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Abstract 19 

Currently, textile wastewater management focusses on dye removal efficiency and operating costs. Dual 20 

responsive polymers are choice materials because they can extract diverse organic compounds from 21 

water at their phase transition point. They are copolymers of the acrylamide class, and have been fully 22 

characterized by FT-IR, 1H-NMR, DSC, GPC and surface area analysis. Of the five dual responsive 23 

polymers, the copolymer of NIPAAM and DMAEMA (CoP-1) offers the best extraction of acidic and 24 

basic dyes from wastewater. All copolymers investigated can achieve better than 90% dye removal 25 

when used at 4 mg/ml concentration. This dye-scavenging efficiency increases to almost 99% at 3 26 

mg/ml, on conversion of the copolymers to nanofibers in 300 to 500 nm size. Langmuir and Freundlich 27 

isotherms were constructed to study the mechanism of dye adsorption. The nanofibers have been shown 28 

to be reusable for removal of dyes from water, suggesting that such systems may add benefit to current 29 

dye removal methods from textile industry wastewater. 30 

Keywords 31 

Adsorption isotherm, dual responsive polymers, smart nanofibers, textile dyes, textile water 32 

management 33 
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Introduction 35 

Water shortages and stringent regulatory strictures in recent years have encouraged the development of 36 

novel systems for water reuse. Providing potable water at a rate to match increase in population with 37 

decrease in water quality, available resources and climate change is a great challenge (Robinson et al., 38 

2001). The textile industry is a prime culprit in water pollution, posing risk to human and aquatic life. 39 

The industry produces around 80 million tonnes of fibers per year (mt/a) and total dye consumption for 40 

these fibers exceeds 1 mt/a. Textile dye concentrations are usually between 10 and 200 mg/L, and about 41 

10 to 15% of the dye is lost in the process (Liang et al., 2014). Further processing, including washing, 42 

releases more dye, which is drained as effluent. These dyes increase the turbidity of water, and make it 43 

look and smell bad, additionally inhibiting the penetration of sunlight necessary for photosynthesis. 44 

Dissolved oxygen is essential for life in water and its depletion is the most serious effect of textile waste 45 

discharge, which also hinders natural purification processes. 46 

Stringent laws have been proposed that limit the amounts and kinds of waste that can be released as 47 

effluent. The extensive release of textile dyes with adverse effects on the environment and public health, 48 

means that serious efforts are required to reduce pollution. This can be achieved using efficient effluent 49 

treatment systems at textile industry sites. Various methods have been devised for treatment of dye 50 

wastewaters which can be broadly classified as physical, chemical and/or biological, depending on the 51 

application. Physical methods include adsorption, membrane filtration, irradiation, coagulation, reverse 52 

osmosis, ultra-filtration and nanofiltration. Of all these technologies, adsorption is the simplest and is 53 

effective as it offers high removal efficiency for a wide spectrum of dye-types (Elmoubarki et al., 2015). 54 

No additional materials are needed to operate these processes, thereby offering high efficiency, and 55 

helping to preserve available water resources by both increased efficiency and ease of operation. 56 

Nanotechnology is used in adsorption in various forms like nanoparticles, nanotubes and nanofibers, 57 

and has the potential to remove metal ions, dyes, and various organic and inorganic species. In 58 

particular, polymeric nanofibers have become popular in the past few years for removal of contaminants 59 

from water. The non-woven material produced by electrospinning has several attractive features 60 

including diameter below 500 nm, large surface area, high porosity, high gas permeability and small 61 
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pore size. Swaminathan et al (2015) report on use of an electrospun nanofibrous composite mat prepared 62 

from polyacrylonitrile (PAN) yarn waste and graphene oxide for removal of methylene blue from water. 63 

Electrospun polyvinylalcohol/titanium oxide (PVA)/TiO2 composite membranes followed by 64 

photocatalysis have also been reported to remove methylene blue from water (Ismaya et al., 2017). 65 

Chen et al (2016) report dye removal using cellulose-based graphene oxide fibres, demonstrating the 66 

extensive capability of polymers. 67 

Dual responsive polymers are a class of materials that exhibit different properties at different 68 

temperature and pH ranges. Dual responsive polymeric microgel-based assemblies have already 69 

established efficiency for removal of organic dyes from water (Parasuraman and Serpe, 2011). With 70 

respect to temperature response, these polymers are soluble in water at room temperature but precipitate 71 

at higher temperatures. Likewise, pH responsive polymers are completely soluble in water over a certain 72 

pH range but precipitate just outside it. The transition point from soluble to insoluble, triggered by 73 

temperature or pH, is termed the cloud point (CP) and defined as the first appearance of turbidity for a 74 

clear polymeric solution. Lower critical solution temperature (LCST) is used in relation to temperature 75 

responsive polymers and is the point above which the polymer chains start orienting themselves in such 76 

a manner that hydrogen bonding efficiency is reduced, and the chains become hydrophobic. This 77 

hydrophobic state is responsible for the adsorption of most organic contaminants from water (Paneysar 78 

et al., 2017). The temperature responsive polymers include the acrylamide class – e.g., poly(N-79 

isopropylacrylamide) [PNIPAAM], poly(N,N-diethylacrylamide) [PNNDEA], poly(N-80 

vinylcaprolactum) [PNVCL], poly(N-vinyl isobutyramide) [PNVIB], etc – whereas the pH responsive 81 

polymers include polyvinylpyrrolidone [PVP], polyacrylic acid [PAA], polymethacrylic acid [PMA], 82 

polyethylacrylic acid [PEA], poly propylacrylic acid [PPA], etc. The monomers from the two 83 

categories, when copolymerized, yield polymers that respond to both temperature and pH at the phase 84 

transition point (Liang et al., 2015), and are classified as dual responsive polymers. They include poly 85 

dimethylaminoethyl methacrylate (PDMAEMA) and poly diethylaminoethyl methacrylate 86 

(PDEAEMA), both available commercially. Dual responsive polymers have reportedly been used for 87 

peptide (Aguilar et al., 2007), DNA (Hinrichs et al., 1999), transdermal (Samah and Heard, 2013), and 88 
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drug delivery systems (Zheng et al., 2017) for anticancer therapy (Zhu et al., 2010), as well as dye 89 

removal  from wastewater (Marques et al., 2015). 90 

This study focuses on the development of dual responsive polymers and evaluation of their application 91 

in textile wastewater treatment. Water discharged by the textile industry is usually at higher than 92 

ambient temperature and with varied pH, so the properties of dual responsive polymers could be 93 

appropriate under these conditions. These polymers and their nano-fabricated products – nanofibers – 94 

were evaluated in the study. Since textile wastewater has dyes as the primary component, the aim was 95 

their removal with maximum efficiency. 96 

Materials and Methods 97 

Materials 98 

The monomer N-isopropylacrylamide (NIPAAM) was obtained as a gift sample from SLN Pharma 99 

chem (Mumbai, India), and dimethylaminoethyl methacrylate (DMAEMA) was a gift sample from Ess 100 

Emm chemicals (Mumbai, India), diethylacrylamide (DEA) was procured from TCI chemicals 101 

(Chennai, India) and vinylpyrolidone (VP) from Sigma-Aldrich (Mumbai, India). The free radical 102 

initiator azobisisobutyronitrile (AIBN) was purchased from Spectrochem Pvt. Ltd (Mumbai, India) and 103 

dialysis membrane from HiMedia (Mumbai, India). 104 

Methods 105 

Synthesis of smart dual responsive polymers 106 

The monomers were combined and dissolved in 5 ml ethanol in different weights and ratios – see Table 107 

1. The initiator (AIBN) was added under a nitrogen atmosphere and the reaction was carried out at 70 108 

°C to initiate polymerization. The ethanol in the medium was removed under vacuum using a rotary 109 

evaporator, after which the viscous solution was poured into hexane and the precipitate dissolved in 110 

ethyl acetate. This was repeated 2 or 3 times to remove starting materials and reactants, and the crude 111 

copolymer was dried under vacuum. The copolymer was purified by dialysis against distilled water for 112 

3 days in a membrane with a molecular weight cut-off of 12,000 to 14,000 Da. After dialysis the 113 
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solutions were lyophilized, giving free-flowing powders. Table 1 gives details of the monomer and 114 

agent ratios used for copolymerization, and Figure 1 shows the general copolymerization scheme. 115 

 116 

Figure 1. General copolymerization scheme 117 

  118 
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Code Copolymer 
Monomers Initiator 

(AIBN) 

Solvent 

(Ethanol) 

Time 

(Hrs.) 

LCST 

(°C) 

Cloud point 

(pH) NIPAAM DEA VP DMAEMA 

CoP-1 

NIPAAM-

DMAEMA 

(14:1) 

1.1 Gm 

(10 mmol) 
- - 

118 µl 

(0.7 mmol) 
10 mg 5 ml 24 37 10.0 

CoP-2 
DEA-DMAEMA 

(1:14) 
- 

700 µl  

(5.76 

mmol) 

- 

60 µl  

(0.41 

mmol) 

10 mg 5 ml 10 28 9.5 

CoP-3 
NIPAAM-VP 

(1:1.5) 

0.425 gm  

(3.86 

mmol) 

- 
0.55 ml  

(5.1 mmol) 
- 10 mg 5 ml 09 30 12.0 

CoP-4 
DEA-VP 

(10:1) 
- 

700 µl  

(5.76 

mmol 

60 µl  

(0.56 

mmol) 

- 10 mg 5 ml 24 45 10.5 

CoP-5 
DMAEMA-VP 

(5:1) 
- - 

770 µl  

(6.55 

mmol) 

210 µl  

(1.27 

mmol) 

10 mg 5 ml 4 50 9.0 

Table 1. Quantities of reactants and time taken for copolymerization, and respective polymer cloud points119 
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Electrospinning 120 

CoP-1 (0.6 gm); CoP-2 (0.15 gm); CoP-4 (0.7 gm) and undiluted polycaprolactone (PCL) (0.8 gm) 121 

were individually dissolved in chloroform to obtain a 10% w/v polymer solution for fabrication of 122 

nanofibers NF-1, NF- 2, NF- 4 and PCL respectively. Electrospinning was carried out at 30 kV and 123 

0.25 ml/min flow rate, using an Inovenso Nanospinner24. Nanofibers were collected on a drum covered 124 

with aluminium foil rotating at 100 rpm. The collector/needle distance was 10 cm and 10 ml of solution 125 

was used completely for each sample to spin the same amount of fibre each time. The nanofibers were 126 

dried in a fume hood for 24 hours at room temperature. 127 

Determination of CP/LCST of the copolymer under the influence of temperature and pH 128 

LCST was determined by the cloud point method – visual examination – by increasing the temperature 129 

linearly of a 2.5% solution of copolymer from 20 to 40ºC. The temperature at which the solution turned 130 

turbid was noted as the CP (the temperature at which the polymer precipitated), and expressed as the 131 

LCST. The CP was confirmed using a Mettler (Toledo) DSC 822e unit. Similarly, the pH of the polymer 132 

solutions was varied from 2 to 13 and the point of first appearance of turbidity was noted. 133 

FT-IR analysis 134 

Potassium bromide (KBr) discs with the copolymers were prepared using an electrically operated 135 

Techno Search Instruments KBr press model HP-15 (Mumbai, India). IR spectra were recorded on a 136 

Jasco FTIR-5300 Fourier transform spectrophotometer with a resolution of 4 cm-1. 137 

1H-NMR characterization 138 

NMR spectra of the copolymers were recorded using a Brüker Avance III 800 MHz FT-NMR 139 

spectrometer.  The NMR samples were each made in solution comprising 0.9 ml H2O and 0.1 ml D2O.  140 

Molecular weight determination 141 

Gel permeation chromatography (GPC) 142 

GPC was performed with a Varian Pro Star 210 solvent delivery module and a Phenomonex Yarra 3u 143 

SEC-4000 aqueous GPC column (column size 300 x 7.8 mm). Data collection was driven by Galaxie 144 



9 
 

Chromatography Software; 100 mM Na2HPO4 buffer (pH 6.8) was used as the mobile phase at a 145 

constant flow rate of 1 ml/min. All polymer samples were detected by UV at 280 nm. GPC standards 146 

were used to calibrate the instrument prior to sample analysis. Twenty μl of the calibration standard 147 

solution (protein mixture and uridine) was injected in each case and the analysis run for 20 minutes.  148 

Surface area determination 149 

Brunauer-Emmett-Teller (BET) surface area analysis and Barrett-Joyner-Halenda (BJH) pore size and 150 

volume analysis were performed on a Belsorp Mini II (Metrohm). Nitrogen adsorption and desorption 151 

by the polymer were studied. The measuring range of the instrument for surface area was 0.01 m2/g and 152 

pore size 0.35 to 200 nm. A weighed sample was loaded into a glass tube and, as pre-treatment, was 153 

degassed for 3 hours at 110 °C and 10-2 kPa pressure. The sample was then rechecked to obtain the 154 

actual weight and the sample cell (glass tube) loaded into the instrument for analysis. 155 

Nanofiber characterization 156 

The surface morphology of the nanofibers was studied by scanning electron microscopy (SEM). The 157 

average nanofiber diameter was measured from images captured with a ZEISS EVO 40 microscope and 158 

sputter-coating was done with BAL-TEC SCD 005. The samples were prepared on a base coating of 159 

gold-palladium (60% : 40%) to make them appropriate for electron sample interaction. The sample was 160 

coated for 100 to 200 seconds to a thickness between 5 and 30 nm. After coating, the samples were kept 161 

in the SEM chamber and the system was subjected to high vacuum while imaging. 162 

  163 
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Evaluation and optimization of adsorption potential 164 

Dyes are released daily as effluents by the textile industry, and may be classified as acidic, basic, direct, 165 

mordant, vat, reactive, disperse, azo and/or sulphur dyes. Methylene blue and crystal violet were 166 

selected as representative basic dyes, whereas Congo red, methyl orange, and indigo carmine were 167 

selected to represent acidic dye species for the study. The proportional dye removal by the co-polymers 168 

was evaluated by UV-visible spectroscopy. 169 

A fixed concentration of each dye with absorbance within the linear range of the Beer-Lambert law was 170 

selected, and the solutions treated with the co-polymers and nanofibers. The conditions for adsorption 171 

were optimised by varying the copolymer concentration and the contact time above the respective CPs. 172 

Two copolymer concentrations, 1 and 4 mg/ml, were added to the dye solution and heated above the 173 

CP for various times. The solutions were then filtered, the precipitate removed and the absorbance of 174 

the final solution measured by UV. The proportional dye removal was calculated using Equation (1): 175 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑦𝑒 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
𝐶𝑜 − 𝐶𝑒

𝐶𝑜
 × 100 176 

(1) 177 

where, Co: dye concentration before treatment, and Ce: dye concentration after equilibrium and 178 

treatment 179 

All the proportional removal or adsorption analysis studies were performed in triplicate. 180 

Adsorption parameter optimization 181 

The copolymers are highly soluble in water and precipitate only above the cloud point (CP). 182 

Precipitation is caused by transformation of the copolymer into hydrophobic coiled chains that are 183 

responsible for absorption of the dye. To determine the polymers’ maximum adsorption ability initially, 184 

a low concentration (1 mg/ml) of copolymer was added to a solution containing a fixed concentration 185 

of dye (methylene blue – 3mg/L). The solution temperature and pH were increased steadily, and then 186 

kept constant above the individual polymers’ CPs for a range of times. The proportional adsorption was 187 

calculated for various times to determine the maximum dye adsorption. In a second study, the polymer 188 

concentration was kept at 4 mg/ml and the adsorption time for equilibrium determined. 189 
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Since, the adsorption of impurities depends largely on the polymer’s specific surface area, it was 190 

decided to test the polymers’ power when fabricated as nanofibers. Different weights of nanofibers were 191 

used for removal of dye from water above the LCST and pH responsive CP . The difference between 192 

the UV-visible absorbance of the dye solution before (inlet) and after (outlet) passing through the 193 

nanofibers was calculated to determine the amount of dye adsorbed. Since all nanofibers were blended 194 

with PCL for fabrication, blank PCL nanofibers were also evaluated for removal of dye from water. 195 

Optimization of adsorption potential using nanofibers 196 

Between 5 and 50 mg of nanofibers were taken, in 5 mg intervals, and tested for dye removal. 197 

Proportional removal of dye was at a maximum with 30 mg of nanofiber (3 mg/ml) for 10 ml methylene 198 

blue solution(3 mg/L), and this concentration was then fixed with the optimised contact time at 199 

respective temperature and pH to evaluate removal by nanofibers. Similarly, adsorption by PCL 200 

nanofibers was also studied at the same concentration and it was found that these ‘blank’ nanofibers 201 

could also adsorb dyes from water. 202 

Determination of particle size of copolymer at CP 203 

To measure the particle size at LCST and CP, copolymer CoP-1 was dissolved in water to prepare two 204 

solutions each of 2.5% concentration. The temperature and pH of the solutions were increased slowly, 205 

and the particle size beyond the CP was measured with a Malvern Zetasizer Nano ZS. 206 

Adsorption isotherm determination (Akl and Abou-Elanwar, 2015) 207 

Sorption isotherm studies were used to determine and explain the relationship between Ceq, the 208 

equilibrium concentration of the adsorbate (the copolymers), and the amount adsorbed at the surface. 209 

The Langmuir and Freundlich isotherm models were used to analyse the copolymers above their CPs 210 

at the optimised temperatures, pHs and contact times. 211 

Langmuir adsorption isotherm 212 

The Langmuir model exhibits a linear relationship for the amount of dye adsorbed per unit mass of 213 

adsorbent copolymer. It is distinguished by three factors – adsorption, desorption and kinetic rates – 214 

combined with the total number of free sites available on the surface. The collective surface 215 

concentration of dye is denoted by q. 216 
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Equation (2) is the linear form of the Langmuir equation: 217 

𝐶𝑒

𝑞𝑒
=

1

𝑞𝑚 𝐾𝐿
+

𝐶𝑒

𝑞𝑚
       (2) 218 

where, qe (mg/g) is the amount of dye adsorbed per unit mass of copolymer (sorbent), Ce (mg/l) the final 219 

concentration of unadsorbed dye in solution, qm (mg/g) the monolayer adsorption capacity and KL (l/mg) 220 

the Langmuir equilibrium constant. 221 

qe is expressed as, 222 

𝑞𝑒 =
(𝐶𝑖−𝐶𝑓)𝑉

𝑚𝑎𝑠𝑠
      (3) 223 

where, Ci is the initial concentration, Cf  the final concentration, and V the volume of dye solution. The 224 

volume of dye and mass of polymer remain constant for a given set of analyses. 225 

A graph of  
𝐶𝑒

𝑞𝑒
 against Ce gives the Langmuir isotherm  226 

Freundlich adsorption isotherm 227 

This isotherm was developed using the assumption that the adsorbent has a heterogeneous surface with 228 

numerous adsorption sites. 229 

The linear form of the Freundlich equation is (4): 230 

𝑞𝑒 = 𝐾𝑓𝐶𝑒

1
𝑛⁄

       (4) 231 

where n is the Freundlich exponent and Kf the Freundlich constant, which measures heterogeneity; the 232 

higher Kf , the more heterogeneous the adsorbent. To determine the Freundlich isotherm a plot of log qe 233 

against log Ce gives a slope equal to 1/n and an intercept at logKf. The slope 1/n represents a collective 234 

value of the relative magnitude of adsorption intensity for a certain sorption process. 235 

𝑙𝑜𝑔 𝑞𝑒 = 𝑙𝑜𝑔 𝐾𝑓 +
1

𝑛
𝑙𝑜𝑔 𝐶𝑒    (5) 236 
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To determine the applicability and suitability of a specific isotherm model to the experimental data, 237 

regression coefficient (R2) values were  calculated from the plot of log qe v/s log kf. Comparison of the 238 

two models is based on the value of R2. The Langmuir constants are obtained from the slope (qm) and 239 

intercept (KL), and the model’s characteristics can be expressed in terms of RL, a dimensionless constant 240 

for the separation factor to depict whether the adsorption is favourable or unfavourable – Equation (6): 241 

𝑅𝐿 =
1

1+𝐾𝐿𝐶𝑖
      (6) 242 

where, Ci is initial concentration. The characteristics of RL for favourable adsorption are 0 < RL < 1, for 243 

unfavourable adsorption RL > 1, for linear adsorption RL = 1, and for irreversible adsorption RL = 0.  244 

Reusability of nanofibers 245 

The reusability was determined by measuring the number of times an optimised weight of nanofiber 246 

could be used to lower dye concentration from a fresh solution to 50% of its initial value, each time. To 247 

do this the optimised weight of nanofiber was added to a 10 ml aliquot of 3 mg/L methylene blue 248 

solution at the optimised temperature and time. After treatment, the amount of dye remaining in solution 249 

was determined by colorimetry. Subsequently a fresh aliquot of dye solution was treated using the 250 

nanofibers from the previous test and the proportional dye removal calculated. The cycle was repeated 251 

until the proportional removal of dye was only 50%. In each cycle to evaluate reusability, the 252 

proportional desorption was also evaluated to gauge the nanofibers’ uptake and thus determine their 253 

reusability. After adsorption the copolymer was re-dissolved in distilled water and the dye leaching 254 

from the polymer was studied to calculate desorption – Equation (7): 255 

% 𝑑𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =
𝐶𝑜𝑛𝑐 𝑜𝑓 𝑑𝑦𝑒 𝑙𝑒𝑎𝑐ℎ𝑒𝑑

𝐶𝑜𝑛𝑐 𝑜𝑓 𝑑𝑦𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑
 × 100    (7) 256 

Results and discussion 257 

Determination of LCST of the copolymer 258 

The LCST values obtained from the CP measurements were confirmed using a differential scanning 259 

calorimeter. Figure 2a shows the thermogram for CoP-1 and Table 2 summarises the DSC events for 260 
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the other copolymers. The LCSTs of the homopolymers NIPAAM and DMAEMA are 32 and 49 °C 261 

respectively. It is noted that the LCST of the copolymers differs from those of the individual 262 

homopolymers, indicating that the LCST variation is due to increase/decrease of the hydrophilic 263 

properties of the copolymer owing to addition or change of functional groups. 264 

FT-IR analysis 265 

The FT-IR spectrum of copolymer CoP-1 confirms its structure as seen in Figure 2b.  The absorption 266 

at 1726.5 cm-1 is assigned to the ester C=O stretch, while the peak at 1622.84 cm-1 is the amide group 267 

C=O. The presence of the ester and amide groups is reinforced by the absorption at 1430.6 cm-1, caused 268 

by the C-N and C-O stretches. The FT-IR spectra of the other copolymers reveal similar characteristics 269 

of successful copolymerization. 270 

1H-NMR characterization 271 

In the 1H-NMR spectrum of CoP-1 (Figure 2c), the strong signal at 1.10 ppm is assigned to the -272 

CH(CH3)2 methyl from the isopropyl group in NIPAAM as is that at 3.90 ppm, while the resonance at 273 

2.10 ppm is the methyl resonance of the –N(CH3)2 dimethyl group in DMAEMA.. The adjacent peaks 274 

at 3.00 and 3.30 ppm are from the (-N-CH2-CH2-O-) ethyl groups in DMAEMA. The signal at 1.60 275 

ppm is attributed to the methylene group (-CH2-CH-) from the NIPAAM backbone and that at 1.72 ppm 276 

is due to the methylene (-CH2-C-) from the DMAEMA backbone. The peak at 1.4 ppm is from the 277 

methyl group (CH3-C-) in DMAEMA. The resonance at 2.00 ppm is due to the methyne (-CH-CH2) in 278 

the NIPAAM backbone. The signal at 8.00 ppm is due to the (-NH-C=O) amide group in NIPAAM. 279 

The NMR spectrum thus confirms the presence of both NIPAAM and DMAEMA in the final 280 

copolymer. (The signal strengths show that NIPAAM is present in large excess over DMAEMA.) 281 
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Figure 2. (a) DSC thermogram for CoP-1 (b) FT-IR spectrum of CoP-1 (c) 1H-NMR spectrum 285 
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Molecular weight determination 287 

Gel permeation chromatography (GPC) 288 

The number average (Mn), average molecular weight (Mw) and dispersity (D) of the various 289 

thermoresponsive copolymers are given in Table 2. The uniform distribution of molecular weight in all 290 

three samples is confirmed because the D values are all close to unity. 291 

Copolymer 

Endothermic events (°C) Molecular weights 

Onset 

(LCST) 
Peak Endset Mn (D) Mw (D) D 

CoP-1 37.5 62.5 86 71,460 71,893 1.01 

CoP-2 25.6 39.5 53.7 25,171 31,091 1.23 

CoP-4 44.2 65.1 90 30,026 32,490 1.08 

Table 2. Endothermic events by DSC and molecular weights by GPC for copolymers  292 

Surface area and porosity  293 

The surface area and porosity of CoP-1 were calculated from the adsorption isotherm obtained by 294 

measuring the amount of gas adsorbed across a wide range of relative pressures from 10 to 70 Kpa at 295 

constant temperature (liquid nitrogen 77 K) in triplicate. The amount of gas adsorbed is correlated to 296 

the total surface area of the particles including pores in the surface.The BET specific surface of CoP-1 297 

was determined as 0.824 m2/g, while the BJH plot shows the pore specific surface as 0.901 m2/g. 298 

Although the copolymer has a relatively small surface area compared to conventional adsorbents – e.g., 299 

activated charcoal (3,000 m2/g) (Dillon Jr et al., 1989) – it still exhibits effective adsorbent properties 300 

due to its high specificity at LCST, when the positions of the hydrophilic and hydrophobic groups are 301 

reversed in its regular structural scaffold. The presence of hydrophobic groups on the polymers’ 302 

(adsorbate) surface results in low/no hydrogen bonding interaction with water molecules, thereby 303 

increasing the adsorbing surface, and thus the adsorption power and selectivity.  304 

The BJH plot indicates pore volume and radius of 0.0073 cm3/g and 1.2 nm, respectively. The 305 

copolymer pore widths are between 2 and 10 nm, as observed in many adsorbents like zeolites. Thus 306 
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the copolymers can be classified as mesoporous according to the IUPAC classification (Dąbrowski, 307 

2001). The  pore width of 2.4 nm of the copolymer CoP-1 suggests that the area available for adsorption 308 

is the same as for standard adsorbents.  309 

Copolymer particle size at CP 310 

The particle size, measured when the polymer precipitates at the responsive temperature, is 606 nm, 311 

compared to 650 nm when measured at the responsive pH. Precipitation of the polymer as nanosize is 312 

largely responsible for the efficient dye adsorption above the CP. 313 

SEM analysis  314 

Figure 3 shows SEM images of the nanofibers of two copolymers,. The nanofibers are seen to be 315 

distributed randomly in the composite. The diameter of the nanofibers was calculated from the SEM 316 

images. The average diameter (AFD), determined by measuring about one hundred fibers, is between 317 

300 and 500 nm, confirming the nanofiber structure. 318 

319 

 320 

(a) (b) 

(c) 
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Figure 3. SEM images for (a) NF-1 (b) NF-2 (c) PCL 321 

Adsorption parameter optimization 322 

Dual responsive polymers extract dyes effectively at the defined concentrations as shown by the 323 

decrease in absorbance with increasing contact time. Treatment continued until the solution reached 324 

equilibrium; which was attained more rapidly as the polymer concentration was increased in solution 325 

(Figure 4). The optimal copolymer concentrations and contact times were obtained for fixed dye 326 

concentrations above the respective CPs (temperature and pH) at which adsorption was studied. The 327 

optimised parameters for the copolymers treating a dye concentration of 3 mg/L are shown in Table 3. 328 

329 

330 
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Figure 4. Optimization of equilibrium contact time for maximum adsorption by various co-332 

polymers at concentrations and responsive conditions as: (a) 1 mg/ml at LCST (b) 2 mg/ml at 333 

LCST (c) 4 mg/ml at LCST (d) 1 mg/ml at pH cloud point (e) 2 mg/ml at pH cloud point (f) 4 334 

mg/ml at pH cloud point. (Values are with mean± s.d. of 0.95-1.66) 335 

 336 

 337 

 338 

  339 
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Co-

polymer 

(4 mg/ml) 

Proportional dye removal (methylene blue – 3 mg/mL) (%) 

Effect of temperature Effect of pH 

proportional 

removal 

efficiency 

Temperature 

Equilibrium 

contact 

time (mins) 

proportional 

removal 

efficiency 

pH 

Equilibrium 

contact time 

(mins) 

CoP-1 92.77 40°C 40 93.84 10.5 30 

CoP-2 90.15 35°C 40 88.26 10.5 50 

CoP-3 91.32 35°C 50 90.17 12.5 40 

CoP-4 92.11 50°C 60 93.38 11 40 

CoP-5 90.49 55°C 40 89.91 10 50 

Table 3. Optimised conditions and maximum methylene blue removal efficiency by dual 340 

responsive polymers 341 

Evaluation of adsorption potential under optimised conditions 342 

For a polymer concentration of 4 mg/ml, the optimal temperature, pH, contact times to clear a dye (e.g 343 

methylene blue at a concentration of 3 mg/L) was studied and the results are presented in Table 4. All 344 

of the dual responsive polymers tested exhibited similar extraction efficiencies for the various dyes. 345 

However, CoP-1 showed maximum dye removal in the shortest contact time under the respective 346 

temperature and pH CP conditions. Since both cationic and anionic dyes were tested, this suggests that 347 

extraction is independent of the dye’s charge and solely due to physical adsorption, extending the 348 

spectrum of applicability of the copolymers to a wide range of dyes.  349 

Evaluation of adsorption potential using nanofibers 350 

Studies were carried to determine the amount of nanofibers necessary to adsorb dye solutions of varying 351 

concentrations. This study established that 3 mg/ml nanofiber suspensions offer the maximum 352 

proportional adsorption of dye under the influence of respective trigger and contact time (Table 4). All 353 

three nanofibers – NF-1, NF-2 and NF-3 – showed slightly better dye adsorption efficiencies than  the 354 

dual responsive copolymers (Table 3).  PCL nanofibers also showed significant dye removal efficiency 355 
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and, as the copolymers are blended with PCL for nanofabrication, the combination tends to increase 356 

their efficiency when converted to nanofibers. 357 

 

Adsorbent 

Proportional dye removal (%) 

Methylene blue 

(3 mg/L) 

Methyl orange 

(3 mg/L) 

Indigo 

carmine 

(12 mg/L) 

Congo red 

(20 mg/L) 

Crystal violet 

(6 mg/L) 

Temp* pH# Temp* pH# Temp* pH# Temp* pH# Temp* pH# 

CoP-1 92.77 93.84 91.26 90.97 92.60 91.24 90.28 89.86 91.20 90.41 

CoP-2 90.15 88.26 89.94 89.01 90.51 89.64 88.52 87.27 90.11 88.47 

CoP-3 91.32 90.17 92.16 90.43 90.57 88.63 89.74 88.02 92.20 90.18 

CoP-4 92.11 93.38 90.53 89.87 91.74 90.3 90.67 89.79 90.29 89.64 

CoP-5 90.49 89.91 90.12 89.16 89.65 89.12 88.2 88.47 88.95 87.88 

NF-1 99.01 96.21 98.12 94.98 98.52 97.13 96.85 95.24 97.59 96.48 

NF-2 97.05 95.67 95.87 94.06 96.89 95.89 95.07 93.17 95.91 96.13 

NF-3 97.89 96.19 95.03 94.17 96.71 94.89 94.18 92.54 93.95 94.37 

PCL 

Blank 

54.51 53.24 49.12 51.36 53.96 51.79 56.32 55.14 50.26 49.85 

Table 4. Proportional removal of dyes by dual responsive polymers (4 mg/ml) and nanofibers (3 358 

mg/ml) under optimised conditions. [*45°C, #12.0] 359 

Adsorption isotherm analysis 360 

The CoP-1 and fiber NF-1 were studied using the Langmuir and Freundlich models. The models’ terms 361 

were calculated and R2 values obtained for both isotherms (Figure 5). The value of RL shows that NF-1 362 

adsorbs the dyes better than CoP-1; in other words, converting CoP-1 to the nanofiber form NF-1 363 

increases dye adsorption efficiency. 364 
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Table 5 shows the constants for the two isotherm models and it is evident that the Langmuir model 365 

provides a better fit than the Freundlich one for both CoP-1 (R2 > 0.990) and NF-1 (R2 > 0.98), indicating 366 

monolayer adsorption on the adsorbent surfaces. 367 

 368 

Figure 5. Dye adsorption isotherm model onto copolymer and nanofiber substrates. 369 

 (a) Langmuir and (b) Freundlich. 370 

Adsorbent Langmuir constants Freundlich constants 

qm (mg/g) KL (L/mg) R2 RL KF 1/n R2 

CoP-1 14 3.078 0.9921 0.03 0.022 0.0965 0.8034 

NF-1 19 1.20 0.9856 0.076 0.012 0.2987 0.9182 

Table 5. Langmuir and Freundlich isotherm constants for dye adsorption by CoP-1 and nanofiber 371 

NF-1. 372 

Nanofiber reusability 373 

This study was carried out at the optimised temperature, pH and time frame for maximum efficiency. 374 

As shown in Figure 6, NF-1 has slightly better dye removal efficiency of the three nanofibers tested 375 

when used repeatedly with fresh dye solution stock. All three nanofibers lose more than 50% of their 376 

efficiency after 3 cycles of reuse. 377 
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 379 

Figure 6. Reusability of nanofibers 380 

Conclusions 381 

The primary objective of the study was to develop dual responsive polymers that exhibit smart 382 

behaviour for dye removal from simulated textile water. The polymers used exhibited good adsorption 383 

efficiencies at various temperatures and pH levels. To improve the dye removal efficiency of the 384 

polymers, they were converted to nanofibers by electrospinning. Due to their high specific surface and 385 

sensitivity, nanofibers were found to be more effective for  dye removal than polymer solutions. 386 
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