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Abstract
Every year, millions of cancer patients undergo radiation therapy for treating and destroying abnormal cell growths within 
normal cell environmental conditions. Thus, ionizing radiation can have positive therapeutic effects on cancer cells as well 
as post-detrimental effects on surrounding normal tissues. Previous studies in the past years have proposed that the reduc-
tion and oxidation metabolism in cells changes in response to ionizing radiation and has a key role in radiation toxicity to 
normal tissue. Free radicals generated from ionizing radiation result in upregulation of cyclooxygenases (COXs), nitric 
oxide synthase (NOSs), lipoxygenases (LOXs) as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH 
oxidase), and their effected changes in mitochondrial functions are markedly noticeable. Each of these enzymes is diversely 
expressed in multiple cells, tissues and organs in a specific manner. Overproduction of reactive oxygen radicals (ROS), reac-
tive hydroxyl radical (ROH) and reactive nitrogen radicals (RNS) in multiple cellular environments in the affected nucleus, 
cell membranes, cytosol and mitochondria, and other organelles, can specifically affect the sensitive and modifying enzymes 
of the redox system and repair proteins that play a pivotal role in both early and late effects of radiation. In recent years, 
ionizing radiation has been known to affect the redox functions and metabolism of NADPH oxidases (NOXs) as well as 
having destabilizing and detrimental effects on directly and indirectly affected cells, tissues and organs. More noteworthy, 
chronic free radical production may continue for years, increasing the risk of carcinogenesis and other oxidative stress-driven 
degenerative diseases as well as pathologies, in addition to late effect complications of organ fibrosis. Hence, knowledge 
about the mechanisms of chronic oxidative damage and injury in affected cells, tissues and organs following exposure to 
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ionizing radiation may help in the development of treatment and management strategies of complications associated with 
radiotherapy (RT) or radiation accident victims. Thus, this medically relevant phenomenon may lead to the discovery of 
potential antioxidants and inhibitors with promising results in targeting and modulating the ROS/NO-sensitive enzymes in 
irradiated tissues and organ injury systems.
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Introduction

Annually, more than 12 million new cases of cancer are 
reported worldwide [1]. Approximately, more than half of 
these patients require radiation therapy (RT) either alone 
or in combination with other modalities such as surgery, 
immunotherapy, hyperthermia, chemotherapy and hor-
mone therapy. In addition to clinical applications, several 
people are exposed to lethal or sub-lethal doses of ion-
izing radiation resulting from radiation accident or ter-
rorist activities [2, 3]. So far, several studies have been 
conducted to understand the mechanisms of minimizing 
the detrimental effects of exposure to ionizing radiation 
(IR) on normal tissues.

Exposing cells to IR causes immediate free radical forma-
tion with a nanoseconds half-life. For many years, it has been 
believed that these free radicals, as well as direct radiation 
interaction with DNA, are responsible for the side effects of 
exposure to IR. However, the discovery of new phenomena 
in radiobiology such as radiation-induced bystander effect, 
non-targeted effect and genomic instability, have challenged 
this central dogma [4]. In recent years, studies have demon-
strated that changes in the normal functions of the reduction/
oxidation (redox) systems are involved in several damages 
following exposure to IR [5]. Free radical production by the 
redox system begins some few hours after exposure and may 
continue for several years [6, 7]. The redox system plays a 
key role in acute radiation syndrome. It is also responsible 
for several early and late effects of exposure to IR such as 
bystander effect, out-of-field effect, inflammation, fibrosis 
and others [8].

Reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) are the main sources of damage to normal 
tissues after exposure to IR. During normal cell function, 
ROS and RNS are essential mediators for several cellular 
processes such as immune responses, cell signaling, micro-
bial defense, differentiation, cell adhesion, apoptosis and 
others [9]. Antioxidant systems include enzymes such as 
superoxide dismutase (SOD) and glutathione peroxidase 
(GPX) as well as peptides such as glutathione (GSH). They 
neutralize additional free radicals and protect cells against 
the detrimental effects. Exposure to IR causes excessive pro-
duction of free radicals over the antioxidant system potency, 
resulting in oxidative damage to DNA, proteins and lipids. 
These effects cause damages to normal cell function and 

may lead to genomic instability that increases the risk of 
malignancies [10].

Redox system biology and enzymology, 
redox chemistry and ionizing radiation 
interactions

Free radicals including ROS, ROH and RNS are recognized 
as dual role players which can have both deleterious and 
beneficial consequences. Free radicals formed via redox 
system biology can act as messengers in cell signaling and 
changes in gene expression patterns. For example, several 
types of protein kinases and transcription factors are stimu-
lated by oxidation reactions, while protein phosphatases are 
inactivated. These changes result in the activation of sev-
eral ROS/RNS-producing enzymes which may continue for 
hours, days, months or years [5]. So far, several types of oxi-
doreductases with the ability to produce superoxide in cells 
have been identified. They include cyclooxygenase (COX), 
lipoxygenase, nitric oxide synthase (NOS), cytochrome 
P450 enzymes, xanthine oxidase, NADPH oxidase and mito-
chondrial electron transfer chain. It is generally accepted 
that mitochondrial ROS production and expression of other 
genes involved in redox system such as NF-kB, COX-2, 
iNOS and NADPH oxidase amplify each other [11].

A large number of studies have been conducted to reveal 
the roles of interacting redox biology and chemistry sys-
tems in oxidative-mediated damages induced by IR. Recent 
studies have demonstrated that redox activity is involved in 
both early and late effects of exposure to IR. Moreover, the 
results of different studies have indicated that the expression 
of genes involved in the redox system is tissue dependent. 
Hence, an understanding of the specific functions of such 
redox biological and chemical systems’ interactions with IR 
is specifically described further.

Radiation‑induced inflammation triggers 
redox activation

Inflammation plays a key role in redox activation. Exposure 
of normal cells directly to IR or ROS will result in both 
nucleus and mitochondria DNA damages, which may cause 
cell death through apoptosis, mitotic catastrophe or necrosis. 
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Mitotic catastrophe is not immunogenic, while apoptosis and 
necrosis trigger immune activation through the release of 
danger signals [12]. Although apoptotic bodies are omit-
ted by macrophages and do not activate inflammatory 
response, necrotic cells release various signals to immune 
cells including mast cells and lymphocytes which will result 
in the secretion of inflammatory cytokines [13]. Apoptosis 
can trigger the release of anti-inflammatory cytokines such 
as IL-10 and TGF-β, while necrosis may lead to the release 
of inflammatory cytokines such as IL-1, IL-6, IL-8, IL-13, 
IL-33 and TNF-α, as well as other inflammatory mediators 
[14]. In the absence of suppression of these responses by 
the immune system, chronic inflammation may continue for 
a long time after exposure. This is associated with chronic 
oxidative damage, which lead to genomic instability and 
damage to the normal function of organs [15] (Fig. 1).

NADPH oxidases (NOXs) functions 
and interactions

NADPH oxidase enzymes are a group of oxidoreduc-
tases that transfer electron from NADPH to oxygen mol-
ecules. So far, several subtypes of these enzymes have 
been detected within cells. NADPH oxidase genes have 

been discovered in both phagocytic and non-phagocytic 
cells and are involved in immune system responses and 
inflammation. It was suggested that the NADPH oxidase 
system is involved in signaling pathways that mediate cell 
growth, cell survival and death. In response to inflamma-
tory stimuli, macrophages and neutrophils produce super-
oxide via the phagocytic NADPH oxidase (NOX). On the 
other hand, ROS produced by non-phagocytic isoforms 
of NADPH oxidase (such as NOX2 in the membrane) are 
involved in regulating intracellular signaling cascades 
in various types of non-phagocytic cells [16]. NOX1-5, 
DUOX1 and DUOX2 are the most important subtypes of 
NADPH oxidase enzymes involved in respiratory burst fol-
lowing exposure to radiation. In contrast to other sources 
of ROS, NADPH oxidase (NOX) is a professional and dis-
tinct ROS generator through conversion of O2 to superox-
ide anion O−

2
 [17, 18].

These enzymes have high stability, resulting in continu-
ous ROS production following exposure. Each of these 
enzymes is activated in specific tissue type of cells. In 
addition, enzymes can be stimulated by a large group 
of stressors and stimuli, as well as different types of 
cytokines and growth factors. A large group of inflamma-
tory cytokines, chemokines and hormones such as IL-1, 
TNF-α, TGF-β, IFN-γ and angiotensin II are implicated 
in NOX system activation [19].

Fig. 1   Mechanisms of cell death 
trigger inflammation and free 
radical production after expo-
sure to ionizing radiation
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NOX1

NOX1 is expressed in several types of cells such as endothe-
lial cells, in the placenta, prostate and uterus, and osteo-
clasts, as well as in some malignancies such as melanoma 
and colon cancer [20–22]. Hence, overexpression of NOX1 
may be involved in some malignancies. In addition to risk 
of carcinogenesis, the role of NOX1 in radiation fibrosis has 
been proposed. Choi et al. showed that inhibiting NOX1 but 
not NOX2 or NOX4 ameliorates collagen deposition and 
pulmonary fibrosis markers such as α-SMA and fibroblast-
specific protein 1 (FSP1) in C57BL/6J mice following lung 
irradiation. Furthermore, ROS production following NOX1 
inhibition decreased significantly [23].

NOX2

There are some evidences that NOX2 expressions in both 
phagocytic and non-phagocytic cells are regulated by 
some cytokines and growth factors such as IFN-γ, TGF-β 
and IL-12 [16, 24]. Studies have demonstrated that some 
mediators such as TLR-2 have an intermediate role in NOX2 
activation. In response to IR, NOX2 has an important role 
in continuous ROS production. Narayanan et al. showed 
that irradiating human lung fibroblasts with alpha particle 
produces O⋅−

2
 and H2O2. Analysis showed that the plasma 

membrane-bound NOX2 is primarily responsible for O⋅−

2
 

and H2O2 production [25]. The upregulation of upstream 
genes such as NF-KB, Raf-1, ERK 1/2, c-Jun, p38, activa-
tor protein 1 (AP-1) and calcium signaling is involved in 
this process. Scavenging of free radicals by SOD or cata-
lase inhibited these signaling pathways and subsequent 
NOX2 upregulation [26–28]. The involvement of NOX2 in 
radiation-induced salivary gland injury was demonstrated 
by Kim et al. They showed that exposing rats to 18 Gy of 
X-ray (2 Gy/min) increases NOX2 gene expression in sali-
vary glands at least 7 days after irradiation. Their results 
indicated that apoptotic genes such as caspase-9 as well as 
MAPKs including p-38 and JNK are involved in NOX2 sign-
aling cascades [29]. NOX2 is involved in persistent ROS 
production in the intestine as well. Datta et al. have shown 
that irradiating mice with gamma rays and high LET 56Fe 
radiation causes stimulation of ROS production in the intes-
tinal epithelial cells for 1 year after exposure. The result of 
this study indicated that NOX1, NOX2 and mitochondria 
malfunction are responsible for persistent oxidative dam-
age [30].

NOX3

Studies conducted to depict the role of NOX3 in radiation 
damage are very limited. A study by Shin et al. showed that 
exposure to radiation upregulates the expression of NOX3 

in the oral mucosa of rat. Increased NOX3 expression was 
associated with necrotic inflammatory exudates and ulcera-
tion in the oral mucosa [31].

NOX4

NOX4 is one of the most important subtypes of the NOX 
system in response to IR. Some studies have proposed a 
role for NOX4 in radiation-induced bone marrow toxicity. 
Evaluating different ROS/NO producing enzymes in mice 
bone marrow showed that increase in NOX4 activity fol-
lowing exposure has a central role for ROS production and 
bone marrow stem cells damage after exposure. Analysis 
showed persistent ROS production 8 weeks after exposure. 
Inhibiting the NOX system resulted in better survival and 
decreased bone marrow damage [32–34]. As TGF-β has a 
pivotal role in bone marrow toxicity following exposure to 
radiation, it seems that TGF-β–NOX4 pathway is responsi-
ble for the continuous ROS/NO production and subsequent 
genomic instability in bone marrow following exposure [35]. 
Moreover, studies have shown that other mediators such as 
TLR-4 and MyD88 have an intermediate role in NOX4 acti-
vation. The C-terminal region of NOX4 has an interaction 
with the tail of TLR-4. However, it was proposed that other 
mediators such as MyD88 and IRAK were involved in this 
pathway. These interactions are essential for ROS production 
from NOX4 [36].

NOX5

NOX5-induced ROS production is due to Ca2+ flux through 
Ca2+-binding sites [37]. This gene is absent in rodents. Evi-
dences for its role in radiation oxidative damages are limited. 
A study by Weyemi et al. on human primary fibroblasts have 
revealed that inhibition of both NOX4 and NOX5 leads to 
reduced levels of DNA damage associated with increased 
cell survival. Results showed that the levels of protection 
by inhibition of these genes are similar to administering 
two potent radioprotectors: N-acetylcysteine (NAC) and 
fulvene-5 [38].

DUOX1/DUOX2

Some evidences support the role of DUOX1/DUOX2 in 
chronic oxidative stress and subsequent consequences of IR 
such as fibrosis. However, data for responses of these genes 
to IR are very limited. IFN-y, IL-4 and IL-13 have pivotal 
roles in the upregulation of DUOX1 and DUOX2. Hassani 
et al. showed that DUOX1 gene expression is upregulated for 
several days after exposing human thyrocytes to radiation. 
Analysis showed that IL-13-p38 MAPK is responsible for 
persistent DUOX1-induced H2O2 production following irra-
diation [39]. IL-4 and IL-13 induce DUOX2 production as 
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well as increased ROS production. IL-4–STAT6 pathway is 
responsible for upregulating DUOX2. The increased expres-
sion of these genes may be involved in the development of 
pancreatic and gastrointestinal malignancies [40]. Further 
studies are needed to depict possible roles of these genes 
in radiation-induced carcinogenesis and other side effects.

COX‑2

COX-2 has a central role in inflammatory responses which 
convert arachidonic acid liberated from membrane phos-
pholipids to prostaglandins (PGs). During the synthesis of 
PGE2, production of ROS is a common secondary effect of 
arachnoid acid metabolism [41]. Several studies have indi-
cated that upregulation of COX-2 is involved in different 
toxicities following exposure to IR [42]. Increased COX-2 
expression was reported for its association with radiation 
toxicity in the gastrointestinal system such as the intestine 
and colon [43]. Furthermore, upregulated COX-2 gene 
expression is involved in radiation toxicities in the lung, 
heart, brain, kidney and others [44]. COX-2 upregulation 
causes accumulation of immune system cells and appear-
ance of inflammation signs. Inflammatory cells including 
macrophages and lymphocytes further enhance oxidative 
damage through secretion of NO and ROS. These changes 
cause activation of matrix metalloproteinases (MMPs) which 
change the normal function of tissues through deposition of 
collagen and fibronectin. Thus, COX-2 mediates pathologi-
cal damages induced by ionizing radiation such as fibrosis, 
atherosclerosis and vascular damage [45].

It was suggested that COX-2 can stimulate carcinogen-
esis through signal modulation involved in cell proliferation 
and apoptosis [46]. In addition, ROS produced by COX-2 
play a key role in mutagenesis and genomic instability. 
Increased COX-2 expression has been reported for its asso-
ciation with several malignancies such as breast, esopha-
geal, gastric, colorectal and lung cancer [47]. Some studies 
have also shown the role of COX-2 in oxidative damage in 
non-irradiated cells. Overexpression of COX-2 in the dis-
tant lung and bronchial after pelvis or abdominal irradia-
tion in rats and mice have been reported. These effects lead 
to increased ROS production and DNA oxidative damage 
through bystander and non-targeted responses [48, 49].

Lipoxygenases

Lipoxygenases (LOXs) are iron-containing enzymes which 
catalyze the deoxygenation of unsaturated fatty acids. This 
process is associated with ROS production and initiating 
lipoperoxidation of membranes as well as some changes in 
the cell metabolism [50]. Thus, LOXs can stimulate DNA 
damage, genomic instability and also cell death, especially 
apoptosis [51]. In mammals, increased LOXs have been 

found to be associated with some inflammatory diseases and 
cancer. A study by Matyshevskaia et al. showed an increase 
in LOX activity of lymphocytes within 6 h post-irradiation 
of Wistar rats with 1 Gy X-ray. They also observed that 
inhibiting LOX activity leads to a remarkable reduction in 
DNA damage. The results of this study proposed that LOX 
activity was involved in ROS production during early hours 
after exposure [52]. In another study, Grichenko et al. have 
shown that LOX activity was obvious 1 h after exposure but 
not at later times [53].

Nitric oxide in DNA damage and inflammation

Nitric oxide (NO) is an important mediator which affects 
a number of targets within cells. iNOS is the main source 
of NO during stress conditions such as inflammation and 
plays a key role in oxidative stress and carcinogenesis. NO 
is generated by macrophages via iNOS enzyme in response 
to inflammatory stimulus. NO is highly reactive, interact-
ing with mitochondria-derived superoxide to form higher 
reactive peroxynitrite. On the other hand, high level of NO 
competes with O2 in the ETC and may suppress respira-
tion in the mitochondria. This effect may lead to increased 
superoxide generation which amplifies oxidative stress [54].

Several studies have indicated that reactive nitrogen spe-
cies (RNS) are involved in radiation-induced normal tissue 
injury [55–57]. In addition, NO has a pivotal role in radi-
ation-induced bystander and non-targeted effects [48, 58]. 
Increased NO level following radiation exposure has shown 
association with DNA damage and genomic instability [59]. 
A study by Ohta et al. proposed that increase in NO level has 
a direct relation to radiation dose. Moreover, they observed 
that increased serum level of NO occurs in the early hours 
after exposure [55]. However, it seems that increased NO 
production by iNOS in exposed tissues continues for several 
days or months after exposure. This is associated with long-
term pathological changes in irradiated tissues [60].

One important mechanism for NO-induced normal tis-
sue damage is nitro-acetylation and subsequent epigenetic 
changes in some enzymes such as DNA repair enzymes. 
NO produced by macrophages and neutrophils has a role in 
inhibiting DNA repair enzymes involved in the base exci-
sion repair (BER) and mismatch repair (MMR) pathways 
[61]. Elevated NO production which can be seen follow-
ing exposure to radiation may suppress the activity of some 
DNA repair enzymes in these pathways [62]. Studies have 
proposed that chronic upregulation of nitric oxide syn-
thases (NOS) especially iNOS, causing nitro-acetylation 
and decreased half-life of ogg1 and AGT [63, 64]. These 
effects on DNA repair responses result in incomplete repair 
of DNA damage which may provide grounds for mutation, 
chromosomal instability, genomic instability and finally car-
cinogenesis [65, 66].
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Mitochondrial functions as an energy 
and free radical reservoir

Mitochondria sources energy for the cells through reduc-
ing oxygen to water and synthesizing adenosine triphos-
phate (ATP). This process is known as oxidative phos-
phorylation. It accounts for the consumption of 90% of all 
oxygen taken up by mammals [67]. Oxidative phosphoryl-
ation occurs within the electron transport chains, a series 
of enzymes embedded within the inner mitochondrial 
membrane. During electron transportation, a percentage 
of the oxygen molecules undergo a one-electron reduc-
tion to superoxide [68]. In normal conditions, antioxidant 
defense systems such as catalase, superoxide dismutase 
and glutathione peroxides neutralize superoxide and form 
free radicals [69]. Thus, this system protects cells from 
oxidative damage resulting from mitochondria activity. O2 
radicals may be released to the cytosol to generate reac-
tive oxygen species. Furthermore, these radicals may react 
with NO, producing peroxynitrite [70].

Although several studies have shown that the main source 
for radiation-induced ROS production is the mitochondria, 
its activation mechanisms have not been recognized com-
pletely. A study by Yamamori et al. indicated that irradiating 
human lung carcinoma A549 cells increases the mitochon-
drial contents of the cells. Furthermore, they showed that 
exposure of cells to radiation increases the mitochondrial 
membrane potential and also stimulates the mitochondrial 
electron transport chain (ETC) function [71]. In addition, 
some studies reported that irradiation leads to an increase 
in the mitochondrial mass in different cell lines [72, 73].

An investigation by Tulard et al. revealed a persistent and 
dose-dependent increase in mitochondrial ROS in human 
colon cells after exposure to gamma radiation [74]. Evalua-
tion of intracellular and mitochondrial ROS after irradiation 
has shown that a dose-dependent increase in both sources 
of ROS is due to radiation. However, analysis showed a dif-
ference in the intracellular and mitochondrial ROS profile. 
Intracellular ROS increased soon after exposure, subsided 
after 24 h, and thereafter increased for another 3 days. In 
contrast to intracellular ROS, mitochondrial ROS level rises 
gently and attains its peak 3 days after exposure. This may 
remain high for a week after irradiation [75]. These results 
have been confirmed by other studies [76–78]. It was sug-
gested that mitochondrial ROS are involved in DNA damage 
and tumor development [79]. In different tumor cells, the 
increased level of mitochondrial ROS was confirmed. For 
example, it was observed that mtDNA mutations are asso-
ciated with malignancies such as lung, stomach and breast 
cancer as well as leukemia and lymphoma [80, 81].

However, the exact mechanisms for increased oxidative 
phosphorylation in mitochondria remain to be elucidated. 

Mitochondrial dysfunction, inflammation and intracellular 
ROS play a key role. Increased the level of ROS produc-
tion stimulates mitochondria response through a phenom-
enon known as ROS-induced ROS. Secretion of calcium 
ions into cytosol plays a key role in this signaling. Follow-
ing secretion of Ca2+ in the endoplasmic reticulum to cyto-
sol during stress conditions, these ions are accumulated in 
the mitochondria, leading to the disruption of the normal 
ETC activity which causes increase in ROS production 
[82, 83].

Mitochondria malfunction is another reason for ROS pro-
duction. It was proposed that mutation in mtDNA and ETC 
are involved in this process. Yoshida et al. have shown that 
exposure of rats’ A7r5 cells to 5 Gy gamma rays causes 
decreased activity of complex I and increased ROS produc-
tion. Complex I (NADH dehydrogenase) is the most impor-
tant complex involved in the release of ROS from the ETC 
[78]. In another study, Dayal et al. showed that dysfunction 
of complex II after exposure to 10 Gy X-rays played a key 
role in ROS production and oxidative stress in GM10115 
cells. Irradiation of the heart of mice with 2 Gy has shown 
that succinate-stimulated respiration decreased significantly 
compared to the control mice. This study has shown that 
cytochrome C as well as ETC1 and three activities were 
reduced [84]. This could be because unstable mitochondria 
produce more hydrogen peroxide compared to normal cells, 
resulting from decreased respiratory rate [85]. Evidences 
show that the NADPH oxidase system and mitochondria 
have a synergic effect on each other in response to stress 
signaling [86]. Also, studies proposed that the ROS-derived 
NOX system is involved in mitochondrial dysfunction and 
subsequent ROS production in this organelle [87, 88].

Epigenetics of redox activation

Evidences indicate that the redox system is related to epi-
genetic regulation. On one hand, free radicals including 
both ROS and NO regulate epigenetic processes such as 
DNA methylation, histone methylation and acetylation. On 
the other hand, changes in some miRNAs can increase or 
decrease oxidative damage [89]. Exposure to IR increases 
the expression of miRNAs involved in ROS production 
such as let-7 family, mir-15b, mir-21, mir-128 and mir-636 
[90–92]. The best example for redox activation of epigenetic 
modulators is upregulation of mir-21 following exposure to 
radiation and bystander cells. mir-21 is activated in oxidative 
stress conditions, as well as following upregulation of some 
cytokines such as TGF-β [93]. mir-21 induces oxidative 
stress via targeting of SOD and TNF [94]. Following expo-
sure to radiation, it can suppress detoxification of superoxide 
by targeting SOD3. In addition, it subdues the regulation of 
TNF-a, resulting in reducing SOD2 levels [94].
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The role of mir-21 in ROS production in bystander cells 
has also been investigated. Xu et al. showed that the upregu-
lation of mir-21 in bystander MRC-5 cells is associated with 
increased oxidative and DNA damage. Their results showed 
that expression of SOD3 was reduced significantly [95]. Tian 
et al. [96] achieved similar results for MnSOD or SOD2 in 
bystander WS1 cells following alpha particle irradiation of 
HaCaT keratinocytes. TGF-β is responsible for the oxida-
tive damage in bystander cells through mir-21. An investi-
gation by Jiang et al. [97] showed that inhibiting TGF-βR1 
via a selective inhibitor resulted in abolishing mir-21 and 
oxidative stress in bystander cells. Since free radicals can 
upregulate mir-21 and TGF-β, it is possible that mir-21 via 
a positive loop feedback plays a role in continuous oxidative 
damage following exposure to ionizing radiation (Fig. 2).

Hypoxia

Hypoxia results from vascular damage and tissue injury. 
Some changes associated with hypoxia have a regulatory 
role in tissue remodeling and wound healing. Following 
exposure to IR, increased inflammatory cytokines and 
chemokines stimulate accumulation of macrophages in the 
injured area. This phenomenon is associated with increased 
oxygen consumption by activated macrophages leading to 
a low oxygen state and hypoxia in the injured tissues. This 
hypoxic state stimulates free radical production of some 
redox system agents such as Ca2+ flux, mitochondria and 
NADPH oxidase enzymes [98, 99]. Evidences indicate that 

hypoxia is involved in chronic oxidative stress and radia-
tion-induced late normal tissue injury such as fibrosis [100, 
101]. These and many other factors are responsible for this 
development.

Bystander/non‑targeted effect‑induced 
redox activation

Radiation-induced bystander effect refers to a phenom-
enon in which irradiated cells secrete signals to adjacent 
non-irradiated cells that cause damage to them. Studies 
have shown that ROS and NO play a pivotal role in DNA 
damage and genomic instability in bystander cells. Results 
from several studies proposed that upregulating some genes 
involved in redox system such as COX-2, iNOS, NADPH 
oxidase and also mitochondria plays a central role in this 
phenomenon [11]. COX-2 and iNOS have a synergic effect 
on each other [102]. Furthermore, ROS and NO produced 
by these enzymes increase the activity of the electron trans-
fer chain (ETC) in the mitochondria. Several experiments 
have been conducted to reveal the signaling pathways that 
cause oxidative damage in bystander cells. Exposing cells to 
radiation cause damages to DNA and other structures such 
as the membrane and mitochondria. These damages result in 
the release of various products such as exosomes, miRNAs, 
oxidized DNA and other danger alarms from irradiated cells. 
In response to these products, macrophages and lymphocytes 
release several cytokines such as IL-1, IL-6, IL-8, IL-33, 

Fig. 2   Mechanisms of redox system activation following exposure to radiation
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TNF-α, TGFβ and others [103]. Migration of these signals 
to other cells leads to long-term detrimental changes that 
may give rise to secondary effects of ionizing radiation on 
normal tissues. In vitro studies have revealed that gap junc-
tion intercellular communication (GJIC) plays a key role 
in the transfer of bystander signals to non-irradiated cells 
[104–106]. Inhibiting GJIC by specific inhibitors resulted 
in the suppression of DNA damage in bystander cells [107, 
108].

Several studies have shown that inflammatory responses 
to DNA damage, DNA repair and cell death play a key 
role in the secretion of factors involved in activating redox 
systems [8, 109]. As regards the ability of several of these 
factors to migrate to distant organs, it is acceptable that 
redox system activity increases in non-targeted organs. The 
released clastogenic signals can migrate to distant tissue 
and stimulate ROS/NO production [110]. Several in vivo 
studies have shown that local irradiation of a limited area 
causes ROS production and oxidative damage in out-of-field 
tissues [48, 111]. A study by Chai et al. showed that the 
TGF-β–TGFβR1–COX-2 pathway plays an important role in 
ROS production and oxidative DNA damage in distant lung 
tissues. However, non-targeted induced oxidative damage 
affects non-irradiated tissues in a tissue specific manner. The 
expression of TGβR1 and its cascades such as COX-2 and 
ROS in the lung was obvious, but not for the liver [112]. As 
oxidative DNA damage causes hypomethylation and other 
epigenetic changes, this effect may result in a tissue-specific 
epigenetic change in non-irradiated tissues. For example, 
cranial irradiation resulted in long-term hypomethyla-
tion and changes in miRNAs profile in rat’s spleen. These 
changes were not observed in the skin. A better understand-
ing of the basic mechanisms of this phenomenon may help 
improvements in the therapeutic ratio of RT [113].

Genomic instability is a phenomenon seen in several 
types of malignancies. It is associated with chromosomal 
aberrations such as increased mutation frequency within the 
genome, damage to DNA repair genes, alteration in mito-
chondrial function, mutation in mitochondrial DNA, change 
in energy balance within cells, attenuation of antioxidant 
enzymes and so on [114–120]. These abnormal changes in 
cells lead to persistent ROS production, oxidative stress and 
mutation in chromosome, making cells susceptible to car-
cinogenesis [121].

Evidences indicated that most cancers have a type of 
genetic instability. This phenomenon in many tumors 
causes a large number of genetic alterations. Although, so 
far, the mechanisms involved in genomic instability remain 
unknown, the results of several studies have proposed a role 
for ROS. A study by Limoli et al. has shown that clones 
derived from cells exposed to ionizing radiation have abnor-
mal increase in ROS levels. In addition, the number of dys-
functional mitochondria was higher compared to normal 

clones [122]. A further study observed that using some scav-
engers such as DMSO and cationic thiol cysteamine reduces 
genomic instability after irradiation. This implies the role of 
continuous ROS production following exposure to radiation 
in the induction of genomic instability. Furthermore, results 
indicated that the abnormal functions of mitochondria have a 
key role in chronic oxidative stress [85]. Genomic instability 
induced by different types of radiations such as low and high 
LET radiations has been revealed in both in vitro and in vivo 
studies [123] (Fig. 3).

Targeting of the redox system for mitigation 
of radiation‑induced normal tissue injury

Normal tissue protection during RT is an active area of 
research in radiation oncology. It is widely known that 
radiation induces a wide range of clinical disorders which 
reduce the outcomes of RT. For many years, radiation pro-
tectors have attracted a great deal of attention and various 
agents have been tested for different tissues [124]. It has 
been observed that the responses of different organs to IR 
are distinct [49]. On the other hand, results of a large number 
of studies have indicated that no agent can protect all organs 
against IR. Moreover, in clinical applications, protection of 
normal tissues against RT is a complex biological process 
and finding selective drugs requires advanced biological 
experiments. In recent years, researchers have investigated 
a variety of approaches to obtain the best biological mecha-
nism of radiation protection. It was revealed that these mech-
anisms are tissue dependent and differ based on the structure 
of organs as well as functions, in addition to the immune 
system response [125]. Hence, selection of an appropriate 
radioprotector is based on tissue responses.

In this present radiation biology era, to find the best clini-
cal radioprotector, new approaches such as redox mecha-
nisms of irradiated organs are of particular interest [109]. 
As a good example, targeting NOX2 and NOX4 genes has 
a critical role in bone marrow sparing following exposure 
to radiation. Several studies have indicated that some radia-
tion modifiers cause reduction of NOX4 gene expression 
and amelioration of bone marrow toxicity following expo-
sure. Guoshun et al. showed that total body irradiation (TBI) 
of mice results in long-term upregulation of NOX4 and 
increase in ROS production in bone marrow hematopoietic 
stem cells (HSCs). These changes were involved in radia-
tion-induced chronic oxidative damage and long-term injury 
in the bone marrow. Moreover, they showed that treatment 
with metformin significantly attenuated ROS production 
and ameliorated micronuclei formation via NOX4 down-
regulation in HSCs [126]. Similar results were obtained after 
administering 5-methoxytryptamine-α-lipoic acid and res-
veratrol [127, 128]. Moreover, inhibition of these genes may 
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protect the lungs and cardiovascular system from fibrosis 
[129].

NO plays a key role in radiation-induced chronic injury in 
irradiated cells, as well as bystander cells [130, 131]. iNOS 
as the main source of NO is expressed in several tissues 
such as lungs and gastrointestinal organs. Hence, inhibit-
ing this enzyme is an approach for normal tissue protection 
against inflammatory responses to ionizing radiation. Some 
inhibitors like N-nitro-l-arginine methyl ester and amino 
guanidine have shown ability to ameliorate radiation injury 
in the lung [132, 133]. In another study by Erbil et al., it was 
observed that treatment with N(omega)-nitroarginine methyl 
ester (L-NAME), which is another type of iNOS inhibitor, 
can ameliorate radiation-induced enteritis [134]. However, 
in the gastrointestinal system, NOX1, NOX2, cyclooxyge-
nase-2 (COX-2) and mitochondria are other sources of ROS 
[109, 135].

Targeting mitochondria-induced ROS has been proposed 
by some studies for mitigating radiation injury. Rwigema 
et al. evaluated three types of mitochondrial targeting drugs 
including JP4-039, MCF201-89 and BEB55. The study 
was conducted as both in vitro for mice hematopoietic pro-
genitor cell line and in vivo for mice. Their results showed 
that administering these drugs after exposure to a lethal 
dose of radiation (9.5 Gy) can reduce death of progenitor 
cells as well as increase survival of irradiated mice [136]. 
It has been shown that targeting mitochondria is associ-
ated with arresting cell cycle in G1, leading to increased 
DNA damage repair [137]. Reducing apoptosis, especially 

in apoptosis-prone cells like hematopoietic system cells is 
another property of mitochondria-targeting agents, which 
can prolong survival [138]. Similar results have been con-
firmed for other mitochondria-targeting agents [139, 140] 
(Table 1).

Summary and conclusion

This review has presented the mechanisms of ROS produc-
tion and oxidative damage derived from some enzymes 
and mitochondria. It is clear that these systems contribute 
to acute and late deleterious effects of ionizing radiation. 
In addition, results from several studies propose that ROS 
as well as NO production by mitochondria and inflamma-
tory cells is involved in oxidative damage to bystander 
cells and non-targeted tissues. Although the roles of some 
inflammatory mediators such as lipoxygenases, COX-2 and 
iNOS have been confirmed in radiation toxicity, recent 
studies indicate that mitochondria malfunction and upreg-
ulation of NADPH oxidase enzymes have pivotal roles. 
NADPH oxidase enzymes including NOXs and DUOX1-2 
are H2O2-producing enzymes with abilities to stimulate 
continuous oxidative damage and genomic instability 
for a long time after exposure. However, recent studies 
have highlighted the roles of these enzymes in other con-
sequences of exposure to radiation such as pneumonitis, 
fibrosis and vascular injury. With regard to the role of 
NADPH oxidase in radiation-induced oxidative stress, it is 

Fig. 3   Mechanisms of radiation-induced bystander/non-targeted effect
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possible to detect involvement of some other sub-families 
of NADPH oxidase in radiation injury after some years. 
This is very vital for normal tissue regeneration in the 
abdominal or cardiovascular systems.

In recent years, numerous studies have indicated that 
epigenetic modulators play a key role in redox induced 
normal tissue injury following exposure to ionizing radia-
tion. Upregulation of some immune mediators such as 
TGF-β and free radicals stimulates the expression of vari-
ous miRNAs. For example, TGF-β, which has a direct 
relationship with radiation dose and oxidative damage, 
upregulates the expression of miRNA21. On the other 
hand, miRNA21 can suppress SOD activity, resulting in 
the amplification of oxidative damage induced by inflam-
matory mediators. The interaction of ionizing radiation, 
inflammation and epigenetic modulators is very compli-
cated and requires further studies to illustrate this compli-
cated interrelationship between them.

Despite the complicated interrelationships between 
these factors, it has been confirmed that all mentioned 
inflammatory mediators, free radicals and some epige-
netic modulators amplify each other, resulting in a posi-
tive feedback loop. During these interactions, free radicals 
continually attack genome and cell structure. In addition, 
oxidative damage changes the expression of various genes 
involved in the long-term detrimental effects of radiation. 
Modulation of ROS production from these interactions has 
been shown to ameliorate lethality, pathological damages 
as well as genomic instability. Hence, the management of 
each of these enzymes depends on the irradiated organs. 
Moreover, knowledge of the mechanisms of redox activa-
tion in each organ can help in the production of novel 
radioprotectors and mitigators with higher efficacy.
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