The use of selection gradients was popularised by Lande & Arnold53

in their paper published in 1983 where they laid out a quantitative genetic framework for multivariate54
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selection analysis. In conjunction with standardising phenotype in units of standard deviations (Lande &55

Arnold, 1983), or less often in units of means (Hereford et al., 2004), the concept of selection gradients56

has been critical in allowing comparisons to be made across traits, taxonomic groups etc. Specifically, this57

comparison is possible because phenotypic selection coefficients express the direction and strength of selection58

in forms that relate quantitatively to phenotypic and genetic variation, and to evolution (via the breeder’s59

equation for differentials, and the Lande equation for gradients). These estimates provide information on the60

fundamental process underlying evolution by natural selection since both selection gradients and selection61

differentials are related to how the mean of a phenotypic trait changes due to a period of selection per unit62

of genetic variance (Wade & Kalisz, 1990). While phenotypic selection coefficients provide a powerful link63

for empirical studies of selection to evolutionary theory, the standardisations of phenotype and fitness (i.e.64

relative vs absolute fitness) inherent to their use, definition and comparison, makes them potentially quite65

distantly related to fitness functions which relate absolute fitness to unstandardised phenotypes. Many of66

the questions we may wish to ask about variation in selection pertain to fitness functions. Therefore, simply67

relating coefficients to the environment may generate incomplete representations of how the environment68

interacts with the trait-fitness relationships.69

The fact that phenotypic selection coefficients link traits to relative rather than absolute fitness is im-70

portant for the ecological interpretation of variation in selection. Whenever an estimate of relative fitness is71

used, it is assumed there is an underlying absolute fitness function which relates each individual’s absolute72

fitness to its trait value in a given environment. Critically, the values of phenotypic selection coefficients are73

not just determined by the mean slope of this absolute fitness function. Consider selection occurring under74

two different sets of environmental conditions. A possible scenario is that the resulting fitness functions have75

the same slope in both cases, but a different mean fitness (Figure 1A). Quantification by phenotypic selec-76

tion coefficients would demonstrate different trait-relative fitness relationships exist despite a very important77

aspect of the trait-fitness relationship (i.e., the slope) remaining constant. In fact the same may also be true78

for changes in the mean or variance of the trait distribution which can also affect phenotypic selection coeffi-79

cients under some fitness functions. Thus, while variation in these selection coefficients alone can begin to tell80

us about important ways that selection varies, focussing only on phenotypic selection coefficients, without81

consideration of the properties of fitness functions, could obscure many ecologically important ways in which82

selection can vary. To this end, Chevin et al. (2015) constructed log-linear and Gaussian models of a fitness83

function and its dependence on an environmental variable. These models, based on fitting a Gaussian fitness84

peak, have useful and direct relationships between the model coefficients and selection gradients. However,85

this is a specific model and more general approaches are desirable. We hope that an additional benefit of86

our approach is to provide a more flexible way of modelling variation in the fitness function.87
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Here, we first present a simple mathematical example demonstrating that there are four different path-88

ways through which the environment can alter phenotypic selection coefficients under a linear fitness function.89

We review and clarify that a change in trait mean, trait variance, mean fitness, or the relationship between90

the trait and fitness all can result in an altered selection differential. Variation in any (combination) of these91

effects could generate variation in selection. Each of these sources of variation would have very different92

ecological implications, which cannot be distinguished by considering variation in phenotypic selection co-93

efficients alone, or by considering their relationship with environmental variables. Thus, no firm ecological94

conclusions can be drawn solely from establishing relationships between phenotypic selection coefficients and95

environmental variables. Standardisations of the traits and fitness required for the calculation of phenotypic96

selection coefficients necessarily obscure information about how environmental variables may influence fit-97

ness functions. We then develop and apply two different ways that selection in natural populations can be98

analysed in relation to environmental variables. Our demonstration analyses use data from an intensively99

studied wild population of Soay sheep (Ovis aries) on St Kilda, Outer Hebrides.100

Our first type of analysis mirrors that which has been carried out by several other authors, where selection101

differentials are regressed on an environmental covariate of interest (Campbell & Powers, 2015; Husby et al.,102

2011; Visser et al., 2015) as was suggested by Wade & Kalisz (1990). This analysis introduces an important103

potential benefit of such an approach: the opportunity for a standardised way to quantify the effects of an104

environmental variable on selection that is comparable across studies, which is currently missing from the105

literature. Despite interest in how much selection is explained by particular aspects of ecology (e.g. McAdam106

& Boutin, 2003; Steele et al., 2011) little has been published using a convention that would allow meaningful107

comparisons between studies. We suggest that a solution is to calculate the proportion of the variance seen108

in selection that is attributable to an environmental variable, and suggest how this can be estimated robustly109

in practice. In the Soay sheep, we find that a substantial amount of the variation in selection on lamb mass110

in August can be attributed to changes in the population size.111

Next, we develop an approach based on direct estimation of an environmentally-structured fitness function112

i.e., the relationship between unstandardised phenotype, an environmental variable and expected absolute113

fitness. We also estimate the effect of an environmental variable on mean phenotype and phenotypic variance.114

We use these estimated functions to calculate relative fitness based selection differentials for which we can115

derive the total sensitivity to the environment, as well as the components of this total relationship that act116

through the trait-fitness relationship, mean fitness, and environment-dependent changes in the distribution117

of phenotype. In Soay sheep, we find that much of the dependence of selection of lamb mass on population118

size acts through changes in mean fitness, and that the slope of the fitness function is actually relatively119

constant.120
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Components of selection differentials121

In this section the aim is to express the selection differential, S, in a way that includes the components of the122

underlying absolute fitness function and the trait distribution. We do this for a very simple scenario using123

a linear fitness function, to demonstrate the principle. This exercise highlights different pathways through124

which the environment can alter selection estimates and provides key information required to develop analyses125

assessing the individual importance of each component.126

Phenotypic selection coefficients relate relative fitness, w, to a trait value, z. Relative fitness is calculated127

as individual absolute fitness (i.e., the response variable in a fitness function), W , divided by the mean128

absolute fitness,129

w =
W

W
. (1)

The selection differential, S, is the change in population mean after a period of selection, z′ − z. It can also130

be expressed as the covariance of relative fitness with the trait values (Robertson, 1966; Lande & Arnold,131

1983; Lynch & Walsh, 1998),132

S = cov(w, z). (2)

Expressing this selection coefficient in terms of an (absolute) fitness function, W (z), gives133

S = W
−1

cov(W (z), z). (3)

The selection differential takes into account all selection, both direct and indirect, acting on the trait (Lande134

& Arnold, 1983).135

The direct selection gradient, β, is the average derivative of relative fitness with respect to phenotype.136

In multivariate analyses there is an important distinction that the selection gradient is a measure only of137

selection acting directly on the trait. However, in univariate form,138

β = E

[
dw

dz

]
=

cov(w, z)

var(z)
. (4)

Therefore, the difference between the two selection coefficients for univariate analyses, as we are working139

with here, is only in regards to scaling. The commonly used variance standardised selection gradient, βσ,140

(Hereford et al., 2004) is equivalent to variance standardisation of the selection differential, S/σz. The use141

and interpretation of the direct selection gradients requires more consideration when multiple traits are being142

considered simultaneously (Morrissey, 2014). Therefore, selection differentials are used here as we believe143
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this is a better general starting point if the methods are to later be extended to allow multivariate analysis.144

Consider a very simple absolute fitness function, a linear function with an intercept (a) and slope (b) i.e.145

E [W ]i = W (z) = a+ bzi. (5)

Mean absolute fitness is,146

W =

∫ +∞

−∞
W (z)ip(z)dz =

∫ +∞

−∞
a+ bzp(z)dz = a+ b

∫ +∞

−∞
zp(z)dz,

where the last term,
∫ +∞
−∞ zp(z)dz, is the mean phenotype, z, therefore in our simple model147

W = a+ bz, (6)

because equation (5) is a linear function.148

The covariance of absolute fitness with the trait can be expressed as a function of the trait variance and149

the slope of the absolute fitness function,150

cov(W, z) = b
(
E
[
z2
]
− (E [z])

2
)

= σ2
zb. (7)

Combining equations (3), (6) and (7), the selection differential can be expressed as151

S =
σ2
zb

a+ bz
. (8)

This formula for the selection differential in terms of the parameters of a linear fitness function is useful152

for elucidating four ways in which ecological changes could alter selection differentials and other phenotypic153

selection coefficients. Each variable and distribution of phenotype in equation (8) represents a way through154

which ecology can alter selection differentials. The term bz̄ in the denominator of (8) accounts for the155

fact that a change in mean phenotype changes mean fitness, and so ultimately S, if the fitness function is156

sloped (b 6= 0). Thus, any effect of z̄ on selection may act through changes in mean fitness, independent157

of perturbation of a (which independently controls mean fitness). The effect of z̄ on selection coefficients158

is thus equivalent to the ultimate effect of one variable (z̄) on another (S) in a path analysis, where the159

effect is mediated by an intermediate quantity (in this case, the component of mean fitness controlled by160

bz̄). This pathway is distinct from, but no less ecologically relevant than, a change in a while all other161

components remain constant. There have been implications in the literature that differences in selection162
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gradients (for instance among temporal or spatial replicates) attributed to environmental variables are a163

result of changes in trait-fitness relationships (Wade & Kalisz, 1990; MacColl, 2011). Such interpretations164

effectively assume all change occurs through parameter b. Almost certainly this is not the understanding165

of the authors themselves but it has likely led to wider belief that difference in selection gradients can be166

largely or solely attributed to changes in the trait fitness relationship. We hope to clarify that in fact a wider167

range of possible explanations exists for any change seen in a selection differential estimate and each may168

lead to very different ecological interpretations.169

Taking the derivatives of S with respect to each of the parameters illustrates how each will change the170

selection differential, under this linear fitness function, when all other factors are constant. These derivatives171

are listed in Table (1) and depicted graphically in Figure (1). As an example, in Figure (1), doubling mean172

fitness from 0.4 to 0.8, while all other parameters are held constant, does not alter the absolute fitness173

function slope but halves the resulting variance-standardised selection gradient from 0.2 to 0.1. If only these174

selection gradients were reported, which is commonly the case, the information would not be available to175

establish that mean fitness was driving the change which could result in erroneous ecological interpretations.176

The exact relationships between selection coefficients and parameters of fitness functions and phenotypic177

distributions will change with the nature of the fitness function and the distribution of phenotype. This may178

include additional pathways and higher moments, especially if fitness functions are curved (Bonamour et179

al., 2017). However, the principles illustrated in this section should be quite general. For example, consider180

another simple fitness function W (z) = a exp(bz). It is well known that the selection gradient is equal to b,181

for this kind of fitness function, and does not depend on the value of a (Lande, 1983; Chevin et al., 2015).182

In a situation where some ecological variable affected a, that variable would certainly be relevant to the183

fitness of individual organisms. Organisms experiencing high values of a would have both higher fitness, and184

a steeper relationship between their absolute fitness and the trait z. For this specific fitness function, these185

two affects cancel each other exactly i.e. an increase in a leads to a steeper relationship between z and W ,186

this potential change in the strength of directional selection is exactly cancelled out by mean fitness itself187

being higher due to the increase in a. So, while S or β do not vary with a, it is certainly not true that all188

aspects of natural selection are inert with respect to variation in a. In some circumstances understanding189

these multiple effects of a variable on selection may be required to fully understand why selection does (or190

does not) vary.191
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Methods192

Study system, data selection and handling193

The Soay sheep (Ovis aries) of St Kilda, in the Outer Hebrides, have been the subject of an intensive194

individual-based long-term study since 1984 (Clutton-Brock & Pemberton, 2004). The majority of lambs195

within the main study area are born, caught and tagged during April each year. Each August, a large196

portion of the sheep, of all ages, in the study area are caught and weighed. Dates of mortality are known197

with high precision for the majority of individuals that use the study area through population monitoring198

involving 30 censuses per year, daily mortality searches of the study area during periods of high mortality199

(late winter), and occasional surveys of the entire island. This ensures that the lifespan of most individuals200

can be determined with high precision. These censuses also yield highly precise estimates of the numbers of201

individuals using the study area each year. Mortality, which is at least partly density-dependent, can vary202

dramatically between years, which results in the population size falling to very low numbers at irregular203

periods (Grenfell et al., 1992; Clutton-Brock & Pemberton, 2004).204

We investigate selection of August mass via first year survival, in relation to population size. The analyses205

consider the two sexes separately unless otherwise stated and use lambs which survived until the August of206

their first year and that were caught and measured during that August.207

First year survival, our measure of absolute fitness (W ), was based on census, death and capture data.208

Lambs were assigned as having survived the winter if they were still alive at the end of April the year after209

their birth. Individuals whose survival over their first winter was uncertain, 122 (10.646%) females and 188210

(18.431%) males, were removed from the data set. These individuals are either known to be dead but it211

is not known whether or not they died prior to the end April or they have not been recorded dead but do212

not appear in censuses after their first winter. An alternative data set where these lambs were included and213

assumed to have died during their first winter was also compiled. All subsequent analyses were performed214

on both data sets, the results from the alternative dataset are included as a supplemental analysis (S3), but215

the main results reported were unchanged by the inclusion of these additional individuals.216

The phenotype (z) used in the analyses was live body mass in August, measured to the nearest 0.1 kg217

and mean centred across all years. In cases where an individual had been captured more than once in August218

the entry on the day closest to the mean capture day across all 29 years, the 14th, was kept. To account for219

growth that occurred when individuals were caught on different days throughout August the mean centred220

mass (zi) was modelled against the day of August capture (Day), including year as a random effect (bt) with221
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error, εi;222

zi = αg + bgDay + bt + εi. (9)

Males increase in mass by 0.200 kg each day during August while females gained 0.158 kg each day. These223

estimates were used to correct each individual’s mass to that predicted for mean day of capture (the 14th)224

in August over the 29 years. This corrects for differing capture days without removing annual differences in225

mass. These corrected mass estimates were used as the trait values in the following selection analyses.226

The population size (E) used is representative of the core study population on the 1st of October each227

year, it includes all females and males seen in censuses or caught in that year and all males seen or caught228

before the 1st of October i.e. it does not include males who only visit the study area for the rut. All lambs229

that were born in the study area and not subsequently recorded as dead before this date are also included230

in the total.231

The final dataset used in the analyses included sheep born in 29 years, from 1985 to 2013. It contained232

1146 female individuals and 1020 male individuals. Over this time the size of the population ranged from233

211 to 672 individuals.234

Regression of phenotypic selection coefficients on the environmental covariate235

Possibly the simplest way that ecology can be incorporated into selection analysis builds on the idea suggested236

by Wade & Kalisz (1990) to estimate the covariance between, or regression of phenotypic selection coefficients237

on, environmental variables. By calculating selection coefficient estimates for each year individually and238

regressing these on the population size we quantify how selection on lamb August mass varies with population239

size and calculate the proportion of the variation in selection that is attributable to changing population240

size.241

We calculated unstandardized annual selection differentials as the difference in mean trait value for242

individuals alive before and after the period of selection. The standard errors associated with these un-243

standardized selection differentials was calculated as
√

σ2
t1

nt1
+

σ2
t2

nt2
− 2

σ2
t2

nt1
, where σ2 is the variance, n is the244

number of individuals and the subscripts indicate whether the value is from before (t1) or after (t2) se-245

lection. Further details on this approach are provided in the supplementary material(S1). Due to small246

sample sizes in some years, our attempts to calculate these estimates and standard errors in other ways were247

unsuccessful. This was particularly true for attempts using bootstrapping to generate the standard errors,248

with small sample sizes inevitably some of the bootstrap samples have zero survival and therefore undefined249

selection differentials. This problem was unavoidable for some years when all the individuals included in the250
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final dataset had the same survival outcome. In these cases either a selection coefficient is undefined, if all251

individuals die, or the associated error cannot be calculated, if all individuals survive (due to there being no252

variation in the relative fitness). We therefore did not include these years in the analysis, they were generally253

years early in the study with very small sample sizes but also included male lambs born in 2001 when none254

of the 41 individuals included in our dataset survived through the winter. Additionally in some years there255

was only a single survivor. In these situations calculation of the standard error is complicated and any error256

that could be estimated would be too large to add useful information to the analysis and so these were also257

removed. To model the effect that the environment had on the strength of selection in each sex, we carried258

out regression of the selection differentials against population size taking into consideration uncertainty in259

the estimates. We used a diffuse inverse-gamma prior on the residual variance, using the parameters (V=1260

and ν=0.002; DeVillemereuil, 2012).261

Ŝt = µ+ bet +mt + εt, (10)

where Ŝt is the selection differential estimate for each replicated period of selection, t, (e.g. year) and et is262

the value of the environmental variable. The measurement error associated with the selection differential263

estimate is included as mt with a distribution mt ∼ N(0, SE2
t ) and the residual error, εt, is distributed as264

εt ∼ N(0, σ2
ε).265

The variance in selection attributed to the across year variance in the environmental variable, σ2
e , is b2σ2

e .266

While the total variance in S is267

σ2
S = b2σ2

e + σ2
ε . (11)

The proportion of the total variation in selection attributed to the environmental component of the model268

is thus269

b2σ2
e

b2σ2
e + σ2

ε

. (12)

We can also calculate the proportion of variance in selection that would have been attributed to the environ-270

mental variable had we used a regression model which only included the point estimates of the phenotypic271

selection coefficients, ignoring any associated estimation error,272

b2σ2
e

σ2
Ŝ

, (13)

where σ2
Ŝ

is the variation in the calculated selection differentials, ignoring the associated error.273
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Model-based full and partial sensitivities274

In this section we describe the estimation of three functions which can be combined to generate model-based275

predictions of the selection differential, S, in any given environment, e. The sensitivity of the selection276

differential to changes in the environment (equivalent to the slope of the regression line in the previous277

section) is quantified and this sensitivity is then split into components acting through the four previously278

identified pathways: A change in trait mean, trait variance, mean fitness or the relationship between the trait279

and fitness. In order to implement the ideas demonstrated by equation (8), Table (1) and Figure (1), three280

functions are needed. First we need to estimate an “environmentally-structured fitness function”, W (z, e),281

linking absolute fitness to trait values, z, and the environmental variable of interest, e. We also need a282

function relating the mean trait value to the environmental variable, which will be denoted by z (e), and283

finally a function relating the trait variance to the environmental variable, σ2
z (e).284

In order to obtain a flexible model of the effects of August mass and population density on survival,285

we fitted a logistic generalised linear mixed model (GLMM; Bolker et al., 2009; Hadfield, 2010) assuming286

a binomial error distribution, W ∼ B(E[W ]), with linear and quadratic effects of mass and density, plus287

their interactions. We included a random effect of year. Additionally we modelled effects of sex on all288

terms, i.e. a main effect of sex on the model intercept, and interactions of sex with all other terms. While289

we subsequently conduct all analyses separately by sex, this treatment allows us to better interpret sex290

differences in environment-selection relationships. Specifically this model took the form;291

logit(E[W ]) = αB +B1z +B2z
2 +B3e+B4e

2 +B5Sex +B6ez +B7eSex +B8e
2Sex

+B9zSex +B10z
2Sex +B11ezSex + bt + εi.

(14)

This models how individual absolute survival data is related to the trait value, z, environment, e and sex,292

Sex, quadratic terms and relevant interactions are also included with residual error, εi. As temporal variation293

is being investigated the period between replicated selection events, t, in this case year, was included as a294

random variable. Since the residual variance is unobservable in a binomial model with a single trail per295

unit of observation, the residual variance was fixed to one (Morrissey et al., 2014). Using the fixed factor296

coefficients of equation (14) we can construct a function to estimate absolute fitness of an individual, of297

either sex, with any trait value for a given environment condition in an average year;298

W (z, e) = E [W |z, e,Sex] =

∫ +∞

−∞
g′
(
αB +B1z +B2z

2 +B3e+B4e
2 +B5Sex +B6ez + eB7Sex

+B8e
2Sex +B9zSex +B10z

2Sex +B11ezSex + εi

)
p(ε)dε,

(15)
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where g′ is an inverse logit function and p(ε) is a standard normal density function corresponding to the299

fixed overdispersion term evaluated at ε.300

The dependence of mass on population size was modelled, again with year as a random variable, as301

zi = αC + C1e+ C2Sex + C3eSex + bt + εi. (16)

Using the coefficients from this model we can construct a function predicting population mean mass from302

population size as303

z (e) = E [z|e, Sex] = αC + C1e+ C2Sex + C3eSex. (17)

This allows the prediction of the mean trait value in any given environment. Finally we estimated the log304

of the trait variance and the standard error of that log variance individually for each year. We estimated305

the standard error of the estimates of the phenotype variance as σ̂2
zt

√
2

Nt−1 where Nt is the number of306

individuals of a given sex in a given year, this comes from the chi-square distribution of S2(n− 1)/σ2
zt with307

n− 1 degrees of freedom. We obtained corresponding standard errors of log variances by the delta method308

(see e.g. Appendix 1 of Lynch & Walsh, 1998). These values were used to fit a model of how the trait309

variance changes with the environment, taking account of the errors in the variance estimates;310

log
(
σ̂2
zt

)
= αD +D1et +D2Sex +D3eSex +mt + εt. (18)

The measurement error associated with the log of the estimate of trait variance is included as mt with311

a distribution mt ∼ N(0, SE2
t ) and the residual error, εt, is distributed as εt ∼ N(0, σ2

t ). The resulting312

coefficients can be used to construct a function for predicting σ2
z (e);313

σ2
z (e) = E

[
σ2
z |e, Sex

]
= e(αD+D1et+D2Sex+D3eSex). (19)

This allows prediction of the trait variance in a given environment.314

Using the equations (15), (17) and (19), the mean fitness in a given environment can be calculated as315

the integral of absolute fitness as a function of the trait, z, and environment, e, W (z, e), multiplied by the316

weighted probability density function of the trait in that environment, p(z; e),317

W (e) =

∫ +∞

−∞
W (z, e)p(z; e)dz, (20)

where p(z; e) is a normal probability density function with the mean and variance determined by the envi-318
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ronment according to319

p (z; e) = N
(
z; z (e) , σ2

z (e)
)
, (21)

with N(z; z̄(e), σ2
z(e)) representing the density of a normal distribution with mean, z̄(e), and variance, σ2

z(e),320

evaluated at z.321

The selection differential (equation 3) in any given environment can then be expressed as

S (e) =
1

W (e)
E [zW (z, e)]− E [z]E [W (z, e)] = W−1cov (z,W )

and therefore,322

S (e) =
1

W (e)

∫ +∞

−∞
zW (z, e) p (z, e) dz − z (e)W (e) . (22)

Calculating sensitivities323

In a given environment, the sensitivity of the selection differential to the environmental variable is given by324

dS (e)

de
= lim
h→0

S (e+ h)− S (e)

h
. (23)

In practice, setting h to a small number, relative to the range of the environmental variable, allows the325

sensitivity of the selection differential to the environment to be accurately evaluated numerically. The326

average sensitivity of selection can be calculated as the sensitivity averaged over all observed values of e.327

For the Soay sheep data, we calculated the sensitivity of the selection differentials to population size for328

the population size recorded each year with h set as 1. To quantify error associated with each estimate we329

repeated the analysis integrating over 1000 samples of the posterior distribution of the models specified by330

equations (14), (16) and (18), to generate posterior distributions of the average sensitivity of S to e.331

Partial sensitivities332

In order to establish how sensitive selection is to each of the four paths we have identified through which the333

environment can alter selection (Table 1, Figure 1), we can perturb the model defined by equations (22) and334

(23) according to the effects acting through each path. This requires that the perturbation, h in equation335

(23), can be broken down into the components relating to each path. We re-define h (see equation 23) as a336

vector,337

h = [hµ, hσ2 , ha, hb] , (24)
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where the four vector components relate to the four paths:338

hµ - a change in trait mean,339

hσ2 - a change in trait variance,340

ha- a change in mean fitness, and341

hb- a change in the relationship between the trait and fitness.342

Equations (15), (17) and (19) can be altered to include this h vector. With resulting set of equations we

can predict the mean absolute fitness in any given environment while allowing manipulation of one of the

four vector component pathways at a time, holding the others constant:

W (z, e) = E [W ∗|z, e,Sex,h] =

∫ +∞

−∞
g′
(
αB +B1z +B2z

2 + (B3 +B7Sex) (e+ ha) + (B4 +B8Sex) (e+ ha)
2

+B5Sex + (B6 +B11Sex) (z(e+ hb)) +B9zSex +B10z
2Sex

− (B6 +B11Sex) (µchb) + ε
)
p(ε)dε.

(25a)

z(e) = E [z∗|e, Sex,h] = αC + C1 (e+ hµ) + C2Sex + C3 (e+ hµ) Sex (25b)

σ2
z (e) = E

[
σ2∗

z |e,Sex,h
]

= e

(
αD+D1

(
e+hσ2z

)
+D2Sex+D3

(
e+hσ2z

)
Sex

)
(25c)

The subtraction of B6 (µchb) from equation (25a) is an adjustment to correct for changes in the mean fitness343

that are a consequence of a change in the fitness function slope rather than a direct change, where µc is the344

result of equation (25b) when hµ = 0. The selection differential can then be calculated as345

S∗ (e,h) =
1

W (e)

∫ +∞

−∞
zW (z, e,h) p (z; e,h) dz − z∗ (e,h)W (e) , (26)

where346

p (z; e,h) = N
(
z; z∗ (e,h) , σ2∗

z (e,h)
)
. (27)

The partial sensitivities are then347

∂S∗ (e)

∂e
= lim
hj→0

S∗ (e)− S (e)

hj
, (28)

where hj is the component of the h vector that is non-zero.348

We averaged the partial sensitivities calculated at the observed population size each year over the observed349

population sizes to allow calculation of the average proportion of the total sensitivity that can be attributed350

to each of the fours components. As for the full sensitivities we integrated this analysis over the posterior351

distribution of the models specified by equations (14), (16) and (18), to generate posterior distributions of352
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each of the average partial sensitivities of S to e.353

All analyses were carried out using the R statistical package (R Core Team, 2013) and all mixed models354

(equations 9, 10, 14, 16 and 18) were fitted using the MCMCglmm package (Hadfield, 2010).355

Results356

Regression of phenotypic selection coefficients on the environmental covariate357

Estimated annual selection differentials of lamb August body mass are predominantly positive. For females358

the estimated selection differentials range from -0.397 ± 0.397 kg (estimate ± SE) in a year with a population359

size of 211 (1989) to 2.738 ± 0.426 kg where the population size was 671 (2004). In males the lowest estimated360

selection differential is -1.542 ± 1.542 kg at a population size of 211 (1989) rising to 2.187 ± 0.482 kg at a361

population size of 575 (1996) (Table 3). The selection differentials covary positively with population size in362

both sexes with strongest selection in years with higher numbers of individuals (Figure 2). The estimated363

regression slope is 0.004 kg sheep-1 (95% credible interval 0.003 - 0.006) for females and 0.006 kg sheep-1364

(95% C.I. 0.003 - 0.008) for males.365

The variance in selection attributable to variance in the population size is 0.488 (95% C.I. 0.153 to 0.831)366

for males and 0.274 (95% C.I. 0.097 to 0.497) for females. This means that the proportion of variance in367

selection explained by population size is 0.787 (95% C.I. 0.560 to 0.972) for males and 0.644 (95% C.I. 0.385368

to 0.881) in females.369

In contrast, if we had not accounted for the error in the selection coefficient estimates we would only370

have been able to attribute a proportion of 0.442 (95% C.I. 0.139 to 0.753) in the variation seen in selection371

in males to changes in population size and similarly only a proportion of 0.489 (95% C.I. 0.173 to 0.886) in372

females.373

Model based full and partial sensitivities374

Environmentally structured fitness functions for both sexes are depicted in Figure (3) modelled by equation375

(14); the coefficients from this model are shown in Table (2). In both sexes, lambs with a higher August376

mass have a better chance of survival. Individuals with low August mass have a greater likelihood of winter377

survival when born into a low population size than they would in high population years. Overall, female378

lambs (Figure 3B) are more likely to survive their first winter than males (Figure 3A). Their August mass379

has a greater influence on their winter survival than males, with lighter males showing less variation in380

survival across population sizes. The effect of mass on survival is more pronounced at large population sizes381
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in males, while at low population sizes (below 300) males survive well regardless of their phenotypes.382

The relationship between mean lamb mass in August and population size modelled by equation (16) is383

shown in Figure (4). Mean August lamb mass is higher in years of low population size, with the difference384

being more apparent in males with a regression slope of -0.004 kg sheep-1 (95% C.I. -0.007 to -0.001) compared385

to -0.002 kg sheep-1 (95% C.I. 7.992× 10−4 to -0.004) in females.386

The relationship between the variance in lamb mass in August and population size is shown in Figure (5)387

modelled by equation (18). Variance in August lamb mass is slightly higher in years of high population size,388

with males having a regression slope of 2.009× 10−4 kg2 sheep-1 (95% C.I. -3.658 × 10−4 to 9.217× 10−4)389

and the slope for females being 2.371× 10−4 kg2 sheep-1 (95% C.I. -5.098 × 10−4 to 8.698× 10−4).390

Mean absolute fitness ranges from 0.108 in years with high population size to 0.961 in years of low391

population size for males. Mean absolute fitness in females is consistently higher than in males ranging from392

0.198 to 0.951 with the greatest differences between the sexes seen in years of high population size. The393

estimated mean absolute fitness for each population size observed in the data set are plotted in Figure (6).394

The predicted environment-specific selection differentials for males range from -0.046 kg at the largest395

observed population size to 2.773 kg at the lowest population size. In females the range is from 0.041 kg to396

1.902 kg. The estimated selection differential for each observed population size are plotted in Figure (7).397

The average full sensitivity of selection to population size for males is 0.007 kg sheep-1 (95% C.I. 0.003398

to 0.011) and 0.004 kg sheep-1 (95% C.I. 0.001 to 0.008) for females, indicating that the selection differential399

may be more sensitive to a change in population size for males than females. In females changes in the400

selection differential are largely driven by changes in mean fitness, with the partial sensitivity relating to401

mean fitness being 0.003 kg sheep-1 (95% C.I. 3.169× 10−4 to 0.006). In males, this change is influenced by402

both the mean fitness, 0.003 kg sheep-1 (95% credibility interval 2.733× 10−4 to 0.006) and the relationship403

between the trait and fitness, 0.003 kg sheep-1 (95% C.I. 0.002 to 0.005). The average full sensitivities and404

partial sensitives for both males and females are plotted in Figure (8).405

Discussion406

The absolute fitness function i.e. the relationship between unstandardised measures of phenotype and ex-407

pected absolute fitness, is surprisingly rarely considered in studies of natural selection in the wild. When408

selection is characterised primarily via the relationship of traits with relative fitness (i.e. phenotypic selec-409

tion coefficients) substantial information regarding variation in the selection may be lost. Consequently, any410

observed change seen when calculating multiple phenotypic selection coefficients is likely to be attributed to411

differences in the relationship between trait and fitness. However, this lost ecological can be retained if we412
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study fitness functions and distributions of phenotype in conjunction with the measures of natural selection413

that are justified in evolutionary quantitative genetic theory.414

The purpose of our illustrative example of these relationships (Table 1, Figure 1) is twofold. First, we415

wish to make it clearer and more widely known that there is a much richer range of paths through which416

biological variables could potentially explain any pattern observed in phenotypic selection coefficients. In417

fact, not only are there explanations that are typically ignored, but these explanations can act simultaneously.418

Two comparable replicates of selection could have the same values for selection differentials and gradients419

(i.e. selection has the same evolutionary effect) but there still be differences in the nature of the selection420

acting on the trait. For example, one replicate could have both a stronger trait-(absolute) fitness relationship,421

and higher fitness. In this case consideration of only the selection gradients would fail to reveal interesting422

aspects of the evolutionary ecology of the study system. Second, by putting these principles into a formal423

mathematical structure, the theoretical component of our work points the way to implementing estimates of424

fitness functions as part of formal methods for inference of selection. Previously known partial determinants425

of phenotypic selection coefficients including a population’s mean fitness (Wade & Kalisz, 1990) and the426

distribution of phenotype (Wade & Kalisz, 1990; Steele et al., 2011; Haller & Hendry, 2014; Chevin &427

Haller, 2014) have not, until now, been incorporated into approaches designed to increase understanding of428

variation in selection.429

It is important to note that the fact that changes in mean fitness, and in the distribution of phenotype,430

can influence the values of selection gradients and differentials in no way invalidates the quantitative genetic431

theory by which selection gradients are justified. A change in the intercept of a linear fitness function, in432

the absence of changes in other relevant variables such as its slope and the distribution of phenotype, does433

cause relative differences in fitness among individuals to be less than they otherwise would. Correspondingly,434

we would expect the evolutionary consequences, e.g., predictions of the breeders (Lush, 1937; Falconer &435

Mackay, 1996) or Lande (Lande, 1979; Lande & Arnold, 1983) equations, of this lesser selection coefficient to436

be smaller than usually estimated. There has been substantial discussion of the importance of understanding437

the effects of ecological variables on the form of natural selection in the wild. However, the key point is that438

ways of establishing the consequences of these effects have not been fully integrated into theory, methods,439

and empirical studies of the variation of natural selection. Accordingly, methods have not previously been440

developed to study the pathways by which ecological variables might affect fitness variation.441

From an ecological perspective, having an understanding of variation in absolute fitness (e.g. survival442

probability or reproductive success) under a fluctuating environment is crucial. Under a linear fitness func-443

tion, as shown in Figure (1), when observed changes in selection are driven by an altered trait distribution444

the survival probability of an individual of a particular phenotype is not going to change with the environ-445
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mental variable. Therefore, knowing what is driving changes observed in selection differentials, and correctly446

interpreting the consequences that this will have under the fitness model being used, provides an important447

link between the fields of ecology, evolution and demography. By deriving information about variation in448

selection from models of absolute fitness dependence on phenotype and environment, we are able to say more449

about how population level metrics are affecting changes in selection. This type of information is highly450

relevant to those studying demography in wild populations.451

Our analyses were conducted using unstandardised phenotype values (apart from mean-centring across452

the whole study) so as not to obscure any paths by which the environment may ultimately affect selection.453

The principle of multiple pathways affecting phenotypic selection coefficients will hold for other coefficients,454

including both gradients and differentials, under different standardisations. Therefore, the basic principle455

that phenotypic selection coefficients can be affected by the environment via the four paths identified (Figure456

1, Table 1) should hold regardless of the kind of selection coefficient or standardisation (with the exception457

that an unstandardised selection gradient will be unaffected by changes in the trait variance, when a fitness458

function is linear). However, this list of pathways is only exhaustive for cases of linear absolute fitness459

functions and when the traits analysed are normally distributed.460

Using the calculation of the proportion of selection explained by the environment in the regression-461

based analysis (Figure 2) demonstrates a relatively easy way to produce a quantitative measure that can be462

compared across studies. Use of a measure such as this could support meta-analysis of the environmental463

dependence of selection that allow investigation of commonalities in links between environmental variables464

and selection across study systems. In particular, the proportion of variation in selection explained by465

the environment, when accounting for statistical noise in phenotypic selection coefficients estimates, will be466

particularly useful. Other approaches will underestimate the strength of environment-selection relationships.467

The proportion of variation in selection explained by the environment rises from 0.442 to 0.787 in males and468

from 0.489 to 0.644 in females when the associated errors are considered.469

Our model-based approach (equations 15, 17 and 19) to analysing the components of the total effects of470

an environmental variable, population size, on viability selection of summer lamb mass in male and female471

Soay sheep (Figure 8) revealed total effects of density similar to regression-based methods (Figure 2) that472

characterise only the total effect. Selection of mass in both sexes is predominantly positive, and increases in473

both sexes with population size. The model-based average sensitivity of selection to population size, 0.007474

kg sheep-1 in males and 0.004 kg sheep-1 in females, matches reasonably well to the closely-related parameter475

of the slopes of the linear regressions of selection differentials on population size, 0.006 kg sheep-1 and 0.004476

kg sheep-1, respectively. Changes in the mean (Figure 4) and variance (Figure 5) of mass in response to477

population size are modest in both sexes. Consequently, effects of density on selection do not act through478
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these descriptors of the trait distribution (Figure 8). However, population size does substantially affect mean479

fitness (Figure 6, Table 2), and consequently, mean fitness is the main variable through which density affects480

selection in females (Figure 8), and a major contributor in males (Figure 8).481

An important methodological consideration for studies of variation in selection based on inferences of482

environmentally-structured fitness functions, and effects of the environment on distributions of phenotype,483

is the nature of the component models (equations 25a, 25b & 25c in our analysis) in any such analysis.484

In particular, any component model predicting absolute fitness from values of phenotype and ecological485

variables will have to be sufficiently flexible. Main effects and interactions of phenotype and environment486

will generally be necessary while additional terms may add realism. If a study seeks to extend the basic487

analysis to understanding variation in quadratic selection, it will be necessary to include interactions of488

the environmental variable with non-linear terms pertaining to phenotype. Our choice of a generalised489

(specifically, using a binomial distribution) function for fitness was probably not necessary. In fact, in some490

situations, a linear model (i.e., not a generalised analysis) of trait-environment-fitness relationships could be491

most useful. The non-linear link functions used in generalised model induce a certain amount of dependence492

between the intercept and slope of fitness functions on the data (as opposed to the latent) scale. In our case,493

there will be little dependence, on average, because values of expected fitness take a large range and the494

dependence of the mean and slope on the intercept have opposite signs when expected fitness is above and495

below 0.5. When our analyses is carried out using a linear mixed model instead of the generalised fitness496

function (S2 in Supplementary Material) the results obtained are broadly similar. In other situations, this497

dependence could be problematic. For example, if a log-link model were used, there would be no direct498

dependence of selection on the model intercept (Morrissey & Goudie, 2016). This would not invalidate499

the approach, but further developments, or use of linear models to characterise fitness functions, would be500

necessary.501

Analyses such as those we have implemented here, to separate the effects of a driver of selection acting502

through trait-fitness relationships, mean fitness, and the distribution of phenotype, are potentially applicable503

in a wide range of study systems. It would be particularly interesting if mean fitness proved to be a major504

contributor to variation in selection of a range of traits in different study systems. While changes in mean505

fitness, which may be driven by environmental stochasticity, can effect variation in selection, they cannot506

in themselves change the sign of selection. A lot of interest in variation in selection arises from a desire to507

characterise the prevalence of fluctuating selection (e.g. as an explanation for stasis, Bell 2010; Uyeda et al.508

2011; Chevin & Haller 2014; Estes & Arnold 2007), any generality in the finding that mean fitness is a major509

driver of variation in selection could imply that fluctuations in selection in the wild are even rarer than the510

most recent analyses (i.e., Morrissey & Hadfield 2012) have indicated. Further work on the dependence of511
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selection on density could be particularly valuable. It seems likely that different pathways through which512

ecology could alter the dependence of selection on population density could have different eco-evolutionary513

consequences (Sæther et al., 2016; Engen et al., 2017).514
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Table 1: Derivatives for the selection differential with respect each parameter which can alter its estimation

Absolute Fitness
Component

Derivative of S with
respect to the absolute

fitness component

Change in parameter
required to decrease Sσ or βσ
as depicted in Figure (1)(plot)

Mean Fitness,dSda
−σ2

zb

(a+bz)2
Increase(a)

Trait/Fitness Relationships,dSdb
σ2
za

(a+bz)2
Decrease(b)

Trait Mean,dSdz
−σ2

zb
2

(a+bz)2
Increase(c)

Trait Variance, dSdσ2
b

(a+bz) Decrease(d)

Table 2: Coefficients from the individual mean fitness model

Regression
Coefficients

95%
Credible Interval p-value

(A) Fixed
Intercept −0.889 (−1.736, −0.103) 0.030
Mass 0.311 ( 0.218, 0.404) 0.001
Mass2 −0.005 (−0.027, 0.017) 0.634
Sex 1.107 ( 0.717, 1.577) 0.001
Population Size −0.016 (−0.022, −0.010) 0.001
Population Size2 0.000 ( 0.000, 0.000) 0.494
Mass·Population Size 0.002 ( 0.001, 0.002) 0.001
Sex·Population Size 0.005 ( 0.002, 0.008) 0.002
Sex·Mass 0.195 ( 0.057, 0.350) 0.008
Sex·Population Size2 0.000 ( 0.000, 0.000) 0.584
Sex·Mass2 0.025 (−0.011, 0.061) 0.172
Sex·Population Size·Mass −0.001 (−0.002, 0.000) 0.152

(B) Random
Year(variance) 2.362 ( 1.111, 3.973) NA
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Table 3: Selection differentials and standard errors for first year survival for each sex in each cohort of lambs
born. When all individuals survive the selection differential is 0 and no associated standard error can be
calculated. Where an NA is shown for the selection differential all individuals with a known August mass
died that year. Other instances of NA are in years when there was only one survivor and no associated error
could be estimated. None of these cases were included in the regression analysis

Males Females
Birth
Year

Population
Size n

Surviving
Individuals

Selection
Differential(kg)

Standard
Error n

Surviving
Individuals

Selection
Differential(kg)

Standard
Error

1985 509 4 1 −5.97 NA 5 0 NA NA
1986 211 4 4 0.00 NA 3 3 0.00 NA
1987 331 39 37 0.12 0.09 39 32 0.30 0.20
1988 457 22 2 −1.23 2.69 23 9 1.56 0.56
1989 211 4 3 −1.54 1.54 7 6 −0.40 0.40
1990 290 21 18 −0.47 0.28 32 29 0.27 0.15
1991 414 40 16 1.61 0.51 61 21 1.80 0.41
1992 321 32 26 −0.31 0.24 29 25 −0.01 0.16
1993 443 40 18 1.36 0.47 54 28 1.10 0.33
1994 435 25 1 −0.99 NA 34 9 0.97 0.39
1995 357 31 30 0.01 0.01 47 42 0.07 0.05
1996 575 68 19 2.19 0.48 54 25 1.22 0.40
1997 542 47 14 1.62 0.55 39 16 1.07 0.40
1998 591 44 1 1.54 NA 50 8 0.90 0.43
1999 325 42 34 0.14 0.23 43 41 0.01 0.01
2000 461 29 26 0.33 0.20 34 27 0.06 0.14
2001 651 42 0 NA NA 52 6 1.90 0.66
2002 335 36 35 −0.05 0.05 32 30 −0.08 0.06
2003 494 47 42 0.13 0.14 60 55 0.08 0.10
2004 671 46 3 2.13 2.53 47 2 2.74 0.43
2005 405 18 9 0.43 0.51 28 17 0.30 0.34
2006 467 33 6 1.20 0.95 23 12 1.09 0.39
2007 447 50 28 0.93 0.32 56 34 0.86 0.27
2008 567 56 28 0.26 0.36 57 32 0.59 0.23
2009 617 52 20 1.63 0.38 48 27 0.84 0.29
2010 672 37 11 1.93 0.58 66 26 1.21 0.31
2011 649 41 1 2.67 NA 41 5 1.84 0.63
2012 362 23 22 0.03 0.03 32 30 0.16 0.12
2013 545 47 8 1.86 0.54 50 13 0.83 0.72



Hunter et al, environment-selection relationships 27

0
5

10
15

20

Increase in Mean Fitness

(A)

0.
0

0.
2

0.
4

0.
6

Decrease in Trait
Fitness Relationship

(B)

−5 0 5 10

0
5

10
15

20

Increase in Trait Mean

(C)

0.
0

0.
2

0.
4

0.
6

z

−5 0 5 10

Decrease in Trait Variance

(D)A
bs

ol
ut

e 
F

itn
es

s

D
en

si
ty

Trait Value

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
5

1.
0

1.
5

−4 −2 0 2 4

(E)

Standardised Trait Value

R
el

at
iv

e 
F

itn
es

s

P
op

ul
at

io
n 

S
iz

e

Variance−standardised relative fitness function in each 
of (A), (B), (C), and (D)

Figure 1: Graphs illustrating the fitness function change when only a single parameter of the trait to absolute
fitness relationship, or distribution of phenotype, is altered. The trait values are related to absolute fitness
using a linear fitness function. The resulting absolute fitness function is shown in the top four panels.
In each case the solid blue line shows the same trait distribution and absolute fitness function while the
dashed red line shows the effect of changing only the single parameter indicated above each graph. The
bottom plot shows the resulting relative fitness function change when the trait values are mean centred
and variance standardised. Importantly in each case illustrated in the top four plots the change in the
variance-standardised selection slope, β, is the same despite very different underlying causes.
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Figure 2: Regression of selection differentials on population size. Graphs showing the change in selection
differentials for lamb mass in August with population size. The calculated selection differentials for male
(A) and female (B) sheep are shown at different population sizes. The regression lines are calculated using
a MCMCglmm model taking into account error in the estimates using their standard errors. The error bars
show 95% confidence intervals assuming a normal distribution. The dashed lines show the 95% credibility
regions for the regression lines. The slopes for males and females were not significantly different from one
another.
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Figure 3: Environmentally Structured Fitness Functions. August mass of male (A) and female (B) sheep are
shown at different population sizes. Realised survival is represented using points with higher transparency
to represent individuals that did not survive their first winter. Fitness isoclines, showing the survival prob-
abilities, are plotted using the intercepts and fixed factor coefficients shown in Table (1). In both sexes in
years of low population size a much larger number of individuals are in the higher area of the fitness function
meaning those with lower mass have a better chance of survival than they would in years of large population
size. The apparent reduction in fitness at high mass and low population size seen in males compared to less
extreme values is almost certainly due to limited data at the extremes of the dataset
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Figure 4: Regression of August mass on population size. August mass of male (A) and female (B) sheep
are shown at different population sizes. Regression lines are plotted using the intercept and fixed-effect
coefficients from applying equation (16)
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Figure 5: Regression of August mass variance on population size. The variance of August mass in male (A)
and female (B) sheep are shown at different population sizes. Regression lines are plotted using the intercept
and fixed-effect coefficients from applying equation (18). Error bars show the 95% highest posterior density
interval.
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Figure 6: Mean absolute fitness against population size. Mean absolute fitness of male and female sheep are
shown at different population sizes as predicted by our environmentally structured fitness function (equation
20)
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Figure 7: Selection differentials against population size. Selection differentials for male and female sheep are
shown at different population sizes as predicted by our environmentally structured fitness function (equation
22)
.
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Figure 8: Full and partial sensitivities. The full and partial sensitivities are shown for male and female
sheep. The partial sensitivities show the contribution of each of the four different pathways through which
ecology can alter selection estimates.
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