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Abstract 

Since their inception in pharmaceutical applications, physiologically-based kinetic (PBK) models are 

increasingly being used across a range of sectors, such as safety assessment of cosmetics, food 

additives, consumer goods, pesticides and other chemicals. Such models can be used to construct 

organ-level concentration-time profiles of xenobiotics. These models are essential in determining the 

overall internal exposure to a chemical and hence its ability to elicit a biological response. There are a 

multitude of in silico resources available to assist in the construction and evaluation of PBK models. 

An overview of these resources is presented herein, encompassing all attributes required for PBK 

modelling. These include predictive tools and databases for physico-chemical properties and 

absorption, distribution, metabolism and elimination (ADME) related properties. Data sources for 

existing PBK models, bespoke PBK software and generic software that can assist in model 

development are also identified. On-going efforts to harmonise approaches to PBK model 

construction, evaluation and reporting that would help increase the uptake and acceptance of these 

models are also discussed. 
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1. Introduction 

The science of physiologically-based kinetic (PBK) modelling has been evolving in recent years, 

contemporaneously with developments in computational approaches across multiple sectors. Whilst, 

historically, data for models were obtained via time and resource intensive animal experimentation, 

there is now an array of in silico resources that can assist with the parameterisation, computational 

implementation and evaluation of these models. The role of internal exposure, in particular organ-

level concentration-time profiles of xenobiotics, in determining true potential to elicit a biological 

response, is now recognised across multiple disciplines from drug development to chemical safety 

assessment of cosmetics, food additives, consumer goods, pesticides and other chemicals to which 

humans (and animals) are daily exposed. A recent report by Paini et al., 2017 [1] demonstrated the 

distinct upward trajectory in the use of PBK models over the last 30 years with respondents to a survey 

indicating a significant number of models being applied in chemical safety assessment. Other uses 

included experimental design, drug design, ecological health risk assessment, veterinary health, 

informing pharmaceutical dose selection for specific populations, clinical trial design and drug 

labelling. PBK models are being increasingly used to extrapolate from in vitro experimental data to in 

vivo scenarios (in vitro to in vivo extrapolation; IVIVE) in response to the ethical, societal and 

economical drivers to move away from in vivo animal experiments and towards new approach / next 

generation methodologies  (NAM / NGM) [2], [3], [4]. Rowland et al., 2015 [5] discussed the increased 

number of submissions, containing PBK models, to regulatory agencies concerned with clinical drug 

development. Meetings organised by the US Food and Drug Administration (FDA; [6]) and the UK 

Medicines and Healthcare Products Regulatory (MHRA), in collaboration with the Association of British 

Pharmaceutical Industry (ABPI; [7]) centred on developing best practice in building and reporting PBK 

models and enhancing common understanding between regulators, academia and industry 

encouraging further use of PBK modelling. Recent US FDA guidance proposes appropriate format and 

content for submissions of physiologically based pharmacokinetic (PBPK) analyses for new drug / 

biologic license applications. Relevant publications were highlighted concerning key topics such as 

study design, specific populations (paediatrics, pregnancy, disease states) and potential drug-drug 

interactions [8]. 

Clearly, the use of PBK models across a range of disciplines is rapidly expanding. Laroche et al., 2018 

[9] summarise recent developments and needs across multiple sectors i.e. pharmaceuticals, vaccines, 

cosmetics, fragrances, chemical, agrochemical and food industries. The aim of this paper is to present 

an overview of the in silico resources available to assist in PBK model construction and evaluation, that 

is relevant across the boundaries of the different sectors. It is recognised that such an overview can 



never be truly complete as continual developments inevitably lead to changes in availability and 

capabilities of the software and databases recorded. However, at the time of writing, the information 

provided is as comprehensive as reasonably practicable and provides a “one stop shop” to signpost 

the various resources available. It is intended that this will not only provide a useful starting point for 

those relatively new to the field but also may identify additional, unexploited resources for 

experienced modellers. 

2. Applications of PBK models 

The foundations for PBK modelling were laid with the introduction of physiologically-based 

pharmacokinetic (PBPK) modelling which was used to describe the time course of pharmaceuticals 

within different organs or tissues of the body [10], [11]. This tool has also been applied to evaluate 

the health risks posed by environmental chemicals –  referred to as physiologically-based toxicokinetic 

modelling (PBTK) defined by the World Health Organization as “a model that estimates the dose to 

target tissue by taking into account the rate of absorption into the body, distribution and storage in 

tissues, metabolism and excretion on the basis of interplay among critical physiological, 

physicochemical and biochemical determinants‟ (WHO, 2010,[12]). Being adaptable to individual 

physiology, these models enable internal exposure, hence potential therapeutic and adverse effects, 

to be predicted more accurately than models relying on external dose alone. For example, models can 

be parameterised for altered kidney or liver function as may be expressed by elderly or neonatal 

populations or pregnant women. The models can be extrapolated to take into account the effects that 

age, disease state or genetic variation may have on concentration-time profiles. Clinically, this enables 

appropriate dose adjustments to be more reliably predicted, optimising therapy for sensitive 

individuals, hence their increasing application in this area. Previously, in drug development many PBK 

models have focused on key organs having a significant effect on ADME properties of drugs, however, 

more recent applications specifically consider organs associated with toxicity and side effects in terms 

of safety assessment. For example, Pilari et al., 2017 [13] include organs of the reproductive and 

endocrine systems (testes and thyroid) in an extended PBK model more relevant to toxicity prediction. 

PBK models can also be applied to address issues of drug-drug (or drug-food; drug herbal product) 

interactions, where the presence of one drug (component of food or herb) may inhibit or induce 

metabolising enzymes or compete for transporters used by a co-administered compound. This can 

lead to a significant increase or decrease of circulating drug levels causing loss of therapeutic effect or 

induction of side effects. The application of such models also goes beyond predicting effects of 

pharmaceutical agents, similar considerations are important where excipients have been shown to 

exert undesirable biological effects. Valeur et al., 2018 [14] stipulate that increased knowledge is 



required in terms of understanding the effects of excipients present in drug formulations, particularly 

with respect to potential toxicity in neonates who may, for example, show differences in metabolic 

capacity. PBK models, specifically adapted to the physiology of neonates, may provide important 

information to optimise treatment for these patients. PBK models are playing a pivotal role in several 

ongoing European Horizon 2020 projects that are exploiting the full potential of in-silico medical 

research to generate virtual patient/population libraries as well as data integration and data-driven 

in-silico models for enabling personalised medicine within a harmonised framework. 

In addition to drugs, PBK models have been also been applied to the safety assessment of food, 

cosmetics and environmental chemicals. In the food industry, PBK models have been applied to 

assessing the health risks from exposure to pesticides, contaminants and food contact materials. The 

models enable multiple exposure scenarios, interspecies differences and intraspecies variation to be 

accounted for when predicting internal exposures. The scientific report of the European Food Safety 

Authority (EFSA) (2014) reviews many of these applications of PBK modelling in the food safety sector. 

For cosmetics and personal care products, the Notes of Guidance from the Scientific Committee on 

Consumer Safety (SCCS) (2016) explicitly recognise contributions from PBK models in safety 

assessment. Recently published Opinions of the SCCS (for example opinion on phenoxyethanol 

SCCS/1575/16) have incorporated data from PBK studies. Tan et al., 2018 [15] review the use of PBPK 

modelling in terms of public health decision making concerning environmental chemicals. Their report 

found that from 1977 – 2016, 65% of published models (identified using the PubMed database) related 

to environmental chemicals, and 31% related to drugs. While the potential of PBPK modelling has 

been recognised, barriers to uptake by public health agencies persist particularly because of a lack of 

expertise in the area - there is a limited number of people with sufficient expertise to build, evaluate 

and review models. These problems are exacerbated by a lack of consistency in the format of 

submissions. Additional issues identified in the report were problems of transferring models between 

platforms and lack of confidence in extrapolation. Several of these issues, and potential solutions, are 

discussed below. The application of PBK models to nanoparticles is another area of increasing interest. 

In 2010 Li et al discussed the factors to be considered when applying the models to nanoparticles, 

such as differences in metabolism, distribution and accumulation in the lymphatic system which can 

differ between nanoparticles and small molecules [16]. More recently Yuan et al reviewed the 

disposition properties of nanoparticles and how PBK models could take account of the unique 

characteristics of these particles [17]. A comprehensive review of PBK models for nanoparticles, and 

their acceptability for regulatory purposes was also recently published by Lamon et al [18]. The 

authors identified similar issues to those discussed by Tan et al [15] in relation to the problems that 

hindered regulatory acceptance: complexity of models; transferability across platforms and; lack of 



confidence in models where tissue/plasma concentration data are lacking [18]. In regulatory 

toxicology, there is an ethical and economical desire to move away from animal experiments to 

alternative methods, such as in vitro testing. PBK modelling has an important role to play in 

extrapolating in vitro concentration-effect information to in vivo human dose-response relationships 

(IVIVE). This enables points of departure to be identified from in vitro studies for risk assessment 

purposes. Punt et al., 2011 [19] describe the successful application of this approach in terms of 

promoting alternatives to animals in risk assessment. Whilst the above demonstrates great variety in 

the types of chemicals investigated using PBK modelling, the model structures themselves are 

independent of the nature of the chemical. 

3. Input parameters required for PBK model building 

Figure 1 shows a characteristic representation of a PBK model structure in the centre of the image. 

Inputs typically required for modelling are shown on the right, and an example model output is shown 

on the left (the concentration-time curve for a specific chemical in a tissue or organ of interest). Within 

each compartment it is possible to incorporate more detailed model structures, for example the 

gastro-intestinal (GI) tract may be subdivided into individual compartments – stomach, duodenum, 

jejunum, ileum, caecum and colon with dissolved and undissolved chemical being considered 

separately. The predictive performance of a model can be evaluated by comparing experimentally-

derived data (where available) with model-derived values.  

[FIGURE 1 – HERE] 

Development of PBK models requires both chemical specific parameters (e.g. metabolic rates, plasma 

protein binding fraction, dermal absorption rate) and chemical independent system information -   

physiological and anatomical values (e.g. blood flows and tissue volumes). Chemical specific factors 

may be derived from experimental measurements or predicted using an ever-increasing array of 

software available to predict these factors. Key properties relate to the ability to partition across 

biological membranes, hence the logarithm of the octanol: water partition coefficient (log P), aqueous 

water solubility and pKa (relating to potential for ionisation – in general unionised molecules cross 

biological membranes more readily) are commonly used to estimate those factors needed for a PBK 

model. In addition there are a multitude of in silico models that predict the absorption, distribution, 

metabolism and elimination (ADME) of chemicals. These include models for absorption through the 

gastro-intestinal tract (or surrogates thereof, such as PAMPA or CaCo-2 membranes), partitioning 

across the blood brain barrier, permeation through skin, plasma protein binding and extent of 



distribution throughout the body (volume of distribution). A limited number of models also exist for 

more specific ADME properties, such as partitioning into milk or blood: testes concentration ratio. 

Patel et al., 2018 [20] have collated and reviewed over 80 of these ADME related models. One of the 

more difficult properties to predict using in silico methods is clearance; accurate estimation of 

clearance is essential as this determines the overall residence of a chemical in the body. For this 

reason, in vitro estimation of hepatic clearance is still the predominant method used to obtain such 

information using liver slices, or (sub) cellular fractions, however, total clearance (i.e. clearance by all 

routes including metabolism, biliary, renal clearance etc.) influences overall internal exposure. 

Similarly, although there are datasets for thousands of chemicals for which plasma protein binding 

has been measured and many in silico models derived from these data, measurement of plasma 

protein binding for new chemicals of interest is often undertaken as this parameter can have a 

significant effect on PBK model predictions. In vitro measurements, using human derived tissue, are 

clearly important sources of information for PBK model development, however, as the focus of this 

review is on in silico methods, information will be restricted to data sources for in vitro information 

rather than experimental details. 

Multiple data sources are available providing system information i.e. the physiological and anatomical 

reference values on which PBK models are predicated. These include data for multiple species, life 

stages - from gestational development to the elderly, and disease-related adaptations to standard 

values. Much of this data has been empirically derived and collated over decades. In the next section 

each of the various types of input parameter for PBK models are considered individually and in silico 

resources for obtaining this information are identified. Whilst individual sources for the information 

are given, it is recognised that much of the collated information has been brought together in bespoke 

PBK modelling software that can provide, both key information for components of a model and an 

overall modelling platform; these are also identified below. 

4. In silico resources available to assist in PBK model construction and evaluation 

The following section illustrates the range of information, relevant to PBK model construction and 

evaluation, that is available from a wide variety of sources. These resources have been collated into 

eight tables, each relating to different components of PBK modelling or ancillary information. The 

contents of the tables are briefly summarised here; details on the availability and capabilities of the 

software, models and datasets are provided in tables 1-8. The resources have been collated here for 

information only. The authors have not evaluated each of these resources; their inclusion should not 

be considered an endorsement. 



4.1 Resources for external exposure 

Although not strictly associated with development of PBK models, Table 1 includes information on 

models for external exposure, as without an estimation of the amount to which the body is exposed 

externally there can be no estimation of internal exposure from a reliable PBK model. For drugs the 

precise amount and route of exposure are known making this a relatively simple “exposure” scenario. 

Dosing information for clinical applications across age groups can be obtained from resources such as 

Medicines Complete (refer to Table 1). For chemicals that humans (and animals) are exposed to via 

food, use of personal care or household cleaning products, or from the environment, the extent of 

exposure is more difficult to estimate. However, tools are available to provide estimates for these 

different scenarios. For example: EFSA provides estimates for dietary exposure; SCCS provides typical 

product usage for personal care products; the European Centre for Ecotoxicology and Ecotoxicity 

(ECETOC), the United States Environmental Protection Agency (US EPA) and the Dutch National 

Institute for Public Health and the Environment (RIVM), amongst others, provide models for predicting 

worker or consumer exposure to household products and environmental pollutants. A summary of 

these external exposure models is provided in Table 1. 

4.2 Resources for obtaining physico-chemical properties 

Knowledge of physico-chemical properties is important not only in terms of PBK modelling, for 

predicting uptake and distribution within the body (as indicated above), but also forms part of the 

fundamental characterisation data for chemicals. As such, there is a large number of databases 

reporting experimental values as well as predictive software both freely available and commercial 

from which to obtain these properties. Resources such as Chemspider (from the Royal Society of 

Chemistry), ACD / Percepta (from ACD laboratories) and EPISUITE (from the US EPA) provide estimates 

and/or measured values for log P, water solubility, vapour pressure, pKa etc.  A number of these 

resources are indicated in Table 2. Several of these resources are also capable of predicting ADME-

related properties, for example ADMET Predictor from Simulations Plus predicts log P, log D, solubility 

in intestinal fluid as well as permeability across skin, blood-brain barrier, interactions with proteins, 

transporters and other properties.  

4.3 Resources for obtaining ADME-related information 

Table 3 provides a compilation of predictive software, datasets and models for more than 50 ADME 

related endpoints. The amount of data and number of models available is highly variable depending 



on the endpoint in question. Thousands of measured values are available for plasma protein binding 

data along with many predictive models, similarly there are many data and models for intestinal 

absorption, blood brain barrier partitioning, skin permeation, p-glycoprotein and transporter binding. 

Whilst there are many data for renal, hepatic and total clearance, there are fewer, accurate models 

for these endpoints, reflecting the difficulty of developing in silico models for such endpoints. This was 

highlighted in the report of Paini et al., 2019 [21] who identified hepatic clearance as a key input 

parameter for PBK models that was better derived from in vitro studies where possible. For highly 

specific information, for example tissue concentration-time profiles (that may be used to evaluate PBK 

model outputs), very few data are available. The on-line chemical modelling environment (oCHEM) 

provides some such data but provides much more extensive datasets for more standard endpoints 

such as inhibition of cytochrome P450 enzymes, CACO-2 permeability or fraction unbound (fraction 

unbound is of importance as it influences the extent to which a chemical distributed within the body). 

The paper of Przybylak et al., 2018 [22]  is useful in this regard as it identifies over 140 ADME related 

datasets that can be used for development of new models; these models can be used to predict 

parameters for chemicals where experimental data are lacking. 31 of the datasets were considered as 

“benchmark” datasets, particularly suitable for modelling purposes (these were converted to Excel 

format and are available as supplementary information within the paper). Given the increasing focus 

on ADME properties in determining true potential to elicit a biological response, it is not surprising 

that the amount of software and data compilations in this area is expanding rapidly. Data are now 

available for multiple species and multiple ADME/PK endpoints ranging from computational ligand-

protein interaction studies to clinical observations as illustrated by the diversity of resources in Table 

3.  

4.4 Resources for physiological and anatomical reference values 

Whilst the focus of tables 2 and 3 is on the chemical-specific input parameters, Table 4 provides 

resources for the chemical independent physiological and anatomical reference values that are also 

required for PBK modelling. Resources, such as Brown et al., 1997 [23] and the Interspecies Database 

(from RIVM and the Dutch ministry of Health Welfare and Sports) 

(https://www.interspeciesinfo.com/) provide parameter values for organs (weights, volumes, 

composition, percentage of cardiac output, local blood flow etc.) for multiple species. The 

International Commission on Radiological Protection (ICRPP) provides age and gender-related values 

for humans and are commonly used for fundamental input values – other similar resources are also 

given in Table 4. Increasingly PBK frameworks for specific organ structures are being developed and 

published, as well as being incorporated into PBK modelling software (such as SimCYP from Certara). 

https://www.interspeciesinfo.com/


Examples of these include: the models of Abduljali et al., 2018; 2012 [24], [25], [26] providing 

parameters for different stages of pregnancy and foetal development; the blood brain barrier/ brain 

compartment penetration models of Ball et al., 2013 [27], Gaohua et al., 2016 [28] and Zakaria et al., 

2018 [29], the models for lung from Goahua et al., 2015 [30] and the testes and thyroid models from 

Pilari et al., 2017 [31]. Obviously, a major source of PBK modelling parameters are previously published 

PBK models, these models may serve as a template for deriving models for similar chemicals. In 2016, 

Lu et al., [32] published a Knowledgebase summarising 307 published PBK models along with a study 

demonstrating how information from these could be used to develop PBK models for other similar 

chemicals. Concepts relating to similarity and selection of chemicals, for which PBK models are 

available that can be used as templates for other chemicals, are discussed further below. 

4.5 Physiologically-Based Kinetic modelling software 

The number of bespoke PBK modelling packages available has been gradually increasing with freely 

available applications now making the area more accessible to a larger number of researchers; some 

of these are indicated in Table 5. The Simcyp Simulator software from Certara 

(https://www.certara.com/), in particular, is widely used by industry. The software incorporates a 

number of databases (physiological and anatomical data, genetic and epidemiological information) 

and model structures (e.g. those identified in Table 4) to enable organ-level predictions of 

concentration-time curves for specific human subpopulations, as well as modules for rats, dogs and 

knock-out mice. Cloe from Cyprotex (now part of Evotec AG) is another example of a complete PBK 

modelling package enabling organ concentration-time curves to be generated for humans, rats and 

mice. Freely available software includes: PK-Sim and MoBi (Bayer) – a PBK modelling tool with 

integrated databases for different species and capable of multiscale modelling; MEGen (Health and 

Safety Laboratory, UK) – a method to rapidly generate PBK model code; and more recently PLETHEM 

(Scitovation) which incorporates an 11 compartment PBK model and an IVIVE model relating in vitro 

points of departure to equivalent in vivo values. 

4.6 Software to assist development of pharmacokinetic/pharmacodynamic models 

Aside from the bespoke PBK modelling software indicated above, there are numerous applications 

that can assist in developing PBK or pharmacokinetic/pharmacodynamic (PK/PD) models. The website 

for Pharmacokinetic and Pharmacodynamic Resources (http://www.pharmpk.com/soft.html) lists 

over 100 such applications and the reader is referred to that resource for a more up-to-date and 

comprehensive listing. Examples of this type of application include routines for PK/PD simulations, 

https://www.certara.com/


analysis tools, non-linear mixed effect modelling and simulation software. PopGen from Bayer enables 

virtual populations to be considered and ChemPK from Cyprotex can predict PK data including 

clearance, maximum concentration in tissue (Cmax), time to reach the maximum concentration (Tmax,) 

and the area under the concentration-time curve (AUC) from oral and intravenous dosing. The RVis 

platform is currently under development at the Health and Safety Laboratory, UK, this can load, run 

and visualise outputs from models, with applications in IVIVE and sensitivity analysis, enabling the 

evaluation of PBK model structure and performance (Paini et al., 2017,[1]). These software and other 

examples are summarised in Table 6. 

4.7 Generic mathematical and computational software that can be applied to issues in PBK modelling 

Of the numerous research fields that exist at the interface of chemistry and biology, PBK modelling is 

more amenable than most to solutions from mathematical and computational sciences. Many of the 

issues relating to behaviour of chemicals within compartments, linked by vessels and showing 

definable increases and decreases over time - in part dependent on volumes and flow properties - are 

in many ways akin to engineering scenarios. Consequently, in terms of computational solutions there 

are many examples of software or simplistic programmes that can assist in coding and solving for 

differential equations in PBK models, although originally developed for other purposes. Berkley 

Madonna is one example of a platform commonly used for PBK modelling, it is in essence a differential 

equation solver that can also be used for other dynamical modelling problems. Other examples of 

mathematical modelling software that can assist in PBK modelling are GNU MCSIM, SigmaPlot, 

applications within Rstudio and Matlab (within which the SimBiology toolbox possesses customisable 

PK models and the ability to perform simulations for individuals or populations). Sensitivity analysis, 

important for determining the significance of individual model parameters, can be performed by PBK 

and PK/PD modelling-specific software (Tables 5 and 6) as well as more generic mathematically-based 

software. Examples of more generic resources that can be applied to issues in PBK modelling are given 

in Table 7.  

4.8 Software to identify structurally similar chemicals 

As discussed above, identifying a chemical, for which a PBK model has already been published (source 

chemical(s)) can provide key information for developing or evaluating a PBK model for a similar 

chemical of interest for which no model is available (target chemical). The concept of reading across 

information from source chemical(s) to a target chemical is well-established within regulatory 

toxicology. A great deal of guidance is available on how to select similar chemicals and report a read-



across prediction (Read Across Assessment Framework, ECHA (2015); [33]). This concept is now being 

increasingly applied to PBK model development. The key to the process is selecting the most 

appropriate source chemicals from which to read-across information and fully justifying the selection. 

One difficulty is that no chemical can be absolutely similar to another, they can only be similar in terms 

of given properties. In Table 8, several computational methods to identify structurally similar 

chemicals are given. However, the choice of similarity metrics used can have a significant effect on 

which chemicals are identified as most similar. In terms of selection based purely on structural 

similarity, a consensus from several similarity metrics may be more appropriate. Recent publications 

have addressed this issue specifically in terms of selecting source chemicals to develop or evaluate 

PBK models for target chemicals. Ellison, 2018 [34] selected source chemicals using structural 

properties (functional group, scaffold, metabolism, physico-chemical properties and chemical 

fingerprints) and functional similarity (i.e. in the same classes according to the Biopharmaceutics 

Disposition Classification System and Extended Clearance Classification System; the same likelihood 

of being a p-glycoprotein substrate; and similar volumes of distribution, bioavailability and systemic 

clearance). The results showed that the approach could be used to successfully predict the 

pharmacokinetic profile of target chemicals using appropriately selected source chemicals. Lester et 

al., 2018 [35] further explored the concepts of selecting source chemicals, emphasising the need to 

incorporate expert judgement as part of the process. The authors devised “rating rules” for selecting 

chemicals where expert judgement was included in a structured, less subjective approach. Table 8 

includes examples of similarity approaches applied to the issue of PBK modelling including those of Lu 

et al., 2016 [32], Lester et al., 2018 [35] and Ellison, 2018 [34]. This issue of identifying “similar” 

chemicals is currently an area of intense research in many sectors both within European projects (e.g. 

the Innovative Medicines Initiative eTRANSAFE project (http://etransafe.eu/) for translational safety 

assessment of medicines) and at the global level through projects being developed via the 

Organisation for Economic Cooperation and Development (OECD). Hence, more guidance on selecting 

similar chemicals, and justifying the selection, is anticipated. 

[TABLES 1-8 HERE] 

 

5. Conclusions and outlook 

A multitude of in silico resources have been presented herein to assist researchers in the development 

and evaluation of PBK models. This should provide a useful starting point to those new to the area as 



well as signposting additional resources to more experienced researchers who may not be aware of 

developments in all of these resources. Bessems et al., 2015 [36] stipulated the need for 

“comprehensive 'one-stop' web-based kinetic modelling portals”, ideally incorporating or linking to 

freely available kinetic modelling tools and databases, to facilitate kinetic modelling. This collation of 

resources serves as a single resource identifying tools and databases to assist in PBK model 

construction and evaluation. 

Whilst many resources are available it is clear that there are several gaps not only in the underlying 

knowledge but also in the way in which the information is organised and stored. In terms of chemical-

specific input parameters, large datasets of measured values and reasonable quality predictive models 

are available for certain endpoints. Some literature models may be reproduced readily and a range of 

software are available; predictions will be more reliable forforchemicals falling within the applicability 

domain of the model; predictions for chemicals outside of the applicability domain will have greater 

uncertainty. For other endpoints, notably renal and hepatic clearance, there are far fewer reliable in 

silico models and this, therefore, should be a focus for continuing modelling efforts, notwithstanding 

the improvements in in vitro techniques in this area. More experimental data are needed to develop 

these models, particularly differential enzyme and transporter expression / activity both across 

different tissues within a given animal and across different species. Scaling anatomical properties 

(such as organ weights) works reasonably well across species, however, other factors scale less well. 

For example scaling the number of hepatocytes from in vitro systems to that in an adult liver is possible 

but does not correspond to an accurate scaling of intrinsic clearance in vitro to human data [5]. Where 

improvements can be made on any aspect of the input parameters for PBK models, this leads to 

greater accuracy and reduced uncertainty of the model.  

An important aspect to consider in developing and evaluating PBK models is the shift away from 

animal data to next generation physiologically-based kinetic (NG-PBK) models where data from in vitro 

and/or in silico studies replace in vivo data. Whilst there is some reluctance, particularly amongst 

regulatory organisations to accept such models in safety assessment, there are a number of ongoing 

activities to support this shift. More training and guidance, along with increased communication 

between the model developers and regulators have been proposed to increase acceptance of PBK 

models without animal data [21]. Whether or not a PBK model is considered acceptable depends on 

the intended purpose of the model; for example regulatory acceptance for safety assessment has 

more stringent criteria than models for in-house prioritisation. In accordance with Occam’s Razor, the 

simplest model capable of describing chemical behaviour, with sufficient accuracy for the problem in 

question, should be employed. 



Software developments, particularly the expansion of bespoke PBK modelling platforms available will 

be of great benefit to the area, particularly where freely available platforms increase accessibility for 

researchers. Community development of individual modules / subroutines that can be brought 

together in larger workflows or programming applications has shown to be a successful model for 

collaborative effort in both the R and KNIME environments. This is also a promising approach for 

continuing development of PBK models, where cross-sector collaboration between food, cosmetic, 

chemical and pharmaceutical industries can be used to resolve common problems.  

Using data from source chemicals to make predictions for target chemicals is widely used for other 

applications (for example toxicity prediction in regulatory toxicology) and recent developments have 

demonstrated the utility of this approach for PBK modelling. Already, very useful methods to find 

similar chemicals have been published in the literature (such as Ellison 2018 [34]) and as more 

knowledge and tools become available to ascertain which chemicals are similar, this will advance this 

approach further. This highlights one outstanding issue that is, being able to rapidly identify chemicals 

for which PBK models have already been developed. The Knowledgebase developed by Lu et al., 2016 

[32] is an excellent example of how existing models could be curated and made readily available for 

other researchers. Systematic reviews are now an established method to find, organise and extract 

information from literature studies. Data retrieved and search criteria being recorded in such a way 

as to enable subsequent researchers to readily update information in future. Ongoing systematic 

review of available PBK models is highly recommended to ensure maximum use can be made of 

published models. To this end a single repository for storing key information on published PBK models, 

would be highly beneficial, such a repository would benefit from consistency in the reporting of 

models. Following from an international workshop in this area, Loizou et al., 2008 [37] discussed the 

importance of developing good modelling practice (GMP) for PBPK modelling to assist model sharing, 

evaluation and consistency of application. Seven elements were proposed for a summary report with 

more detail being made available to specialists as necessary. The recommendations were for: an 

introduction including problem formulation/model applicability; a description of the model; metabolic 

information; relationship to mode of action; prediction of distribution accounting for human 

variability; an overview of uncertainty and sensitivity analysis; source of further information. More 

recently, the US Food and Drug Administration Center for Drug Evaluation and Research (FDA CDER) 

[38] has published guidance for industry on the format and content for reporting results from PBPK 

analysis to the FDA. This sets out clear recommendations for what to include in each of six sections of 

the report. Briefly, reports should include: a succinct overview of the model; a summary of the drug’s 

physico-chemical PK and PD properties; sufficient methodological information to allow model 

reproduction and evaluation (with appropriate workflows / decision trees); all system-specific and 



drug specific parameters, their source, assumptions and uncertainties (as tables); a description of the 

simulation conditions; software name, version and parameterisation; model verification and 

application details; key conclusions; cross-referencing to other relevant reports and supplementary 

documentation as necessary. If consistent model reporting were more widely taken up by the 

modelling community this would again provide long term benefits to the field.  

The BioModels database [39], provided by the European Molecular Biology Laboratory – European 

Bioinformatics Institute EMBL-EBI; https://www.ebi.ac.uk/biomodels-main/) provides a repository of 

computational models of biological processes. Models are manually curated from the literature and 

made publicly available; if the model is reproducible it is listed as a curated model, if not then it is 

listed as a non-curated model. At time of writing very few PBK models are reported in this system, 

however, expansion of this resource could potentially make a useful repository for PBK models for 

other users to exploit. PBK-related software, such as GNU-MCSim and PK-Sim / MoBI are compatible 

with Systems Biology Markup Language (SBML; http://sbml.org/) which provides a machine-readable 

interchange format for computer models of biological processes. This enables key components of 

models to be shared in different software environments without the need to rewrite the models, so 

making them more accessible to other users, increasing model longevity and adaptability. 

Capacity building in PBK model development and understanding amongst researchers from diverse 

fields has also been recognised as a clear need for future development. Jones and Rowland-Yeo (2013) 

[40] provide an excellent tutorial to explain the concepts of PBPK – components, parameters and 

applications in early stage and clinical drug development for those who are new to the area. More 

training material would help to move PBK model development from a niche to a more mainstream 

field of research, increasing the number of people able to review, interpret and use the models to 

make more accurate predictions of biological activity across life-stages, subpopulations and species. 

These developments give rise to boundless opportunities to apply PBK modelling to resolve many of 

the questions in in vitro to in vivo extrapolation, ecotoxicology (particularly bioaccumulation across 

species), veterinary science and human health.  

Disclaimer: The U.S. Environmental Protection Agency has provided administrative review and has 

approved this paper for publication.  The views expressed in this paper are those of the authors and 

do not necessarily reflect the views of the U.S. Environmental Protection Agency. 
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Table 1. Resources to predict external exposure  

Resource Available from Brief summary of capability 

Computational 

Toxicology DashboardF 

https://comptox.epa.gov/d

ashboard    [41] 

Provided by United States Environment Protection Agency (USEPA); the dashboard hosts a repository of 

data for 762,000 chemicals and includes links to exposure prediction and monitoring data 

ConsExpo WebF https://www.rivm.nl/en/co

nsexpo 

Mathematical model to assess exposure to chemicals from everyday consumer products (e.g. household 

cleaning products and personal care products (provided by the National Institute for Public Health and 

the Environment, Netherlands); considers inhalational, oral and dermal exposure 

EC SCCS Notes of 

GuidanceF 

http://ec.europa.eu/health

/scientific_committees/con

sumer_safety/docs/sccs_o

_190.pdf   [42] 

European Commission Scientific Committee on Consumer Safety (EC SCCS) Notes of Guidance 9th 

revision: tables for exposure area, frequency of application, typical product usage etc. for personal care 

products 

ECETOC TRAF http://www.ecetoc.org/too

ls/targeted-risk-

assessment-tra/ 

Targeted Risk Assessment (TRA) tool provided by the European Centre for Ecotoxicology and Toxicology 

of Chemicals (ECETOC); calculates risk of exposure from chemicals to workers, consumers and the 

environment 

EPA ExpoBoxF https://www.epa.gov/expo

box 

This toolbox is a compilation of exposure assessment tools linking to guidance documents, databases, 

models etc. It is organised into six areas: approaches, media, routes, tiers and types, lifestages and 

populations and chemical classes 

EPA ExpoCastF https://www.epa.gov/che

mical-research/rapid-

chemical-exposure-and-

dose-research 

High Throughput exposure estimation for chemicals (complimentary to the EPA ToxCast program) for 

both environmental and consumer product exposure 

FAIM / FEIM EFSAF https://www.efsa.europa.e

u/en/applications/foodingr

edients/tools 

Food Additives / Enzyme Intake models (FAIM / FEIM) from the European Food Safety Authority (EFSA); 

estimates chronic dietary exposure to food additives / enzymes for different populations (based on 

collected food consumption data for different countries) 

https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf


 

Medicines CompleteC https://about.medicinesco

mplete.com/  

Dosing information for different uses and age groups 

MerlinExpoF https://merlin-expo.eu/ Modelling Exposure to chemicals for Risk assessment: a comprehensive Library of multimedia and PBPK 

models for integration, prediction, uncertainty and sensitivity analysis; library of models to assess human 

and environmental exposure 

SHEDS (Stochastic 

Human Exposure and 

Dose Simulation 

(SHEDS)F 

https://www.epa.gov/che

mical-research/stochastic-

human-exposure-and-

dose-simulation-sheds-

estimate-human-exposure 

Probabilistic models to estimate total exposure of populations over time via inhalational, dermal, dietary 

and non-dietary routes. 

StoffenmanagerF 

(substance manager) 

https://stoffenmanager.nl/ Web-based quantitative exposure modelling tool for both respiratory and dermal exposure. 

FFreely available; CCommercial 

Additional sources of information: 

 The report of the World Health Organisation (International programme on chemical safety, Environmental Health Criteria 242, Dermal Exposure, 2014, 

ISBN 978 92 4 157242 2) includes a review of several models for estimating (dermal) exposure including DREAM, DERM, Calendex, EASE, MEASE, 

ECETOC TRA, RISKOF DERM, BEAT, ConsExpo, SprayExpo, SHEDS-R etc. 

 

 

 

  

https://about.medicinescomplete.com/
https://about.medicinescomplete.com/


 

Table 2. Resources for obtaining or predicting physico-chemical properties  

Resource Available from Properties / Information  Additional Information 

ACD /PerceptaC  

(ACD Labs) 

https://www.acdlabs

.com/products/perce

pta/ 

Log P; log D; pKa; Abraham 

solvation parameters (relating 

to hydrogen bonding ability, 

polarizability, volume and 

partitioning)P 

Platform comprising modules for prediction of physico-chemical properties, ADME 

and toxicity 

ADME SARfari 

(EMBL-EBI)F 

https://www.ebi.ac.

uk/chembl/admesarf

ari/        [43] 

Log P; log D (reports values 

from ACD); PSA; M,P   

The European Bioinformatics Institute – part of the European Molecular Biology 

Laboratory provides a comprehensive range of molecular data resources for a range 

of research purposes 

ADMETlabF http://admet.scbdd.

com/calcpre/index/  

[44] 

Log P; log D; log S Application developed by the Computational Biology and Drug Design Group, Central 

South University, China 

ADMET PredictorC 

(SimulationsPlus) 

https://www.simulat

ions-

plus.com/software/a

dmetpredictor/ 

Log P; log D; pKa; diffusion 

coefficient; air: water partition 

coefficient; pH dependent 

solubility; solubility in 

gastric/intestinal fluid (fed and 

fasted states) 

Available as a standalone ADMET property predictor or within the GastroPlus 

modelling platform  

ALOGPS 2.1F 

(Virtual 

Computational 

Chemistry 

Laboratory) 

http://www.vcclab.o

rg/lab/alogps/ 

Log P; log D; water solubility; 

pKa P 

In addition to calculating the values the software requests predictions from additional 

sources (e.g. KOWWIN, Molinspiration, Dragon X etc.) and displays all predictions to 

enable comparison 

http://admet.scbdd.com/calcpre/index/
http://admet.scbdd.com/calcpre/index/


 

BiobyteC (Bio-

Loom) 

http://www.biobyte.

com/  

Log P, log D, pKaP,M Includes database of 60,000 measured log P and log D values (various solvents) and 

14,000 pKa values 

ChemIDPlus 

Advanced 

https://chem.nlm.ni

h.gov/chemidplus/ 

Log P, pKa, solubility, vapour 

pressure, m.ptM,P 

National Institute of Health, US National Library of Medicine database and predicted 

values 

ChemspiderF
 

(Royal Society of 

Chemistry) 

http://www.chemspi

der.com/  

[45] 

Log P; water solubility 

pKa, vapour pressure, Henry’s 

law constantM,P 

Comprehensive resource for over 60 million chemical structures; includes 

experimental data where available and links to predictions from EPISUITE, ACD/Labs 

and ChemAxon 

ChemAxonC https://chemaxon.co

m/ 

Log P; log D; 

hydrophilic:lipophilic balance; 

water solubility; hydrogen 

bond donor / acceptor; pKaP 

Chemical property predictors are one component in a suite of chemoinformatics 

tools. 

Corina 

SymphonyF 

(MN-AM) 

https://www.mn-

am.com/ 

[46] 

Log P; hydrogen bond donor / 

acceptor parametersP 

A chemoinformatics application for generating multiple chemical descriptors 

Computational 

Toxicology 

DashboardF 

https://comptox.epa

.gov/dashboard 

[47] 

Log P, m. pt, b. pt, vapour 

pressure, etcM,P 

Provided by United States Environment Protection Agency (USEPA); The dashboard 

hosts a repository of data for 762,000 chemicals and links to other data sources; 

includes physico-chemical properties, activity, fate, hazard and other data. 

EpisuiteF 

(US-EPA)) 

https://www.epa.go

v/tsca-screening-

tools/epi-suitetm-

estimation-program-

interface 

Log P; water solubility, vapour 

pressure, Henry’s law 

constantM,P 

Extensive database of measured values; atom/fragment contribution method to 

estimate log P; water solubility calculated using log P and appropriate correction 

factors 

MOE (Molecular 

Modelling 

Environment)F 

https://www.chemc

omp.com/MOE-

Calculates >400 molecular 

descriptors including physico-

chemical properties, 

Chemical Computing Group, Canada (interfaces to other software such as Gaussian, 

GAMESS, MOPAC and ADF) 

http://www.biobyte.com/
http://www.biobyte.com/
http://www.chemspider.com/
http://www.chemspider.com/
https://www.mn-am.com/
https://www.mn-am.com/
https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface


 

Molecular_Operatin

g_Environment.htm 

Topological Polar Surface Area 

(TPSA), log P, log D, pKa, 

electronic effects such as 

hydrogen bonding capacity, 

partial charges, dipole 

moment etc. 

MokaC 

Molecular 

Discovery 

http://www.moldisc

overy.com/software/

moka/  

pKaP       Calculates pKa using a method trained on more than 25,000 pKa values (algorithm 

uses descriptors derived from GRID molecular interaction fields) 

MolinspirationF http://www.molinspi

ration.com/ 

Log P; hydrogen bond donors / 

acceptors; TPSA; volume 

Interactive web service to calculate molecular properties, visualise and manipulate 

structures 

OECD QSAR 

toolboxF 

https://www.qsarto

olbox.org/  

Multiple physico-chemical 

propertiesM,P  

The Toolbox has been developed to help fill gaps in (eco) toxicity data. It includes a 

large compilation of donated databases (for both properties and biological activities)  

PubChem Open 

Chemistry 

databaseF 

https://pubchem.nc

bi.nlm.nih.gov/searc

h/ 

Multiple physico-chemical 

properties including log P, 

TPSA, water solubility, pKa, 

vapour pressureM,P 

A comprehensive data resource including chemical and physical properties, uses, 

toxicity, safety information etc. 

Schrodinger:C 

QikProp 

https://www.schrodi

nger.com/  

pKa; Log P; water solubility Schrodinger software encompasses a range of molecular modelling packages for 

drug design includes prediction of physico-chemical and ADME properties 

SwissADMEF http://www.swissad

me.ch/   [48] 

Multiple physico-chemical 

properties including log P 

(various methods of 

calculation), water solubility, 

Webservice from the Swiss Institute of Bioinformatics  

http://www.moldiscovery.com/software/moka/
http://www.moldiscovery.com/software/moka/
http://www.moldiscovery.com/software/moka/
https://www.qsartoolbox.org/
https://www.qsartoolbox.org/
https://pubchem.ncbi.nlm.nih.gov/search/
https://pubchem.ncbi.nlm.nih.gov/search/
https://pubchem.ncbi.nlm.nih.gov/search/
http://www.swissadme.ch/
http://www.swissadme.ch/


 

TPSA; no. hydrogen bond 

donors / acceptorsP 

FFreely available; CCommercial; PPredicted value; MMeasured value 

Additional sources of information: 

 The above is not an exhaustive list - many other resources are available. As part of the ANTARES project (Alternative Non-Testing methods Assessed for 

REACH Substances) extensive lists of software capable of predicting physico-chemical (and other properties) have been compiled; these lists of software 

are available at:  http://www.antares-life.eu/index.php?sec=modellist  

 The Computational Chemistry List (http://www.ccl.net/chemistry/links/software/index.shtml) is an extensive list of software for calculating a multitude of 

physico-chemical and ADME-related properties, quantum chemical and molecular mechanics based descriptors. The website provides a brief summary of 

the software and a link to the parent websites 

 

  

http://www.antares-life.eu/index.php?sec=modellist
http://www.ccl.net/chemistry/links/software/index.shtml


 

Table 3. Resources for information on ADME properties (datasets, models and predictive software)  

Resource Available from Properties / information Additional information 

ACD/PerceptaC ACD Labs 

https://www.acdlabs

.com/products/perce

pta/  

Estimates multiple ADME-PK related 

parameters including absoprtion, 

bioavailability, Cp (T), Tmax and Cp (max), 

AUC, Pgp substrate specificity, Vd, protein 

binding. Blood Brain Barrier (BBB) 

penetration etc. 

Multiple modules available for predicting both physico-chemical 

and ADME related properties. 

ADME databaseC; 

Fujitsu 

http://www.fqs.pl/e

n/chemistry/product

s/adme-db  

[49] 

Interactions of substances with Phase I and 

II metabolising enzymes and drug 

transporters; database of kinetic 

parameters – in vitro assay model (Km, Vmax, 

Ki, Ks, efficiency, IC50, EC50, t½ etc.) 

Data available for > 26,000 substances (72,000 entries for CYPs; 

15,400 for other enzymes); 34,000 entries providing data on >400 

transporters  

ADMETlabF http://admet.scbdd.

com/calcpre/index/  

[44] 

Human intestinal absorption; Caco-2 

permeability; P-gp / CYP substrates and 

inhibitors; bioavailability; plasma protein 

binding; BBB partitioning; volume of 

distribution; t½ , clearance 

Developed by the Computational Biology and Drug Design Group, 

Central South university, China 

ADMET PredictorC 

(SimulationsPlus) 

https://www.simulat

ions-

plus.com/software/a

dmetpredictor/ 

[50] 

Permeability (skin, cornea, gastro-intestinal 

tract, BBB); interactions with OATP1B1 and 

P-gP; plasma protein binding; blood: plasma 

ratio, volume of distribution; fraction 

unbound in microsomes etc.) 

Available as a standalone ADMET property predictor or within the 

GastroPlus modelling platform  

admetSARF http://lmmd.ecust.e

du.cn/admetsar2   

Dataset for ADMET properties curated 

from literature; ADMET-Simulator also 

predicts approx. 50 relevant ADMET 

Comprises both literature data (>210,000 data points for >96,000 

compounds) and predictive software based on regression / 

https://www.acdlabs.com/products/percepta/
https://www.acdlabs.com/products/percepta/
https://www.acdlabs.com/products/percepta/
http://www.fqs.pl/en/chemistry/products/adme-db
http://www.fqs.pl/en/chemistry/products/adme-db
http://www.fqs.pl/en/chemistry/products/adme-db
http://admet.scbdd.com/calcpre/index/
http://admet.scbdd.com/calcpre/index/
https://www.simulations-plus.com/software/admetpredictor/
https://www.simulations-plus.com/software/admetpredictor/
https://www.simulations-plus.com/software/admetpredictor/
https://www.simulations-plus.com/software/admetpredictor/
http://lmmd.ecust.edu.cn/admetsar2
http://lmmd.ecust.edu.cn/admetsar2


 

[51] endpoints.  (Human intestinal absorption, 

bioavailability, volume of distribution, 

plasma protein binding, clearance, Ki IC50 

etc.) 

classification models to predict approximately 50 ADMET 

endpoints.  

ADME SARfari (EMBL-

EBI)F 

https://www.ebi.ac.

uk/chembl/admesarf

ari     [43] 

Identifies ADME targets; finds 

pharmacokinetic data for input chemical or 

similar compounds 

EMBL-EBI provides a range of data sources including data for 

ADME relevant proteins responsible for metabolism / transport in 

humans and other species 

The ADME databasesF http://modem.ucsd.

edu/adme/database

s/databases_extend.

htm    [52] 

Data for log S,  Caco-2 permeability, blood-

brain permeability, P-gp inhibition, oral 

absorption and bioavailability  

ADME relevant databases developed using data collected from 

literature. 

ADMETNetF http://bioinf.xmu.ed

u.cn/ADMETNet/ind

ex.html     [53] 

Depicts pharmacokinetic pathways for 

drugs; provides data such as half-life, free 

fraction in plasma bioavailability, volume of 

distribution etc.  

Data for 1, 541 drugs; provides external links for additional 

searches on compound of interest (e.g. DrugBank, Drugs.com, 

ChemSpider, admetSAR etc.) 

ADME-APF   http://bidd.nus.edu.

sg/group/admeap/a

dmeap.asp   [54] 

A database of proteins associated with 

drug absorption, distribution, metabolism, 

and excretion 

Provides information on ADME associated proteins e.g. functions, 

similarities, substrates, ligands, tissue distributions and other 

properties; 321 proteins and 964 substrates 

BIOVIA Metabolite: Biovia 

(formerly Accelrys)C 

http://accelrys.com/

products/collaborati

ve-

science/databases/ 

Compilation of in vitro and in vivo metabolic 

data from literature, conference 

proceedings and New Drug Applications 

Comprehensive database on biotransformations (predominantly 

for drugs) 

BrendaF http://www.brenda-

enzymes.org/index.p

hp           [55] 

Extensive database of Vmax, Km, Kcat and 

other parameters related to enzyme 

kinetics. 

Enzyme function data from literature, text mining and external 

databases; >3 million data points, from over 135,000 references; 

links to literature reports 

BBBF     

https://www.ebi.ac.uk/chembl/admesarfari
https://www.ebi.ac.uk/chembl/admesarfari
https://www.ebi.ac.uk/chembl/admesarfari
http://modem.ucsd.edu/adme/databases/databases_extend.htm
http://modem.ucsd.edu/adme/databases/databases_extend.htm
http://modem.ucsd.edu/adme/databases/databases_extend.htm
http://modem.ucsd.edu/adme/databases/databases_extend.htm
http://bioinf.xmu.edu.cn/ADMETNet/index.html
http://bioinf.xmu.edu.cn/ADMETNet/index.html
http://bioinf.xmu.edu.cn/ADMETNet/index.html
http://bidd.nus.edu.sg/group/admeap/admeap.asp
http://bidd.nus.edu.sg/group/admeap/admeap.asp
http://bidd.nus.edu.sg/group/admeap/admeap.asp
http://www.brenda-enzymes.org/index.php
http://www.brenda-enzymes.org/index.php
http://www.brenda-enzymes.org/index.php


 

Computational Toxicology 

DashboardF 

https://comptox.epa

.gov/dashboard 

[47] 

ADME data to be included in this database 

(ongoing) 

Provided by United States Environment Protection Agency 

(USEPA) 

Cytochrome P450 Drug 

Interaction TableF 

http://medicine.iupu

i.edu/clinpharm/ddis

/clinical-table  [56] 

List of drugs acting as substrates, inhibitors 

(partial ranking as to weak, moderate or 

strong) and inducers of CYP enzymes -  

1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 

3A4,5,7 

Developed as a drug-drug interaction table by Indiana University 

DIDB - Metabolism and 

Transport Drug 

Interaction DatabaseC 

https://www.drugint

eractioninfo.org/ 

[57] 

In vitro and in vivo drug interaction data 

from literature and New Drug Applications 

(NDA) 

Manually curated data relating to drug interactions, developed 

by the University of  Washington  

DrugbankF https://www.drugba

nk.ca/      [58] 

Key ADME properties for drugs e.g. % oral 

absorption, volume of distribution, protein 

binding, metabolic information, t ½, 

clearance etc.     

Data entries for >11,000 drugs with >200 data fields per compound 

(note not all fields are complete for each drug). Includes predicted 

ADMET properties such as absorption, p-glycoprotein and 

metabolising enzyme interactions 

e-PK geneC https://www.drugint

eractioninfo.org/ 

[59] 

Information on the impact of genetic 

variation on parent compound 

pharmacokinetics (i.e. changes in AUC, Cl 

or Cmax for different populations) 

Manually curated from pharmacogenetics literature and New Drug 

Applications; developed by the University of  Washington  

EDETOX databaseF 

 

https://apps.ncl.ac.u

k/edetox/    [60] 

A database of  in vitro and in vivo skin 

penetration data for many compounds, 

including information on skin type, area 

and vehicle 

1,657 in vitro and 844 in vivo records (across all species and 

chemicals) compiled from published literature; developed by the 

University of Newcastle 

Evolvus: Microsomal 

Stability DatabaseC 

http://www.evolvus.

com/products/datab

Liver microsome stability assay data (Clint 

and t½) for drugs and drug-like compounds 

Customisable, commercial database; includes assay specific data 

to assist in silico modelling 

https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
http://medicine.iupui.edu/clinpharm/ddis/clinical-table
http://medicine.iupui.edu/clinpharm/ddis/clinical-table
http://medicine.iupui.edu/clinpharm/ddis/clinical-table
https://www.druginteractioninfo.org/
https://www.druginteractioninfo.org/
https://www.drugbank.ca/
https://www.drugbank.ca/
https://www.druginteractioninfo.org/
https://www.druginteractioninfo.org/
https://apps.ncl.ac.uk/edetox/
https://apps.ncl.ac.uk/edetox/
http://www.evolvus.com/products/databases/microsomalstability.html
http://www.evolvus.com/products/databases/microsomalstability.html


 

ases/microsomalstab

ility.html  

curated from literature for rat, mouse, 

human and dog)  

Goodman and Gilman’s 

The Pharmacological 

Basis of Therapeutics 13th 

Edition 

McGraw-Hill 

Publishers (2017) 

ISBN-13: 978-

1259584732 

Appendices provide key pharmacokinetic 

data for commonly used drugs e.g. oral 

bioavailability, urinary excretion, % bound 

in plasma, clearance, volume of 

distribution, half-life, Tmax and Cmax 

Standard pharmacology text book providing references to original 

publications for the data 

 

Hazard Evaluation 

Support System and 

Integrated Platform 

(HESS)F  

http://www.nite.go.j

p/en/chem/qsar/hes

s-e.html       [61] 

 

Metabolic maps and ADME data for 

humans and rats  

National Institute of Technology and Evaluation, Japan; database 

incorporated within OECD QSAR Toolbox  

IDAAPMF http://idaapm.helsin

ki.fi/           [62] 

Integrated database for ADMET and 

adverse effect predictive modelling 

Comprises information on approved drugs, ADMET properties, 

adverse affects and target / affinity data 

KinParDBF 

Joint Research Centre 

European Union 

Reference Laboratory for 

Alternatives to Animal 

Testing (EURL ECVAM) 

https://eurl-

ecvam.jrc.ec.europa.

eu/  

Kinetic parameters (e.g. clearance, half-life, 

AUC) for 100 diverse chemicals  

Includes experimental details for the generation of the data 

Laboratory of Molecular 

Modeling and Design 

(LMMD) DatasetsF 

http://lmmd.ecust.e

du.cn/ 

ADME databases curated from the 

literature with information on blood brain 

barrier (BBB) partitioning, human intestinal 

absorption, P450 inhibitors and non-

inhibitors 

BBB partitioning data for 1,593 compounds; HIA data for 578 

compounds; inhibitor and non-inhibitor information for 27,000 

compounds interacting with 5  CYPs isoforms – 1A2, 2C9, 2C19, 

2D6 and 3A4 – extracted from PubChem 

http://www.evolvus.com/products/databases/microsomalstability.html
http://www.evolvus.com/products/databases/microsomalstability.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://www.nite.go.jp/en/chem/qsar/hess-e.html
http://idaapm.helsinki.fi/
http://idaapm.helsinki.fi/


 

The Merck Index On-lineF https://www.rsc.org

/merck-index 

Provides links to original publications for 

individual drugs, including detailed reports 

for pharmacokinetics   

The Merck Index Online, from the Royal Society of Chemistry; 

information on physical and biological properties and structure  

METRABASEF http://www-

metrabase.ch.cam.ac

.uk/  

[63] 

Data on interactions between chemicals 

and proteins relating to metabolism and 

transport; 20 transporters and 13 CYP 

enzymes; identifies substrates and non-

substrates / inhibitors and inducers 

Data extracted from literature and on-line resources for 3438 

compounds; >11,000 interaction records from > 1,211 references; 

developed by the university of Cambridge 

 

Microsomal stabilityC  http://www.evolvus.

com/products/datab

ases/microsomalstab

ility.html 

Database for parameters of liver 

microsomal stability assays like CLint and 

T1/2 for various drug and drug like 

compounds. 

entries for liver microsomes from different organisms (rat, mouse, 

human, dog) are curated 

Obach et al., 2008 http://dmd.aspetjou

rnals.org/content/36

/7/1385 

Clinical IV data  Database for 670 drugs 

 

OECD QSAR toolboxF https://www.qsartoo

lbox.org/   

[64] 

Encompasses a collation of databases 

including data on plasma protein binding, 

absorption, rat and human metabolic data – 

skin and liver  

Data can be accessed from the OECD QSAR Tool box ver 4.2; liver 

and skin metabolism simulators also incorporated 

On-line chemical 

modelling environment -

oCHEM F 

https://ochem.eu/ho

me/show.do 

[65] 

Datasets for many ADME properties (e.g. 

absorption, BBB partitioning, Caco2 

permeability, log P, log D, water solubility, 

plasma protein binding, IC50, CYP 

Inhibition, P-gp substrate activity; 

tissue:blood partition coefficients and time 

dependent tissue-drug concentrations  

Provides an expanding database of experimental results with a 

predictive modelling framework. Users can upload their own data 

and models based on the wiki principle. Large datasets for some 

parameters but much more limited for others e.g. tissue-dug 

concentrations.  

https://www.rsc.org/merck-index
https://www.rsc.org/merck-index
http://www-metrabase.ch.cam.ac.uk/
http://www-metrabase.ch.cam.ac.uk/
http://www-metrabase.ch.cam.ac.uk/
http://dmd.aspetjournals.org/content/36/7/1385
http://dmd.aspetjournals.org/content/36/7/1385
http://dmd.aspetjournals.org/content/36/7/1385
https://www.qsartoolbox.org/
https://www.qsartoolbox.org/
https://ochem.eu/home/show.do
https://ochem.eu/home/show.do


 

PharmaInformatic: 

PACT-FC / PPB-DBC 

 

http://www.pharmai

nformatic.com/html/

pact-f.html  

PACT-F provides bioavailability data for 

humans (from clinical trials) and preclinical 

animal studies. PPB-DB provides protein 

binding information  

Comprises 8,296 records for bioavailability and >17,000 data 

records for protein binding from 2,400 publications 

PharmapendiumC: 

Elsevier 

https://www.elsevie

r.com/solutions/phar

mapendium-clinical-

data 

ADME information searchable by terms 

such as % absorption, bioavailability, cell / 

protein binding metabolic transformation, 

tissue distribution, volume of distribution, 

clearance, half-life; humans, birds, fish and 

mammals 

Pharmacokinetic data for approved drugs extracted from drug 

approval packages.  

pkCSMF http://biosig.unimel

b.edu.au/pkcsm/ 

[66] 

Caco-2 / skin permeability, HIA, P-gp / CYP 

substrate / inhibitor; clearance, renal OCT2 

substrate; volume of distribution, BBB 

permeability, fraction unbound in plasma 

Uses graph-based signatures to predict a range of ADMET 

properties  

QikPropC https://www.schrodi

nger.com/products  

Predicts ADME relevant properties (e.g. 

blood brain partitioning, protein binding 

Caco-2 and MDCK permeability) 

Part of a suite of molecular modelling packages for drug design 

(see above) 

SwissADMEF http://www.swissad

me.ch/     [67] 

Multiple ADME–related  properties 

including GI absorption, BBB penetration, 

skin penetration, interactions with P-gp and 

CYPs, drug-likeness characteristicsP 

Webservice from the Swiss Institute of Bioinformatics.   

TRANSFORMERF http://bioinformatics

.charite.de/transfom

er/index.php?site=h

ome    [68] 

Information on metabolism and transport 

of compounds in humans 

Data for interactions with Phase I (4007 reactions) and Phase II 

(431 reactions) enzymes and drug transporters (1,158 

interactions) for 2,800 drugs 

TP-SearchF  http://togodb.dbcls.j

p/tpsearch    [69] 

Transporters database  Information on substrates and inhibitors for a wide range of 

transporters 

http://www.pharmainformatic.com/html/pact-f.html
http://www.pharmainformatic.com/html/pact-f.html
http://www.pharmainformatic.com/html/pact-f.html
http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
https://www.schrodinger.com/products
https://www.schrodinger.com/products
http://www.swissadme.ch/
http://www.swissadme.ch/
http://bioinformatics.charite.de/transfomer/index.php?site=home
http://bioinformatics.charite.de/transfomer/index.php?site=home
http://bioinformatics.charite.de/transfomer/index.php?site=home
http://bioinformatics.charite.de/transfomer/index.php?site=home
http://togodb.dbcls.jp/tpsearch
http://togodb.dbcls.jp/tpsearch


 

US FDA drug database - 

drugs@fdaF (Orange 

Book) 

https://www.accessd

ata.fda.gov/scripts/c

der/ob/index.cfm  

In vitro and in vivo ADME data Clinical PK data also available 

UCSF-FDA TransportalF http://transportal.co

mpbio.ucsf.edu/abo

ut/    [70] 

Information on transporter expression, 

location, substrates, inhibitors and 

interactions 

University of California, San Franciso-Food and Drug 

Administration resource developed as part of FDA-led Critical Path 

Initiative 

VolSurfF http://www.moldisc

overy.com/software/

vsplus/     [71] 

Creates 128 molecular descriptors from 3D 

Molecular Interaction Fields (MIFs) related 

to ADME 

Passive intestinal absorption, BBB, solubility, PPB, Vd, and 

metabolic stability models available. 

VNN ADMETF  https://vnnadmet.bh

sai.org/vnnadmet/lo

gin.xhtml  [72] 

 Predicts ADMET properties and facilitates 

building of new models based on variable 

nearest neighbour (vNN) methodology 

This platform comprises 15 models for ADMET prediction models  

FFreely available; CCommercial  

Additional sources of information: 

 Many of the bespoke ADME / PBK modelling software packages are capable of predicting relevant physico-chemical or pharmacokinetic properties.  

 Madden et al., 2017 [73]: Incorporates a review of data sources and software providing information relating to metabolism in skin and liver e.g. prediction of 

metabolites, CYP isoforms involved in biotransformation, predictive models for kinetic parameters etc. 

 Mostrag-Szlichtyng and Worth, 2010 (http://publications.jrc.ec.europa.eu/repository/handle/JRC58570):  An extensive review of QSAR models and software 

available to predict ADME properties, with an emphasis on methods to estimate oral bioavailability, human intestinal absorption, blood brain barrier 

penetration, plasma protein binding, metabolism and excretion. The review provides references for: 16 ADME related databases;15 datasets for ADME; 13 

software tools for predicting input parameters; 41 software tools for ADME prediction (note that some of these data resources are no longer available); 8 

rules of thumb for intestinal absorption / blood brain barrier partitioning; 37 models for human intestinal absorption; 13 models for bioavailability; 77 models 

for BBB partitioning; 28 models for plasma protein binding; 87 models relating to metabolism and 16 models relating to excretion. 

 Patel et al., 2018 [20]: As part of an investigation into the reproducibility of QSAR models, Patel et al compiled a list of 80 different models for 31 ADME 

related endpoints and assessed these models against the OECD principles for validation of QSARs  

https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
http://transportal.compbio.ucsf.edu/about/
http://transportal.compbio.ucsf.edu/about/
http://transportal.compbio.ucsf.edu/about/
http://www.moldiscovery.com/software/vsplus/
http://www.moldiscovery.com/software/vsplus/
http://www.moldiscovery.com/software/vsplus/


 

 Przybylak et al., 2018 [22]: Over 140 ADME datasets were collated in this study and were assessed for their suitability for modelling purposes. Many of these 

datasets represent a compilation of previously published datasets that have been curated by various authors. 31 were considered to be “benchmark” datasets 

for 24 different ADME properties; each of these datasets is available in Excel spreadsheet format as Supplementary Information from the article.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4. Resources for obtaining reference values for physiological/anatomical parameters and model structures for specific organs  

Resource Reference Properties / Information Additional Information 

Abduljali et al., 

2012 

 [26]   Key parameters for PBK modelling in pregnancy 

according to gestational age. 

Integration of data from extensive literature review of changes 

in anatomical, physiological and metabolic parameter changes 

during normal pregnancy. 

Abduljali et al., 

2018  

[24], [25] Key biometric / morphological and compositional 

parameters to develop PBK models for a foetus at 

different gestational ages 

Integration of data from extensive literature review providing 

data on size, height, weight, surface area, abdominal and head 

circumference, body composition. 

Ball et al., 2013  [27]  PBK model structure for blood brain barrier (BBB) 

penetration based on literature review of existing 

PBK models for CNS 

Includes evaluation of the applicability of in-vitro-in vivo 

extrapolation in PBK models for BBB penetration 

Brown et al., 

1997  

 [23]  Physiological and anatomical parameter reference 

values (and ranges for values) for mice, rats, dogs 

and humans. Organ weights, composition, 

regional blood flows, volumes, cardiac output, 

respiratory parameters etc. 

A comprehensive, key reference source for physiological and 

anatomical reference values in multiple species, expanding upon 

previous data collations and providing information on potential 

variability of the parameters.  

Chetty et al., 

2018 

[74] PBPK considerations for geriatric population Potential use of PBPK models to inform dose adjustments in 

elderly 

Darwich et al ., 

2014  

[75] Enterocyte turnover in humans, rabbits, guinea 

pigs, rats, hamsters and mice 

Collation of enterocyte turnover values in different species; 

turnover influences level of metabolising enzymes in gut wall 

which can be particularly relevant in drug-drug interactions 

Gentry et al., 

2005  

 [76] Physiological values for PBK modelling (organ 

weights / volumes, ventilation, food / water 

intake, blood flows, bile flow, creatinine 

clearance, glomerular filtration rate) in neonatal 

and young rats and mice 

Physiological parameters collated from literature reports are 

available in database format upon request to the corresponding 

author. 



 

Gaohua et al., 

2015  

[30] Organ model structures, anatomical and 

physiological data for lung 

Model developed to predict pharmacokinetics of anti-

tuberculosis drugs in lung. Model embedded within Simcyp 

simulator. 

Gaohua et al., 

2016 

 [28]  Model structure and parameters for a four-

compartment permeability-limited PBK model for 

brain. 

Model performance investigated using paracetamol and 

phenytoin; Model embedded within Simcyp simulator. 

Hall et al., 2011 [77] Organ volumes, blood volumes and blood flow 

rates for mice, rats, rhesus monkeys, pigs and 

humans  

The paper describes the development of a whole-body 

physiologically-based framework that uses novel physiological 

scaling laws to improve interspecies extrapolation. 

Heikkinen et al., 

2015  

 

 [78] Quantified levels of cytochrome P450 and uridine 

diphosphate glucuronosyltransferase enzymes in 

Beagle dog liver and intestine 

Enables comparison of enzyme levels between humans and dogs 

to assist interspecies scaling of pharmacokinetic properties 

ICRPP http://www.icrp.org/pu

blication.asp?id=ICRP%2

0Publication%2089 

Age and gender- specific anatomical and 

physiological reference values 

A publication of the International Commission on Radiological 

Protection (ICRPP) to provide inputs for dosimetry calculations. 

Interspecies 

databaseF 

https://www.interspeci

esinfo.com/ 

 

Anatomical, physiological and biochemical data 

for mouse, rat, rabbit, dog, monkey and pig 

Developed by National Institute for Public Health and the 

Environment (RIVM) and the Dutch Ministry of Health, Welfare 

and Sports; provides physiological parameters for mouth, 

oesophagus, stomach, small and large intestine, liver, 

gallbladder, kidney and lung compiled from literature 

Johnson et al., 

2005  

[79] Models for liver volume from birth to adulthood  Meta-analysis of published data / models collated from 5,036 

subjects including investigation of covariates (age, gender, 

ethnicity)  

Lu et al., 2016 [32] Corpus of information on PBK models for 307 

chemicals published in literature 

Enables identification of “similar” compounds that may serve as 

templates for PBK models; provides references for existing 

published models 

mailto:gaohua.lu@certara.com
mailto:gaohua.lu@certara.com
http://www.icrp.org/publication.asp?id=ICRP%20Publication%2089
http://www.icrp.org/publication.asp?id=ICRP%20Publication%2089
http://www.icrp.org/publication.asp?id=ICRP%20Publication%2089
https://www.interspeciesinfo.com/
https://www.interspeciesinfo.com/


 

PBK 

Knowledgebase 

National Center 

for Health 

StatisticsF  

https://www.cdc.gov/gr

owthcharts/clinical_cha

rts.htm 

Growth charts for 0-2 yrs and over 2yrs (length, 

height, BMI, head circumference) 

Links to World Health Organisation growth charts for 0-2yrs and 

United States Centers for Disease Control and Prevention growth 

charts for older than 2yrs  

Pilari et al., 

2017  

[31] Organ model structures, anatomical and 

physiological data for testes and thyroid 

Model validated using data for fentanyl, alfentanil, 

omadacycline, amiodarone, desethylamiodarone, 

propylthiouracil 

Price et al., 

(2003)  

[80] Volumes and blood flows for a range of organs and 

tissues, cardiac output and inhalation rate  

Database with accompanying software for retrieving 

physiological parameters for PBK modelling accounting for inter-

individual variation 

Polak et al., 

2012 

[81] Dermal absorption model  The effect of penetration enhancers, site of application, gender 

and ethnic variations incorporated  

Thomson et al 

2009 

[82] Age-specific organ volumes, blood flows, 

glomerular filtration rates for healthy and healthy-

impaired elderly subjects. 

Physiological parameter values collated from 155 publications 

available as a Microsoft ACCESS database.  

Tylutki et al., 

2015 

[83] Cardiac distribution of >200 drugs Drug concentrations in cardiac tissue obtained from cardiac 

surgery and forensic study data.  

Tylutki et al., 

2017  

 

[84] 4 compartmental  heart model (epicardium, 

midmyocardium, endocardium, pericardial fluid) 

Models account for CYP 450 metabolism in heart.  

 

 



 

US EPA 

Physiological 

Information 

Database (PID)F 

 

https://cfpub.epa.gov/n

cea/risk/recordisplay.cf

m?deid=202847&CFID=

90333472&CFTOKEN=8

3385957  

Physiological parameter values for humans and 

laboratory animals across life stages 

Database (Microsoft ACCESS) created using data collated from 

extensive literature search and quality assured by independent 

contractor. Also available via HERO 

https://hero.epa.gov/hero/index.cfm website 

Zakaria et al.,  

2018  

[29] Model structure and parameter values for a four-

compartment PBK model for brain 

A region specific PBK model for brain developed using 

compartments for frontal cortex, hippocampus, “rest-of-brain” 

and cerebrospinal fluid.  

Additional sources of information: 

 Note that PBK modelling software inherently includes physiological parameters for the generation of models, many of the model structures and 

parameters reported above have been incorporated into commercial software – refer to table 8 for example software and capabilities. 

 Individual PBK models have been generated for hundreds of compounds (many of these have been collated within the publication of Lu et al - see above), 

however there are many other publications for existing PBK models that can also provide key information on models’ structure and parameters that may 

be applied to the development of new models. 

 

 

  

https://hero.epa.gov/hero/index.cfm


 

Table 5. Dedicated PBK modelling software  

Software Available from Brief summary of capabilities 

CloeC Cyprotex (Evotec AG) 

https://www.cyprotex.com/insilico/phy

siological_modelling/cloe-pk/  

Predicts concentration-time profiles in plasma and 14 organs/tissues using in vitro ADME and 

physico-chemical data; models available for human, rat and mouse 

Cosmos KNIME 

workflowF 

http://www.cosmostox.eu/home/welco

me/ 

Physiologically-Based Kinetic (PBK) models to simulate concentration-time profiles and internal 

dose metrics for dermal or oral exposure scenarios 

High 

Throughput 

Toxicokinetics 

(Httk)F 

https://cran.r-

project.org/web/packages/httk/index.h

tml 

Provides data tables and functions for simulation;  facilities to parameterise PBK and one-

compartment TK models for multiple chemicals and species; in vitro-in vivo extrapolation of HTS 

data; models can be exported for use with other simulation software 

GastroPlusC Simulations Plus, Lancaster, CA 

https://www.simulations-

plus.com/software/overview/  

Comprises 10 modules including: PBPKPlus – enables PBPK modelling and IVIVE, can be 

parameterised for different disease states and age groups. ADMET Predictor – predicts physico-

chemical and ADME properties. Additional Dosage Routes – simulates oral cavity, dermal, 

pulmonary ocular and intramuscular administration. PKPlus – estimates PK parameters  

IndusChemFateF 

(CEFIC LRI) 

http://cefic-

lri.org/toolbox/induschemfate/  

(Microsoft Excel spreadsheet files) 

Generic PBK model (first tier or screening level tool); estimates tissue body fluid concentrations 

following oral, dermal or inhalational exposure to volatile or semi-volatile chemicals 

MEGenF http://xnet.hsl.gov.uk/megen Web application to generate PBK model equations; parameters may be retrieved from the 

integrated database or obtained from literature; output available in MATLAB, ACSL  or other 

format 

PBPK Model https://www.trentu.ca/academic/amins

s/envmodel/models/PBPK.html 

[85] 

The Canadian Centre for Environmental Modelling and Chemistry; Excel-based PBPK 

spreadsheet, parameterised for human male 

https://www.cyprotex.com/insilico/physiological_modelling/cloe-pk/
https://www.cyprotex.com/insilico/physiological_modelling/cloe-pk/
https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html
https://www.simulations-plus.com/software/overview/
https://www.simulations-plus.com/software/overview/
http://cefic-lri.org/toolbox/induschemfate/
http://cefic-lri.org/toolbox/induschemfate/
http://xnet.hsl.gov.uk/megen
https://www.trentu.ca/academic/aminss/envmodel/models/PBPK.html
https://www.trentu.ca/academic/aminss/envmodel/models/PBPK.html


 

Simcyp 

SimulatorC 

 

Certara, Princeton New Jersey 

https://www.certara.com/software/phy

siologically-based-pharmacokinetic-

modeling-and-simulation/simcyp-

simulator/?ap%5B0%5D=PBPK 

PBK modelling and simulation platform; links in vitro data to in vivo ADME to predict PK/PD 

interactions for small molecules and biologics. Incorporates databases of genetic, physiological 

and epidemiological information to enable simulation of different populations (includes modules 

for paediatrics and rat, dog and knock-out mouse). Incorporates an automated sensitivity 

analysis tool that can be used to assess influence of changing specific parameters. Predicts ADME 

parameters such as oral, dermal, pulmonary absorption, clearance. Includes: ADAM (advanced 

dissolution, absorption and metabolism) model – predicts variability in bioavailability using 

physico-chemical properties and in vitro data; dissolution (from various dosage forms) for oral 

absorption; models also available for skin and pulmonary absorption; BBB partitioning, 

metabolism, clearance etc. 

PK-Sim and 

MoBiF 

Open Systems Pharmacology Suite 

(Bayer) 

http://www.systems-

biology.com/products/PK-Sim.html 

 

PK-Sim: PBK modelling tool with integrated database of anatomical and physiological parameters 

for humans, mouse, rat, dog and monkey. Uses interchangeable building blocks to enable 

alternative scenarios to be considered e.g. changing from animal model to human population or 

i.v. dose to controlled release. 

Mobi: Software for multiscale physiological modelling and simulation. A range of biological 

models can be imported (e.g. PBK model imported from PK-Sim) or developed de novo; Software 

is compatible with Matlab and R. 

PLETHEM 

(Population 

Lifecourse 

Exposure-To-

Health-Effects 

Model)F 

ScitoVation 

http://scitovation.com/plethem.html  

Open source R package incorporating: a generic 11 compartment diffusion limited PBPK model; 

a high-throughput IVIVE model to extrapolate in-vitro measured point of departure to equivalent 

exposures; an in-vitro to in-vivo model to extrapolate in-vitro measured metabolism values to 

predicted in-vivo values; population variability modelling; databases of age-dependent 

physiological and metabolic parameters; QSAR models to estimate partition coefficient 

SimuloF  https://exprimo.com/simulo  It is a PK-PD Disease model simulator. It provides ability to perform Monte Carlo simulations and 

evaluations of study designs and dosing strategies.  

FFreely available; CCommercial 

 

http://scitovation.com/plethem.html
https://exprimo.com/simulo


 

Table 6. Additional software / applications to assist in PBK or PK/PD modelling 

Software Available from Brief summary of capabilities 

A4SF 

(Accelera for 

Sandwich) 

Reported in publication of Germani et al., 2013 

[86] 

Mat-lab based PK/PD simulator (incorporates 10 PK models; generates plasma 

concentration-time profiles, AUC, Cmax, t½ etc.) 

 

ADAPTSF Biomedical Simulations Resource, University of 

Southern California,  [87] 

https://bmsr.usc.edu/software/adapt/  

Individual and population PK/PD modelling application 

BiokmodF http://diarium.usal.es/guillermo/biokmod/  

 

Mathematica-based packages for modelling linear and non-linear biokinetics; differential 

equation solver 

ChemPKTM V.2C Cyprotex, Cheshire, UK 

https://www.cyprotex.com/insilico/physiologic

al_modelling/chempk 

Predicts oral and i.v pharmacokinetic data from structure, using a KNIME workflow; 

calculates 10 tissue partition coefficients, absorption, renal clearance and metabolism; 

predicts clearance, t½  volume of distribution AUC, Cmax, Tmax etc. 

GastroPlusC Simulations Plus, Lancaster, CA 

https://www.simulations-

plus.com/software/overview/  

[88] 

PKPlus module – estimates PK parameters for 1, 2 3-compartment or non-compartmental 

models; fitted parameters include 1st order absorption rate, lag time and bioavailability 

(can be linked back to GastroPlus model) 

INTELLIPHARMC Intellipharm, LLC, Niantic, USA 

https://www.intellipharm.com/physiologically-

based-pharmacokinetic-modeling.htm  

Combines simulation of drug dissolution, precipitation, absorption and gastric motility 

with bioavailability, clearance, and volume of distribution as coupled differential 

equations; provides open source code for PBK models. 

https://bmsr.usc.edu/software/adapt/
http://diarium.usal.es/guillermo/biokmod/
https://www.simulations-plus.com/software/overview/
https://www.simulations-plus.com/software/overview/
https://www.intellipharm.com/physiologically-based-pharmacokinetic-modeling.htm
https://www.intellipharm.com/physiologically-based-pharmacokinetic-modeling.htm


 

Maxsim2C http://www.maxsim2.com/      [89] Interactive PK/PD modelling software enabling investigation of consequences of varying 

physico-chemical, physiological or anatomical features; incorporates common PK and PD 

models. 

MetStabOnF 

 

http://skandal.if-

pan.krakow.pl/met_stab_pred/   [90] 

 in silico qualitative evaluation of metabolic stability (T1/2, CL) 

MagnoliaF https://www.magnoliasci.com/ Magnolia provides the tools for developing models using an equation-based modeling 

language, scripting the execution of simulations using either the Python programming 

language. 

NONMEM 

(including 

PREDPP)C 

ICON, Dublin 

https://www.iconplc.com/innovation/nonmem/  

[91] 

NONMEM – generic package for simulating / fitting data; PREDPP provides subroutines 

for predicting PK/PD data. 

Pheonix 

WinNonlin and 

Pheonix NLMEC 

Certara, Princeton, New Jersey 

https://www.certara.com/wp-

content/uploads/Resources/Brochures/BR_Pho

enixWinNonlin.pdf 

WinNonLin - Industry standard integrated tool for non-compartmental analysis, PK/PD 

modelling; NLME – non-linear mixed effect modelling and simulation software 

PKfit for RF https://cran.r-

project.org/src/contrib/Archive/PKfit/  

Pharmacokinetic tool for data analysis in R 

PKPD Tools for 

ExcelF 

Add on for Microsoft Excel 

http://pkpdtools.com/excel/downloads/ 

Add-on to assist PK/PD simulation and modelling within Microsoft ExcelC.  

PopGenF Bayer 

http://xnet.hsl.gov.uk/popgen/     [92] 

Virtual human population generator to predict realistic variation in anatomical and 

physiological parameters across populations. 

PDx-PopC  https://www.iconplc.com/  Requires NONMEM to run  

http://www.maxsim2.com/
http://skandal.if-pan.krakow.pl/met_stab_pred/
http://skandal.if-pan.krakow.pl/met_stab_pred/
https://www.iconplc.com/innovation/nonmem/
https://cran.r-project.org/src/contrib/Archive/PKfit/
https://cran.r-project.org/src/contrib/Archive/PKfit/
http://xnet.hsl.gov.uk/popgen/
https://www.iconplc.com/


 

RVISF http://cefic-lri.org/projects/aimt7-rvis-open-

access-pbpk-modelling-platform/ 

 

Open source syntax R or C++ for the analysis of structure and performance of PBPK models 

SAAM-II 

(Simulation 

Analysis and 

Modelling) 

Version 2.3C 

TEG, The Epsilon Group, Virginia 

https://tegvirginia.com/software/saam-ii/  

 [93] 

Development and statistical calibration of compartmental models; population kinetics; 

automatic generation of equations from model structure 

 

 

FFreely available; CCommercial 

Additional sources of information: 

 The website for Pharmacokinetic and Pharmacodynamic Resources (Boomer.org) https://www.pharmpk.com/soft.html provides a summary of more than 

100 software applications relevant to pharmacokinetic modelling. The software listed includes a range of applications from bespoke PBK modelling 

packages, such as SimCYP, to general differential equation solvers frequently used in PBK modelling, such as Berkeley Madonna. The resources given in 

table 6 include (amongst others) some of the packages identified by Boomer.org. 

 

 

 

 

 

 

 

 

http://cefic-lri.org/projects/aimt7-rvis-open-access-pbpk-modelling-platform/
http://cefic-lri.org/projects/aimt7-rvis-open-access-pbpk-modelling-platform/
https://tegvirginia.com/software/saam-ii/
https://www.pharmpk.com/soft.html


 

Table 7. Examples of mathematical modelling software used for PBK model building or PK/PD analysis 

Resource Available from  Brief summary of capabilities 

Berkley 

MadonnaC 

Berkeley, CA  

https://berkeley-madonna.myshopify.com/  

[94] 

Generic differential equation solver capable of constructing complex models; 

automatic graphing of results; parameter estimation from curve fitting; sliders can 

investigate influence of changing different parameters 

Cossan-X https://cossan.co.uk/ Generic package for quantifying uncertainty; sensitivity and reliability analysis  

GNU MCSIMF GNU project  

https://www.gnu.org/software/mcsim/mcsim.html  

Generic modelling and simulation program; solves user specified linear and 

nonlinear equations 

MatlabC 

(SimBiology)C  

MathWorks, Inc., Natick, MA 

https://www.mathworks.com/products/matlab.html  

[95] 

Modelling and simulation tools focussed on PK/PD and systems biology; library of 

common, customisable PK models; simulates time course of chemicals; model 

parameters estimated by fitting to experimental data; individual or population 

models; can perform sensitivity analysis 

Perl-speaks-

NONMEM (PsN)F 

https://uupharmacometrics.github.io/PsN/  

[96] 

A collection of Perl modules and programs for developing non-linear mixed effect 

models using NONMEM 

RF 

(RStudio)F 

The R Project from the R foundation 

https://www.r-project.org/about.html  

RStudio – integrated development environment for R 

https://www.rstudio.com/products/rpackages/  

Freely available software with a network of users continually adding new 

applications for use by the community; statistical analysis (linear and nonlinear); 

graphing techniques; for examples httk and PKfit for R 

SigmaPlot 

TransformsF 

http://www.sigmaplot.co.uk/products/sigmaplot/ 

transforms.php 

Resource for manipulating data within a worksheet; plotting, transforming and 

fitting data 

 

https://berkeley-madonna.myshopify.com/
https://www.gnu.org/software/mcsim/mcsim.html
https://www.mathworks.com/products/matlab.html
https://uupharmacometrics.github.io/PsN/
https://www.rstudio.com/products/rpackages/
http://www.sigmaplot.co.uk/products/sigmaplot/


 

FFreely available; CCommercial 

 

Table 8. Example methods for identifying similar chemicals  

Resource Available from Brief summary of capability 

Ambit 2F http://cefic-lri.org/toolbox/ambit/  Includes database of >450,000 chemical structures, identifies similar chemicals based on 

Tanimoto similarity; identifies common substructures 

ChemAxonC  https://chemaxon.com/products/ [97] Extended-connectivity fingerprints; maximum common substructure searching 

CheS-MapperF http://ches-mapper.org/      [98] Enables clustering of molecules based on similar properties; a range of descriptors can be 

calculated (Java application) 

ChemMine 

ToolsF 

http://chemmine.ucr.edu/    [99] Performs clustering based on structural / physico-chemical similarity or user defined 

criteria; search against PubChem Compound Database using fingerprints 

Ellison (2018)  [34] A method to select source chemicals with existing PBK-related information that are similar 

to target chemicals where data are lacking using structural and functional similarity 

Leadscope 

Toxicity DbC 

https://www.leadscope.com/toxicity_da

tabase/              [100] 

Database contains over 180,000 chemicals; capability for similarity and common 

substructure searching  

Lester et al., 

(2018) 

  [35] Rating rules for selecting source chemicals with existing PBK-related information that are 

similar to target chemicals where data are lacking 

Lu et al., PBK 

KnowledgebaseF 

 [32] Incorporates facility to identify similar chemicals from the Knowledgebase based on 

physico-chemical properties 

MOE (Molecular 

Modelling 

Environment)C 

https://www.chemcomp.com/MOE-

Molecular_Operating_Environment.htm 

[101] 

Performs similarity searches using various fingerprint methods in 2D and 3D; MACCS and 

shape fingerprints 

http://cefic-lri.org/toolbox/ambit/
https://chemaxon.com/products/
http://ches-mapper.org/
http://chemmine.ucr.edu/
https://www.leadscope.com/toxicity_database/
https://www.leadscope.com/toxicity_database/
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm
https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm


 

OECD QSAR 

ToolboxF 

https://www.qsartoolbox.org/  [102] Assists grouping of chemicals based on similarity (using physico-chemical, structural or 

mechanistic properties) 

PubChem Open 

Chemistry 

databaseF 

https://pubchem.ncbi.nlm.nih.gov/searc

h/search.cgi   [103] 

2D and 3D similarity searching; clustering of similar molecules using dendrogams 

RDKit / KNIMEF http://www.rdkit.org/docs/Overview.ht

ml    [104] 

Incorporates multiple methods to identify similar chemicals using both 2D and 3D methods 

(Daylight-like atom pairs, topological torsions, Morgan algorithm, “MACCS keys”, extended 

reduced graphs, shape-based similarity, etc.) 

Therapeutic 

Target DB (TTD)F 

https://db.idrblab.org/ttd/ttd-

search/drug-similarity         [105] 

Structural similarity search for drugs using Tanimoto index 

ToxmatchF https://sourceforge.net/p/toxmatch/cod

e/ci/master/tree/                [106] 

Open-source software encoding a range of structural and descriptor-based similarity 

indices enabling grouping of chemicals. Results can be viewed as scatter plots, pair wise or 

composite similarity histograms; similarity matrices can be exported 

ToxRead 

(VEGA)F 

http://www.toxread.eu/    [107] Identifies most similar compounds from database using similarity metric developed within 

VEGA 

FFreely available; CCommercial 

Additional sources of information: 

 Many databases of chemicals (e.g. Chemspider) and packages for retrieving / predicting ADMET information (as identified above) also provide 

the facility to search for similar molecules e.g. admetSAR [108], ADME SARfari, ChemSpider[45], ChEMBL (EMBL-EBI)[109], oCHEM etc. 

 

  

https://www.qsartoolbox.org/
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http://www.toxread.eu/


 

Figure 1. Conceptual framework of a physiologically-based kinetic model showing necessary inputs of chemical-specific and system-specific properties and a 

typical output concentration-time curve for an individual organ  

 

 

 


