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ABSTRACT      

Monoamine oxidases (MAOs) catalyse the oxidation of neurotransmitter amines and a wide variety of primary, 

secondary and tertiary amine xenobiotics, including therapeutic drugs. While inhibition of MAO activity in the 

periphery removes protection from biogenic amines and so is undesirable, inhibition in the brain gives vital anti-

depressant and behavioural advantages that make MAO a major pharmaceutical target for inhibitor design. In 

neurodegenerative diseases, MAO inhibitors can help maintain neurotransmitter levels, making it a common feature in 

novel multi-target combinations designed to combat Alzheimer’s disease, albeit not yet proven clinically. Vital 

information for inhibitor design comes from an understanding of the structure, mechanism and kinetics of the catalyst. 

This review will summarize the kinetic behaviour of MAO A and B and the kinetic evaluation of reversible inhibitors 

that transiently decrease catalysis. Kinetic parameters and crystal structures have enabled computational approaches to 

ligand discovery and validation of hits by docking. Kinetics and a wide variety of substrates and inhibitors along with 

theoretical modeling have also contributed to proposed schemes for the still debated chemical mechanism of amine 

oxidation, However, most of the marketed MAO drugs are long-lasting irreversible inactivators. The mechanism of 

irreversible inhibition by hydrazine, cyclopropylamine and propargylamine drugs will be discussed. The article 

finishes with some examples of the propargylamine moiety in multi-target ligand design to combat neurodegeneration.    

 

 

Keywords  

 Enzyme kinetics; irreversible inhibition; multi-target drug design; monoamine neurotransmitters; computation and 

modelling; chemical mechanism 

 

 

  



 3 

 

INTRODUCTION 

Enzyme catalysis in the biological context is dominated by the need to understand the flux of metabolites in the 

cell. Kinetic studies indicate how the enzyme works in the cell under the conditions found there, and also facilitate 

exploration of the chemical mechanism. This review will consider kinetic, mechanistic and thermodynamic studies 

that tell us how MAO catalyses the oxidation of amines, how the catalytic turnover is influenced by its substrates, and 

how it is inhibited by drugs designed to slow the progression of symptoms in neurodegenerative disease. These in 

vitro studies underpin novel medicinal chemistry approaches to design or discover new lead compounds that (amongst 

effects on other targets) inhibit the activity of MAO and hence increase the concentrations of its amine substrates that 

are vital to brain function. 

Why inhibit MAO:  Monoamine oxidases (MAOs) catalyse the oxidation of neurotransmitter amines and a wide 

variety of primary, secondary and tertiary amine xenobiotics, including therapeutic drugs. The preferred amine 

substrate for MAO A is serotonin (5-hydroxytryptamine) and for MAO B is 2-phenylethylamine, while dopamine and 

kynuramine are oxidized by both (Youdim et al. 2006). MAO A in the gut and placenta and MAO B in the liver and 

platelets serve a protective role. In the brain, both MAO A and MAO B are found in non-neuronal cells. MAO B 

predominates in serotonergic neurons whereas other neurons contain MAO A. To combat depression or prevent 

neurodegeneration, the desirable target organ is naturally the brain, so the selectivity of the multi-target cholinesterase 

and MAO inhibitor, ladostigil, to the brain was a helpful step forward in avoiding peripheral side effects. Both MAOs 

are located on the outside of the mitochondrial outer membrane where MAO may function to protect the 

mitochondrion from accumulation of deleterious amines. Prevention of MAO activity inside neurons preserves 

neurotransmitters for the next firing from the terminals and also decreases the formation of hydrogen peroxide (H2O2), 

a reactive oxygen species, in the vicinity of the mitochondria to which the MAO is attached. Inhibition of MAO 

(particularly MAO B) in the non-neuronal glial cells ensures that monoamine neurotransmitters that escape from the 

synaptic junction are deactivated by oxidative deamination. Pharmacologically, inhibition of MAO in the brain 

increases the global content of amines, resulting in improved neuronal activity and antidepressant effects (Youdim et 

al. 2006; Fisar 2016). The modulation of brain and behaviour by MAO inhibitors (MAOIs) (Bortolato and Shih 2011) 

has made the design of new inhibitors a medicinal chemistry challenge in both academia and industry for the last 50 

years. 

Multi-target designed ligands (MTDL) for complex neurodegeneration: In degenerating brain, it is desirable to 

maintain the levels of neurotransmitters. MAOIs have been approved adjunctive therapy in Parkinson’s disease (PD) 

for many years, helping to preserve the diminishing dopamine and so delaying the need to start L-DOPA treatment. 

Extending the rationale to Alzheimer’s disease (AD), where the licensed treatments are cholinesterase inhibitors 

(ChEIs), MAO inhibition is an immediate choice for combination into MTDL, along with anti-oxidative capacity and 

other neuroprotective properties. The anti-PD drug selegiline inhibits MAO B and has neuroprotective properties 

associated with the propargylamine moiety (Naoi et al. 2011; Magyar et al. 2006; Youdim et al. 2001; Naoi et al. 

2016; Weinreb et al. 2011), making that fragment a suitable choice for the combination into MTDL. Many reports of 

compounds combining MAO inhibition with activity at various other targets have appeared in the last 5 years, for 

example, (Pisani et al. 2011; Kupershmidt et al. 2012; Guzior et al. 2015; Unzeta et al. 2016; Bautista-Aguilera et al. 

2017). Ladostigil, one of the earliest MTDL, has shown only modest benefit in mild cognitive impairment 

(ClinicalTrials identifier NCT01429623), so the success of the strategy still has to be proven. The need for better 

drugs remains so this review will summarize the kinetic behaviour of MAO A and B and the evaluation of inhibitors 



 4 

that decrease the breakdown of monoamine neurotransmitters, to provide an understanding of the structure, 

mechanism and kinetics of these flavoprotein catalysts.  

 

MAO KINETICS  

MAO accelerates the oxidation of amine to imine (Scheme 1) by orienting the substrate toward the N5 of the 

flavin within the aromatic “cage” of tyrosines (Li et al. 2006). The flavin co-factor oxidizes the amine, probably by 

hydride transfer (although this is still controversial as discussed below). The resulting in FADH– is reoxidized by 

molecular oxygen generating hydrogen peroxide. The imine is hydrolysed non-enzymatically, mostly after its release 

from the enzyme. 

 

   Scheme 1 

 

Turnover: Kinetic studies show that MAO A and MAO B have different intrinsic catalytic rates (kcat) (Youdim et 

al. 2006) in addition to the different affinities that result from the structure of the active sites (Binda et al. 2011; 

Edmondson et al. 2007). It is useful to remember that the affinity of a compound for the active site is measured as the 

dissociation constant, KD, whereas the kinetic parameter KM, defined as the concentration the gives half the maximum 

rate (kcat/2), contains terms for both KD and the kcat. Although the specificity constants (kcat/KM) of human MAO A 

and MAO B for dopamine and noradrenaline are similar, MAO B has a 500 times lower kcat/KM for serotonin (5-HT). 

The decarboxylation product of phenylalanine, β-phenylethylamine (PEA), that can activate TAAR1 receptors with 

downstream effects on monoamine systems, reduces human MAO A relatively slowly (rate constant = 1 s-1) but 

reduces bovine MAO B very rapidly at 576 s-1 in the reductive half-reaction (Tan and Ramsay 1993). The slow 

oxidative half-reactions bring the steady state rate constants for turnover to only 5-fold different. However, the larger 

amounts of MAO B in rat cortex mean that PEA oxidation by MAO B is 550 times greater than for MAO A in that 

tissue (Youdim et al. 2006). A comparison of the intrinsic constants for human and rat MAOs with physiological 

substrates can be found in (Tipton et al. 2006). 

Kinetic mechanism(s): The kinetic mechanism of MAO was first identified as ping-pong, where the substrate was 

oxidized and product released before the reoxidation of the flavin. However, the different KM values for the second 

substrate, oxygen, with different amines suggested a more complex mechanism (Fowler and Oreland 1980). Inhibitor 

studies gave competitive Lineweaver-Burk plots for inhibition of MAO B by D-amphetamine when benzylamine was 

the substrate but mixed inhibition plots when PEA was the substrate, indicating that reduced enzyme was available to 

bind D-amphetamine during PEA oxidation but not during benzylamine oxidation (Pearce and Roth 1985). Stopped-

flow kinetics for the half-reactions confirmed a binary pathway with PEA but a ternary complex of enzyme, 

benzylamine or its product, and oxygen (Husain et al. 1982; Ramsay et al. 1987). More recently, detailed steady-state 

kinetics on MAO B indicate that these alternate binary or ternary pathways for MAO B have impact on the 

determination of inhibition parameters and on the inhibition pattern observed (McDonald et al. 2010).  

Pre-steady state kinetics to study the reductive and oxidative half-reactions separately indicated that the ternary 

complex mechanism predominates for MAO A, at least for the substrates studied (Ramsay 1991; Tan and Ramsay 

1993). In addition, it was clear that substrates could also bind to the reduced form of the enzyme and some substrates 

accelerated the reoxidation of the flavin (Ramsay 1991), giving the more complex alternative kinetic pathways shown 

in Fig. 1. The increased rate of the oxidative half-reaction when reduced MAO A was pre-equilibrated with substrate 
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prior to the reaction with oxygen in the stopped-flow spectrometer (100 times faster for kynuramine) was the same for 

all concentrations between 0.1 and 1 mM indicating that the KD for the Ered-S complex was much lower than for the 

Eox-S complex (0.58 mM) (Tan and Ramsay 1993). A new study using X-ray crystallography and resonance Raman 

spectroscopy to study binding of substrates and substrate mimics (inhibitors) to another flavoenzyme, xenobiotic 

reductase A, revealed key evidence that substrates bound differently to the oxidized and reduced forms of the enzyme, 

and that substrate but not inhibitor resulted in spectral changes indicating a charge transfer complex (Werther et al. 

2017). The evidence points to alteration of the ground state of the reduced flavin by the proximity of the substrate, 

accelerating its reoxidation, possibly a model for the substrate acceleration of FAD reoxidation in MAO.    

 

 

Fig 1:  Kinetic pathways in MAO catalysis. After the oxidation of substrate and concomitant reduction of the 

flavin, the enzyme-product complex can be reoxidized (lower part, k4[O2] via a ternary complex, very slow for some 

products) or the product (imine) can dissociate immediately (upper part, k5’). The free reduced enzyme can be 

reoxidized in a binary reaction with O2 (k4’[O2], a rate of 1 s-1 at air saturation) or can bind new substrate and be 

reoxidized in a ternary complex at a faster rate (k4”[O2]). A detailed description of the kinetics in the scheme can be 

found in (Ramsay et al. 2011) and the data behind it in (Husain et al. 1982; Tan and Ramsay 1993). 

 

 

Turning to the second substrate, oxygen, differences between MAO A and B are seen in the steady state KM values. 

For cloned and purified human MAO A with kynuramine as the substrate, KM for oxygen is 0.06 mM, but for both 

bovine and human MAO B with benzylamine as the substrate, KM is 0.33 mM, slightly higher than the concentration 

of oxygen in buffer (Ramsay 1998; Newton-Vinson et al. 2000). This means that at normal oxygen concentrations in 

the cell, MAO B is working at less than half the Vmax. If oxygen concentrations drop, the oxidation of amines will 

decrease. The KM for oxygen in MAO A purified from human placenta was 0.006 mM, a value reassuring for the 

protection of the fetus from biogenic amines, but there is no known rationale for the difference from the cloned MAO 

A. When the steady-state level of reduced enzyme is monitored in turnover experiments in a stopped-flow 

spectrophotometer, the proportion of reduced enzyme is related to the ratio of the oxidative to reductive rate constants 

– the slower the oxidation rate relative to the reduction rate, the more MAO is reduced in the steady-state. With 

kynuramine, the flavin in MAO A remains 95% oxidized at the onset of the steady state, whereas with 5-

hydroxytryptamine it is 78% oxidized (Tan and Ramsay 1993). For bovine MAO B with phenylethylamine, the 

oxidative half-reaction is rate-limiting (Husain et al. 1982) so that MAO B will be mostly reduced in the steady state. 

The consequences of the complex kinetics for the brain are first, that the oxygen level will strongly influence the 

disposal of amines by MAO B, and second, that the redox poise of MAO presents a varied proportion of the two states 

of the enzyme (oxidized and reduced) with different affinities for a given ligand. Thus, in vitro IC50 values may differ 

from in vivo values because the proportion of the two redox states will vary with the amine substrate and with oxygen 

tension. (See more about inhibitors below). 

Kinetic isotope effects (KIE): To probe the mechanism of catalysis, isotope effects have been studied for both 

MAO A and B. When the hydrogen that is removed from the substrate is replaced by deuterium that has double the 

mass, the rate is slower. All MAO catalysed reactions show a deuterium isotope effect of 5-10 with α,α-dideutero-

benzylamine (Miller and Edmondson 1999b; Walker and Edmondson 1994; Dunn et al. 2008), indicating that the 

transfer of a hydrogen (the reductive half-reaction) is the slowest part of the process. By varying oxygen 

concentrations in steady-state assays, it was also shown that the KIE D[kcat/KM(O2)] was 1 for human MAO B 

(Edmondson and Newton-Vinson 2001). 
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Theoretical simulation of the H/D KIE for dopamine oxidation in the reductive half-reaction of MAO B calculated 

a KIE of 12.8 based on a hydride transfer mechanism. Going further into the physical chemistry of the reaction, 

primary and secondary isotope effects determined at different pH and temperatures provided the experimental 

evidence for hydrogen tunneling in MAO B (Jonsson et al. 1994). The pH of the medium influences the protonation 

state of the substrate, as does binding to the enzyme. KIE in the reductive half-reaction of MAO A was higher at low 

pH due to the influence of the deuterium substitution on the pKa of the amine which drops by almost 2 pH units upon 

binding (Dunn et al. 2008). In accord with the pH dependence of turnover in steady-state studies (Jones et al. 2007), 

the bound substrate has a lower pKa, resulting in the catalytically required neutral amine form in the flavin active site. 

Comparison of the KIE for dideuero-, R-deutero-, and S-deutero-dopamine (the latter giving no change in rate), along 

with analysis of the products established that it is the R-hydrogen that is removed from dopamine during oxidation by 

both MAO A and B (Yu et al. 1986). 

 

Insights from structure and mutagenesis  

The flavin in MAO is FAD. After trypsin/chymotrypsin digestion, the 8a-S-cysteinyl-FAD pentapeptide liberated 

is the same for both MAO A and B (Kearney et al. 1971). Using different flavin analogs during expression of MAO B 

in yeast revealed that the covalent attachment stabilizes the structure, helps align the cofactor in the active site and 

modulates the redox potential upwards (Edmondson and Newton-Vinson 2001).  

 Sequencing of the cloned human genes reveal 70 % identity, with 9 conserved cysteine residues (Bach et al. 1988). 

The FAD attachment was identified as Cys406 in MAO A and Cys397 in MAO B. When riboflavin-deficient mutants 

were used to explore the covalent flavinylation in both MAO A and B (Miller and Edmondson 1999a), only enzymes 

with covalently attached flavin were active. When each of the other eight cysteines was mutated to serine and the 

mutants expressed on COS cells, all retained activity with the same KM for substrate except C374S in MAO A and the 

Cys-Ser mutants at 156 and 365 in MAO B which were inactive (Wu et al. 1993). It was later found that 

Cys374/365Ala mutants expressed in yeast were active and a kinetic study confirmed minimal effect on ligand 

binding. However, the specificity constant (kcat/KM) for the mutant enzyme was 30% lower for five different substrates, 

indicating an effect on catalysis (Vintem et al. 2005). In MAO B, the equivalent residue Cys365 was alkylated after 

cyclopropylamine inactivation (Zhong and Silverman 1997). When the crystal structure was obtained, it showed that 

the location of MAO A Cys374/MAO B Cys365 was on the surface near the entrance cavity rather than in the active 

site. In contrast to MAO A, MAO B does have one active site cysteine, Cys156. MAO B Cys156 has been implicated 

in hydrogen bonding for some small ligands.  

The C-terminus of MAO has 27 residues (residues 498–524 in rat MAO A) that form an alpha-helix embedded in 

the membrane (Son et al. 2008). C-term truncation to explore the interaction of MAO with the membrane produced 

active, but unstable enzyme (Weyler 1994; Rebrin et al. 2001). Truncations from residues 498-520 (520 being full 

length) remain active and membrane-bound. The enzyme truncated at 492, 486, and 481 becomes progressively more 

soluble but has very low and unstable activity. Interestingly, all these truncated versions give very little alteration in 

the sensitivity to inactivation by clorgyline and selegiline, indicating that these residues are not part of the active site. 

The truncation experiments were rationalised when the 1.7 A structure of human MAO B revealed several apolar 

loops in proximity of the C-terminal helix that provide additional membrane association (Son et al. 2008). Further, 

molecular dynamics simulations based on the structure of rat MAO A demonstrated strong interactions with the 

membrane surface (Apostolov et al. 2009). The membrane association influences the catalytic properties, with 

changes in substrate KM between detergent solubilized and membrane bound MAO (Edmondson et al. 2009; Esteban 

et al. 2014). A recent study examined the kinetic parameters of purified MAO A incorporated into nanodiscs with the 
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same thickness as the phospholipid bilayer. The catalytic efficiency (kcat/KM) increased for substrate oxidation and the 

Ki for inhibitors decreased 2-4 fold with the nanodisc associated enzyme (Cruz and Edmondson 2007). This 

experimental observation reopens the notion in older literature that the phospholipid composition of the membrane 

might alter MAO activity. 

The mutation of the main pair of tyrosines that form the aromatic cage around the substrate near the flavin 

revealed a strong influence on catalytic efficiency. Substitution of the aromatic cage tyrosines increased the KM for the 

artificial substrate 1-methyl-4-(1-methyl-1H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP) more in MAO B then in 

MAO A, and seriously decreased the kcat (Table 1) (Li et al. 2006). The kinetic data for the mutants with a series of 

substrates, supported by lack of structural effects, suggested that dipole-dipole interactions between the two aligned 

tyrosines and the amine nitrogen were important for catalysis. Computational studies also support a role for the 

aromatic cage in substrate binding (Akyuz et al. 2007). The same mutations (tyrosine to phenylalanine and histidine) 

were used in EPR studies to establish that the radical formed upon one-electron reduction was that of the anionic 

semiquinone (Ramsay et al. 2005) and not due to a proposed tyrosyl radical (Rigby et al. 2005; Dunn et al. 2010).   

 

Table 1. Influence of the aromatic cage tyrosine (MAO A Y444/MAO B Y435) substitutions on the kinetic 

parameters for oxidation of 1-methyl-4-(1-methyl-1H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP). The data 

were selected from the Supplementary Information accompanying (Li et al. 2006).  

Mutation  MAOA    MAO B  

 kcat 

(min-1) 

KM 

(μM) 

kcat/KM 

(min-1 μM-1) 

 kcat 

(min-1) 

KM 

(μM) 

kcat/KM 

(min-1 μM-1) 

Y 242.8 218 1.114  202.3 218 0.928 

F 19.4 75 0.259  97.9 1369 0.072 

L 89.2 402 0.222  92.4 1001 0.092 

H 55.8 288 0.194  87.1 2819 0.031 

W 13.4 315 0.043  107 2536 0.042 

 

 

Mutagenesis studies were also used to explore the different selectivities of the two enzymes. The determination of 

the crystal structure of MAO B in 2002 (Binda et al. 2002) and MAO A in 2004 (Ma et al. 2004; De Colibus et al. 

2005) provided a boost to understanding ligand binding and the differences between MAO A and B (see below). The 

structures helped explain the specificity change induced by reciprocally switching Phe208 and Ile199 in rat MAO A 

and B, respectively, which was sufficient to switch their substrate and inhibitor preferences (Tsugeno and Ito 1997). 

However, in the human forms of MAO, the F208I mutant of MAO A showed the same six-fold decrease in the 

specificity constant kcat/Km with 5-hydroxytryptamine and with β-phenylethylamine, rather than a change in selectivity 

(Geha et al. 2000). Kinetic studies of inhibition of MAO and MAO mutants in various species showed that whereas 

the small molecule isatin inhibited all the MAO B enzymes tested with the same Ki, the larger reversible inhibitors 8-

(3-chlorostyryl)caffeine, 1,4-diphenyl-2-butene, and trans,trans-farnesol competitively inhibited human and rat MAO 

B (with Ile at 199) but not MAO A, bovine MAO B or the human MAO B I199F mutant (all with Phe at 199). The 

crystal structures showed that Ile199 could rotate to accommodate the larger molecules but Phe199 could not 

(Hubalek et al. 2005).  

The other residue located at the “gate” between the entrance and substrate cavity of MAO B is Tyr326, 

corresponding to Ile335 in MAO A. Comparing activity with serotonin (as a predominantly MAO A substrate) and 
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phenylethylamine (a predominantly MAO B substrate), the I335Y mutant of MAO A did switch the substrate 

selectivity albeit with serious loss of activity. This kinetic data provided experimental validation for molecular 

simulation of the effect of the mutation on the catalysis. Using empirical valence bond methodology, free energy 

perturbation and a classical force field to simulate the chemical reaction, it was shown that the mutation increases the 

free energy barrier for the rate-limiting hydrogen transfer step by slightly more than 1 kcal.mol-1 and consequently 

decreases the rate constant by about an order of magnitude (Oanca et al. 2016). In contrast, for the corresponding 

switch in MAO B, the Y326I mutant increased the oxidation of serotonin by 4-fold and decreased the KM making the 

kcat/ KM higher than that for phenylethylamine. The sensitivities to the selective inhibitors clorgyline and selegiline 

were also switched (Geha et al. 2001).  

In another computational study to define the determinants for binding a 2H-chromene-2-one competitive inhibitor, 

the contributions of nearby residues to the free energy of binding were quantified. The Phe208/Ile199 and the 

Ile335/Tyr326 residues contributed 2.3/2.8 and 1.8/1.7 kcal/mol respectively, confirming influence on ligand binding 

(Mangiatordi et al. 2017). However, it was Gln215/Gln206 that gave different contributions: 3.8 vs 1.7 kcal/mol in 

MAO A and B respectively, confirming a key role for Gln215 in the selectivity towards MAO A of this particular 

compound. For a different compound, 2-amino-5-(4’-methoxy)-phenylfuran-3,4-dicarbonitrile, it was Asn181 (in 

addition to steric contribution from Ile335) that was responsible for a 10-fold higher affinity to MAO A than B, 

simply by forming a hydrogen bond with the inhibitor (Juarez-Jimenez et al. 2014). These and similar studies 

emphasize that although the monoamine oxidases bind a wide and varied range of ligand structures, the interactions in 

the active sites can be highly specific. 

In the only report exploring residues important in the oxidative half-reaction, the conserved lysine that hydrogen 

bonds (via a water) to N5 of the flavin was mutated in MAO B. Only the K296R mutant was active but PEA was 

oxidized at 10% of the WT rate. By varying the oxygen concentration to determine kcat/KM(O2), it was estimated that 

the rate of oxidation was decreased by about a factor of 6 due to the increased basicity of Arg compared to Lys (Kacar 

and Edmondson 2006) . 

 

MAO chemical mechanism    

How the oxidation of an amine with a redox potential of +1 volt using a cofactor with a redox potential of about -

0.2 volts is achieved has intrigued researchers for decades. The answer lies in the interaction with the protein changing 

not only the energy level of the transition state between substrate and product (Vianello et al. 2012), but also that of 

the redox cofactor (Fraaije and Mattevi 2000). Although the pKa of dopamine shifts only from 8.9 in water to 8.8 in 

the active site (Vianello et al. 2012), a group with a pKa at 7.4-7.9 in the enzyme-substrate complex but not the 

substrate or MAO (Jones et al. 2007; Dunn et al. 2008) is an indication of modulation. For the cofactor, the redox 

potential in MAO was determined by reductive titration with dithionite in the presence of mediator dyes. For human 

MAO A, the value for the first electron reduction to the anionic semiquinone was -159 mV and for the second redox 

couple from semiquinone to the quinone at pH 7.4 was -262 mV and similar values were found for bovine MAO B (-

167 and -275 mV) (Sablin and Ramsay 2001), consistent with the accumulation of semiquinone to about 30% of the 

total flavin during dithionite reduction. For cloned human MAO B, the one-electron reduction potentials were found 

to be much closer and slightly positive at +0.043 V for the first electron reduction and +0.037 V for the semiquinone-

quinone couple (Edmondson et al. 2007). It should be noted that redox equilibrium with the reporter dyes is slow and 

could be the source of the differences. In the presence of a substrate, no semiquinone is formed, and a higher redox 

potential of +200 mV was estimated for human MAO A (Ramsay et al. 1995). In contrast to substrates, inhibitors 

stabilize the semiquinone form, a clear indication that substrates and inhibitors have different interactions with the co-
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factor (Ramsay and Hunter 2002; Hynson et al. 2003; Hynson et al. 2004). Circular dichroism (CD) spectroscopy that 

detects alterations in the environment of aromatic residues as a result of ligand binding or redox changes distinguished 

between substrate and dithionite reduction (a difference seen also in the visible spectrum) and gave different spectral 

changes depending on the size and substituents of the inhibitor (Hynson et al. 2004). This study revealed changes in 

the aromatic cage on ligand binding and on reduction, both of which alter the environment of the flavin and its 

surrounding tyrosines.   

Three mechanisms for the oxidation of amines by MAO have been much discussed and remain in contention 

(Silverman 1995c; Kay et al. 2007; Orru et al. 2013). Evidence for the polar nucleophilic mechanism has been 

provided by extensive kinetic analyses (based on Hammett correlations) with series of rationally chosen substrates. 

Experiments on MAO A using para-substituted phenylethylamine derivatives, demonstrated that electrophilic 

substituents increased the rate of oxidation, as expected for the polar nucleophilic mechanism (Nandigama and 

Edmondson 2000). For MAO B, the opposite effect was found, with the rate slightly decreasing with the more 

electron-withdrawing substituents to both benzylamine and PEA, although further analysis suggest that steric effects 

could account for the differences (Walker and Edmondson 1994; Miller and Edmondson 1999b). It has been argued 

that these conflicting correlations indicate that MAO A and MAO B could use different mechanisms to oxidize the 

amine to imine. Looking at electronic effects of various benzylamine ring substituents on the kinetics of the reaction, 

substituents giving high turnover with MAO A were poor substrates for MAO B (Wang and Edmondson 2011; Orru 

et al. 2013). This result clearly suggests the possibility of different mechanisms in MAO A and B, however unlikely it 

seems, and also the possibility that different substrates could be oxidized by different mechanisms depending on the 

rate constants for the steps involved. However, for both MAO A and B, steric parameters are important. The 

substitution at the 2’ position of MPTP hinders the planarity required for conjugation of the phenyl ring with the 

tetrahydropyridine moiety (Youngster et al. 1989). These 2’ derivatives are better substrates than the 4’ substituted 

derivatives, implying that the 4’ electron-withdrawing substituents do not facilitate catalysis as would be expected for 

the polar nucleophilic mechanism. The C4a adduct formed with substrate in the initial step of this mechanism has 

been proposed to make the N5 of the flavin a stronger base to extract the proton (pKa = 25) from the alpha carbon (see 

(Edmondson et al. 2009) for a detailed discussion). This two step process is also supported by the 15N kinetic isotope 

effect showing that C-H bond cleavage and the change in the C-N bond order were not completely concerted 

(MacMillar et al. 2011). 

The single electron transfer mechanism has substantial chemical support from experiments based on 

cyclopropylamine derivatives. Silverman, analysing the kinetics and the products formed, demonstrated that 

cyclopropyl amines inactivate MAO labeling either a protein thiol group or the flavin depending on the structure of 

the cyclopropylamine (Silverman 1995c; Vintem et al. 2005). However, no transient flavosemiquinone is seen during 

catalysis (Miller and Edmondson 1999b). Further evidence against a radical mechanism for normal MAO substrates 

has been summarised by Fitzpatrick (Fitzpatrick 2010) drawing parallels with other oxidase families. 

The simplest mechanism of the three is a hydride transfer. The rates of oxidation of MPTP derivatives mentioned 

above are consistent with a hydride mechanism (Youngster et al. 1989). In the high resolution crystal structure of the 

analogous flavoprotein, D-amino acid oxidase, the alpha carbon was in direct and close alignment to the flavin N5, 

ready for hydride transfer (Umhau et al. 2000; Fitzpatrick 2010). In the crystal structure of MAO B with farnesol 

which has an OH group rather than an amine, the alpha carbon is 3.4 Å from the flavin N5 (Hubalek et al. 2005; Binda 

et al. 2006) which brings the proton to about 2.3 Å, close enough for hydride transfer. The consistency of the 

calculated activation energies for dopamine and noradrenaline (Vianello et al. 2016) with experimental data for MAO 

A and MAO B also supports a hydride mechanism.  
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When calculations based on density functional theory are used to model the MAO reductive half-reaction, various 

groups come to conflicting conclusions. Using QM/MM calculations, the oxidation of unprotonated benzylamine gave 

rates in good agreement with experimental values. The electronic structure found during the process was consistent 

with the asynchronous polar nucleophilic mechanism and ruled out a radical mechanism (Abad et al. 2013). In further 

work the author suggested that the protein environment of MAO-A gave the mechanism an enhanced polar 

nucleophilic character compared to that of MAO-B (Zenn et al. 2015). In contrast, a relaxed-geometry scan of the 

alpha–CH bond compressing it in 0.1 Å increments showed no indication of the formation of a stable complex 

(Vianello et al. 2016), and another QM/MM study suggested direct hydride transfer mechanism for the oxidation of 

phenethylamine and benzylamine (Akyuz and Erdem 2013). Applying ONIOM methodology to serotonin oxidation, 

the latter group proposed a hybrid mechanism between hydride and proton transfer where hydride transfer dominates 

over the proton transfer (Cakir et al. 2016).  

Taking all the computational and experimental evidence into consideration, it was proposed that MAO A reacts by 

H+ abstraction whereas MAO B works by hydride transfer (Orru et al. 2013). Molecular simulation to calculate the 

energy required to take the bound dopamine substrate to its transition state in MAO B by the polar nucleophilic 

mechanism determined a free energy barrier of 44.6 kcal.mol-1, but by the hydride mechanism the energy barrier was 

only 24.4 kcal.mol-1, giving strong thermodynamic argument that MAO B oxidizing dopamine follows the hydride 

mechanism. For the overall binding and oxidation of dopamine by MAO B, the activation energy via the hydride 

mechanism of 16.1 kcal.mol−1 was in excellent agreement with the experimental value of 16.5 kcal.mol−1 (Vianello et 

al. 2016). For MAO A oxidation of noradrenaline via the hydride transfer reaction, the activation energy was 

calculated as 20.3 kcal.mol−1, only slightly higher than the experimental value of 16.3 kcal.mol−1 (Vianello et al. 

2016). The debate still continues. 

 

Inhibition 

As mentioned earlier, many xenobiotics and therapeutic drugs inhibit MAO with the benefit of raising amines in 

the brain. Most of the successful drugs are irreversible inhibitors of MAO (Youdim et al. 2006), although selective 

reversible inhibitors, such as moclobemide, are newer additions to the market.  Before considering inhibitors in detail, 

it is useful to define the major mechanisms of inhibition. These definitions and the kinetic parameters normally 

measured are shown in Table 2. Irreversible inhibitors form a covalent adduct with the protein so their effect lasts 

until new protein is made, a process that takes days for MAO. Reversible inhibitors generally have rapid on and off 

rates compared to the rate of substrate turnover, so the concentration at the target must be maintained to ensure 

inhibition. Moclobemide, a reversible inhibitor (Bonnet 2002), requires twice daily administration to give a 

therapeutic occupancy rate of about 74% for MAO A, whereas a single daily dose (10 mg/kg) of the irreversible 

inhibitor tranylcypromine gave 58% occupancy (reviewed in (Fowler et al. 2015)). Effective antidepressant effect is 

evident at around 80% for both moclobemide and phenelzine (Chiuccariello et al. 2016) 
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Kinetics of reversible inhibition 

Standard physical methods such as microcalorimetry for the determination of inhibitor dissociation constants (KD) 

are not suitable for MAO due to instability and aggregation after isolation except in high concentrations of detergent. 

Reports of immobilised MAO for use as amine-detecting electrodes usually employ the soluble copper amine oxidase 

or bacterial MAO-N. Binding of radio-labelled ligand or direct measurement of changes the absorbance spectrum as 

in Fig. 2 (Hynson et al. 2003) or changes in the fluorescence of purified MAO can also be used to determine small 

molecule KD values, but the kinetic determination of Ki is usually more versatile and convenient.  

 

 

 

Fig. 2. Titration of MAO A (6.6 μM) with befloxatone and calculation of the KD. Left, The selected difference 

spectra were calculated by subtracting the spectrum for MAO A alone from those equilibrated with befloxatone at 

0.38, 0.77, or 1.15 μM, all converted to absorbance for millimolar MAO A. Right, The difference between the 

absorbance at the 485 n atm maximum and at the 503 nm minimum are plotted against the concentration of 

befloxatone. 

 

Fluorescent or bioluminescent ligands have been designed to provide high sensitivity for activity assays and for 

cell imaging (Valley et al. 2006; Holt and Palcic 2006; Peng et al. 2010; Li et al. 2014b; Li et al. 2014a) and for in 

vivo imaging (Li et al. 2016; Kim et al. 2016). Of particular interest is a new probe that releases a fluorophore (4-

hydroxy-N -butyl-1,8-naphthalimide) by the catalytic action of MAO A, making it selective for MAO A (Wu et al. 

2016). For steady-state in vitro assays, the direct fluorescence of the product from kynuramine oxidation has been 

used in stopped (single time point) assays to assess several inhibitor series (Matsumoto et al. 1985; Delport et al. 

2017). The popular and convenient Amplex Red assay for the product H2O2 allows continuous monitoring of product 

generation but is a coupled assay so, like all coupled assays, must be used with caution. A major concern is that 

Amplex Red inhibits MAO A (Ramsay and Tipton 2017), but additionally some MAO inhibitors inhibit horseradish 

peroxidase used in the coupling system (Hroch et al. 2017).  

Table 2. Types of inhibition observed for MAO 

𝐓𝐲𝐩𝐞 𝐑𝐞𝐚𝐜𝐭𝐢𝐨𝐧 Measure Comment 

Reversible E +  I
     k+1
      ⇄
     k−1

     E. I 

 

Ki = k-1/k+1 

Reversible binding 

can be at equilibrium, 

or slow, or tight, 

depending on rates 

Irreversible E + I  
k+1
→   E. I 

On-rate, k+1 Non-specific chemical 

reaction rate 

Mechanism-

based 

irreversible 
E +  I   

k+1
⇄
k−1

  E. I 
k+3
→   E-I KI and kinact 

Depends on binding, 

catalytic conversion of 

I, and subsequent 

chemical reaction 

Poor substrate 

 

E +  S  
k+1
⇄
k−1

 E. S  
kcat
→    E  +  P 

Ki and kcat/KM
 

Same analysis as for a 

substrate but Ki can 

also be measured in 

competition with a 

fast substrate 
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Although all computational methods predict the equilibrium binding or KD, experimental assessment of large 

numbers of compounds is generally done by measurement of IC50 values avoiding the requirement for definitive 

equations. The IC50 for a competitive inhibitor is directly related to the Ki as:  

          % inhibition =  
Ki

[I]
(1 +

[S]

Km
)      Equation 1 

but for mixed inhibition the IC50 value has a more complex relationship with two Ki values:  

 
100

(Km+[S])+ 
Km
Ki
+ 
[S]
K′i

Km
Ki
 + 
[S]
K′i

 

      Equation 2  

Thus, the relationship between IC50 and Ki depends on the substrate concentration used and on the type of the 

reversible inhibition (Ramsay and Tipton 2017).   

The type of inhibition by a given compound is determined by varying both substrate and inhibitor. With MAO A, 

all published reversible inhibitors give competitive inhibition, but with MAO B, mixed inhibition is frequently 

observed. Kinetic observation of mixed inhibition can come from either differential inhibitor binding to the two redox 

states present during turnover or from binding at the imidazoline (I2) site which might occur not only to free E but also 

to the E-S complex, as demonstrated for phenylethylamine and for tranylcypromine (McDonald et al. 2010). These 

complexities mean that the mechanisms of inhibition should be determined for each series of new compounds. For 

comparisons across series and for comparison with docking, Ki values are always more informative than IC50 values.  

 

 

Fig. 3. Differential inhibitor binding to oxidized and reduced MAO. (a) For MAO A with 400 μM 3-

phenylpropylamine as substrate, 2-BFI is a competitive inhibitor giving a simple dose-response (closed symbols), IC50 

= 50.2 μM. In contrast, for MAO B with 30 μM benzylamine, the dose-response curve for 2-BFI has two components 

because it binds to the oxidized form with Ki of 7.9 μM and to the reduced form with a Ki of 326 μM (Ramsay et al. 

2011).  (b) The structure of 2-BFI in the entrance cavity of hMAO B (McDonald et al. 2010) . 

 

The accurate assessment of reversible inhibitors depends on reliable quantitative assays for determination of initial 

IC50 values, for which the substrate concentration used must be defined. In all cases, standard inhibitors used as 

comparators must also be reversible inhibitors. Many published medicinal chemistry articles have used selegiline and 

clorgyline as comparators without consideration of the time factor that applies to these irreversible inhibitors but not 

to the reversible one being tested. Where the kinetic mechanism is investigated and the Ki rather than IC50 is 

determined, the Ki is more likely to reflect the thermodynamic binding from theoretical calculations, particularly for 

MAO B (McDonald et al. 2010). 

The mixed inhibition with MAO B arises from the two forms of the enzyme (oxidized and reduced) that bind the 

inhibitor, as shown in Fig. 1 (Pearce and Roth 1985; Ramsay et al. 2011).  Oxidation of substrates that reduce MAO B 

at a rate comparable to the rate of reoxidation of the flavin by oxygen will have free reduced MAO B available for 

inhibitor binding, and the proportions of reduced enzyme during turnover differ with the substrate (Tan and Ramsay 

1993). Inhibitor binding to reduced enzyme can be different from that to the oxidized enzyme: for example, D-

amphetamine binds to reduced MAO A with 5 times lower affinity (Table 2) (Ramsay et al. 2011). The problem can 

be avoided by using a substrate where MAO B is predominantly in the oxidized form during the steady state (as is 
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always the case for MAO A). The only substrate where this has been demonstrated is MPTP, but its neurotoxic 

properties rule it out as a routine substrate (Tan and Ramsay 1993). 

 

Reversible inhibitors 

Optimization of early inhibitors of MAO was based on kinetic parameters determined in ex-vivo tissues, for 

example, the inhibition by D-amphetamine (Mantle et al. 1976; Dorris 1982) or other drugs (McCoubrey 1957; Yang 

and Neff 1974) before moving to in vivo pharmacology (Youdim et al. 1971; Miller et al. 1980; Riederer and Jellinger 

1983; Da Prada et al. 1990). The first pharmacophores for MAO were devised by superimposition of multiple 

inhibitors using simple computational methods (Efange et al. 1993; Medvedev et al. 1999; Veselovsky et al. 2004). 

The publication in 2002 (Binda et al. 2002) of the crystal structures with reversible ligands bound opened the way for 

prediction of modifications of compounds to optimise binding (Reck et al. 2005). Nowadays, cheminformatic 3D-

QSAR and Virtual Screening methodologies enable the discovery of hits from millions of compounds (reviewed in 

(Nikolic et al. 2016)). The search for potent competitive inhibitors of MAO A and B continues, driven by the market 

for up-regulating levels of monoamine neurotransmitters to combat depression and neurodegeneration (Carradori and 

Silvestri 2015; Finberg and Rabey 2016). The MAO A-selective inhibitor, moclobemide is used as antidepressant 

(Da Prada et al. 1990) whereas the selective MAO B inhibitor, safinamide (Caccia et al. 2006; Binda et al. 2007) is 

used against epilepsy. MAO B is increased in neurodegenerative processes due to glial activation and so is a target of 

interest, particularly for multi-target compounds that address neurodegeneration. Progress in selective inhibitor design 

for MAO B has been reviewed recently (Carradori and Silvestri 2015).  

Fig 4a shows some reversible inhibitors of MAO A (Da Prada et al. 1990; Hynson et al. 2003; Ramsay et al. 2007; 

Petzer et al. 2012; Heal et al. 2013), mostly with fairly bulky structures that can be accommodated in the single MAO 

A cavity (Son et al. 2008). The inhibitors of MAO B (Fig. 4b) (Mazouz et al. 1993; Binda et al. 2007; Binda et al. 

2012; Desideri et al. 2016; Borroni et al. 2017; Tzvetkov et al. 2017) have a typical linear shape reminiscent of the 

diphenylbutene molecule in the first crystal structure of MAO B (Binda et al. 2002).  

 

 

 

Fig. 4.  Reversible inhibitors of (a) MAO A (with Ki values) and (b) MAO B (with IC50 values). 

 

 

One of the simplest of the inhibitors is D-amphetamine, the α-carbon methylated analog of PEA, which is used to 

treat attention deficit hyperactivity disorder (ADHD) but has complex pharmacology and clinical effects because it 

inhibits monoamine reuptake systems as well as MAO (Hutson et al. 2014; Heal et al. 2013). It is a useful reversible 

competitive inhibitor of MAO A with Ki value of 15 μM (Ramsay 1991; Ramsay and Hunter 2002). With MAO B, the 

IC50 is about 10 times higher and the inhibition is mixed because both oxidized and reduced MAO B are present 

during turnover (Pearce and Roth 1985). The reduced MAO B binds the inhibitor less well (Ki = 2.5 mM) than 

oxidized enzyme (Ki = 0.5 mM, values using either benzylamine or phenylethylamine as the substrate) (Ramsay et al. 

2011). Methylation on the nitrogen does not change the Ki, but adding a second methyl to the alpha-carbon 

(phenteramine) decreases the selectivity of binding (Table 3). Interestingly, 3,4-methylenedioxymethamphetamine 

((+)-MDMA), methylated both on the α-carbon and on the nitrogen, also inhibited MAO A well (Ki = 22 μM) and 

gives mixed inhibition of MAO B with an IC50 value of 370 μM (Leonardi and Azmitia 1994). Methylation also 
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affects the activity of the mechanism-based inhibitor, rasagiline, presumably influencing the orientation of the 

propargylamine group (Sterling et al. 2002). 

 

Table 3. Influence of methylation on inhibition constants for reversible inhibitors. 

Inhibitor MAO A 

Ki (μM) 

MAO B  

Ki (μM) 

Reference 

D-amphetamine 

(1-phenyl-2-propanamine) 

 

15 

 

5.3 (competitive)  

 

506 (Eox); 2555 (Ered)* 

236 (mixed) 

(Hynson et al. 2004) 

(Ramsay et al. 2011) 

(Santillo 2014) 

Metamphetamine 

(N-methyl-1-phenyl-2-propanamine) 

17 297 (Santillo 2014) 

Phentermine 

(2-methyl-1-phenyl-2-propanamine) 

196 138 (Santillo 2014) 

*Eox indicates Ki when MAO is in the oxidized form; Ered when it is in the reduced form. 

 

Some inhibitors of MAO, even reversible inhibitors, show time dependence, probably from slow conformational 

adjustment after initial binding. Examples requiring at least 5 minutes to reach equilibrium include the beta-carbolines 

(Kim et al. 1997) and pirlindole derivatives (Hynson et al. 2003). Most screening studies pre-incubate the test 

inhibitors with MAO before the assay to avoid this problem. Tight binding inhibitors present another challenge to 

accurate determination of Ki values because the assumption that binding does not decrease the free concentration will 

not be met. When nanomolar IC50 values are found, then proper analysis for tight binding must be applied (Copeland 

et al. 1995; Morrison 1969). The commonly used assay coupling formation of H2O2 to a fluorescent dye, generally 

uses about 0.5 - 1 nM MAO, a desirable affinity for reversible inhibitors in drug design. Using a spectrophotometric 

assay where the minimum concentration of enzyme was about 30 nM, the Ki of 29 nM for Methylene Blue with MAO 

A was determined applying tight binding analysis (Ramsay et al. 2007). An early oxadiazolone series gave IC50 values 

in the nM range, inhibiting MAO B by a two-step process, initially competitive, followed by slowly reversible tight 

binding (Mazouz et al. 1993). Other examples include quinolones with IC50 values in the low nM range (Meiring et al. 

2013), chromenones (best IC50 3.1 nM) (Pisani et al. 2013), the N-alkylated indazole-5-carboxamide derivatives (N-

(3-chloro-4-fluorophenyl)-1-methyl-1H-indazole-5-carboxamide (IC50 hMAO-B 0.662 nM, >15000-fold selective 

versus MAO-A) (Tzvetkov et al. 2017). This selectivity is desirable. The anti-epileptic drug safinamide is a MAO B 

inhibitor with a Ki of 0.45 μM, 3 orders of magnitude better than for MAO A (345 M) (Binda et al. 2007). Another 

example is the series of 7-substituted coumarin derivatives assessed for inhibition of MAO and cholinesterases, in 

which the authors noted that increased MAO B inhibition is seen when a halogen is substituted on the para-position of 

the benzyl ring, giving an IC50 of 0.5 nM (Joubert et al. 2017).  However, the best multi-target compound was the N-

benzylpiperidine derivative with only 300 nM IC50 for MAO B, but good micromolar IC50 values for the 

cholinesterases.  

It should be noted that all of these compounds are reversible inhibitors. To claim that they are more potent than an 

irreversible inhibitor such as selegiline based on one IC50 measurement is wrong. The effect of irreversible inhibitors 

varies with time. Without pre-incubation, the reversible IC50 for selegiline (measured against substrate at 2x KM) is 
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about 50 nM, but with 30 minutes preincubation, the IC50 decreases more than 10-fold. The comparison aside, a 

reversible inhibitor with nanomolar potency is potentially a very useful compound. Not only could the compound be 

suitable for MAO B inhibition, but also it could be a lead fragment to combine with structures inhibiting 

cholinesterases for a multi-target drug to combat the effects of neurodegeneration.   

Reversible inhibitors with nanomolar potency are also useful for positron emission tomography (PET) for in vivo 

studies of MAO and MAO inhibition in humans. For MAO A, [11C]-harmine (Ki 4 nM) is the main reversible 

inhibitor used. For MAO B, an oxazolidinone derivative, [11C]-SL25.1188, with an IC50 of 11.8 nM in rat brain (Sara 

et al. 2010), has now been tested in humans (Rusjan et al. 2014). Most human studies have used the well-established 

irreversible inhibitors [11C]-clorgyline for MAO A and [11C]-deprenyl for MAO B, to measure the levels of MAO or 

competition with unlabeled reversible inhibitors (see (Fowler et al. 2015)).    

 

Computation and reversible inhibitors  

Docking has become an integrated part of drug design, progressing from comparison of overlaid ligands as a 

description of a pharmcophore (Efange and Boudreau 1991) or identification of pockets in homology models where 

substituents could tune binding (Reck et al. 2005; Bautista-Aguilera et al. 2014a), to fully automated virtual screening 

to identify the structures of the highest probability of binding to a drug target (Sliwoski et al. 2014; Nikolic et al. 

2016). Such cheminformatic approaches are cost-effective ways to identify small pools of lead compounds from huge 

chemical libraries, particularly for multi-target drug design where the aim is to design one molecule to fit multiple 

targets, each with different requirements (for example, (Bautista-Aguilera et al. 2014a)). Molecular docking is the 

commonly used technique that models the interaction between the ligand and its target. In addition to providing a 

picture of how the ligand sits in the active site (giving multiple poses ranked for optimal binding), the atomic level 

interactions are used to predict Ki values. Despite the prediction capability of the methods, experimental evidence is 

not always in accordance with the model values (for example, (Bautista-Aguilera et al. 2014b)). Ultimately, 

experimental validation of the predicted activity of the target is essential. 

Although docking is routinely used in medicinal chemistry papers investigating new series of reversible inhibitors, 

much more information can be revealed by molecular dynamics, although this demands so much more computational 

time that dynamic runs are limited to 10-100 nanoseconds. The model is prepared from an X-ray crystallographic 

structure of MAO by removing the crystallized ligand, inserting the cysteine-FAD covalent attachment, adding 

hydrogens and retaining the few water molecules common in most of the crystals. A small region near the flavin is 

selected as flexible and is conformationally relaxed before the simulation of the ligand binding dynamics starting from 

the best docking pose. To give one example, molecular dynamics were key to understanding active site interactions as 

the source of a 10-fold better Ki with MAO A than with MAO B for 2-amino-5-(4’-methoxy)-phenylfuran-3,4-

dicarbonitrile (as described above). Steric hindrance from Tyr326 in MAO B kept the ligand further away from the 

flavin than in MAO A preventing optimal hydrogen bonding (Esteban et al. 2014). Using similar computational 

modelling, binding in different orientations has now been found for several different ligand classes with MAO, as well 

as for different binding to oxidized and reduced MAO (Basile et al. 2014). 

 

Irreversible inhibition   
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Unlike reversible enzyme inhibition, irreversible inhibition leads to permanent deactivation of the enzyme. MAO 

adducts must be removed and replaced with newly synthesized MAO to restore activity. The activity of MAO in rat 

brain after irreversible inhibition recovered with a half-life of 9 days (Youdim and Tipton 2002). Monitoring levels by 

positron emission tomography, Fowler et al. observed a wash-out period of 40 days for MAO B (Fowler et al. 2015). 

The slow turnover of MAO in vivo is a key factor in the success of the irreversible MAOIs as drugs. 

The irreversible MAO inhibitors are termed suicide, time-dependent, enzyme-activated, covalent, and mechanism-

based inhibitors (Williams and Lawson 1974; Kalgutkar et al. 1995; Kalgutkar et al. 2001). The drugs shown in Fig. 5 

are all mechanism-based inhibitors. The seven criteria for the designation, discussed in detail by Silverman 

(Silverman 1995b), are time dependence of inactivation, observation of saturation kinetics, substrate protection,  

irreversibility, fixed stoichiometry, involvement of an enzyme-catalyzed step, and inactivation prior to release of 

active species. Classes of irreversible MAO inhibitors include propargylamines, cyclopropylamines, hydrazines, 

amino acetamides, and aryl oxazolidinones. After general consideration of the kinetics of mechanism-based 

inactivation, the first three classes (Fig. 5), the most studied, will be discussed. 

 

 

 

Fig. 5. Mechanism-based MAO inhibitors. (a) propargylamines; (b) cyclopropylamine; (c) hydrazines. 

 

Kinetics of irreversible inhibition 

In general, mechanism-based irreversible inhibitors are substrate analogues that are processed by the targeted 

enzyme to generate highly reactive species - the inhibitor is inactive until MAO acts on it. The reactive product 

covalently modifies the enzyme and suppresses its catalytic activity (Szewczuk et al. 2007; Silverman 1995a). The 

oxidation of the amine therefore represents the first phase in MAO irreversible inhibition pathway by several types of 

inactivating compounds (Silverman 1995b; Kalgutkar et al. 2001; Chajkowski-Scarry and Rimoldi 2014). The 

mechanism of inactivation in its most general and simplistic form can be represented as in Fig. 6 where E and I 

represent the free enzyme and inhibitor, respectively, E–I represents the enzyme-inhibitor complex, E–I* and E–P are 

the complexes between the enzyme and the bound oxidized inhibitor or product, respectively, and EI* is the covalent 

enzyme-inhibitor adduct. The adduct formed divided by product formed at infinite time or the ratio of k4/k3 represents 

the partition coefficient, the ratio of successful inactivation to modified inhibitor release.    

Mechanism-based irreversible inhibition depends not just on the concentration of the inhibitor but also on time. If 

the IC50 is determined by adding enzyme to substrate and inhibitor at the same time, the parameter obtained will be 

the Ki for reversible binding. If the inhibitor is pre-incubated with MAO for 30 minutes before adding substrate, then 

the IC50 obtained will come from a mix of inactivated and reversibly inhibited MAO and cannot be used to compare 

different classes of compounds with different inactivation rates (Ramsay and Tipton 2017). Proper information can be 

obtained from progress curves where the oxidation of substrate is measured in the presence of the irreversible 

inhibitor (McDonald and Tipton 2012). The normal linear assay rate will become curved as the concentration of active 

enzyme decreases.  The other method commonly used is pre-incubation with the inactivator then diluting the mixture 

into an assay mix with excess substrate to measure the remaining activity. It should be noted that the concentration of 

substrate used for the assay should be saturating because the aim is to measure the remaining active enzyme which is 

proportional to Vmax. For the mechanism-based inactivation of MAO by its irreversible inhibitors, the latter method is 

analysed according to (Kitz and Wilson 1962) as shown in Fig. 6 to give KI and kinact, where KI is similar in meaning 
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to the KM for the oxidation of the inhibitor, but has a contribution from an additional rate constant (k3 in Fig. 6). The 

kinact is a measure of the overall rate combining the rate of catalysis by MAO and the rate of the chemical modification 

step (see Fig. 6). A mechanism-based inhibitor is oxidized by MAO to produce a product that can dissociate like any 

other product or react with a group on the enzyme to form an adduct. The partition ratio will depend on the reactivity 

of the product with its target group. If the product is relatively stable or not correctly oriented for the chemical 

reaction with the enzyme group, then dissociation occurs, and after the flavin is reoxidized, a new catalytic cycle can 

begin.  

The ratio of product released to adduct formed, the partition ratio, can be calculated from the amount of product 

formed at infinite time relative to the amount of enzyme or from the rate constant for product formation divided by 

that for adduct formation (k3/k4 as shown in Fig. 6). The lower the partition ratio, the more efficient is the inactivator. 

For example, the partition ratio for the MAO A selective inhibitor clorgyline is close to 1 but the multi-target 

derivative, ASS234, gives a partition ratio of 7 (Fowler et al. 1982; Juárez-Jiménez et al. 2014). Stopped-flow 

spectrophotometry was used to follow the rate of reduction of the flavin in the absence of oxygen (bleaching at 495 

nm, a measure of amine oxidation) and the rate of adduct formation at 410 nm. For ASS234 the rate of reduction of 

the flavin was 0.049 s-1 but the rate of adduct formation was 0.0053 s-1 (A. Albreht and R.R. Ramsay, unpublished). 

Making the assumption that dissociation is faster than the rate of amine oxidation, these rates give a partition ratio of 9, 

in good agreement with the value from steady-state experiments (Juárez-Jiménez et al. 2014). In contrast to the high 

efficiency of the propargylamine inhibitors, the old drug phenelzine gives a partition ratio of about 40, calculated from 

the consumption of oxygen relative to the inactivation (Binda et al. 2008). 

The determination of the partition ratio requires measurement of the MAO concentration. This is easily done for 

purified enzyme either by direct measurement of the FAD present or from the spectrum (Newton-Vinson et al. 2000). 

For membrane-bound and tissue samples, the MAO concentration can be determined by titration with an inactivator, 

for example by titration with clorgyline for MAO A. For MAO B, rasagiline inactivates in a single turnover (Hubalek 

et al. 2004), so could be used to determine the amount of MAO B. Instead of titration, modification of the 

propargylamine with a spin-labelled propargylamine allows the amount of MAO in membranes to be quantified by 

electron spin resonance (Upadhyay et al. 2008).  

 

 

  

Fig. 6. Kinetic scheme for mechanism-based inactivation and the equations for the parameters, where E is enzyme, 

I is inhibitor, and [pi] is the concentration of product at infinite time. 

 

Propargylamines 

Propargylamine analogues are a thoroughly studied class of irreversible MAO A and MAO B inhibitors. Their 

structure can be divided into four sections (Fig. 7) (Swett et al. 1963; Kalir et al. 1981; Weinreb et al. 2010). Section 

A allows a great deal of structural freedom, although an aromatic moiety increases inhibitor potency. In section B, a 

motif with more than 2 carbon atoms greatly increases affinity towards MAO A, otherwise the inhibitor is MAO B 

selective. Section C and D are more stringent. Only -NH- and -N-alkyl- give reasonable inhibitor activity in section C. 

The alkynyl functional group in section D is essential for the covalent adduct formation and it is imperative for it to 

occupy β-position to the nitrogen.  
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Fig. 7. Structural regions of propargylamine inhibitors.  

 

Mechanism of inactivation: The first report on the inhibition of MAO by propargylamine derivatives dates back to 

the late 1950s (Taylor et al. 1960), but neither the structure of irreversible propargylamine-inhibited MAO adduct to 

the FAD nor the mechanism of its formation are not fully understood (Edmondson et al. 2009; Pavlin et al. 2013). 

Some of the first plausible inhibition mechanisms of MAO by propargylamines were proposed by Maycock et al. 

(Maycock et al. 1976b, a). One possibility involves an enzymatic abstraction of the acetylenic proton from the 

inhibitor and its subsequent attack on oxidized FAD. The second proposed pathway proceeds through radical 

intermediates that then collapse to form the cyanine adduct. In the third mechanism reduced FAD and oxidized 

inhibitor form the N5 covalent adduct with the enzyme. Later, Nakai et al. (Nakai et al. 1999) employed simplified 

truncated analogues of isoalloxazine and (–)-deprenyl in quantum chemical investigations of MAO inhibition 

mechanism. The calculations predicted the formation of two stable cyclic adducts. The O4,N5-adduct was the result of 

a one-step Diels-Alder cycloaddition reaction and the other was the C4a,N5-adduct, for which the inhibition pathway 

involved several acyclic intermediates and transition states. In a computational study, Borštnar et al. (Borstnar et al. 

2011) proposed the deprotonated acetylenic moiety of propargylamine as the reactive species to attack the 

electrophilic N5 of the oxidized flavin. This results in an adduct bearing an alkynyl moiety to the α-position to the 

nitrogen. The proposed mechanism was concluded to present the most plausible inactivation mechanism for MAO 

since it requires the least amount of activation free energy for the reaction, although no argument was given on the 

free energy cost for formation of the carbanion.  

A general mechanism for inactivation of MAO by propargylamines is yet to be agreed upon, but this comes as a 

no surprise since even the structure of the covalent adduct differs in published reports (Binda et al. 2002; Binda et al. 

2004; Esteban et al. 2014; Pavlin et al. 2013; Borstnar et al. 2011; Maycock et al. 1976b; Nakai et al. 1999; Gartner et 

al. 1976; Hubalek et al. 2004; Kalgutkar et al. 2001; Edmondson et al. 2004). We favor a model in which the iminium 

(allenyl) cation product that is trapped near the reduced flavin by favorable cation-π interactions in the “aromatic cage” 

and by interaction with the negatively charged pyrimidinedione ring. The electrophilic imine then forms a covalent 

adduct with the flavin via nucleophilic addition.  

Selectivity: The tighter substrate cavity of MAO B results in increased steric hindrance and in distinctive amino 

acid residue interactions with small molecules. This makes MAO B more sensitive to the absolute configuration at 

chiral centers of enantiomeric substrates and inhibitors (Bocchinfuso and Robinson 1999). Specificity is also governed 

by hydrophobic and hydrophilic regions of the cavity. Site-directed mutagenesis studies showed that Ile335 in MAO 

A and Tyr326 in MAO B, both near the entrance of the cavity, are key amino acid residues in determining substrate 

and inhibitor specificities in human MAO (Ma et al. 2004; Milczek et al. 2011). By changing these two residues, the 

spatial and chemical architecture of the substrate cavity is altered and MAO B selectivity starts to mimic that of MAO 

A and vice versa. Despite the common reactive group, there are MAO A-selective drugs such as clorgyline and 

selective MAO B drugs such as selegiline (L-deprenyl) and rasagiline (Finberg and Rabey 2016), and some that 

inhibit both isozymes with comparable efficiency, such as pargyline and ladostigil. Thus, selectivity is a function of 

the whole cavity.  

Inactivation kinetics: Various propargylamine inhibitors are not differentiated among themselves merely by their 

affinity towards MAO, but also by the rate at which they actually inactivate the enzyme. Therefore, the kinetics of 
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inactivation of MAO A or MAO B by different propargylamines also gives insight into inhibitor selectivity (Fowler et 

al. 1982). Affinity of clorgyline towards MAO A is three orders of magnitude higher compared to the B-form and the 

rate of inactivation (kinact) for MAO A is 0.76 min-1 compared to 0.06 min-1 for MAO B which explains why this 

inhibitor is highly MAO A selective. On the other hand, L-deprenyl shows only 40-fold difference in the affinity of 

the two forms, but the rates of inactivation for MAO A and MAO B are 0.14 min-1 and >0.99 min-1, respectively, 

which significantly increases the inhibitor selectivity towards the B-form. Pargyline has only slightly higher affinity 

for MAO B, but the inactivation rates for both forms are very similar, which makes this inhibitor predominantly non-

selective. The new generation of propargylamine multi-target inhibitors for the treatment of AD have moieties for the 

inhibition of MAO and cholinesterase in a single molecule. A representative of this class, ASS234, gives KI and kinact 

values of 0.053 µM and 0.133 min-1 for the membrane bound MAO A, which makes it almost as potent as clorgyline 

(Esteban et al. 2014).  

 

Cyclopropylamines 

Cyclopropylamine class of MAO inhibitors has been around since the 1960s, however tranylcypromine (trans-2-

phenylcyclopropylamine) is the only cyclopropylamine type of inhibitor still used for the treatment of severe forms of 

depression. Many drugs were removed from the market due to a wide array of unwanted side effects. The inherent 

non-selective action of cyclopropylamines makes them also potent inhibitors of other important enzymes. For instance, 

they inhibit cytochrome P450 enzymes (Hanzlik and Tullman 1982; Khan et al. 2013; Salsali et al. 2004), copper 

amine oxidases (Shepard et al. 2003), prostacyclin synthase and alcohol dehydrogenase (Talele 2016; Khan et al. 

2013). More importantly, cyclopropylamines also show cross reactivity with the histone demethylases (Lysine-

Specific Demethylase (LSD) 1 and 2) that play a vital role in regulation of gene expression (Schmidt and McCafferty 

2007; Binda et al. 2010; Niwa and Umehara 2017).  

Mechanism of inactivation: Extensive effort to determine the mechanism of the irreversible inhibition of MAO by 

cyclopropylamines in the 1980s, led to the most widely accepted pathway that proceeds by the formation of highly 

reactive radical species which in turn inactivate the enzyme. The inactivation mechanism (Scheme 2) assumes a single 

electron transfer from the inhibitor to the oxidized flavin in the first step, which yields a flavin radical and a 

cyclopropylamine radical cation (Silverman and Yamasaki 1984; Vazquez and Silverman 1985). Then, the 

cyclopropyl ring opens generating a highly reactive primary carbon-centred radical, detected by ESR studies {Qin, 

1987 #5085), which alkylates the enzyme, rendering it inactive. The covalent imine adduct is unstable and is in most 

cases hydrolysed to give an amine and a ketone. Although the mechanism via radical alkylation by cyclopropylamines 

is supported by many kinetic and chemical studies, the active site nucleophile that undergoes the reaction of covalent 

bond formation is still a subject of debate. 

 

Scheme 2. A proposed general mechanism of MAO inactivation by cyclopropylamines. 
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 The reduced flavin spectrum of N-(1-methylcyclopropy1)benzylamine-inactivated MAO B showed no spectral 

changes after denaturation with 6 M urea, which indicated covalent attachment of inhibitor to the flavin (Silverman 

and Yamasaki 1984). Using radioactively labelled 1-[phenyl-l4C]cyclopropylamine, the inhibition of MAO B was 

shown to proceed via two distinct and separate pathways (Silverman and Zieske 1985, 1986). A size-exclusion 

chromatographic separation of peptides resulting from a Pronase digest of the inactivated enzyme indicated an 

irreversible covalent bond formation between the N5 of the flavin and the inhibitor since the fraction, representative of 

reduced FAD, also exhibited radioactivity. A second alkylation site was proposed as a cysteine amino acid residue 

Cys365 (Cys374 for MAO A) (Zhong and Silverman 1997). In contrast, this cysteine inactivation pathway was found 

to be reversible although the inactivation rate was 7-fold faster compared to the flavin alkylation. With MAO A, 1-

phenylcyclopropylamine binds exclusively to the cofactor. N-Cyclopropyl-α-methylbenzylamine inactivates both 

MAO A and MAO B through the same mechanism where in both cases only the active site cysteines are targets of 

alkylation and the covalent adducts with the flavin do not form (Silverman and Hiebert 1988). The same was observed 

when MAO B was inactivated by tranylcypromine (Paech et al. 1980; Silverman 1983), presumably forming a 

reversible covalent adduct with a sulfhydryl group at the active site, leaving the cofactor untouched. However, more 

than 20 years later an X-ray crystallographic study of MAO B inactivation by tranylcypromine revealed an 

irreversible covalent modification of FAD at the position C4a of the isoalloxazine ring at the 2.2 Å resolution (Binda 

et al. 2003). This finding not only opposed the involvement of a cysteine amino acid residue for this particular 

inactivator, but also proposed a different position for alkylation on the flavin whereas only N5 position was previously 

ever considered as the site for covalent bond formation with some specific derivatives of this class of inhibitors. From 

the crystal structure, it was clear that the modified Cys365 in MAO B was on the surface of the protein, near the 

entrance to the active site (Binda et al. 2002). A mutation of the equivalent Cys374 in MAO A to alanine showed a 

somewhat reduced activity of the enzyme compared to the wild type due to an allosteric effect, but it did not prevent 

any of the three studied inhibitors (1-phenylcyclopropylamine, 2-phenylcyclopropylamine, and N-cyclo-α-

methylbenzylamine) from inactivating the enzyme (Vintem et al. 2005). This indicates that for MAO A, this thiol is 

not modified. Therefore, it is hard to generalize and predict the site of alkylation in the inactivation of MAO by 

cyclopropylamines since they are inhibitor and isoenzyme dependent.  

Selectivity: Cyclopropylamines are considered to be non-selective inhibitors that inactivate MAO A and MAO B 

with comparable efficiency. Moderate selectivity was obtained by additional functionalization of the known inhibitor 

2-phenylcyclopropylamine (Hruschka et al. 2008). Trans-2-fluoro-2-(para-trifluoromethylphenyl)cyclo-propylamine 

showed 7-fold higher affinity (measured as IC50 ratio) towards MAO A whereas cis-2-fluoro-2-(para-

fluorophenyl)cyclopropylamine proved 27-fold more effective towards MAO B. Another weakly MAO B selective 

analogue LY 54761 has a selectivity ratio of 15 (Murphy et al. 1978). On the other hand LY 51641 (N-(2-(2-
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chlorophenoxy)ethyl)cyclopropylamine) could be one of the most selective MAO A inhibitors from the 

cyclopropylamine family with a selectivity ratio of 1990 (Mefford et al. 1985; Murphy et al. 1987). Its structure is 

reminiscent of a very selective propargylamine MAO A inhibitor – clorgyline. Like clorgyline, LY 51641 bears a long 

oxygen containing aliphatic side chain between the inactivating functional group and a phenyl ring, which contains a 

chloro substituent at ortho-position. These structural motifs seem to play a paramount role in MAO A selectivity. 

Higher enzyme selectivity ensures a more efficient control over individual MAO inhibition by cyclopropylamines, 

which also show a high cross reactivity with LSD1 (Binda et al. 2010). By enhancing selectivity, possible unwanted 

side effects of a particular drug could eventually be reduced. Selectivity for MAO over LSD1 has been achieved 

(Vianello et al. 2014). 

Inactivation kinetics: The most representative and studied cyclopropylamine inhibitor – tranylcypromine – is used 

in the clinical practice as a racemate, however, the D-enantiomer was shown to be 10 times more potent MAO 

inhibitor in vivo and several orders of magnitude more potent in vitro relative to its L-enantiomer (Fuentes et al. 1976; 

Paech et al. 1980; Reynolds et al. 1980). Tranylcypromine inactivation rates measured for MAO A and MAO B are 

0.78 min-1 and 0.26 min-1, and Ki values are 7.7 µM and 3.8 µM, respectively (Malcomson et al. 2015). Many 

cyclopropylamine analogues have been prepared in search of a suitable lead in drug development with k inact and KI 

values in the range 0.01 – 4 min-1 and 0.07 – 1750 µM, respectively (Malcomson et al. 2015; Silverman and Hoffman 

1981; Kalgutkar et al. 1995). Some compounds can show high inhibitory action such as cis-N-benzyl-2-

methoxycyclopropylamine with a kinact/KI ratio of 440 and 1600 for MAO A and MAO B, respectively, but they 

generally exhibit a poor isozyme selectivity which is in the range of one order of magnitude. 

 

Hydrazines 

Iproniazid, a hydrazine derivative, was one of the first antidepressants ever marketed in late 1950s soon after the 

MAO inhibiting properties of hydrazines were recognized (Zeller and Barsky 1952; Zeller and Sarkar 1962). Later, to 

avoid its high toxicity, iproniazid was replaced by another hydrazine analogue – phenelzine (phenylethylhydrazine). 

Hydrazines are generally recognized as non-selective MAO A and MAO B inhibitors. Moreover, they also inhibit 

other groups of enzymes: metalloenzymes such as ribonucleotide reductase (Mure et al. 2005), transferases such as 

gamma-aminobutyric acid transaminase (Baker et al. 1991) and other amine oxidases such as lysine-specific histone 

demethylase 1 (LSD1) (Prusevich et al. 2014; Culhane et al. 2010) and primary amine oxidase (previously known as 

semicarbazide-sensitive amine oxidase) (Lizcano et al. 1996). Consequently, acute and chronic administration of 

phenelzine to mice shows not only elevated levels of MAO substrates (neurotransmitters serotonin, norepinephrine, 

and dopamine) and a decrease in their metabolites (3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid) but 

also an increase in amino acids such as alanine and -aminobutyric acid (Griebel et al. 1998; Parent et al. 2002). The 

levels of amino acids in mice brain start to deplete after 48 h whereas the increased concentration of neurotransmitters 

is maintained even after two weeks. This shows that not only does phenelzine inhibit different classes of enzymes but 

also that the MAO irreversible inhibition effect is more long-lasting.  

Mechanism of inactivation: As with other irreversible inhibitors, hydrazines are initially oxidized by MAO to an 

active form, in this case diazene intermediates. Through the loss of N2 and a hydrogen atom, diazenes are then 

converted into highly reactive radical species that covalently bind to the isoalloxazine moiety of the FAD, inactivating 

MAO (Kalgutkar et al. 2001). Under anaerobic conditions the inactivation of MAO is stopped at the diazene stage and 

the formation of the covalent adduct does not occur (Binda et al. 2008). It is assumed that molecular O2 is crucial for 
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the formation of the alkylating (arylating) radical (Huang and Kosower 1967; Kosower 1971; Binda et al. 2008). A 

similar mechanism was also proposed for a hydrazine type LSD1 inhibitor where diazene is oxidized to a highly 

reactive primary diazonium species that inactivates the enzyme activity (Culhane et al. 2010). On the other hand, 

diazenes were shown to react with free FAD as well as with enzyme-bound flavin in the absence of O2 (Nagy et al. 

1979), which indicated that the re-oxidation of FADH2 to FAD was paramount for final covalent adduct formation. 

Although the exact inhibition pathway is still debated, the requirement of O2 for MAO inactivation clearly sets 

hydrazine inhibitors apart from propargylamine and cyclopropylamine inhibitors where activity of MAO is quenched 

even under anaerobic conditions.  

By studying reactions of model flavin systems with phenylhydrazine and benzylhydrazine, it was shown that the 

covalent bond formation occurs at the C4a position of the isoalloxazine ring (Nagy et al. 1979; Kim et al. 1995). 

However, a more recent X-ray crystallographic study proves that benzylhydrazine and phenyethylhydrazine form N5 

covalent adducts when incubated with MAO B (Binda et al. 2008). Trace amounts of dialkylated enzyme were also 

detected by mass spectrometry but only one out of the two inhibitor molecules was proposed to associate with FAD. 

Thus, catalytic activity of the enzyme could additionally be quenched by an alternative pathway in which substrate 

cannot enter the active site as a result of alkylation of a nearby amino acid residue (Binda et al. 2008; Cesura and 

Pletscher 1992). The same phenomenon was also demonstrated for benzylhydrazine inactivation of dopamine β-

hydroxylase (Fitzpatrick and Villafranca 1986). 

Apart from being good inhibitors, hydrazine derivatives with a methylene group in the alpha position to the 

hydrazine functional group also act as good conventional MAO substrates which are eventually converted into 

aldehyde products via hydrazone intermediates (Tipton 1971; Tipton and Spires 1971; Patek and Hellerman 1974; Yu 

and Tipton 1989). In these cases the inhibitor can undergo a substantial number of catalytic turnovers (leading to high 

partition ratios) before inhibition of MAO occurs. On inactivation of MAO by phenylethylhydrazine (phenelzine) 35 – 

40 moles of molecular O2 per one mol of enzyme were required whereas an equivalent of 7 moles of O2 was 

consumed in the inactivation by phenylhydrazine (Binda et al. 2008). The difference in molecular O2 consumption 

between phenylethylhydrazine and phenylhydrazine is due to a higher catalytic turnover for phenylethylhydrazine 

where O2 is required for the re-oxidation of FADH2 to complete the regular catalytic cycle after product leaves the 

active site. Therefore, variations in molecular O2 consumption between compounds can be considered as a relative 

indication of how effectively can inhibitors be transformed into regular oxidation products (aldehydes) and should be 

proportional to the partition ratio.  

Selectivity and inactivation kinetics: Low selectivity of hydrazine type irreversible inhibitors results from their 

similar affinities and inactivation rates for MAO A and MAO B. Arylhydrazines phenylethylhydrazine, 

benzylhydrazine, and phenylhydrazine all have Ki values in the micro-molar range (15 – 205 µM) with the one 

exception of benzylhydrazine which has a very low affinity for MAO A (Ki = 2 mM) (Binda et al. 2008). Conversely, 

this inhibitor shows an inactivation rate of 3.1 min-1, a rate faster than all other inhibitor – enzyme pairs studied (kinact 

= 0.1 – 1.3 min-1). Thus, the potency of these inhibitors is comparable and non-selective.  

The efficiency of hydrazine inhibitors can be potentiated by enhancement of the C–H bond cleavage, which is in 

the alpha position to the hydrazine moiety and leads to an oxidation product (Yu and Tipton 1989). Alkylation at this 

position, which presumably hinders hydrazone formation, makes pheniprazine (1-methyl-2-phenylethylhydrazine) a 

10-fold more potent inhibitor of bovine MAO compared to its non-methylated analogue – phenelzine (Patek and 

Hellerman 1974). Even further enhancement of pheniprazine efficacy can be induced by cyanide which acts as an 

enhancer of binding (Ramadan et al. 2007). With MAO A and MAO B from rat and ox liver, potassium cyanide 
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decreased the Ki of pheniprazine 5–10-fold, but there were no observable differences in inactivation rates for either of 

the isoenzymes studied.  

Overall, non-selectivity, low target incorporation, and high potential for toxicity via non-specific interactions make 

the hydrazine moiety less suitable than propargylamine or cyclopropylamine groups for use in multi-target drug 

design. 

 

 

MAO inhibition in multi-target compounds 

Many irreversible inhibitors of MAO A and MAO B have been developed into drugs for the treatment of age-

related neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s disease and neuropsychiatric 

disorders such as schizophrenia, depression, anxiety, and aggression (Yu 1994; Youdim et al. 2006; Garcia-Miralles et 

al. 2016). Understanding the details of the chemical mechanism of MAO inhibition enables the development of new 

generation drugs by rational design and functionalization of the inhibitor molecule. From the preceding sections, it is 

clear that high binding affinity is key to selectivity through specific interactions in the active sites. For irreversible 

inhibitors, the high rate of the chemical step also depends on the orientation of the substrate to the N5 of the flavin and 

on retention of the reactive product to achieve that step.  Electron donating and electron withdrawing functional 

groups can strongly influence the behavior of electron density in a molecule through hyperconjugation, inductive and 

resonance effects, which can in turn reflect in the inhibitor potency. Large or bulky substituents can represent steric 

hindrance that prevents the inhibitor molecule to acquire the optimum orientation required for successful compound 

oxidation. Nevertheless, carefully chosen and positioned substituents within the inactivating molecule can affect its 

binding affinity towards MAO A or MAO B which, alongside the rate of inactivation, governs enzyme selectivity. 

However, as evident with the reversible inhibitors, ensuring a high selectivity of an irreversible inhibitor for either of 

the two isozymes through design is anything but trivial.  

 The propargyl moiety has been incorporated into several new compounds designed to tackle the complex 

pathology of neurodegeneration. Many compounds that target not only MAO (selective for one isoform) but also 

reversibly inhibit the cholinesterases have been designed such as tacrine-coumarin hybrids (Xie et al. 2015) donepezil-

propargylamine hybrids (PF1901N and ASS234) (Bolea et al. 2011; Marco-Contelles et al. 2016), or ladostigil 

derivatives, a propargyl-aminoindan-carbamate combination (Sterling et al. 2002). Antioxidant capacity or 

neuroprotective properties can also be added. In one recent novel achievement, binding to the H3 receptor was 

successfully achieved in addition. The patented molecule, contilisant, an indole derivative, has inhibitory activity 

towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H3 receptor (H3R). 

Contilisant was also found to have antioxidative properties, to penetrate the blood-brain barrier, and improved 

lipopolysaccharide-induced cognitive deficits in mice (Bautista-Aguilera et al. 2017).  

 

Conclusion 

However, in conjunction with crystal structures as starting points, computational modelling has advanced to the 

point of experimenting to improve the trajectory and rate of binding, to prolong binding, and even to explore 

individual parts of the catalytic cycle, opening a new era in enzymology. Experimentally, good kinetic analysis is still 
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the key to understanding the effect of inhibitor binding to an enzyme, shortening the list of optimised lead compounds 

to hand to pharmacologists in order to minimise expensive failure during translation to the clinic. 
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