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Abstract Ultrasound (US) is an effective technology to inac-
tivate vegetative microorganisms in foods. In this study, the
effect of amplitude levels (0.4, 7.5, and 37.5), duty cycles
(0.3:0.7 s, 0.7:0.3 s, and 0.9: 0.1 s) and time (0, 2, 4, 6, 8,
10, 12, and 14 days) of US on inactivation of Staphylococcus
aureus were investigated. In addition, genetic algorithm-
artificial neural network (GA-ANN) and adaptive neuro-
fuzzy inference system (ANFIS) models were used to predict
inactivation of S. aureus. The GA-ANN and ANFIS were fed
with three inputs of amplitude levels, duty cycles, and time.
The inactivation rate of S. aureus was increased by increasing
the amplitude levels, and the best inactivation was obtained at
a 37.5 μm amplitude for which the S. aureus population was
reduced to 2.59 CFU/mL. The high inactivation of S. aureus
was achieved under a duty cycle of 0.7:0.3 s with reduction of
the population to 1.49 CFU/mL. The developed GA-ANN,
which included 17 hidden neurons, could predict the
S. aureus population with a coefficient of determination of
0.986. The overall agreement between ANFIS predictions
and experimental data was also very good (R2=0.979).
Sensitivity analysis results showed that the amplitude level
was the most sensitive factor for prediction of S. aureus.

Keywords Fuzzy inference . Inactivation . Staphylococcus
aureus . Ultrasound

Introduction

The food industry is seeking to develop alternative processing
technologies to produce foods without detrimental changes of
physicochemical, nutritional, and organoleptic properties in-
duced by the technologies themselves whilst preserving mi-
crobial safety profiles (Esteve and Frigola 2007).

Ultrasound (US) is currently used in a range of industries,
for example, in food and beverage processing, surface
cleaning, medical scanning, nanotechnology, mineral process-
ing, welding, and nondestructive testing (Joyce et al. 2007;
Mason 2007). Assisted US processes are expected to enhance
the safety of fresh and processed foods and extend their shelf
life, while preserving or improving organoleptic properties
(Sango et al. 2014). The efficiency of US as a disinfection
method can be increased by combining it with another tech-
nique such as heat, pressure, UV radiation, and pulsed electric
fields (PEF) (Chemat and Khan 2011; Awad et al. 2012). In
addition, assisted US is more energy efficient and because
lower intensities for shorter times can be used, it can have a
positive influence on some food characteristics such as the
appearance in milk; as well as to enhance efficiency at the
industrial level (Demirdoven and Baysal 2008; Bermudez-
Aguirre et al. 2009).

Mechanical vibrations with frequencies higher than 15 kHz
create US waves. Alternating compression and expansion cy-
cles are generated by these waves in liquid media. US waves
create small bubbles in liquid during irradiation. When these
bubbles attain a volume at which they can no higher absorb
enough energy, they burst strongly. This phenomenon is
known as cavitation (Rodgers and Ryser 2004). Inside these
bubbles can be very high temperatures (nearly 5500 °C) and
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pressures (nearly 50 MPa) during implosion (Raso et al.
1998). In most authors’ precepts, this is the final reason for
the bactericidal effect of high intensity US (Ananta et al. 2005;
Ugarte-Romero et al. 2007; Joyce et al. 2007).

Microbial inactivation by thermal treatment does damage
to the organoleptic properties of foods. However, use of US in
order to have microbial inactivation minimizes this change.
Generally, the advantages of US over thermal treatment are a
smaller flavor loss, significant energy savings, and greater
homogeneity (Chemat and Khan 2011; Kiang et al. 2012).

Staphylococcus aureus, a Gram-positive, nonspore-
forming, anaerobic facultative rod, is a public concern because
of its implication in illness outbreaks (Oonmetta-aree et al.
2006).

Artificial Neural Networks (ANN) and adaptive neuro-
fuzzy inference systems (ANFIS) are as an analytical alterna-
tive to conventional modeling techniques, which are frequent-
ly limited by strict assumptions of normality, linearity, homo-
geneity, and variable independence. Fuzzy inference systems
(FIS) and ANNs are model-free numerical estimators. To use
the effectiveness of both, FISs and ANNs could be combined
into an integrated system called ANFIS; the integrated system
then has the utility of both ANNs and FISs (Rumelhart et al.
1994; Soleimanzadeh et al. 2014; Yolmeh et al. 2014b).

Yolmeh et al. (2014a) used GA-ANN and ANFIS models
for prediction of antibacterial activity of annatto dye on
Salmonella enteritidis in mayonnaise. Their results showed
that both GA-ANN and ANFIS models could give good pre-
dictions for fate of the S. enteritidis.

There is no study available in the literature relating to the
use of computing technology for prediction of Staphylococcus
aureus inactivation by US. Therefore, the first goal of this
study was to investigate the effect of US waves on the
S. aureus population. The second goal was studying the per-
formance of GA-ANN and ANFIS models to simulate this
microbial inactivation.

Materials and methods

Bacterial strains and growth conditions

Staphylococcus aureus ATCC 25923 was obtained from the
microbiology stock culture, Department of Food Science and
Technology, Ferdowsi University of Mashhad, Iran. The
strains were stored as frozen stocks at –70 °C in the form of
protective beads (Technical Services Consultants Ltd, UK),
which were plated onto trypticase soy agar (TSA, Scharlau
Chemie, Barcelona, Spain) and incubated overnight at 37 °C
to obtain single colonies before storage at 4 °C. Then, a single
colony was inoculated into trypticase soy broth (TSB,
Scharlau Chemie, Barcelona, Spain) and incubated overnight
at 37 °C.Working cultures were obtained from this subculture,

adjusted to 0.5 McFarland turbidity, and serially diluted
(1/1000) to obtain the required concentration of 106 CFU/
mL in TSB.

US treatment

Samples (50 mL) were sonicated in a 100 mL glass beaker
using a VC750 US generator (Sonics and Materials, Inc.,
Newtown, Conn., USA) fitted with an autoclavable 13 mm
diameter US probe attached to an US transducer. Samples
were processed at a constant frequency of 20 kHz. The mea-
surement of the amplitude as an indication of the US cavita-
tion is reported to be a reliable method for indication of the US
power (Tsukamoto et al. 2004; Patil et al. 2009). Before and
after each experiment, the US probe was sterilized by washing
with Virkon (DuPont), followed by thorough rinsing with
sterile water. Amplitude levels of 0.4 μm, 7.5 μm, and
37.5 μm with duty cycle (pulse durations) of 0.3:0.7 s,
0.7:0.3 s, and 0.9:0.1 s (on time:off time) and a total time of
1 s were applied for up to 14 min. Off time for the US device
was considered to burst the bubbles that were generated by
sonication. An ice bath was used to dissipate the heat gener-
ated during US treatment, and temperatures were maintained
below 30 °C.

Enumeration of surviving bacteria

Samples were removed for analysis at 2 min intervals and
serially diluted. The 0.1 mL aliquots of appropriate dilutions
were cultured on TSA and incubated at 37 °C for 24 h.
Survival curves for each US treatment were plotted. All ex-
periments were repeated in triplicate.

GA-ANN model

A schematic description of the 3-layers network structure used
in this study is shown in Fig. 1. The performance of an ANN
depends strongly upon its topology (Soleimanzadeh et al.
2014). The number of input neurons corresponds to the num-
ber of input variables into the neural network, and the number
of output neurons is similar to the number of target output
variables. Between the input and the output layers, there is at
least one hidden layer, which can have any number of neurons
and depends on the application of the network. Determination
of the optimum number of hidden layer neurons is usually
performed by a trial and error method (Bahramparvar et al.
2014; Soleimanzadeh et al. 2014). The genetic algorithm
(GA) optimization technique can be used to overcome this
inherent limitation of ANN. GA are search techniques for an
optimal value, mimicking the mechanism of biological evolu-
tion. They have a high ability to find an optimal value (global
optimal value or at least nearly a global one) of a complex
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objective function, without falling into local optima (Yolmeh
et al. 2014b).

In the hidden and output layers, the net input (xj) to node j
is of the form:

Xj ¼
Xn

i¼1

Wi jyi þ bj ð1Þ

where yi are the inputs, wij are the weights associated with
each input/node connection, n is the number of nodes, and bj
is the bias associated with node j. Additionally, the bias is an
extra input added to neurons (Soleimanzadeh et al. 2014). A
sigmoid activation function (Eq. 2) was chosen to use as the
transfer function in the hidden and output layers.

f xð Þ ¼ 1

1þ e−x
ð2Þ

In the present study, 198 data were collected from experi-
ments, and then all data were randomly divided into three
partitions: training (20 %), validating (20 %), and testing data
(60 %). The testing data was used for estimating the perfor-
mance of the trained network on new data, which never was
seen by the network during the training (unseen data). The
probabilities of the crossover and mutation operators were
adjusted to be 0.9 and 0.01, respectively.

In addition, a sensitivity analysis was conducted to provide
a measure of the relative importance among the inputs of the
neural network model and to illustrate how the model output
varied in response to variation of an input (Soleimanzadeh
et al. 2014). In this work, the Neurosolution software (release
6.01, NeuroDimension, Inc., USA) was used for designing the
GA-ANN model.

ANFIS model

The determination of MF parameters and fuzzy rules is not
easy for more complex problems. ANFIS structure gives an
easy way to generate theMFs and fuzzy rules for Sugeno-type
fuzzy inference systems (Yolmeh et al. 2014a). For premise
parameters that define MFs, ANFIS employs gradient descent
back-propagation neural networks to fine-tune them. A hybrid
training method (the combination of least-squares and back
propagation algorithms) was used as the training method of
the ANFIS (Yolmeh et al. 2014a). ANFIS modeling was
started by obtaining a data set (input–output data points).
The data order was first randomized and then all data were
separated into three partitions. Of the total data, 20, 20, and
60% was used for training, validating, and testing (unseen
data) the network, respectively. Each input/output pair
contained three inputs (amplitude level, duty cycle, and time)
and one output (S. aureus population) (Fig. 2). The number of
MFs assigned to each input variable is chosen by trial and
error. The ANFIS toolbox of Matlab (version 7.6, Inc.,
USA) was used to obtain the results, and to build an ANFIS
model for predicting the S. aureus population.

Results and discussion

Effect of US amplitude level on inactivation of S. aureus

The inactivation of S. aureus was found to be dependent on
the amplitude levels (p<0.05). As shown in Fig. 3, the inacti-
vation rate of S. aureus was increased by increasing the am-
plitude levels. The best inactivation was obtained at 37.5 μm
amplitude for which the S. aureus population was reduced to
2.59 CFU/mL. This is probably due to enhancement of dam-
aging the cell wall and membrane under a greater amplitude
value (Piyasena et al. 2003). Hence, sensitivity of the

Fig. 1 GA-ANN architecture
with one hidden layer for
prediction of S. aureus
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S. aureus increased in this condition, and this led to increased
death of the microorganism. This finding is in agreement with
the observation of Patil et al. (2009) and Adekunte et al.
(2010) on Escherichia coli and Cronobacter sakazakii,
respectively.

During US treatment, a linear response with exposure
time was observed. Similar behavior was observed on the
survival curves of E. coli (Patil et al. 2009), Streptococcus
mutans (Koda et al. 2009), Lactobacillus rhamnosus
(Ananta et al. 2005), and C. sakazakii (Adekunte et al.
2010).

As shown in Fig. 4, total inactivation of S. aureus
cells was achieved using 37.5 μm amplitude after
14 min whereas the S. aureus population was reduced
to 4.67 and 1.59 CFU/mL under 0.4 and 7.5 μm

amplitude after the same time, respectively, as is shown
in Fig. 4.

The S. aureus destruction curves exhibited a linear
relationship in the semi logarithm coordinates under
the treatment conditions used in this study, which al-
lows the use of kinetic parameter D-values to describe
the inactivation behavior. The D-values of S. aureus in-
activation were 10.52 min, 3.17 min, and 2.34 min un-
der 0.4 μm, 7.5 μm, and 37.5 μm amplitude levels,
respectively. According to the results, the best inactiva-
tion was achieved at a 37.5 μm amplitude with a D-
value of 2.34 min. Hence, it is possible to increase the
amplitude level to achieve a 5-log (t5d) reduction re-
quired by the FDA in a relatively short period at sub-
lethal temperatures. The t5d of S. aureus were 52.6 min,
15.85 min, and 11.7 at 0.4 μm, 7.5 μm, and 37.5 μm
amplitude levels, respectively. T5d for E. coli ATCC
25922 was reported to be 11.1 min under 37.5 μm

Fig. 2 The general structure of
ANFIS for the S. aureus
population model with three
inputs

Fig. 3 Effect of amplitude levels on S. aureus survival (The initial cell
concentration and the length of treatment were 106 and 14 min,
respectively)

Fig. 4 Effect of amplitude levels on the inactivation of S. aureus during
US irradiation
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amplitude by Patil et al. (2009); that is less than the t5d
of S. aureus. Because of this fact, there is probably a
greater thickness of the cell wall of gram-positive bac-
teria than in gram-negative bacteria.

Effect of US duty cycle level on inactivation of S. aureus

The inactivation of S. aureus populations was found to be
dependent on the duty cycle levels (p<0.05). According to
Fig. 5, initially the inactivation rate of S. aureuswas increased
by extension of the duty cycle to 0.7:0.3, but subsequently it
decreased greatly. S. aureus has the lowest inactivation at a
duty cycle of 0.9:0.1 compared to the two other duty cycles.
This phenomenon is probably due to lack of enough time to
burst the bubbles, which are made by US waves, in the high
duty cycle. Therefore, the lethal effect of US on S. aureus
decreased in this condition.

Figure 6 shows the effect of duty cycle levels on the inac-
tivation of S. aureus during US irradiation. According to the
figure, the high inactivation of S. aureuswas achieved under a
duty cycle of 0.7:0.3 s with reduction of the S. aureus popu-
lation to 1.49 CFU/mL.

GA-ANN results

GA-ANN model was developed for estimation of the sur-
vival of S. aureus. In this study, ANN with 2–25 neurons
was trained using GA to find the optimal network config-
uration. It was found that GA-ANN with 17 neurons in
one hidden layer could predict a S. aureus population with
a high coefficient of determination (R2=0.986). The

Fig. 5 Effect of duty cycle (on:off time) levels on S. aureus survival (The
initial cell concentration and the length of treatment were 106 and 14 min,
respectively)

Fig. 6 Effect of duty cycle (on:off time) levels on the inactivation of
S. aureus during US irradiation

Fig. 7 Experimental versus predicted values of a S. aureus population
using the GA–ANN model for the test data set (R2=0.986)

Table 1 The weights and bias values of an optimized GA-ANN model

Hidden
neurons

Bias Input neurons Output neurons

Amplitude
level (μm)

Duty
cycle
(s)

Time
(min)

S. aureus
population
(CFU/mL)

1 −1.235 1.985 −1.365 0.985 0.895

2 −3.325 0.986 1.325 0.365 0.685

3 0.365 1.325 2.356 −1.365 −1.658
4 −1.125 0.365 −1.362 1.352 0.658

5 0.315 1.236 1.365 0.325 2.325

6 −0.652 0.325 0.225 0.985 1.365

7 1.235 2.315 −0.985 −0.186 −1.356
8 1.635 0.965 1.325 2.152 −0.235
9 −1.325 0.325 1.365 1.023 1.235

10 0.365 2.365 −0.325 −1.865 1.325

11 0.325 0.685 2.365 0.985 −0.658
12 1.365 −1.356 0.685 2.365 0.236

13 −1.356 −0.235 −1.658 0.685 1.365

14 1.895 −0.125 −3.655 −1.658 −1.356
15 −0.325 2.365 0.652 0.685 −1.789
16 2.315 0.685 1.265 0.325 2.325

17 −2.253 0.325 0.685 1.759 −2.356
Bias −1.256
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prediction efficiency of the GA-ANN model for unseen
data (testing data) is presented in Fig. 7. The calculated
coefficient of determination value for estimation the sur-
vival of S. aureus shows high correlation between predict-
ed and experimental values. Table 1 illustrates the weights
and bias values of the optimized network, which could be
applied in a computer program for estimation of the sur-
vival of S. aureus during US irradiation. The results
showed that an acceptable agreement between the predict-
ed and experimental data could be achieved using the GA-
ANN model.

Lou and Nakai (2000) proposed an ANN for studying the
effect of temperature, pH, and aw on the thermal inactivation rate
of E. coli. The methodology generated accurate results when
compared with other secondary models. Additionally, the use
of ANNs as an integrated primary-secondary inactivation mod-
el can contribute to an overall approach for modeling the mi-
crobial inactivation dynamics (Cheroutre-Vialette and Lebert
2002). Yolmeh et al. (2014a) used GA-ANN and ANFIS
models for prediction of antibacterial activity of annatto dye
against Salmonella enteritidis and their developed GA-ANN,
which included eight hidden neurons, and could predict a
S. enteritidis population with a correlation coefficient of 0.999.

Sensitivity analysis was also tested in order to study the
sensitiveness of neural network models toward different in-
puts (Fig. 8). Among the input variables, amplitude level was
the most sensitive factor for prediction of S. aureus by the
selected GA-ANN.

ANFIS results

The ANFIS network parameters, such as the type and number
of MF and epochs, have been varied to obtain the best results
in terms of model validation. The ANFIS architecture used in
this study is shown in Fig. 2. The final ANFIS architecture for
predicting the S. aureus population, with four Gaussians type
MFs for each input (three inputs) and linear MF for output,
and the constructed 64 rules resulted in a highly accurate pre-
diction. In Fig. 9 the S. aureus values versus ANFIS predic-
tions for test data (unseen data) points are shown. It can be
seen that the system was well trained to model the population
of S. aureus (R2=0.979). In summary, a lower number of input
parameters were needed for the ANFIS model, improving the
speed and ease of prediction.

Fernandes et al. (2012) used the ANFIS model to predict
antimicrobial peptides activation. They reported that the ANFI
S approach could provide an efficient solution for screening
putative antimicrobial peptide sequences and for exploration
of properties characteristic of antimicrobial peptides.

Conclusions

Alternative methods for pasteurization and sterilization
are gaining importance. This is due to increased con-
sumer demand for new methods of food processing that
have a reduced impact on nutritional content and overall
food quality. US processing is one of the alternative
technologies that has shown promise in the food indus-
try. The inactivation of S. aureus was found to be de-
pendent on the amplitude and duty cycle levels
(p<0.05), and the inactivation rate was increased by
an increase of the amplitude levels. The high inactiva-
tion of S. aureus was achieved under a duty cycle of
0.7:0.3 s with reduction of the S. aureus population to
1.49 CFU/mL. It was found that GA-ANN with one
hidden layer comprising 17 neurons gives the best fit
with the experimental data, which made it possible to
predict the S. aureus population with acceptable coeffi-
cients of determination (0.986). It was also found that
ANFIS models with four Gaussian type MFs for all
input variables and a linear output give the best fit with
the experimental data, which made it possible to predict
the S. aureus population with a high coefficient of de-
termination (0.979). The results indicated that both GA-

Fig. 8 Sensitivity analysis of optimized GA-ANN (3/17/1) for prediction
of S. aureus

Fig. 9 Experimental versus predicted values of a S. aureus population
using the ANFIS model for the test data set (R2=0.979)
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ANN and ANFIS models could give a good prediction
of the S. aureus population.
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