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Abstract

In this work, we show how a profound theoretical understanding of a seemingly exotic
phenomenon, namely the influence of metal structures on fluorescence lifetimes, has lead
to the development of a microscopy technique with outstanding z-resolution that is based
on a completely different physical concept than other optical super-resolution methods.
The first part of this work is dedicated to classical electrodynamics. In particular,
the radiation properties of oscillating electric dipoles are derived in both planar and
spherical geometries. An interpretation of these results in quantum-mechanical terms is
then used to quantitatively describe the change of fluorescence lifetimes in the vicinity
of metal nanostructures. The power of this semi-classical approach is demonstrated in
the second part of this work, where metal-induced energy transfer (MIET) microscopy
is employed to study several biological systems, and the fluorescence quantum yield of
dyes in different environments is determined via lifetime measurements in a nanocavity.
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Glossary of acronyms

ADR - angular distribution of radiation
dcMIET - dual-colour MIET
DOPE - 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
DMSO - dimethyl sulfoxide
DOPC - 1,2-dioleoyl-sn-glycero-3-phosphocholine
DPPE - 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine
DTF - distributed tail-fit
FLIM - fluorescence lifetime imaging microcopy
FRET - Förster resoncance energy transfer
hMSC - human mesenchymal stem cell
INM - inner nuclear membrane
IRF - instrument response function
MIET - metal-induced energy transfer
nMuMG - a specific mouse mammary gland epithelial cell line
NPC - nuclear pore complex
ONM - outer nuclear membrane
PAINT - points accumulation for imaging in nanoscale topography
PALM - photoactivated localization microscopy
PBS - phosphate-buffered saline
PSF - point spread function
PW - plane wave
QY - quantum yield
RI - refractive index
SMLM - single-molecule localization microscopy
SSR - sum of squared residuals
STORM - stochastic optical reconstruction microscopy
STED - stimulated emission depletion
VA-TIRFM - variable-angle total internal reflection fluorescence microscopy
VSH - vector spherical harmonic
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1 Introduction

Without doubt, light is one of the most fascinating natural phenomena. Sight is our
most important sense, and light is what lets us discover the world – from the macroscopic
realm of the stars via our everyday world down to the microcosmos with its myriad of
stunning inhabitants. It is therefore not surprising that humans have long been striving
to understand light and to apply it to a variety of purposes. Over the course of the
last two centuries, significant progress has been made in both fields. The description of
light as electromagnetic waves, together with a comprehensive theory of these waves,
has enabled the modeling of light and light sources in different situations, including
the radiation properties of single luminescent molecules. On the experimental side,
one of the most important applications is light microscopy. Continuous advances have
pushed the size of the smallest observable structures down to a few nanometers, allowing
scientists to gain insights into the components that make up living beings. Here, where
physics, biology and medicine overlap, numerous exciting questions are waiting to be
answered.
This work aims to explain the electrodynamic framework used to model the properties
of single-molecule emitters, and to demonstrate a range of applications in the context of
optical microscopy. In order to introduce the reader to this vast field, a brief history of
optics and electromagnetics is given, demonstrating their joint importance for modern
microscopy in general and the techniques presented in this work in particular. This is
followed by a summary of state-of-the-art optical super-resolution techniques to provide
context for the applications presented later. A short outline of the structure of this
work concludes this chapter.

Some of the earliest known theories about the nature of light are more than 2500
years old, dating back to ancient Greece and ancient India. The topic was studied
with renewed vigour in the Age of Enlightenment, resulting in the formulation of two
competing theories: Christiaan Huygens believed light was a wave [10], while Issac
Newton suggested that light consisted of a stream of fast particles [11]. These theories
co-existed for roughly one hundred years, until a series of experiments provided strong
arguments for the wave nature of light. These experiments, which were conducted
and interpreted by Thomas Young, François Arago, Augustin-Jean Fresnel and others,
included interference (the ability of waves to locally amplify or cancel each other) and
diffraction (the appearance of distinct patterns also in the geometrical shadow when a
wave encounters an obstacle). Arguably the most important contribution came from
James Clerk Maxwell. In 1862, he was able to link optics to another emerging field of
physics: electrodynamics.
While both magnetic and electric phenomena had been known for centuries, it was
only in 1820 that Hans Christian Oersted discovered that electric currents can move a
magnetic needle [12]. This finding signaled the birth of electromagnetics, a field which
subsequently attracted much attention, for example by André-Marie Ampère, Michael
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Faraday and William Thomson (see e.g. [13] for a historical overview). Inspired by these
works, Maxwell formulated a set of equations which provided a relation between static
and dynamic electric and magnetic fields, as well as electric charges and currents, and
which are – in a slightly modified form – today known as Maxwell’s equations. From
these equations, Maxwell derived transverse waves that propagate with a finite velocity,
which he found to be very similar to experimentally obtained values for the speed
of light. He concluded that “light consists in the transverse undulations of the same
medium which is the cause of electric and magnetic phenomena” [14]. The existence
of these electromagnetic waves in air was shown by Heinrich Hertz in 1888, seemingly
verifying Maxwell’s theory. In the same theoretical framework, Hertz was able to predict
the electric field of an oscillating dipole, a model that can explain such diverse systems
as television antennas and single light-emitting molecules. This framework is the basis
on which all modern calculations of electromagnetic fields are performed, including the
work presented here.
However, there were also some experiments which contradicted Maxwell’s theory. The
most prominent of these is the photoelectric effect, where it was found that the maximum
velocity of electrons emitted from an illuminated material depends on the wavelength
rather than the intensity of the light. Another mystery that could not be explained
classically was Stoke’s law of fluorescence. A fluorescent substance can absorb light
of one wavelength, followed by emission of light of a different wavelength. Stoke’s law
states that the emitted light always has a longer wavelength than the absorbed light.
In 1905, Albert Einstein explained both effects by suggesting that light consists of
discrete wave packets, nowadays called photons, whose energy E can only taken on
discrete values that are determined by the wavelength λ of the light, E = h/λ with a
constant h [15]1. In 1921, Einstein was awarded the Nobel Prize in Physics for this
work. Today, the apparent contradiction of Maxwell’s and Einstein’s explanations is
called the wave-particle duality : Neither of the two concepts “wave” or “particle” can
explain all effects by itself because light displays characteristics of both.
Parallel to the advances in electrodynamics, the study of optical phenomena was
furthered by the improvement of optical instruments, such as optical microscopes.
However, as Ernst Abbe proved in 1873, even a perfect microscope cannot resolve
illuminated objects that are closer than a certain minimal distance [17], which is called
the diffraction limit. The same is true for small light sources, such as fluorescent
molecules, whose image can never be an infinitesimal point but is always spread out
in space. The three-dimensional intensity distribution that is generated by imaging
a point-source through an optical microscope is called the instrument’s point spread
function (PSF). For a standard widefield microscope, the diameter of the PSF in the
plane perpendicular to the optical axis is close to the wavelength of the light. Typically,
the axial resolution is by approximately a factor of two worse than the lateral resolution.
Only recently, methods have been invented that can overcome the diffraction limit for
some specialized sample types. These include scattering samples (e.g. interferometric
scattering microscopy, [18]), reflecting samples (e.g. reflection interference constrast
microscopy, [19]) and fluorescent samples. The latter sample type has found the most

1 A concept that had been foreshadowed by Max Planck’s description of black-body radiation, where
he postulated that the energy of oscillators in a black body is quantized. Nevertheless, Planck himself
was a critic of the lightquantum hypothesis [16].
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widespread application due to the high specificity with which fluorescent labels can be
attached to structures of interest, and because it is possible to image labels fluorescing
at different wavelengths within the same sample. The importance of this field was widely
acknowledged when Eric Betzig, Stefan W. Hell and W. E. Moerner were awarded the
Nobel Prize in Chemistry in 2014 for “the development of super-resolution fluorescence
miscoscopy” [20].
The various super-resolution fluorescence microscopy techniques can be classified ac-
cording to the basic principle that allows them to circumvent the diffraction limit.
One class of techniques uses sophisticated methods to define the spatial distribution
of possibly excited fluorophores. Members of this class include stimulated emission
depletion (STED, [21, 22]), where the excited state of all molecules except those in a
very small volume is depleted by stimulated emission, thus determining where detected
fluorescence is originating, and variable-angle total internal reflection fluorescence mi-
croscopy (VA-TIRFM, e.g. [23, 24]), where axial super-resolution (10 nm to 20 nm) is
achieved by varying the excitation intensity along the optical axis and comparing the
measured fluorescence intensity with theoretical models. A second class consists of
interferometric techniques in which the sample is illuminated and/or observed from
both sides simultaneously using two opposing lenses (4Pi-microscopy and I5M, see
e.g. [25] for a comparison). Finally, a third class of techniques can be summarized as
single-molecule localization microscopy (SMLM). SMLM is based on the fact that the
center of the PSF – and thus the position of the emitter – can be determined with
much higher accuracy than the diameter of the PSF, provided that only one emitter is
active within a diffraction limited spot during the acquisition time of an image. Thus,
in order to study a densely labeled sample, sparse subsets of the labels have to be
activated, imaged and subsequently deactivated. This can be achieved in a variety
of ways, resulting in the existence of many SMLM methods, such as photoactivated
localization microscopy (PALM, [26]), stochastic optical reconstruction microscopy
(STORM, [27]), points accumulation for imaging in nanoscale topography (PAINT,
[28]), or direct STORM (dSTORM, [29]), to name just some.
All of these methods have their specific advantages and disadvantages, and are therefore
used side by side. Originally, PALM, STORM, dSTORM and PAINT only provided
an increased resolution perpendicular to the optical axis, while STED improved the
resolution along the optical axis, too, from approximately 500 nm to 100 nm [22], and was
later improved to yield an almost isotropic resolution of 20 nm to 30 nm (isoSTED, [30]).
However, already two years after their initial invention, SMLM techniques were extended
to the third dimension. This was achieved by designing a PSF that is asymmetric
along the optical axis (astigmatic imaging with 50 nm to 60 nm axial resolution [31],
helical wavefront shaping with 20 nm axial resolution [32]), by sampling different parts
of the PSF simultaneously (biplane imaging, 75 nm [33]), or by combining SMLM with
principles from the other classes of super-resolution methods (interferometric PALM,
10 nm to 20 nm [34], 4Pi-STORM, 3 nm to 7 nm [35]).
Most of the three-dimensional SMLM techniques mentioned so far obtain estimates
of the position of a fluorophore by measuring a two-dimensional intensity distribution
and fitting it to a known model. An alternative approach is to use different physical
observables for localization in the lateral and axial directions, namely the fluorescence
intensity for the former and the fluorescence lifetime for the latter. The fluorescence
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lifetime, also called excited state lifetime or simply lifetime, is the average time delay
between the absorption of a photon and the emission of fluorescence. As Edward
Purcell predicted in 1946 [36] and Karl-Heinz Drexhage showed experimentally in 1970
[37], the lifetime of a fluorophore is influenced by the presence of metals. Perhaps
surprisingly, this intrinsically quantum mechanical phenomenon can be described in
a precise quantitative manner by modeling the fluorophore as a classical oscillating
electric dipole and mapping classical to quantum mechanical quantities. Based on this
realization, metal-induced energy transfer (MIET) microscopy was devised, which allows
to obtain an axial resolution in the order of 2 nm to 4 nm [38–40]. Besides providing
axial super-resolution, metal-induced lifetime changes can also be used to determine the
fluorescence quantum yield of an emitter in a calibration-free measurement that does
not require any reference sample. The advancement of these two fruitful applications of
a seemingly obscure discovery from the 1970s to the thriving field of super-resolution
fluorescence microscopy was the main driving force behind this work.

This work is organized as follows: The next chapter introduces the relevant theory,
starting from Maxwell’s equations, presenting solutions using different basis functions
that are beneficial for different sample geometries, and deriving a number of quantities
for an oscillating dipole emitter. These derivations are accompanied by simulated
results, for example for the total energy emitted by an oscillating dipole close to various
nanostructures. Subsequently, the mechanisms governing fluorescence are explained,
followed by an introduction of possible techniques to measure fluorescence lifetimes
and a presentation of the theory of MIET. The third chapter focuses on the numerical
implementation of the theoretical concepts on a computer system, which entails the
approximation of analytical formulas by numerical algorithms as well as possible
numerical errors and the convergence behaviour of certain quantities. The fourth
chapter consists of two parts treating different applications of the concepts introduced in
the first chapters, namely MIET and quantum yield measurements using a nanocavity.
In both cases, specific experiments are supplemented by general considerations of factors
determining the accuracy of the respective technique. In the fifth chapter, the results
of this work are summarized and discussed. Finally, the appendix contains additional
figures, calculations, code excerpts, as well as a short overview of further projects which
were a part of this work but which would have gone beyond the scope of the main text.
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2 Theory

Modeling electrodynamics in the vicinity of metal nanostructures would not be possible
without a profound knowledge of the behaviour of electromagnetic fields in a variety of
situations. In practice, taking into account all the details of a system is often impossible.
For example, treating the interaction of an electric field with every single electron of a
metallic nanostructure is not feasible. Instead, the properties of the metal are contained
in macroscopic, averaged quantities such as the refractive index. Furthermore, we
neglect the fact that “plane surfaces” always have some finite surface roughness, that
“spherical particles” are never perfect spheres, and that an “infinite halfspace” usually
does end somewhere. Within this idealized framework, an astonishing number of effects
can be modeled. The good agreement between theory and experiment that is shown in
chapter 4 proves that these simplifications allow to explain experimental results to a
satisfying degree of accuracy.
This chapter starts by introducing the fundamental equations on which all further
derivations are based. Different types of solutions that are advantageous for certain
geometries are presented in section 2.1, together with ways to switch between these
representations. Section 2.2 introduces the electric dipole emitter, the most important
energy source for this work. In the subsequent section 2.3, the influence of nanostructures
on electric fields is derived. This also has an impact on the energy transported by the
electromagnetic field, as will be shown in section 2.4. Finally, in section 2.5, classical
electromagnetics and some quantum mechanical aspects are combined to describe
fluorescence, a phenomenon that allows many interesting applications. Well-known facts
have been kept short, instead, more attention is given to aspects that are found less
often in standard textbooks. While this chapter presents the relevant theory, concrete
numerical implementations of some of the more complicated expressions can be found
in chapter 3. Since many relations contain infinite sums and integrals, convergence
is an important practical aspect. This, too, is discussed in the chapter on numerical
implementation.

2.1 The wave equation and its solutions in different
coordinate systems

Many textbooks treat the fundamentals of optics and their applications, for example
[41–43], to name just a few. Most of these books use the International System of Units
(SI units), since it is the statutory unit system for commerce, administration, and also
measuring instruments, and therefore specifies the units of quantities measured in the
lab – be it an intensity in watt per square meter, or a current in ampere. However, this
system was only introduced in 1960, therefore all older texts still use the centimetre-
gram-second (cgs) unit system. Nowadays, many theoreticians working in the field of
optics still prefer the cgs system since the relevant equations are symmetric (electric
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and magnetic field have the same units) and the somewhat artifical constants ε0 and
µ0 (vacuum permittivity and permability, respectively) are not needed anymore. The
only non-dimensionless constant appearing in the context of electromagnetics in the
cgs system is the speed of light in vacuum, which seems intuitive considering that we
want to describe light. Using a different unit system changes the numerical values, but
not the general structure of the solutions. Furthermore, for the techniques explained in
this work, it is often sufficient to calculate relative changes in electric fields for different
situations. Therefore, cgs units are used throughout this work.

2.1.1 The wave equation

In a medium with relative permittivity ε and relative permeability µ, charge density
ρ and electric current density j, the electric field E and the magnetic field B obey
Maxwell’s equations :

∇ · (εE) = 4πρ

∇ ·B = 0

∇×E = −1

c

∂B

∂t

∇×
(
B

µ

)
=

1

c

∂(εE)

∂t
+

4π

c
j .

(2.1)

(2.2)

(2.3)

(2.4)

Here, c is the speed of light in vacuum. Taking the curl of equation (2.3) leads to

∇(∇ ·E)−∇2E = ∇× (∇×E) = −1

c

∂(∇×B)

∂t
. (2.5)

If the medium is isotropic, homogeneous and linear, that is if ε and µ are scalars,
spatially invariant and independent of the magnitudes of E and B, they can be placed
before the derivatives. In the absence of free charges or currents (ρ = 0, j = 0),
substituting equations (2.1) and (2.4) on the left and right side, respectively, results in
the wave equation

∇2E − εµ

c2

∂2E

∂t2
= 0 . (2.6)

By starting with equation (2.4) instead, an identical equation can be derived for B:

∇2B − εµ

c2

∂2B

∂t2
= 0 . (2.7)

It is convenient to define the refractive index n of the medium via

n :=
√
εµ . (2.8)

Then, the speed of light in the medium is given by cn := c/n. In practice, we only work
with materials where µ is very close to one, which is why µ is omitted in the following.
Since both equations (2.6) and (2.7) are linear in E and B, any linear combination of
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2.1 The wave equation and its solutions in different coordinate systems

solutions is a solution, too. Therefore, it is useful to find sets of solutions {fi(r, t)}
that fulfill the following criteria:

1. The {fi(r, t)} are a complete set of orthogonal functions, and can thus be used
to express any possible solution of the wave equation.

2. For certain geometries, the {fi(r, t)} facilitate calculations of interactions of the
field with boundaries between different materials.

In the following, we will introduce two such sets of solutions, plane waves and vector
spherical harmonics, and explain in which situations they can be applied profitably.

2.1.2 Plane waves

Plane waves are defined as

A(r, t) = A0 eik·r−iωt, (2.9)

where the amplitude A0 defines both the magnitude |A0| and the polarization A0/|A0|
of the field, and A can be either the electric field E or the magnetic field B. The
frequency f of the field’s oscillation at a fixed point is related to the angular frequency
ω via ω = 2πf . Both ω and f are constant in all media, including vacuum. The vector
k is called the wave vector, it points in the direction of propagation, while its magnitude
is related to the wavelength λ via k = |k| = 2π/λ. Finally, the speed of light in the
medium connects the other quantities by cn = fλ = ω/k.
Inserting this solution into Maxwell’s equations in the absence of free charges and
currents leads to

k ·E0 = 0 , k ×E0 =
ω

c
B0 ,

k ·B0 = 0 , k ×B0 = −n
2ω

c
E0 . (2.10)

Thus, both E0 and B0 are perpendicular to the wave vector k and to each other. Since
k = ω/cn = nω/c, the two equalities in the right column imply that the magnitudes of
E0 and B0 fulfill B0 = nE0.
To sum up, plane waves are characterized by infinitely extended planes of constant phase
which propagate along the wave vector k. At any fixed point, electric and magnetic
field oscillate perpendicular to k and to each other. Together, these oscillating fields
are called electromagnetic waves.

2.1.3 Vector spherical harmonics

Samples consisting of nanospheres have a spherical geometry. Plane waves, which, as
the name suggests, have a planar symmetry, are not the best choice for this situation.
Instead, we are now interested in a set of solutions with spherical symmetries. While
plane waves are known to almost everyone in the field of optics, this second set of
solutions is less common and will thus be treated in more detail. A number of approaches
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to introducing vector spherical harmonics (VSH) can be found in the literature; we base
this section on [44], chapter 4. We start by demanding that these functions, like plane
waves, give monochromatic solutions, i.e. we assume that the electric field has the form
E(r) exp(−iωt). Inserting this in the wave equation (2.6) leads to the time-independent
vector wave equation

∇2E + k2E = 0 , (2.11)

which is also known as the Helmholtz equation. As an ansatz, suppose we already know
a scalar function ψ(r) that is a solution to the scalar wave equation

∇2ψ(r) + k2ψ(r) = 0 (2.12)

and use this to define

M (r) := ∇× (rψ) = ψ∇× r − r ×∇ψ = −r ×∇ψ . (2.13)

It now remains to show that M is a solution to the time-independent vector wave
equation (2.11). We find the relation

∇×M = ∇× (∇× rψ)

= ∇(∇ · rψ)−∇2(rψ)

= ∇(∇ · rψ)− r∇2ψ − 2∇ψ . (2.14)

Since the divergence of the curl of a vector is zero, ∇ ·M = 0. This leads to

∇2M = ∇(∇ ·M)−∇× (∇×M)

= −∇× (∇×M)

(2.14)
= −∇×

[
∇(∇ · rψ)− r∇2ψ − 2∇ψ

]
= ∇× (r∇2ψ), (2.15)

where the last step used the fact that the curl of the gradient of a differentiable function
is zero. Now we exploit that ψ is a solution of the scalar wave equation (2.12) to get

∇2M = −∇× (rk2ψ)

= −k2M , (2.16)

Thus we have found the desired solution to the vector wave equation. We can now
define another zero-divergence vector field

N (r) :=
1

k
∇×M . (2.17)

As can be seen from equations (2.15) and (2.16),

∇×N =
1

k
∇× (∇×M ) = −1

k
∇2M = kM . (2.18)
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2.1 The wave equation and its solutions in different coordinate systems

This symmetry will be used many times in this work. For excample, we can use it to
show that N is also a solution of the vector wave equation:

∇2N = −∇× (∇×N )

= −k∇×M
= −k2N . (2.19)

However, in order to find concrete formulations for M and N , we still have to determine
the function ψ(r) that solves the scalar wave equation (2.12). As mentioned at the
beginning of this section, we are interested in a solution with spherical symmetries.
Thus, we express the scalar wave equation (2.12) in spherical coordinates (r, θ, ϕ):

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
+ k2 = 0 . (2.20)

We can find a solution of the form

ψ(r, θ, ϕ) = R(r)P (θ) Φ(ϕ) (2.21)

by doing the following: First, we demand that

∂2Φ

∂ϕ2
+m2Φ = 0 , (2.22)

which has the solution
Φm(ϕ) = eimϕ . (2.23)

In general, m can be any number. However, in any physically meaningful solution
of Maxwell’s equations, the substitution ϕ → ϕ + 2π must not change the value of
ψ. Therefore, m has to be an integer (positive or negative). The functions Φm are
orthogonal in the sense that∫ 2π

0

Φm(ϕ)Φm′(ϕ)dϕ =

∫ 2π

0

ei(m−m
′)ϕdϕ = 2πδm,m′ , (2.24)

where the bar means taking the complex conjugate and δm,m′ is the Kronecker delta.
As the next step, we demand that

1

sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+

(
`(`+ 1)− m2

sin2 θ

)
P = 0 . (2.25)

For given integers ` ≥ 0 and m2 ≤ `2, this equation is solved by the so-called associated
Legendre polynomials Pm

` (cos θ). For m ≥ 0, Pm
` (cos θ) can be defined using Rodrigues’

formula for ordinary Legendre polynomials P`(cos θ)

Pm
` (cos θ) = (−1)m sinm θ

dm

d cos θm
P`(cos θ)
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=
(−1)m

2``!
sinm θ

d`+m

d cos θ`+m
(cos2 θ − 1)` , (2.26)

which immediately shows that P 0
` = P`, P

1
` = dP`/dθ and Pm

` = 0 for m > `. The
polynomial P−m` obtained by substituting m in the above equation by −m obeys1

P−m` (cos θ) = (−1)m
(`−m)!

(`+m)!
Pm
` (cos θ) . (2.27)

These functions are orthogonal for fixed m in the sense that ([45], chapter 10, p. 1326)∫ π

0

Pm
` (cos θ)Pm

`′ (cos θ) sin(θ)dθ =
2(l +m)!

(2l + 1)(l −m)!
δ`,`′ . (2.28)

At this point, we combine both angular functions to get the so-called spherical harmonics
Y`m(θ, ϕ),

Y`m(θ, ϕ) := c`mP
m
` (cos θ)eimϕ with c`m :=

√
(2`+ 1)(`−m)!

4π(`+m)!
. (2.29)

The normalization constant c`m ensures the orthogonality of the spherical harmonics:
Using the orthogonality relations of Φm and Pm

` we see that∫ 2π

0

dϕ

∫ π

0

sin θ dθ Y`m(θ, ϕ)Y`′m′(θ, ϕ) = δ``′ δmm′ . (2.30)

Figure 2.1 illustrates the real part of the first few spherical harmonics. It can be seen
that Y`m has ` nodal planes2, and that for fixed ϕ, there are `− |m| zero-crossings as θ
is varied from 0 to π. By inserting our results for Φm(ϕ) and Pm

` (cos θ) into the ansatz
(2.21), equation (2.20) simplifies to

1

r2

∂

∂r

(
r2∂R

∂r

)
+

(
k2 − `(`+ 1)

r2

)
R = 0 . (2.31)

This second order differential equation is solved by two sets of functions, the spherical
Bessel and Neumann functions

j`(kr) =

√
π

2kr
J`+ 1

2
(kr) and n`(kr) =

√
π

2kr
N`+ 1

2
(kr) (2.32)

1 The differential equation satisfied by Pm` is a second order differential equation, therefore the
general solution is a linear combination of two linearly independent functions. However, the second
class of solutions, the associated Legendre polynomials of the second kind Qm` (cos θ), are divergent
at θ = {0, π}, which our solution to Maxwell’s equations should not be. Thus we can assume
that P−m` is proportional to Pm` . By equating the coefficients of the highest powers of x in

d`−m/dx`−m(x2 − 1)` = c(1− x2)md`+m/dx`+m(x2 − 1)l, one arrives at the formula given above.
2 Or nodal cones, in the case of m = 0.
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` = 1

` = 2

m = −2 m = 3m = −3 m = −1 m = 0 m = 1 m = 2

` = 3

xy

z

θ
φ

Figure 2.1: Illustration of the real part of the first spherical harmonics Y`m for ` = 1, 2, 3
and m = −`, . . . , `. The distance from the origin in the direction (θ, ϕ) corresponds to
|Y`m(θ, ϕ)|, while the colour encodes Y`m(θ, ϕ). All plots have been normalized to ±1,
blue corresponds to negative and yellow to positive values.

with the Bessel and Neumann functions

J`(kr) =
∞∑
a=0

(−1)a

a! Γ(a+ `+ 1)

(
kr

2

)2a+`

=
1

2π

∫ π

−π
ei(`τ−kr sin(τ)) dτ

and N`(kr) =
J`(kr) cos(`π)− J−`(kr)

sin(`π)
. (2.33)

Any linear combination of these is a solution, too. Two particular linear combinations
are the spherical Hankel functions of the first and second kind:

h
(1)
` (kr) = j`(kr) + in`(kr) and h

(2)
` (kr) = j`(kr)− in`(kr) . (2.34)

Later on, we will see that different combinations of these four function sets are needed
to fulfill special boundary conditions. A first hint is given by the behaviour of j`(kr)
and y`(kr) shown in figure 2.2. For small kr, the spherical Bessel function tends to
zero, while the spherical Neumann function diverges. Thus, the boundary condition of
a finite result at the origin is satisfied by R(r) = j`(kr). On the other hand, for large
kr, both j`(kr) and y`(kr) are bounded by ±(kr)−1, and oscillate with the cosine and
sine of the same argument ([46], §19):

j`(kr)
kr�1−→ 1

kr
cos
[
kr − (`+ 1)

π

2

]
y`(kr)

kr�1−→ 1

kr
sin
[
kr − (`+ 1)

π

2

]
. (2.35)

Therefore, R(r) = h
(1)
` (kr) has the form of outgoing spherical waves ∝ exp(ikr)/kr

for large kr. That is why this function is used for the far field of dipole emitters (see
section 2.2.2).
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Figure 2.2: Spherical Bessel and Neumann functions j` and y` for ` = 1− 4. For large
arguments, the functions converge to j`(kr) → cos[kr − (` + 1)π/2]/kr and y`(kr) →
sin(kr − (`+ 1)π/2]/kr. For small arguments, j` goes to zero, while y` tends to negative
infinity.
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2.1 The wave equation and its solutions in different coordinate systems

To sum up, we have found a solution to the scalar wave equation in spherical coordinates
(2.20) that has the form

ψ`m(r, θ, ϕ) = Y`m(θ, ϕ)f`(kr) with f` = j`, y`, h
(1)
` , h

(2)
` or linear comb. (2.36)

and that is orthogonal in the sense that∫ 2π

0

dϕ

∫ π

0

sin θ dθ ψ`m(r, θ, ϕ)ψ`′m′(r, θ, ϕ) = δ``′δmm′|f`(kr)|2 . (2.37)

We can now explicitly write M and N by inserting the function ψ`m in equations (2.13)
and (2.17),

M (r) = −r ×∇ψ (2.13)

N (r) =
1

k
∇×M . (2.17)

To do this, we first need the gradient in spherical coordinates:

∇ψ =
∂ψ

∂r
êr +

1

r

∂ψ

∂θ
êθ +

1

r sin θ

∂ψ

∂φ
êϕ , (2.38)

where the position-dependent unit vectors êr, êθ, êϕ at the point r = (r, θ, ϕ) are
defined as

êr(r) =

sin θ cosϕ
sin θ sinϕ

cos θ

 , êθ(r) =

cos θ cosϕ
cos θ sinϕ
− sin θ

 , êϕ(r) =

− sinϕ
cosϕ

0

 , (2.39)

see also figure 2.3. With r = rêr, êr × êr = 0, êr × êθ = êϕ and êr × êϕ = −êθ we get

M f
`m(r, θ, ϕ) = −r ×∇ψf`m = c`m

(
im

sin θ
Pm
` êθ −

∂Pm
`

∂θ
êϕ

)
f`(kr) eimϕ . (2.40)

To find N , we use the curl in spherical coordinates:

∇×M =
1

r sin θ

[
∂

∂θ
(Mϕ sin θ)− ∂Mθ

∂φ

]
êr +

[
1

r sin θ

∂Mr

∂φ
− 1

r

∂

∂r
(rMϕ)

]
êθ

+
1

r

[
∂

∂r
(rMθ)−

∂Mr

∂θ

]
êϕ. (2.41)

This leads to

N f
`m =

1

kr

(
− 1

sin θ

∂

∂θ

[
sin θ

∂ψ`m
∂θ

]
+

m2

sin2 θ
ψ`m

)
êr

+
1

kr

∂

∂r

(
r
∂ψ`m
∂θ

)
êθ +

1

kr

∂

∂r

(
r
im

sin θ
ψ`m

)
êϕ
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êθ

êϕ
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z

Figure 2.3: Unit vectors for spherical coordinates. (a) Definition of êr, êθ, êϕ and the
relevant angles θ, ϕ. (b) The unit vectors are position-dependent.

=

{
`(`+ 1)

f`
kr
Pm
` êr +

1

2

(
f`−1 +

f`
kr
− f`+1

)[
∂Pm

`

∂θ
êθ +

im

sin θ
Pm
` êϕ

]}
c`meimϕ,

(2.42)

where we used the fact that Pm
` satisfies equation (2.25) and inserted the recurrence

relation ([45], chapter 11, p. 1574)

∂f`(ξ)

∂ξ
=

1

2

(
f`−1(ξ) − f`(ξ)

ξ
− f`+1(ξ)

)
⇒ ∂

∂r
[rf`(kr)] =

kr

2

(
f`−1(kr) +

f`(kr)

kr
− f`+1(kr)

)
. (2.43)

Since the expressions for M f
`m and N f

`m are rather long, it seems reasonable to introduce
some shorthand notation. As will become obvious in the section on the numerical
implementation (see 3.3), it is convenient to define

π`m(θ) := c`m
m

sin θ
Pm
` (cos θ) ,

τ`m(θ) := c`m
dPm

` (cos θ)

dθ
= −c`m sin θ

∂Pm
` (cos θ)

∂ cos θ
,

and γ`m(θ) := c`m`(`+ 1)Pm
` (cos θ) . (2.44)
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2.1 The wave equation and its solutions in different coordinate systems

With this, we have

M f
`m(kr, θ, ϕ) = (iπ`m(θ)êθ − τ`m(θ)êϕ) f`(kr)e

imϕ

and N f
`m(kr, θ, ϕ) =

[
{τ`m(θ)êθ + iπ`m(θ)êϕ}

1

kr

d[rf`(kr)]

dr

+γ`m(θ)êr
f`(kr)

kr

]
eimϕ.

(2.45)

(2.46)

We started this chapter by claiming that we were going to introduce complete orthogonal
function systems for the vector space of solutions of the wave equation. The proof of
the orthogonality of M`m and N`m is quite lengthy, it can be found in section 6.1.1 in
the appendix. The main results of the calculations are:∫ 2π

0

dϕ

∫ π

0

dθ M f
`m ·N

g
`′m′ sin θ = 0 , (2.47)∫ 2π

0

dϕ

∫ π

0

dθ M f
`m ·M

g
`′m′ sin θ = δl,l′ δm,m′ `(`+ 1) f`(kr)g`(kr) , (2.48)

and

∫ 2π

0

dϕ

∫ π

0

dθ N f
`m ·N

g
`′m′ sin θ = δ`,`′ δm,m′

1

(kr)2

·
{
`2(`+ 1)2f`g` + `(`+ 1)

∂

∂r
(rf`)

∂

∂r
(rg`)

}
. (2.49)

Contrarily to what we demanded at the beginning of the chapter, the function set
M f

`m,N
f
`m is actually not complete on the space of all three-dimensional complex-valued

functions. It is, however, complete on the subspace of functions with zero divergence
[45]. Since we assume homogeneous media without presence of any surface charges, the
first of Maxwell’s equations is ∇ ·E = 0 and thus the electrical field is an element of
this subspace. Therefore, we can decompose E into VSH.

2.1.4 Conversion between PW and VSH

Now that both plane waves and vector spherical harmonics have been introduced, we
want to show that they can be converted into each other. This will become important
when experimental situations combine both planar and spherical elements. One can
show ([47], p. 416) that

M j
`m(r) =

1

4πi`−1

∫ π

0

dθ′
∫ 2π

0

dϕ′ sin θ′ [π`m(θ′)êp + iτ`m(θ′)ês] eimϕ
′+ik′·r ,

N j
`m(r) =

1

4πi`−1

∫ π

0

dθ′
∫ 2π

0

dϕ′ sin θ′ [τ`m(θ′)êp + iπ`m(θ′)ês] eimϕ
′+ik′·r .

(2.50)

(2.51)
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The unit vectors êp and ês correspond to so-called p- and s-waves, plane waves with a
particular polarization that will be described in more detail in section 2.3.1. For now,
it suffices to know the definitions

êp :=

cos θ cosϕ
cos θ sinϕ
− sin θ

 and ês :=

− sinϕ
cosϕ

0

 . (2.52)

The fomulas (2.50) and (2.51) are conveniently evaluated for r in cylindrical coordinates,
r = (ρ cosϕ, ρ sinϕ, z), then k′ ·r = k′ sin θ′ρ cos(ϕ′−ϕ)+k′ cos θ′z. The ϕ′-integration
can be carried out analytically with the help of the definition of the Bessel function [46],

J`(ξ) =
1

2π

∫ a+2π

a

dϕ′eiξ cosϕ′
ei`(ϕ

′−π
2

) with arbitrary a, (2.53)

which also implies that:∫ 2π

0

dϕ′eimϕ
′
eiξ cos(ϕ′−ϕ) =

∫ 2π−ϕ

−ϕ
dzeim(z+ϕ)eiξ cos(z)

= 2πJm(ξ) eimϕ im . (2.54)

With the abbreviation ξm := imJm(k′ sin θ′ρ) exp(imϕ), that leads to the relations

pm(θ′, ρ, ϕ) :=
1

π

∫ 2π

0

dϕ′êpe
imϕ′+ik′ sin θ′ρ cos(ϕ′−ϕ) =

 cos θ′(ξm+1 + ξm−1)
−i cos θ′(ξm+1 − ξm−1)

−2 sin θ′ξm

 ,

sm(θ′, ρ, ϕ) :=
1

π

∫ 2π

0

dϕ′êse
imϕ′+ik′ sin θ′ρ cos(ϕ′−ϕ) =

i(ξm+1 − ξm−1)
ξm+1 + ξm−1

0

 . (2.55)

Equations (2.45) and (2.46) can then be transformed to:

M j
`m(ρ, ϕ, z) =

1

4i`−1

∫ π

0

dθ′eik
′ cos θ′z [π`m(θ′)pm(θ′, ρ, ϕ) + iτ`m(θ′)sm(θ′, ρ, ϕ)] ,

(2.56)

N j
`m(ρ, ϕ, z) =

1

4i`−1

∫ π

0

dθ′eik
′ cos θ′z [τ`m(θ′)pm(θ′, ρ, ϕ) + iπ`m(θ′)sm(θ′, ρ, ϕ)] .

(2.57)

Two exemplary plane-wave decompositions of vector spherical harmonics are shown
in figure 2.4, namely M j

4,1 and N j
1,−1. These particular exampls were chosen to

illustrate again that the number of symmetry planes rises with ` and is different for
each component. Since the functions are evaluated in the x-z-plane, ϕ = 0 in the
right halves of the plots and ϕ = π in the left halves. Thus, the exponential functions
exp(imϕ) are real, which means that ξm is real for even m and imaginary for odd m.
This results in purely real or purely imaginary components of pm and sm, where a real
pm,x is always paired with an imaginary sm,x and vice versa (and the same for y and z).

24



2.1 The wave equation and its solutions in different coordinate systems

analytical

PW

analytical

PW

analytical

PW

-0.35 0.2 -0.35 0.35 -0.1 0.1
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Figure 2.4: Plane-wave decompositions of different VSH. The x-, y- and z-component of
M j

`m and N j
`m are either purely real or purely imaginary, shown is always the nontrivial

part in the x-z-plane. The top left corner depicts the analytical result according to
equations (2.45,2.46), the bottom right corner the PW decomposition (2.56,2.57) (integral
over 250 evenly spaced θ′-values between 0 and π, analytical ϕ′-integration, difference
between analytical result and PW decomposition on the order of 10−6). Note the excellent
agreement between analytical result and PW decomposition.

It follows from the formulas (2.56) and (2.57) that the x-, y- and z-components of each
VSH are either purely real or purely imaginary. Figure 2.4 only shows these nontrivial
components.
If the boundary conditions require the use of spherical Hankel functions instead of
spherical Bessel functions, the PW decomposition becomes slightly more complicated.
Mathematically, it is possible to change an integral representation of j` to an integral
representation of h` by changing the integration path in the complex plane, see e.g.
[45], §5.3. Physically, this can be justified as follows: While spherical Bessel functions
are finite everywhere, spherical Hankel functions diverge at zero. This necessitates
the inclusion of evanescent waves in the decomposition. Furthermore, as mentioned
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in the previous section, spherical Hankel functions approach spherical waves for large
arguments ([46], §19):

h`(kr)
kr�1−→ 1

kr
eikr−i(`+1)π/2 . (2.58)

Intuitively, this can be realized by only using plane waves moving away from the origin
in the decomposition. In practice, this would mean only using k with θ′ ∈ [0, π/2] for
z > 0 and θ′ ∈ [π/2, π] for z < 0. Similarly, evanescent waves with decreasing amplitude
for longer distances from the origin are given by θ′ = π/2 + iθ′′, θ′′ ∈ [−∞, 0] for z > 0
and θ′′ ∈ [0,∞] for z < 0. A comparison with the asymptotic form of the spherical
Bessel function ([46], §19)

j`(kr)
kr�1−→ 1

kr
cos
(
kr − (`+ 1)

π

2

)
=

1

2kr

(
eikr−i(`+1)π/2 + e−ikr+i(`+1)π/2

)
(2.59)

shows that the functions do not only differ in the plane waves that are needed, but also
in a prefactor of two. These thoughts result in the PW decompositions

Mh
`m(ρ, ϕ, z) =

1

2i`−1

∫
C

dθ′eik
′ cos θ′z [π`m(θ′)pm(θ′) + iτ`m(θ′)sm(θ′)] ,

Nh
`m(ρ, ϕ, z) =

1

2i`−1

∫
C

dθ′eik
′ cos θ′z [τ`m(θ′)pm(θ′) + iπ`m(θ′)sm(θ′)] ,

with the path C =

{
0→ π/2→ π/2− i∞ for z > 0
π/2 + i∞→ π/2→ π for z < 0

.

(2.60)

(2.61)

These formulas, too, were implemented in Matlab. Since it is not possible to integrate
to infinity numerically, a cutoff T has to be chosen for the imaginary part of θ′, i.e.
Im(θ′) ∈ [−T, 0] (or [0, T ] for z < 0). The PW decompositions of the same functions
M4,1 and N1,−1 as before, but now with h instead of j, are presented for T = 20 in
figure 2.5. As explained above, for M j

`m and N j
`m, the x-, y- and z-components are each

either purely real or purely imaginary in the x-z-plane. Since h` = j` + iy`, changing
from spherical Bessel to Hankel functions only changes the previously zero real (or
imaginary) part. Thus, only this new result is shown in figure 2.5. The most striking
feature is the appearance of very large, rapidly oscillating values close to z = 0. We
call them ringing-artefacts, because this effect is similar to the Gibbs phenomenon
that causes ringing artefacts in signal processing (e.g. [48] §5.7). It is caused by the
evanescent waves, which have large values at z = 0 and then drop off quickly. To get
the correct result everywhere, one would have to include evanescent waves up to very
large imaginary part of θ′, and with a dense sampling. This is further investigated in
the chapter on the numerical implementation, 3.1.
The next step is to decompose a plane wave in vector spherical harmonics:

(Epêp + Esês) eik
′·r = 4π

∞∑
`=1

∑̀
m=−`

i`−1

`(`+ 1)
e−imϕ

′ ·(
[Epπ`m(θ′)− iEsτ`m(θ′)]M j

`m(r) + [Epτ`m(θ′)− iEsπ`m(θ′)]N j
`m(r)

)
. (2.62)
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2.1 The wave equation and its solutions in different coordinate systems

The derivation of the formula can be found e.g. in [49]. As before, dashed quantities
(θ′, ϕ′) describe the direction of the wavevector k′. Details on the convergence for a
finite approximation of the infinite sum are presented in section 3.1.
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Figure 2.5: Plane-wave decompositions of different VSH. Either the real or the imaginary
part of the x-, y- and z-component of Mh

`m (Nh
`m) is diverging at the origin. The other

part is finite everywhere and identical to the same part of the same component of M j
`m

(N j
`m), and therefore not shown here. The color range was restricted in order to make

the patterns better visible. The top left corner depicts the analytical result in the x-z-
plane according to equations (2.45,2.46), the bottom right corner the PW decomposition
(2.60,2.61) (integral over 250 evenly spaced θ′-values between 0 and π/2 and 200 evenly
spaced θ′-values between π/2 and π/2 + 20i for z > 0; π minus these angles for z < 0;
analytical ϕ′-integration). Note the appearance of atefacts near z = 0.
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2.2 Field of a dipole emitter

Remarkably, one can show [50] that most fluorescent dyes of practical interest can be
modeled as ideal electric dipole emitters3. Therefore, most of this work investigates the
behaviour of electric dipole emitters in different situations. In this section, we start
by deriving the electrical field of such an emitter. Imagine a point-dipole with dipole
moment p that is situated at the origin in a homogeneous material with refractive
index n and that oscillates with the angular frequency ω. It has zero net charge, but is
described by the current density j = −iωpδ(r) exp(−iωt). As in the previous sections,
we assume that the resulting electric and magnetic fields have the same time-dependence,
such that the physical fields Ephys, Bphys can be represented by their complex-valued
temporal Fourier coefficients E and B via

Ephys = Re
{
Ee−iωt

}
and Bphys = Re

{
Be−iωt

}
. (2.63)

With these prerequisites, the third and fourth of Maxwell’s equations read

∇×E = i
ω

c
B ,

∇×B = −iωn
2

c
E − 4π

c
iωpδ(r). (2.64)

Combined, this results in:

∇×∇×E =
n2ω2

c2
E +

4πω2

c2
pδ(r). (2.65)

In the following, we will present three different representations of E, namely a closed-
form solution, an expansion in vector spherical harmonics, and a decomposition of the
field in plane waves. In later chapters, it will become obvious how these different forms
can be adapted to describe the field of a dipole close to various kinds of nanostructures.

2.2.1 Closed-form solution

To find a closed-form solution, we solve equation (2.65) in Fourier space and then
perform the inverse Fourier transform. In order to avoid confusing the Fourier space
coordinate (arbitrary magnitude possible) with the wavevector used in the previous
sections (magnitude defined by the wavelength), we will use the Fourier space coordinate
u with magnitude u = |u|. Then, equation (2.65) transforms to

−u× u× Ẽ =
n2ω2

c2
Ẽ +

4πω2

c2
p, (2.66)

3 Or at least as an ensemble of such dipoles with different oscillation frequency and different dipole
strength but identical orientation if one wants to take into account the fluorescence spectrum.
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2.2 Field of a dipole emitter

where the tilde represents a Fourier transform. With the definition kv := ω/c and some
basic vector algebra, this can be rearranged to

u2Ẽ − u(u · Ẽ) = k2
v

(
n2Ẽ + 4πp

)
. (2.67)

By multiplying both sides with u, we find the expression

0 = n2u · Ẽ + 4πu · p. (2.68)

When inserting this back into equation (2.67), we arrive at the solution in Fourier space:

u2Ẽ +
4π

n2
u(u · p) = k2

v

(
n2Ẽ + 4πp

)
(2.69)

⇒ Ẽ =
4π

n2(u2 − n2k2
v)

[
n2k2

vp− u(u · p)
]
. (2.70)

As the next step, we have to perform the inverse Fourier transform to find the solution
in direct space:

E(r) =
4π

n2

∫
d3u

(2π)3

exp(iu · r)

u2 − n2k2
v

[
n2k2

vp− u(u · p)
]
. (2.71)

By recalling that ∇ · p exp(iu · r) = iu · p exp(iu · r) and ∇[∇ · p exp(iu · r)] =
−u[u · p exp(iu · r)] since the derivatives only act on r, not u, we can rewrite this as

E(r) =
4π

n2

[
n2k2

v +∇(∇·)
]
p

∫
d3u

(2π)3

exp(iu · r)

u2 − n2k2
v

. (2.72)

We will now solve this integral in spherical coordinates (u, θ, ϕ). The coordinate system
can always be chosen such that u · r = ur cos θ. Then, the integrand does not depend
on ϕ and the ϕ-integration simply gives a factor 2π. The expression left to evaluate is
then

1

(2π)2

∫ ∞
0

du

∫ π

0

dθ sin θ u2 exp(iur cos θ)

u2 − n2k2
v

=
1

(2π)2

∫ ∞
0

du

∫ 1

−1

d(cos θ) u2 exp(iur cos θ)

u2 − n2k2
v

=
1

ir(2π)2

∫ ∞
0

du u
exp(iur)− exp(−iur)

u2 − n2k2
v

=
1

ir(2π)2

∫ ∞
−∞

du u
exp(iur)

u2 − n2k2
v

. (2.73)

This integral can be closed in the upper halfspace of the complex u-plane without
changing its value because exp(iur) → 0 for Im{u} → ∞. Then, the integrand has
two poles, namely u = ±nkv. Taking into account the physical situation – a radiating
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dipole – only outgoing waves with positive u are reasonable. Thus, the integration path
C is deformed to exclude the pole u = −nkv. Cauchy’s residue theorem then yields

1

ir(2π)2

∮
C

du
u exp(iur)

(u− nkv)(u+ nkv)
=

π

r(2π)2
einkvr. (2.74)

Thus, we find for the electrical field:

E(r) =
1

n2

[
n2k2

v +∇(∇·)
]
p

exp(inkvr)

r
. (2.75)

Recalling the considerations from section 2.1.1, we see that kv = ω/c is the wavevector
in vacuum, and that nkv is the wavevector in the homogeneous medium. Thus, we
denote k = nkv. We will now carry out the partial derivatives explicitly to find a more
direct representation of the field. We start with

∇ ·
[
p

exp(ikr)

r

]
=

(
ik

r2
− 1

r3

)
(r · p) exp(ikr). (2.76)

For the gradient, consider the derivative with respect to any of the three components of
r:

∂

∂rj

(
ik

r2
− 1

r3

)
(r · p) exp(ikr) =

[
rj

(
−2ik

r4
+

3

r5

)
(r · p) +

(
ik

r2
− 1

r3

)
pj

+

(
ik

r2
− 1

r3

)
(r · p) ik

rj
r

]
exp(ikr) (2.77)

⇒ ∇ (∇·)
[
p

exp(ikr)

r

]
=

[(
ik

r2
− 1

r3

)
p+

(
−k

2

r3
− 3ik

r4
+

3

r5

)
r(r · p)

]
eikr

(2.78)

This leads to the final result:

ED(r) = nk3
v

[(
1 +

i

krd
− 1

(krd)2

)
p+

(
−1− 3i

krd
+

3

(krd)2

)
r̂d(r̂d · p)

]
exp(ikrd)

krd
,

(2.79)

where we now generalised for an arbitrary dipole position r0 by defining the vector
from the position of the dipole to the position where the field is evaluated, rd = r − r0,
with magnitude rd and direction r̂d. Some exemplary plots of the resulting field are
shown in figure 2.6 for dipoles oriented parallel to the x-, y- or z-axis.

2.2.2 VSH-decomposition

It is often advisable to decompose the dipole field into vector spherical harmonics in
order to satisfy boundary conditions imposed by the experimental setup. The derivation
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-1.0 1.0
Re(E)

p ‖ êx, Ex

p ‖ êy, Ey

p ‖ êz, Ex

p ‖ êx, Ez p ‖ êz, Ez

Figure 2.6: Real part of the electric field of an x-, y- or z-dipole situated at the origin,
with arbitrary amplitude. Shown are the VSH-versions from equation (2.82) but the
analytical version from equation (2.79) is identical within numerical accuracy. The field
components that are not shown are zero, the evaluation is done in the x-z-plane in the
interval [−4λ, 4λ].

is rather complicated, it can be found for example in Morse and Feshbach’s Methods of
Theoretical Physics [45], §13.34. The result is:

EVSH(r) =
∞∑
`=1

∑̀
m=−`

aD`mM
f
`m(kr) + bD`mN

f
`m(kr) (2.80)

with the expansion coefficients

aD`m =
4πink3

v

`(`+ 1)
p ·M g

`m(kr0) and bD`m =
4πink3

v

`(`+ 1)
p ·N g

`m(kr0) , (2.81)

where the bar denotes complex conjugation. This expansion is actually a piecewise-
defined function because the choice of f and g depends on r and r0: If r < r0, the VSH
need to be finite at the origin, and thus f = j`. Then, g = h2

` , which corresponds to

4 Note the different definition of VSH used by Morse and Feshbach: they omit the factor c`m.
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w−
w+

Re(w)

Im(w)

z > 0

z < 0

Figure 2.7: Path integrals used to integrate over w in equation (2.83). Note that the
blue path for z < 0 is taken clockwise and thus adds a negative sign to the result according
to Cauchy’s residue theorem.

incoming spherical waves5. On the other hand, if r > r0, the VSH ultimately have to
approximate outgoing spherical waves at very large r. Therefore, f = h1

` and g = j`.
By taking the limit r0 → 0, one finds very simple expansions for an x-, y- or z-dipole:

Ex-dipole = −ink3
vp

√
4π

3

1√
2

(
Nh1

1,1 −Nh1

1,−1

)
,

Ey-dipole = − nk3
vp

√
4π

3

1√
2

(
Nh1

1,1 +Nh1

1,−1

)
,

Ez-dipole = ink3
vp

√
4π

3
Nh1

1,0 . (2.82)

In other words, only ` = 1 is needed if the dipole is situated in the origin – which can
be a useful test case for different types of simulations. Several different orientations are
explored in figure 2.6. More useful for the evaluation of experimental data is certainly
the case that the dipole is not situated in the origin. Then, generally all VSH are
needed for replicating the analytical solution. Since it is not possible to sum infinitely
many terms on a computer, a truncation ` ≤ L has to be chosen for the numerical
evaluation. A study of the convergence behaviour can be found in section 3.1.

2.2.3 PW-decomposition

Last but not least, it is sometimes also necessary to express the electric field of a dipole
emitter by the other set of basis functions that we introduced earlier, namely plane
waves. For this, we return to the derivation of the analytical solution, but choose a
different evaluation method starting from equation (2.71):

E(r) =
4π

n2

∫
d3u

(2π)3

exp(iu · rd)
u2 − n2k2

v

[
n2k2

vp− u(u · p)
]
. (2.83)

5 Everywhere else in this text, h` means h1` = j` + iy`, while h2` = j` − iy` with the spherical Neumann
function y`.
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2.2 Field of a dipole emitter

The term exp(iu ·rd) looks like a plane wave with wavevector u, so one might think that
this is already the desired PW decomposition of the dipole field. However, the integral
extends over the whole u-space, which in particular includes all possible magnitudes
of |u| – but we know that the magnitude of the physical wavevector is given by 2π/λ.
Thus, the wavevectors of the plane waves in the decomposition can only differ in
direction, not magnitude. Therefore, some further conversions are necessary. Instead of
transforming this equation using the gradient and divergence as in section 2.2.1, we
switch to cylindrical coordinates u = q + wêz, where q = q cos(ϕ)êx + q sin(ϕ)êy is in
the x-y-plane, and carry out the integration from −∞ to ∞ along the w-axis. As in
section 2.2.1, we want to close the integration path in order to use Cauchy’s residue
theorem. If rd has a positive z-component, the exponential function is negligible for
Im{w} → ∞. On the other hand, if rd has a negative component, the integral can only
be closed in the negative halfspace of the complex w-space without changing its value.
To find the poles of the integrand, we rewrite

u2 − n2k2
v = (q2 + w2)− n2k2

v = w2 − (n2k2
v − q2). (2.84)

This shows that two poles exist at w± = ±
√
n2k2

v − q2. As before, we demand outgoing
waves, and thus the positive pole is included for zd > 0 and the negative pole is included
for zd < 0. The final paths are shown in figure 2.7. With Cauchy’s theorem, expressing
rd in cylindrical coordinates (rd = (ρd, zd)) and defining k± = (q, w±) we then arrive
at:

E(x, y, z > z0) =
i

n2π

∫ ∞
0

dq

∫ 2π

0

dϕ q
exp(iq · ρd + iw+zd)

2w+

[
n2k2

vp− k+(k+ · p)
]

E(x, y, z < z0) =
−i
n2π

∫ ∞
0

dq

∫ 2π

0

dϕ q
exp(iq · ρd + iw−zd)

2w−

[
n2k2

vp− k−(k− · p)
]
.

(2.85)

This expression is called the Weyl representation of the electric field of an oscillating
dipole, after Hermann Weyl, who was the first to include evanescent waves6 in the
plane-wave decomposition of spherical waves [51]. What is the physical meaning of this
expression? We can interpret the sign change of w for the two domains as integrals over
plane waves with different angles θ relative to the z-axis, such that w = k cos θ. An
upwards-traveling wave (w > 0) is given for θ ∈ [0, π/2], while a downwards-traveling
wave (w < 0) is obtained for θ ∈ [π/2, π]. In order to obtain the correct sign for the
evanescent waves where q > k, we have to choose θ = π/2 + iθ′′ with θ′′ ∈ [−∞, 0] for
Im{w} > 0 (i.e. z > z0) and θ′′ ∈ [0,∞] for Im{w} < 0 (i.e. z < z0)

7. This choice
reflects the physical situation: Plane waves are moving away from the oscillating dipole,
which – as we will see in section 2.4– corresponds to an energy flow away from the
dipole. But this just means that the dipole is an energy source. Furthermore, this
choice of plane waves is completely analogous to the integration paths we encountered
in the plane-wave decomposition of vector spherical harmonics with Hankel functions

6 These are waves with q > k and imaginary w, i.e. waves whose amplitude is exponentially in- or
decreasing with z. They will be introduced more thoroughly in section 2.3.1.

7 If θ = π/2 + iθ′′, then cos(θ) = [exp(iθ) + exp(−iθ)]/2 = [i exp(−θ′′)− i exp(θ′′)]/2.
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Figure 2.8: Comparison of the PW decomposition of a dipole field with the analytical
solution. Shown are the real parts of Ex and Ez in the x-z-plane for a z-dipole situated
in the origin, the y-component is zero in this plane. Calculated according to equation
(2.86) with 250 evenly spaced θ-values between 0 and π/2 and 1000 evenly spaced θ-
values between π/2 and π/2 + 20i for z > 0; π minus these angles for z < 0; analytical
ϕ-integration. Note the artefacts at z = 0, which will be adressed in section 3.1.

in equations (2.60,2.61). Since we saw that the far field of a dipole can be expressed in
exactly this type of VSH, this shows the consistency of the different representations.
To sum up these thoughts, we can express the Weyl representation as an integral over
the angles θ and ϕ as

E(r) =
inkv
2n2π

∫
C

dθ

∫ 2π

0

dϕ sin θeikρd sin θ cos(ϕ−ϕd)+ik cos θzd
[
n2k2

vp− k(k · p)
]

with the path C =

{
0→ π/2→ π/2− i∞ for z > z0

π/2 + i∞→ π/2→ π for z < z0
, (2.86)

where now simply k = k(sin θ cosϕ, sin θ sinϕ, cos θ) and ϕd is the angle between ρd
and the x-axis8. Which of the equations (2.85) or (2.86) is used is partly a matter
of taste, and partly depends on which coordinate system fits the given situation best.
Figure 2.8 shows the numerical result of this formula for a z-dipole situated in the
origin, where the ϕ-integration was carried out analytically using Bessel functions as
in section 2.1.4, and the cutoff on the imaginary axis is ±20i. Note the appearance of
artefacts near z = 0, which will be discussed in section 3.1.

8 Note that with q = k sin θ we have dq = k cos θdθ = wdθ. Therefore, the term qdq/w becomes
k sin θdθ.
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2.3 Interactions of electromagnetic waves with
nanostructures
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Figure 2.9: Geometries used to deduce boundary conditions for E and B from Maxwell’s
equations at the interface (shown in blue) between two materials 1 and 2. On the left,
a small cuboid V intersects the boundary, on the right, there is a small rectangle A
perpendicular to the interface.

In a real biophysical experiment, it is very rare to observe a dipole emitter in “free
space”. The closest we come to this ideal situation is a solution of dye molecules (or
fluorescent proteins) in a solvent, imaged far away from any surfaces. However, most of
this work is concerned with imaging fluorescently labeled structures in cells. The latter
usually adhere to the cover slip (or Petri dish), so there is at least one interface present
close to the emitters. This boundary has a strong influence on the energy emission
of dipole emitters, changing for example the direction in which energy is emitted and
the total amount of energy emitted per time. In order to quantitatively determine
the change of the dipole field close to an interface, it is beneficial to decompose the
dipole field into basis functions whose interaction with the interface is already known.
Therefore, in this section, we study the interaction of increasingly complex fields with
different types of interfaces. Starting with plane waves at a planar interface, which
allows us to derive the field of a dipole emitter close to a planar interface, we then move
on to vector spherical harmonics at spherical interfaces, which leads to the field of a
dipole close to a spherical interface.
As a basis for these calculations, we need to know the boundary conditions that have to
be fulfilled by electric and magnetic fields at the interfaces of materials with different
refractive indices, which we will derive now. Consider the small cuboid V at the
boundary between two media with different refractive indices n1 and n2 in figure (2.9).
If we assume that there are no free charges in the media or at the interface, then
according to equation (2.1) the electric field has to fulfill the relation

∇ · (εiEi) = 0 , i = 1, 2 , (2.87)
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at every point in medium 1 or 2, respectively. Using Gauss’s theorem, we find

0 =

∫
V
∇ · [ε(r)E]dV =

∫
∂V
ε(r)E · dA = ε1E1,x − ε2E2,x , (2.88)

where we made the cuboid infinitely thin in the last step and therefore ignored the
contributions from all sides except those perpendicular to the x-axis. For the magnetic
field, one finds B1,x = B2,x using the same reasoning with equation (2.2). Now consider
the small rectangle A in figure (2.9). Using Stokes’ theorem on the third of Maxwell’s
equations (2.3), we find∫

∂A
E · dl =

∫
A

(∇×E) · dA = −1

c

∫
A

∂B

∂t
· dA ≈ iω

c

A
2

(B1,z +B2,z) . (2.89)

By letting the sides perpendicular to the interface shrink to infinitesimal length, A
approaches zero while all other terms stay finite. Thus we arrive at

0 = (E2 · l̂)l − (E1 · l̂)l (2.90)

with the tangent unit vector l̂. Since this is true for any orientation of the small
rectangle A, we can conclude that the tangential component of the electric field is the
same in both media. For the magnetic field, equation (2.4) leads to the finding that
the tangential component of B/µ is the same in both media. Importantly, since we let
both the cuboid and the rectangle shrink in the derivation of the boundary conditions,
these are true both for planar and for curved interfaces – as long as one compares field
components locally.

2.3.1 Plane waves at a planar interface

The four boundary conditions derived above can now be used to predict the behaviour
of plane waves at a planar interface. The most general case is shown in figure 2.10,
with one incoming and one outgoing wave in each medium. The “+”- or “−”-sign
denotes if the wave is travelling in the positive or negative z-direction. We decompose
each k-vector into one component q parallel to the interface and one component w
perpendicular to it.
The fact that the periodicity of the waves has to be the same on both sides of the
medium directly implies that q is identical for all four waves. Since the wavelength
and thus ki = 2π/λi are constant within one medium, it follows that w+

1 = −w−1 and
w+

2 = −w−2 . This is just another form of the well-known law of reflection, which states
that the angle between the incident light and the normal to the surface is the same
as the angle between the reflected light and the normal. This angle can be calculated
directly from the components of the wave vector via

sin θi =
q

ki
=

q

nikv
, (2.91)
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Figure 2.10: Geometry of plane waves at an interface, definition of p- and s-waves and
the relevant notation. The subscript 1 or 2 discriminates quantities in the two different
media. The superscript ± shows if the quantitiy belongs to a wave traveling in the positive
or negative z-direction. The vector ês is identical for all four waves.

which leads to the famous relation known as Snell’s law,

n1 sin θ1 = n2 sin θ2 . (2.92)

We will now consider the amplitudes of the different fields. As stated in section 2.1.1, a
linear combination of solutions of the wave equation is a solution itself. Furthermore,
we have seen that both E0 and B0 are perpendicular to k. Thus, if we find a basis {bi}
for the vector space {r|r · k = 0}, any plane wave of the form (2.9) can be expressed as
a linear combination of

bi eik·r−iωt . (2.93)

Since the vector space {r|r · k = 0} is two-dimensional, just two basis vectors are
needed. The boundary conditions take on a simple form if one uses the basis vectors

êp =

cos θ cosφ
cos θ sinφ
− sin θ

 and ês =

− sinφ
cosφ

0

 , (2.94)
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where êp lies in the plane of incidence spanned by k and the normal to the interface,
and ês is perpendicular to this plane. The corresponding waves are called transversal
electric or p-wave and transversal magnetic or s-wave. In the following, we will study
the behaviour of p- and s-waves at the interface, and use this to derive the behaviour
of arbitrary plane waves. But first, we introduce a shorthand to facilitate calculations:
The angle θ that appears in the definition of êp is usually defined between the positive
z-axis and k. As figure 2.10 shows, this is true for θ1 and θ2 with k+

1 and k+
2 . However,

for k−1 and k−2 , the angle to the positive z-axis is given by π−θ1 and π−θ2, respectively.
Since sin(π − θ) = sin θ and cos(π − θ) = − cos θ, we can introduce a new unit vector
ê−p for these two p-waves that directly uses θ1,2 instead of π − θ1,2:

ê−pj =

− cos θj cosφ
− cos θj sinφ
− sin θj

 , ê+
pj = êpj =

cos θj cosφ
cos θj sinφ
− sin θj

 , j = 1, 2. (2.95)

The boundary conditions derived above place restrictions of the tangential and perpen-
dicular components of the electric and magnetic field. We start by considering four
p-waves with E±i = E±piê

±
pi and B±i = B±piês. Simple geometry (see figure 2.10) leads to

E±pi,‖ = ±wi
ki
E±pi

E±pi,⊥ =
q

ki
E±pi

B±pi,‖ = Bpi

B±pi,⊥ = 0 . (2.96)

Under the additional assumption of non-magnetic materials, i.e. µ1 = 1 = µ2 and thus
ni =

√
εi, the boundary conditions for the electric field can now be compactly written

as (
w1/k1 −w1/k1

qn2
1/k1 qn2

1/k1

)(
E+
p1

E−p1

)
=

(
w2/k2 −w2/k2

qn2
2/k2 qn2

2/k2

)(
E+
p2

E−p2

)
. (2.97)

Both q and 2π/λ (from ki = ni2π/λ) can be canceled out. Simplifying the equation
and multiplying with the inverse of the left matrix finally results in(

E+
p1

E−p1

)
=

1

2w1

(
n1 w1/n1

−n1 w1/n1

)(
w2/n2 −w2/n2

n2 n2

)(
E+
p2

E−p2

)
= Mp

21

(
E+
p2

E−p2

)
with Mp

21 =
1

2

(
w/n+ n −w/n+ n
−w/n+ n w/n+ n

)
, (2.98)

where the abbreviations n = n2/n1 and w = w2/w1 were introduced. Since both
the relations between E and B described in the equations (2.10) and the boundary
conditions are based on Maxwell’s equations, one can now either construct a similar
matrix equation for B, or derive the magnetic fields of the four waves from the
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corresponding electric fields. In practice it is usually easier to do the latter. Following
the same reasoning, we also find matrix equations for s-waves. With

E±si,‖ = E±si

E±si,⊥ = 0

B±si,‖ = ±wi
ki
B±si

B±si,⊥ =
q

ki
B±si (2.99)

and Bi = niEi (see discussion after equation (2.10)), the boundary conditions for the
electric field have the form(

1 1
w1 −w1

)(
E+
s1

E−s1

)
=

(
1 1
w2 −w2

)(
E+
s2

E−s2

)
. (2.100)

This can then be rearranged to yield(
E+
s1

E−s1

)
= M s

21

(
E+
s2

E−s2

)
with M s

21 =
1

2

(
1 + w 1− w
1− w 1 + w

)
. (2.101)

Equations (2.98) and (2.101) describe the relation between the complex electric field
amplitudes of the incoming and outgoing waves in both media for p- and s-waves.
They have several useful applications. We will start by deriving the reflection and
transmission coefficients

rp,s =
E−(p,s)1

E+
(p,s)1

and tp,s =
E+

(p,s)2

E+
(p,s)1

(2.102)

for the special case of a plane wave incident from medium 1. Then, E−(p,s)2 = 0 and we
find:

rp =
n2 − w
n2 + w

tp =
2n

n2 + w

rs =
1− w
1 + w

ts =
2

1 + w
(2.103)

These so-called Fresnel coefficients describe the relationship between the amplitudes of
the incoming, reflected and transmitted plane waves at the interface. This is important
to keep in mind when discussing special cases such as total internal reflection or medias
that absorb radiation, which will be discussed in more detail later. When n2 < n1,

θ2 = arcsin

(
n1

n2

sin θ1

)
> θ1 , (2.104)

i.e. the wave is refracted away from the surface normal. Thus there has to be an incident
angle θc where θ2 equals ninety degrees. This angle is called the critical angle, it is given
by θc = arcsin(n2/n1). At even higher incident angles, Snell’s law can no longer be
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fulfilled and there is no propagating wave in the second medium. However, a different
type of wave emerges: For θ1 > θc,

w2 =
√
k2

2 − q2 =
√
k2

0n
2
2 − k2

0n
2
1 sin2 θ1 = i · k0 ·

√
n2

1 sin2 θ1 − n2
2 (2.105)

is purely imaginary. Thus the plane wave

E+
2 eiqxx+iqyy+iw2z = E+

2 e−i|w2|zeiqxx+iqyy (2.106)

has an amplitude that decays exponentially with z. This type of wave is called an
evanescent wave. In this case, both rp and rs have an amplitude of 1, which means that
the intensity of the incident and reflected wave are identical. No energy is transported
into the second, optically thinner medium, as we will prove in section 2.4.2.
The simple situation of a single interface between two media described by equations
(2.98) and (2.101) can easily be extended to a multi-layered sample. To this end, we
need to describe the effect that traversing a layer has on the phase and amplitude of a
plane wave. Remember that

A0 eik·r−iωt = A0 ei(qxx+qyy+wz)−iωt, (2.107)

where qx and qy are the same in all media. Thus, when traversing layer j with thickness
dj, the wave accumulates the phase iwjdj when traveling in positive z-direction and
−iwjdj when traveling in negative z-direction. If we denote the amplitudes of the plane
waves at the top and bottom of layer j by E±j,t and E±j,b, we have(

E+
j,b

E−j,b

)
= Tj

(
E+
j,t

E−j,t

)
with Tj =

(
exp(−iwjdj) 0

0 exp(iwjdj)

)
. (2.108)

Thus, when combining three different media as in figure 2.11, we have(
E+
p1,t

E−p1,t

)
= Mp

12

(
E+
p2,b

E−p2,b

)
= Mp

12T2

(
E+
p2,t

E−p2,t

)
= Mp

12T2M
p
23

(
E+
p3,b

E−p3,b

)
(2.109)

or the equivalent for s-waves. By multiplying the three matrices, effective reflection
and transmission coefficients

rp,s =
E−(p,s)1,t

E+
(p,s)1,t

and tp,s =
E+

(p,s)3,b

E+
(p,s)1,t

(2.110)

can immediately be deduced. This procedure scales well to even more layers, especially
when automating the calculations on a computer. Some numerical difficulties can arise
when any of the wj become imaginary, these are treated in section 3.2.
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medium 1

medium 2

medium 3

E−3,b E+
3,b

E+
2,t E−2,t

E−2,b
E+

1,t

z

E−1,t

E+
2,b

Figure 2.11: Reflection and transmission of electromagnetic waves in a stratified sample
consisting of three planar layers. Naming convention for the amplitudes of the waves
at the top or bottom (subskript t/b) of the three layers and moving in the positive or
negative z-direction (superskript ±).

2.3.2 Dipole emitter above a planar interface

The results from the previous section can immediately be combined with the plane-wave
representation of a dipole field from section 2.2.3 to calculate the electrical field of a
dipole emitter that is situated close to an interface, such as a dye molecule deposited
on a cover slip and surrounded by air. We start by examining the amplitudes of the
single plane waves in the Weyl representation (2.85)

E(r) =
ink3

v

2π

∫
C

dθ

∫ 2π

0

dφ sin θeikρd sin θ cos(φ−φd)+ik cos θzd
[
p− k̂(k̂ · p)

]
with the path C =

{
0→ π/2→ π/2− i∞ for z > z0

π/2 + i∞→ π/2→ π for z < z0
,

where again k = k(sin θ cosφ, sin θ sinφ, cos θ), ρd = (x− x0, y − y0), zd = z − z0 and
φd = ^(ρd, êx). The expression k̂(k̂ · p) is the projection of the dipole moment p on
the unit vector in the direction of the wave vector k. When subtracting this from p,
what remains is the component of p perpendicular to k. But as we saw in the previous
section, such a vector can always be expressed as a linear combination of the two basis
vectors êp and ês. The weights of this linear combination are simply

êp ·
[
p− k̂(k̂ · p)

]
= êp · p

and ês ·
[
p− k̂(k̂ · p)

]
= ês · p (2.111)

since êp and ês are, per definition, orthogonal to k. Thus, we arrive at a new form of
the Weyl representation of the field of a dipole emitter in a homogeneous medium:

E(r) =
ink3

v

2π

∫
C

dθ

∫ 2π

0

dφ sin θeikρd sin θ cos(φ−φd)+ik cos θzd [êp(êp · p) + ês(ês · p)]

with the path C =

{
0→ π/2→ π/2− i∞ for z > z0

π/2 + i∞→ π/2→ π for z < z0
. (2.112)
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Let us now imagine that there is a planar interface at z = 0 between two media with
refractive indices n1 (z > 0) and n2 (z < 0). If the dipole is positioned at r0 = (x0, y0, z0)
above the interface, the field directly at the interface is given by E(x, y, 0) with the
integration path along π/2 + i∞ → π/2 → π and with n = n1. The reflected field
ER(x, y, z > 0) in the upper halfspace and the transmitted field ET (x, y, z < 0) in the
lower halfspace can then be found by treating each plane wave of the decomposition
separately. The procedure is as follows:

1. Calculate the reflection and transmission coefficients r(p,s)(θ) and t(p,s)(θ) according
to equation (2.103).

2. Multiply the amplitude of the wave, i.e. (in1k
3
v)/(2π) exp(−ik1 cos θ1z0)(êp · p)

for a p-wave or (in1k
3
v)/(2π) exp(−ik1 cos θ1z0)(ês · p) for an s-wave, with the

corresponding coefficient to get the amplitude of the reflected or transmitted wave.
Note that the phase that the wave has accumulated by traveling from z = z0 to
z = 0 is taken into account here.

3. Find the new unit vectors of polarization: For the transmitted wave, êp2 and ês2
are obtained by using θ2 = arcsin(sin θ1n1/n2). For the reflected wave, θ1 has to
be replaced by θ∗1 = π − θ1, which does not change ês1 but flips the sign of the x-
and y-components of ê∗p1 compared to êp1.

4. Construct the final wave by multiplying the amplitude with the new unit vector
of polarization and the new exponential function. Since nikv sin θi =: q is constant
everywhere, the only change is in the z-component of the exponent. This is given
by −ik1 cos θ1z for the reflected wave and ik2 cos θ2z for the transmitted wave.

Thus the final fields are:

ET (x, y, z < 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1 [Tpêp2(êp1 · p) + Tsês2(ês1 · p)]

· exp (iqρd cos(φ− φd)− ik1 cos θ1z0 + ik2 cos θ2z)

ER(x, y, z > 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1

[
Rpê

∗
p1(êp1 · p) +Rsês1(ês1 · p)

]
· exp (iqρd cos(φ− φd)− ik1 cos θ1z0 + ik1 cos θ∗1z)

with the path C = π/2 + i∞→ π/2→ π and with θ∗1 := π − θ1. (2.113)

Note that the reflection of a wave causes the z-component of the wavevector to change
its sign, which is equivalent to the change from propagation direction θ to propagation
direction θ∗ := π− θ. As mentioned in step 3, this also has an effect on the polarization
of the wave, since the vector êp changes the sign of its x- and y-component when θ is
replaced by θ∗ (denoted by ê∗p). However, this change does not affect the coefficient
(êp ·p) that is part of the amplitude of the p-wave. Also, due to the different definitions
of the angle θ in this section and the previous one, we have to use θ∗ when calculating
all reflection and transmission coefficients.
As an example, figure 2.12 shows the electric field of a vertical dipol emitter in a
water halfspace close to an interface with an air, glass or silver halfspace. The first
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Figure 2.12: Interaction of a dipole field with a planar interface. In all three cases, a
vertical dipole (p ‖ êz) is placed at height z = λ/2 above the interface between water and
a second material – air (n = 1), glass (n = 1.52) or silver (n = 0.05 + 2.80i at λ = 500 nm).
Shown are the real parts of Ex and Ez in the x-z-plane in the region [−4λ, 4λ]. Ex is
continuous across the interface, Ez is discontinuous. However, the small circle in the
bottom right panel shows that n2Ez is continuous.

obvious effect of the different refractive index is the changed wavelength in the second
medium, it is longer for air and shorter for glass compared to water. Since silver absorbs
radiation, the field quickly decays to zero and no wavelength can be seen9. Secondly,
the field in the water halfspace changes due to the added reflected waves. Thirdly,
a wave that is confined to the interface itself appears in the presence of silver. This
phenomenon, called surface plasmon-polaritons, will be explained in section 2.4.3. And
finally, the figure nicely illustrates the boundary conditions from the previous section:
Ex, i.e. the component parallel to the interface, is continuous, while Ez is discontinuous.
However, as the small circle in the bottom right panel demonstrates, n2Ez = εEz is
again continuous.

9 The behaviour of electromagnetic fields in metals will be described in more detail in section 2.4.2.
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2.3.3 Vector spherical harmonics at a spherical interface

After having found a description for planar interfaces, we now turn our attention to
spherical interfaces. We encounter these e.g. when measuring dye molecules embedded
in polymer beads, fluorescent proteins in solution close to metal nanospheres, or when
scattering a laser beam at a glass bead. Historically, the term reflection is used when
light interacts with a planar boundary, and when the previously found law “angle of
incidence equals angle of reflected light” is valid. On the other hand, if light changes
its propagation direction due to encountering spherical particles, the term scattering is
used10. The most obvious difference between these situations is that upon reflection
of an incident beam of light, all light travels in the same direction, while scattering
generally leads to a broad distribution of propagation directions. However, the physical
mechanism behind both reflection and scattering is the same, namely the interaction of
electromagnetic fields with the interface between two media with different refractive
indices. The general boundary conditions derived at the beginning of this chapter are
still valid: The tangential component of the electric field, as well as the product of n2

and the perpendicular component of the electric field have to be constant across the
interface. In a spherical geometry where the origin of the coordinate system coincides
with the center of the sphere, the tangential field components are given by Eθ and Eφ,
while the perpendicular component is Er. Conveniently, these are exactly the same
components which are used in the definition of vector spherical harmonics. Thus, in
the following, the origin of the coordinate system is always chosen to coincide with the
center of the spherical interface. We will now set out to derive how an incident field
made up of VSH creates a scattered and a transmitted field that are also decomposed
into VSH.
Before doing any calculations, we have to choose which VSH to include in the model. As
stated in section 2.1.3, VSH with different radial functions exist. Since the differential
equation (2.31) describing the r-dependence11 is of second order, a linear combination
of two linearly independent solutions is needed to fulfill general boundary conditions.
It is convenient to use j`(kr) and h1

`(kr): The former is finite at the origin, while the
latter has the form of outgoing spherical waves in the far field. Furthermore, both are
needed in the VSH decomposition of the field of an oscillating dipole, as seen in section
2.2.2. Since we ultimately want to describe the interaction of a dipole emitter with
spherical particles, it is crucial that we can use a dipole field as the incident field. Thus,
the general structure of the solution can be summarised as one linear combination of
{M j

`m,N
j
`m,M

h
`m,N

h
`m | ` ∈ N,m ∈ Z, |m| ≤ `} on the inside of the spherical interface,

and another such linear combination on the outside of the interface. However, not
all types of VSH are always needed to fulfill the boundary conditions. This can be
illustrated on the example of a sphere embedded in a medium and illuminated by
different types of light sources:

10It is assumed here that the particle is smaller than the diameter of the beam of light, such that
the surface cannot be approximated as one plane across the whole cross section of the beam. A
counterexample where the term reflection is more appropriate is the interaction of the beam of light
of a laser pointer hitting a metal sphere the size of a watermelon. There, if the surface is sufficiently
smooth, all reflected light will travel in roughly the same direction.

11 1
r2

∂
∂r

(
r2 ∂R∂r

)
+
(
k2 − `(`+1)

r2

)
R = 0 (2.31).

44



2.3 Interactions of electromagnetic waves with nanostructures

light source
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j
`m Mh
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-

incident scattered
from outside field field field

dipole emitter scattered incident
-

transmitted
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dipole emitter transmitted
-

incident scattered
outside of sphere field field field

The list of needed VSH always refers to the field directly at the interface12. It becomes
apparent that out of the four possible types of function sets, only three are needed in
a particular situation. For example, if the light source is situated outside the sphere,
there is no reason why the field should become infinitely large at the center of the
sphere. Thus, VSH with spherical Hankel functions are not needed inside the sphere.
Contrarily, if the light source is situated inside the sphere, then the electric field far
away from the sphere has to have the form of outgoing spherical waves. Thus, VSH
with spherical Bessel functions are not needed outside the sphere. This observation
is similar to the reflection of plane waves at a planar boundary, where generally four
types of waves are defined: In each medium, there could be waves traveling towards or
away from the interface. However, if we assume an incoming wave in one of the media,
then outgoing waves in both media are generated (the reflected and transmitted waves),
but no incoming wave in the second medium occurs. Thus, for plane waves at a planar
interface, always one of the waves traveling towards the interface is missing, while the
other one is the incident field. Analogously, in the VSH decomposition of the field in a
spherical geometry, either Mh

`m,N
h
`m inside the sphere or M j

`m, N j
`m outside the sphere

are unneeded, while the other set defines the incident field. We use the former case to
now quantify the relation between incident, scattered and transmitted fields.
Imagine a sphere with radius R and refractive index nsph embedded in a homogeneous
medium with refractive index nmed. Let us assume that the incident field in the
environment is given by N j

`m. Then, the conditions for the transmitted field Etr inside
the sphere and the scattered field Esc in the environment are:

Etr · êθ =
(
N j

`m +Esc

)
· êθ,

Etr · êφ =
(
N j

`m +Esc

)
· êφ,

n2
sphEtr · êr = n2

med

(
N j

`m +Esc

)
· êr. (2.114)

According to our previous considerations, we now define

Etr =
∞∑
`′=1

`′∑
m′=−`′

atr`′m′M
j
`′m′ + btr`′m′N

j
`′m′ , (2.115)

12Recall the piecewise definition of the VSH decomposition of a dipole field: When there is a dipole
inside the sphere at a distance r0 from the origin, M j

`m and N j
`m are needed for the field at r < r0.

Conversely, if the dipole is outside the sphere at distance r0 from the origin, the scattered field and
the original dipole field are both made up of Mh

`m and Nh
`m at r > r0.
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Esc =
∞∑
`′=1

`′∑
m′=−`′

asc`′m′Mh
`′m′ + bsc`′m′Nh

`′m′ . (2.116)

Let us now look at the first condition of equation (2.114), using the shorthand f ′`(kR) :=
1/(kR) d[rf`(kr)]/dr|r=R:∑
`′,m′

c`′m′
(
atr`′m′iπ`′m′(θ)j`′(ksphR) + btr`′m′τ`′m′(θ)j′`′(ksphR)

)
eim

′φ = c`mτ`m(θ)j′`(kmedR)eimφ

+
∑
`′′m′′

c`′′m′′ (asc`′′m′′iπ`′′m′′(θ)h`′′(kmedR) + bsc`′′m′′τ`′′m′′(θ)h′`′(kmedR)) eim
′′φ. (2.117)

This seems rather daunting. However, we know that the equation has to be fulfilled at
every set (θ, φ) – which means that we can make use of the orthogonality and thus the
linear independence of the angle-dependent functions. For example, since∫ 2π

0

eimφe−im
′φ = 2πδm,m′ , (2.118)

the function eimφ cannot be expressed as a sum over exponential functions with all
other m′ 6= m,

eimφ 6=
∑
m′ 6=m

cm′eim
′φ. (2.119)

Therefore, equality at all φ ∈ [0, 2π] can only be reached if the decomposition only
uses terms with m′ = m = m′′. For the θ-dependent functions, recall that we showed
orthogonality of (M`,m,N`,m), (M`m,M`′m′) and (N`m,N`′m′) in section 2.1.3 (eq.
2.47-2.49). Thus, the complicated equation (2.117) reduces to:

btr`mj
′
`(ksphR) = j′`(kmedR) + bsc`mh

′
`(kmedR). (2.120)

We now have one equation with two unknowns, so a second equation is needed to
determine the expansion coefficients. For that, we turn to the radial component of the
electric field and find:

n2
sphb

tr
`m

j`(ksphR)

ksphR
= n2

med

j`(kmedR)

kmedR
+ n2

medb
sc
`m

h`(kmedR)

kmedR

⇒ nsphb
tr
`mj`(ksphR) = nmedj`(kmedR) + nmedb

sc
`mh`(kmedR). (2.121)

Combined, this leads to a matrix equation similar to eq. (2.97) and (2.100):(
j′`(ksphR) −h′`(kmedR)

nsphj`(ksphR) −nmedh`(kmedR)

)(
btr`m
bsc`m

)
=

(
j′`(kmedR) −h′`(ksphR)

nmedj`(kmedR) −nsphh`(ksphR)

)(
bi,med
`m

bi,sph
`m

)
,

(2.122)

where we now allowed an arbitrary prefactor bi,med
`m for the initial wave in the environment,

and also added an initial wave bi,sph
`m Nh

`m inside the sphere to account for the other
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possible illumination scenarios mentioned above. The same procedure leads to an
equation for VSH of type M j,h

`m , with the one difference that there the condition

Bsph
θ = Bmed

θ , Bsph
φ = Bmed

φ (with B = ∇×E/(ik0) and ∇×M f
`m = kN f

`m) has to be

used as second equation because M f
`m does not have an r-component:(

j`(ksphR) −h`(kmedR)
nsphj

′
`(ksphR) −nmedh

′
`(kmedR)

)(
atr`m
asc`m

)
=

(
j`(kmedR) −h`(ksphR)

nmedj
′
`(kmedR) −nsphh

′
`(ksphR)

)(
ai,med
`m

ai,sph
`m

)
.

(2.123)

Thus, the expansion coefficients for the scattered and transmitted fields can be found by
simple matrix operations. Since these equations are independent for different sets (`,m)
and for VSH type M and N , one can calculate a “lookup table” for given refractive
indices nsph, nmed and given sphere radius R. Then, the interaction of any initial field
that has been decomposed into VSH with the sphere can easily be determined.
As a side note, we want to mention that this method scales readily to the case of several
concentric shells with different refractive indices n1, n2, n3, . . . and radii r1, r2, r3, . . .
and the environment nmed. Then, the conditions treated above have to be valid at each
single interface, and one simply gets larger matrices.

2.3.4 Dipole emitter above a spherical interface

We will now apply the formulas derived above to the case of a dipole emitter close to
a spherical interface. It was stated in section 2.2.2 that the electric field of a dipole
emitter situated at r0 is given by

EVSH(r) =
∞∑
`=1

∑̀
m=−`

aD`mM
f
`m(kr) + bD`mN

f
`m(kr) (2.124)

with the expansion coefficients

aD`m =
4πink3

v

`(`+ 1)
p ·M g

`m(kr0) and bD`m =
4πink3

v

`(`+ 1)
p ·N g

`m(kr0) , (2.125)

and with f = h1, g = j for r > r0 and f = j, g = h2 for r < r0. Assuming that the
sphere with radius R is situated at the origin and the dipole is located outside the
sphere (r0 > R), the field incident at the surface of the sphere is decomposed into VSH
with radial dependence j. Thus, to compare with the notation of equations (2.122) and
(2.123), we have

ai,med
`m = aD`m, ai,sph

`m = 0,

bi,med
`m = bD`m, bi,sph

`m = 0. (2.126)

We can then directly solve for the coefficients atr`m, b
tr
`m of the field inside the sphere and

asc`m, b
sc
`m of the scattered field. As an example, see figure 2.13, where a dipole emitter

oriented parallel to the z-axis resides half a wavelength above the surface of a sphere
with radius 0.4λ. It becomes obvious that the resulting field depends strongly on the
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Figure 2.13: Electric field of a dipole emitter close to a sphere of radius R = 200 nm
made of water, air, glass or silver and embedded in water. The dipole is oriented parallel
to the z-axis and placed at r0 = (0, 0, 450) nm, while the sphere is centered at the origin.
The scalebar corresponds to one wavelength, i.e. to λ = 500 nm.

material of the sphere – air, glass or silver. The refractive index of water (n = 1.33) is
closest to that of glass (n = 1.52), which is why the distortion of the field is smallest in
this case. For glass and air (n = 1.0), the field penetrates the sphere and is focused at
its center. On the other hand, silver (n = 0.05 + 2.80i at λ = 500 nm) absorbs light,
which is why the field only penetrates some tens of nanometers into the sphere. Finally,
the water only sample shows that Ex is almost zero close to the origin, while Ez is large
in this region. Accordingly, the x-component of the field is less strongly influenced by
the presence of the sphere than the z-component. For the latter, the highest amplitudes
shift from θ = π/2 relative to the dipole (water only) to larger θ-values, “bending” the
emission around the sphere. This will be discussed in more detail in section 2.4.6, which
investigates a dipole’s energy flux.

48



2.4 Energy flux of an electromagnetic field

2.4 Energy flux of an electromagnetic field

A fluorescent molecule emits light and thus energy – a process that will be explained
in more detail in section 2.5.1. Both the spatial distribution of the energy flux and
the total rate of energy emission are of practical interest. The former determines the
detection efficiency of the emitted light (see section 4.3.1) and can be used to predict
the patterns that arise when taking a defocused image of a dipole emitter [52]. The
latter is connected to the excited state lifetime of the emitter (see chapter 2.5), which
was measured and used to infer properties such as cell-substrate distances in the course
of this work.
In the most general form, the energy flux of an electromagnetic field, i.e. the rate of
energy flow through a reference surface of unit area, is given by the Poynting vector
S̃(r, t) = (c/4π)Ephys(r, t)×Bphys(r, t), where Ephys and Bphys are the physical (real!)
fields. When using the complex-valued temporal Fourier amplitudes E and B (as we
have during this whole text), the Poynting vector averaged over one oscillation period
is given by

S(r) =
c

8π
Re
(
E ×B

)
=

c

8π
Re

(
E ×

[
1

ikv
∇×E

])
= − c

8πkv
Im
(
E ×

[
∇×E

])
, (2.127)

where we used the fact that B = ∇×E/ikv (third of Maxwell’s equations). This simple
relation can now be filled with life by considering the energy flux in several different
situations.

2.4.1 Energy flux of a plane wave

We start by calculating the energy flux of a single plane wave,

E(r) = E0eik·r. (2.128)

Then, ∇×E = ik ×E, and with k = kêk,

E ×
[
∇×E

]
= −ik

[
êk|E|2 −E(êk ·E)

]
. (2.129)

In ideal dielectric media, the refractive index n is real and thus k is also real. Since we
saw in section 2.1.2 that k ·E = 0, the time-averaged Poynting vector of a plane wave
in a dielectric medium (such as air or water) is simply given by

SPW(r) =
cn

8π
|E0|2êk. (2.130)

From this, we can conclude that:

1. The time-averaged energy flux of an infinitely extended plane wave is identical
everywhere in space.
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2. The energy flows in the direction of êk. This seems reasonable, since k points in
the direction of propagation of the wave fronts.

It is also quite enlightening to compare the result for SPW with the energy density of a
plane wave. The energy stored in an electromagnetic field per unit volume is given by

U =
1

8π
(εEphys ·Ephys +Bphys ·Bphys) , (2.131)

or, when again using the complex-valued Fourier coefficients and averaging over one
oscillation period,

〈U〉 =
1

16π

(
εE ·E +B ·B

)
. (2.132)

For a plane wave in a lossless dielectric (n =
√
ε ∈ R), this is simply

〈UPW〉 =
1

16π

(
n2|E0|2 +

1

k2
v

|∇ ×E|2
)

=
n2

8π
|E0|2 (2.133)

A comparison with equation (2.130) shows that

SPW =
c

n
〈UPW〉 êk. (2.134)

But c/n is simply the speed of light in the medium with refractive index n. Thus, for a
plane wave, the energy flux (energy per time and area) equals the product of the energy
density (energy per volume) and the speed of propagation.

2.4.2 Energy flux of evanescent and lossy waves

We have introduced evanescent waves in the context of total internal reflection in
section 2.3.1, where we already stated that these waves do not transport any energy
perpendicular to the surface. We will prove this claim now. Assume that the medium
is lossless, i.e. n ∈ R, and that the interface where total internal reflection occurred is
at z = 0. Then,

E = (Epêp + Esês) exp(iqxx+ iqyy − w′′z),

B =
1

ikv
∇×E = n(Epês − Esêp) exp(iqxx+ iqyy − w′′z), (2.135)

where (qx, qy) = q(cosφ, sinφ), q, w′′, φ ∈ R and k2 = n2k2
v = q2 − w′′2. The relevant

unit vectors for calculating the Poynting vector are

êk =
1

k

q cosφ
q sinφ
iw′′

 , êp =
1

k

−iw′′ cosφ
−iw′′ sinφ

q

 , ês =

 sinφ
− cosφ

0

 . (2.136)
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Figure 2.14: Refractive indices of silver, gold and titanium: real parts depicted by solid
lines, imaginary parts by dashed lines. Data originally from [53, 54], downloaded from
https://refractiveindex.info.

Thus, ês = ês is invariant under complex conjugation, while êk 6= êk and êp 6= êp. The
complex conjugated unit vectors are still orthonormal, however, êp ∦ êp:

êp × êp =
1

|k|2

−2iw′′q sinφ
2iw′′q cosφ

0

 . (2.137)

The time-averaged Poynting vector is then given by:

Seva. =
c

8π
Re
(
E ×B

)
=

c

8π
Re
[
ne−2w′′z(Epêp + Esês)× (Epês − Esêp)

]
=

c

8π
Re
[
ne−2w′′z(|Ep|2êk − EpEs(êp × êp) + |Es|2êk)

]
=
cn

8π
e−2w′′z

[
(|Ep|2 + |Es|2)Re(êk)− iIm(EpEs)(êp × êp)

]
, (2.138)

where the last equality takes into account that n ∈ R and that (êp × êp) is purely
imaginary. We can see that generally, the Poynting vector of an evanescent wave is
not zero. However, its magnitude decays exponentially with the distance z from the
interface. Furthermore, by recognizing that the z-component of (êp × êp) equals zero
and that the z-component of êk is purely imaginary, we prove what we set out to show
in this section: The z-component of Seva. vanishes.
The situation is quite different if we study the wave that results when a plane wave
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encounters the interface between a lossless dielectric (n0 ∈ R) and a metal (n = n′+in′′).
In the lossless medium, the component of k parallel to the interface (q) is real. Since
we saw that q is constant on both sides of the interface, it is still real in the metal. For
the z-component of k, w, this means:

w =
√
n2k2

v − q2 =
√

(n′2k2
v − n′′2k2

v − q2) + 2in′n′′k2
v = w′ + iw′′. (2.139)

For metals in wavelength regions typical for fluorescence microscopy, the real and
imaginary parts of the refrective index fulfill 0 < n′ < n′′, as can be seen for some
examples in figure 2.14. Thus, the term under the square root has a negative real and a
positive imaginary part, which means that 0 < w′ < w′′13. Using the same argument as
for (2.138), but replacing iw′′ by w′ + iw′′, we find for the flux along the z-direction in
a metal:

Smetal,z =
c

8π
Re
[
ne−2w′′z(|Ep|2êk − EpEs(êp × êp) + |Es|2êk)

]
z

=
c

8πkv
e−2w′′z Re

[
nw

n
|Ep|2 +

nw

n
|Es|2

]
=

c

8πkv
e−2w′′z

[
w′(n′2 − n′′2) + 2w′′n′n′′

|n|2
|Ep|2 + w′|Es|2

]
. (2.140)

As a simple consistency check, we want to remark here that for real n, i.e. n′′ = 0, the
result for Smetal,z equals the projection êz ·SPW, see equation (2.130). Since we assume
that the wave described here was excited by a plane wave impinging on the boundary
between a lossless dielectric and the metal, the flux along z should be larger than or
equal to zero. The flux of the s-wave is always positive since w′ > 0. For the p-wave,
this is slightly harder to see, thus we investigate the q-dependence of the term. Since
q cannot be negative, we start with q = 0. Then, w =

√
n2k2

v − q2 = nkv. In this
case, the term in front of |Ep|2 reduces to kvn

′(n′2 + n′′2)/|n|2, which is larger than zero.
For increasing q, w′′ increases while w′ approaches zero. Thus, the prefactor remains
positive.
A further condition is that, in the absence of energy sources or sinks, the energy flux
along one direction should be constant. The expression (2.140), however, decreases
exponentially with distance z from the interface. Thus, we have to assume that there
are energy sinks in a metal. What are these sinks? The electric field exerts a force on
the unbound conduction electrons, which are forced to oscillate. Thus, by accelerating
electrons the electric field performs work. The electrons themselves interact with the
lattice and ultimately transform their kinetic energy to heat. This is summed up by
the continuity equation – also known as Poynting’s theorem – which links the change in
energy density to the energy flux and the work done by the fields:

∂U
∂t

= −∇ · S − j ·E. (2.141)

13Since the square root of the complex variable z = |z|eiφ is given by
√
z =

√
|z|eiφ/2, an initial angle

π/2 < φ < π leads to a final angle π/4 < φ/2 < π/2.
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Here, j is a general electric current density. For a plane wave hitting a metal, j is the
current induced by the field E itself. Since the energy density U (averaged over one
oscillation period) is constant over time, the spatial variance of the Poynting vector
is caused by the work done on the electrons. This is the reason why electromagnetic
fields only penetrate a short distance into metals.

2.4.3 Energy flux of a plane wave near a planar interface

When a plane wave strikes a planar interface between two media with refractive indices
n1 and n2, some energy gets reflected back into the first medium, while some gets
transmitted to the second medium. In this section, we want to derive the energy balance
for a number of different materials and angles of incidence. We will start in the upper
halfspace by considering the initial field E+

1 and the reflected field E−1 :

E+
1 = ( Epê

+
p + Esês) exp(iqxx+ iqyy + iw1z),

E−1 = (rpEpê
−
p + rsEsês) exp(iqxx+ iqyy − iw1z). (2.142)

Since the energy flux is related to the square of the amplitude of the electric field, we
cannot simply calculate S for the incident and reflected field separately and then add
them up. Instead, we have to determine the total electric field E1 = E+

1 +E−1 and the
total magnetic field B1 = (∇×E1)/ikv and use them to find the Poynting vector:

S1 =
c

8πkv
Re
{
E1 ×

[
k+

1 × (Epê+
p + Esês) + k−1 × (rpEpê−p + rsEsês)

]
eiqxx+iqyy+iw1z

}
=

c

8πkv
Re
{
E1 × k1

[
Epês − Esê+

p + rpEpês − rsEsê−p
]

eiqxx+iqyy+iw1z
}
. (2.143)

We assume that the first medium is a lossless dielectric (n1 ∈ R), q is real and w1 is
either real (propagating PW) or purely imaginary (evanescent wave). By inserting the
definitions

ê±p =
1

k

∓w cosφ
∓w sinφ

q

 , ês =

 sinφ
− cosφ

0

 , ê±k =
1

k

q cosφ
q sinφ
±w

 , (2.144)

one can easily show that:

ê+
p × ê+

p =
1

|k|2

q sinφ(w − w)
q cosφ(w − w)

0

 ,

ê−p × ê−p =
1

|k|2

q sinφ(w − w)
q cosφ(w − w)

0

 ,

ê+
p × ê−p =

1

|k|2

 0
q cosφ(w + w)

0

 ,

ê±p × ês = ê±k , (2.145)
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and we already know that ês = ês. We are interested in the fraction of energy that is
reflected or transmitted at the interface, i.e. in the flux perpendicular to the surface.
Therefore, we now proceed to determine the z-component of the Poynting vector. As
we have just seen, the z-components of all mixed p-waves are zero, while e.g.

êz · (ê+
p × ês) = êz · (ê+

p × ês) = êz · ê+
k = w/k,

êz · (ês × ê−p ) = êz · (ês × ê−p ) = −êz · ê−k = w/k etc. (2.146)

Inserting into equation (2.143), this leads to the much simpler formula:

S1,z =
c

8πkv
e−2Im(w1)z Re

{
Epk1(Ep + rpEp)

w1

k1

+ Esk1(Es − rsEs)
w1

k1

− rpEpk1(Ep + rpEp)
w1

k1

+ rsEsk1(Es − rsEs)
w1

k1

}
=

c

8πkv
e−2Im(w1)z Re

{
w1|Ep|2

(
1− |rp|2 − 2iIm[rp]

)
+ w1|Es|2

(
1− |rs|2 + 2iIm[rs]

)}
, (2.147)

where we took into account that k1 ∈ R. Let us now interpret this result, first for pure
propagating p- or s-waves with w1 ∈ R, Es = 0 or Ep = 0. We start by comparing
with the flux of the same wave in medium 1 without the presence of the interface,
SFS
z,p/s = (cw1)/(8πkv)|Ep/s|2. Then,

Sprop
1,z,p/s = (1− |rp/s|2)SFS

z,p/s. (2.148)

This is an expression for the net flux in z-direction, but we can interpret it as the sum
of the fluxes of two waves: The incident wave with flux SFS

z,p/s in the positive z-direction

and the reflected wave with flux |rp/s|2SFS
z,p/s in the negative z-direction. Thus, the

reflectance R – the ratio of the reflected to the initial intensity – of a propagating p- or
s-wave is given by

Rp/s = |rp,s|2. (2.149)

On the other hand, if we assume that medium 2 is a lossless material, too, and that
n2 > n1 (i.e. w2 ∈ R), the flux in medium 2 is given by:

Sprop
2 =

cn2

8π

(
|tpEp|2 + |tsEs|2

)
êk2, (2.150)

which we found by setting E0 = tpEpêp2 + tsEsês2 in equation (2.130). When comparing
the total amplitudes of the Poynting vectors of the incident and the transmitted waves,
i.e. the total intensities of the plane waves, we find the transmittance T:

Tp/s = |tp,s,|2. (2.151)
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2.4 Energy flux of an electromagnetic field

Since there are no energy sources or sinks directly at the interface, the flux through the
surface – i.e. the z-component of the fluxes – has to be identical in both media. In the
second medium, this flux is given for pure p- and s-waves by

Sprop
2,z,p/s =

c

8πkv
w2|tp,s|2 |Ep,s|2 =

w2

w1

|tp,s|2 SFS
z,p/s. (2.152)

Thus, the condition Sprop
1,z,p/s

!
= Sprop

2,z,p/s is identical to the relation

1−Rp/s
!

=
w2

w1

Tp/s. (2.153)

This formula can be found in many standard textbooks. We can confirm that it is true
by inserting the definitions of rs/p and ts/p from equation (2.103).
If the incident wave in medium 1 is evanescent, i.e. w1 = iw′′, 0 < w′′ ∈ R, equation
(2.147) gives a different result:

Sevan
1,z =

cw′′

4πkv
e−2w′′z

(
|Ep|2Im[rp] + |Es|2Im[rs]

)
(2.154)

We can directly draw some interesting conclusions. Firstly, if no interface was present,
both rp and rs would be zero, which would lead to Sevan

1,z = 0 – exactly the result we
found for evanescent waves in section 2.4.2. Secondly, a closer examination of the
expressions for the two reflection coefficients

rp =
(n2/n1)− (w2/w1)

(n2/n1)2 + (w2/w1)
and rs =

1− (w2/w1)

1 + (w2/w1)
(see 2.103)

reveals that for real n1, n2 and imaginary w1, the imaginary part of rp, rs is only nonzero
for real w2. Physically, this means that the combination of an incident and a reflected
evanescent wave can only transport energy along z if the wave becomes a propagating
wave in the second medium. This can also be seen by expressing the conservation of
energy at the interface (z = 0) as:

2w′′Im(rp/s)
!

= Re(w2)|tp,s|2. (2.155)

This formula can usually not be found in textbooks, since they seldomly treat evanescent
waves except for total internal reflection. In this context, it does not make sense to talk
about reflectivity, since the incident evanescent wave would not transport energy in free
space, anyway. We illustrate the results found so far in figure 2.15, which shows the
fluxes S1,z and S2,z at an air/water interface for a wide range of q-values. Up to the
black vertical line at q = k1, the waves are propagating in both air and water. Directly
at this line, w1 = 0 and the wave is parallel to the interface. In this case, no energy is
transported perpendicular to the interface. Between the black and orange vertical lines,
the waves are evanescent in air but propagating in water, leading to a large energy flux
from one medium to the other. At even larger q, the waves are evanescent in both
media and no energy is transported along z anymore.
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(b) Interface between air (n1 = 1) and silver (n2 = 0.06 + 4.11i at λ = 612 nm).

Figure 2.15: Energy flux Sz parallel to the z-axis at both sides of an interface for p-
and s-waves, plotted for various values of the component q of the wavevector parallel
to the interface. The perfect match of the corresponding pairs of fluxes in medium 1
and 2 proves the conservation of energy at the interface. The inset in (b) only shows
S2,z because a dashed line would have been badly visible, S1,z = S2,z in this case, too.
The black vertical line at q = k1 denotes the transition from propagating to evanescent
waves in air. The orange vertical line in (a) denotes the transition from propagating to
evanescent waves in water.
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Finally, we want to investigate what happens if a plane wave reaches the interface
between a lossless dielectric (n1 ∈ R) and a metal (n2 = n′2 + in′′2). In this case,
w2 = w′2 + iw′′2 is complex, w′2, w

′′
2 6= 0. For propagating waves in the first medium,

equations (2.148) and (2.149) which describe the reflectance are still valid. For evanescent
waves in the same medium, i.e. w1 = iw′′1 , we find that Im(rp/s) is always nonzero – all
evanescent waves can couple to the metal. This is in contrast to a dielectric halfspace
where energy can only be transported if a propagating wave exists. Here, energy can
be dissipated as heat instead, as we described at the end of the previous section. An
example can be found in figure 2.15, which shows the fluxes S1,z and S2,z at an air/silver
interface. Again, propagating waves in medium 1 are those up to the black vertical line
at q = k1. Directly at w1 = 0, all energy is transported parallel to the interface and
no energy enters the metal, the fluxes are zero. All evanesent waves with q > k1 can
couple to the metal, unlike at the air/glass interface. One prominant feature appears
around q ≈ 1.07k1, where the flux increases dramatically (see inset of figure 2.15). This
is due to the excitation of surface plasmon polaritons (SPPs). An introduction to this
phenomenon can be found for example in [55, 56], we will restrict ourselves to a short
description here:
At the interface between a metal and a dielectric, the “sea” of conduction electrons
– which is sometimes interpreted as a plasma – can be forced to oscillate collectively,
leading to an oscillation of the polarization. This resulted in the name surface plasmon
polaritons. Mathematically, SPPs are described by electromagnetic waves which decay
exponentially in both the positive and the negative z-direction. By considering the
boundary conditions derived at the beginning of section 2.3, one finds that SPPs cannot
exist for s-waves when both media are non-magnetic [56]. Therefore, no strong feature
appears in the yellow/blue line representing the energy flux of s-waves in figure 2.15.
For p-waves, a dispersion relation can be derived [56]:

q2
SPP = k2

v

n2
1 · n2

2

n2
1 + n2

2

. (2.156)

At the air/silver interface at λ = 612 nm, this corresponds to qSPP ≈ (1.61+0.004i) kv ≈
(1.07 + 0.002i) k1. Thus, evanescent waves with q close to this value can couple to
SPPs, leading to an enhanced energy flux. The fact that qSPP has a (small) imaginary
component suggests that SPPs have a finite propagation length along the interface –
again, the kinetic energy of the electrons ultimately gets converted to heat.

2.4.4 Energy flux of a dipole emitter in free space

Next, we want to calculate the energy flux for a dipole emitter in a homogeneous
medium. Starting from the closed-form solution (2.75),

E(r) =
1

n2

[
k2 +∇(∇·)

]
p

exp(ikr)

r
,
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since the curl of the gradient of a function is zero, we can derive

∇×E = k2
v ∇×

[
p

exp(ikr)

r

]
= k2

v

(
ik − 1

r

)
eikr

r
r̂ × p. (2.157)

Thus, with the explicit form of E for a dipole in the origin (2.79),

E = nk3
v

(1 +
i

kr
− 1

(kr)2

)
︸ ︷︷ ︸

=:a

p+

(
−1− 3i

kr
+

3

(kr)2

)
︸ ︷︷ ︸

=:b

r̂(r̂ · p)

 exp(ikr)

kr
,

we arrive at:

E ×
(
∇×E

)
=
k4
v

r2

(
−ik − 1

r

){
a
[
r̂|p|2 − p(r̂ · p)

]
+ b(r̂ · p) [r̂(r̂ · p)− p]

}
(2.158)

Assuming that n is real, we can expand all the terms of a and b and finally arrive at a
much shorter form for the imaginary part of this expression:

Im{E ×
(
∇×E

)
} =

k4
v

r2

{
r̂p2

(
−k +

k

(kr)2
− 1

kr2

)
+ r̂(r̂ · p)2

(
k − 3k

(kr)2
+

3

kr2

)
− p(r̂ · p)

(
−k +

1

kr2
− 1

kr2
+ k − 3

kr2
+

3

kr2

)}
=
nk5

v

r2

[
(r̂ · p)2 − p2

]
r̂. (2.159)

Thus we find the time-averaged Poynting vector of a dipole emitter in a homogeneous
medium:

SD(r) =
cnk4

v

8πr2
[p2 − (r̂ · p)2]r̂ (2.160)

From this expression, we can conclude that:

1. The energy flows radially away from the dipole emitter.

2. The total emission per time scales linearly with the refractive index of the medium,
and is inversely proportional to the fourth power of the wavelength.

3. For constant observation direction r̂ but increasing distance r, the time-averaged
energy flux decreases quadratically. This ensures conservation of energy: If SD(r)
is integrated over concentric spheres around the dipole, the flux through these
spheres has to be constant, because the only energy source is the dipole emitter
and because there are no energy sinks in a homogeneous dielectric material.

It is often important to know how much energy is emitted into certain directions in the
far field (i.e. far away from the emitter). This is described by the angular distribution
of radiation (ADR) d2S/dΩ2, which is the energy emitted into the solid angle element
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dΩ2 = sin θdθdφ along the direction given by the two angles (θ, φ). Formally, one can
derive the ADR by determining the surface integral of SD(r) on an infinitesimally small
part of a sphere of radius r, and then dividing by the solid angle element of this small
part of the sphere:

d2S

dΩ2
(θ, φ) = lim

∆θ→0
∆φ→0

1

sin θ∆θ∆φ

∫ θ+∆θ

θ−∆θ

dθ′
∫ φ+∆φ

φ−∆φ

dφ′ r2 sin θ′ r̂ · SD(r, θ′, φ′)

= lim
∆θ→0
∆φ→0

1

sin θ∆θ∆φ

∫ θ+∆θ

θ−∆θ

dθ′
∫ φ+∆φ

φ−∆φ

dφ′
cnk4

v

8π
p2(sin θ′)3

=
cnk4

v

8π
p2 sin2(θ) , (2.161)

where we assumed that the dipole moment p is oriented parallel to the z-axis such that
r̂ · p = p cos θ. Thus, most of the energy is emitted in the direction perpendicular to
the dipole moment, while no energy is emitted directly along the dipole axis. The total
power of emission is obtained by integrating the ADR over all angular directions,

Stot =

∫ π

0

dθ

∫ 2π

0

dφ sin θ
cnk4

v

8π
p2 sin2(θ) =

1

3
cnk4

vp
2 . (2.162)

2.4.5 Energy flux of a dipole emitter near a planar interface

The findings from the previous sections will now be combined to answer a question
that is essential for this work: How exactly does the energy emission of a dipole change
when it comes close to a planar interface? We have seen that the field of a dipole
emitter can be decomposed into plane waves. Together with the knowledge of the
behaviour of plane waves at planar interfaces, this allowed us to calculate the electric
field of a dipole close to such an interface in chapter 2.3.2. Rather than deriving
the Poynting vector from this complicated field and integrating it over a small solid
angle element to find the ADR, we choose a different approach. Recall that we have
found in section 2.4.1 that the energy flux of a single plane wave is along only one
direction, namely êk, and that the magnitude of the energy flux is proportional to
the square of the absolute amplitude of the plane wave. Therefore, it seems plausible
that the PW-decomposition of a field can be used to find the angular distribution of
radiation of said field: the ratio

[
d2S/dΩ2(θ1, φ1)

]
/
[
d2S/dΩ2(θ2, φ2)

]
should equal

the ratio |A(θ1, φ1)|2 / |A(θ2, φ2)|2, where A(θi, φi) is the amplitude of the plane wave
exp[ik(θi, φi)z] in the PW decomposition. Then, the actual value of d2S/dΩ2(θ, φ)
should be proportional to |A(θ, φ)|2. To test if this is the case, we return to the Weyl
representation of a dipole emitter in a homogeneous medium:

E(r) =
ink3

v

2π

∫
C

dθ

∫ 2π

0

dφ sin θ [êp(êp · p) + ês(ês · p)]

· exp (iqρd cos(φ− φd) + ik cos θ[z − z0])

with the path C =

{
0→ π/2→ π/2− i∞ for z > z0

π/2 + i∞→ π/2→ π for z < z0
. (2.163)
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The ADR is then given by14:

d2S

dΩ2
(θ, φ) = σ

n2k6
v

4π2

[
|êp(θ, φ) · p|2 + |ês(θ, φ) · p|2

]
(2.164)

with the yet unknown proportionality constant σ. Note that the evanescent waves
from the Weyl decomposition do not appear in the ADR, since the latter describes the
energy flux in the far field, where all evanescent waves have decayed. Furthermore,
the position r0 does not enter the expression – mathematically because in the Weyl
expansion, it only appeared in the complex exponential function, whose absolute value
is one; physically because the distance between the origin and r0 can always be ignored
if the far field is evaluated far enough from the dipole.
The proportionaly constant σ can be found by comparing with the already known ADR
of a dipole emitter in free space. In equation (2.161), we found the angular distribution
of radiation for a dipole oriented parallel to the z-axis. In this situation, êp ·p = −p sin θ
and ês · p = 0, and we arrive at:

d2S

dΩ2
(θ, φ) = σ

n2k6
v

4π2
p2 sin2 θ. (2.165)

This is indeed identical to the result (2.161) if we define σ := (cπ) / (2nk2
v), or:

d2S

dΩ2
(θ, φ) =

cnk4
v

8π

[
(êp(θ, φ) · p)2 + (ês(θ, φ) · p)2

]
. (2.166)

Let us now turn to the case of an interface between two media with refractive indices
n1 at z > 0 and n2 at z < 0. For a dipole located at r0 = (x0, y0, z0 > 0) inside
the first medium, we derived in section 2.2.3 that the reflected and transmitted fields
ER(x, y, z > 0) and ET (x, y, z < 0) are given by:

ET (x, y, z < 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1 [Tpêp2(êp1 · p) + Tsês2(ês1 · p)]

· exp (iqρd cos(φ− φd)− ik1 cos θ1z0 + ik2 cos θ2z)

ER(x, y, z > 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1

[
Rpê

∗
p1(êp1 · p) +Rsês1(ês1 · p)

]
· exp (iqρd cos(φ− φd)− ik1 cos θ1z0 + ik1 cos θ∗1z)

with the path C = π/2 + i∞→ π/2→ π and with θ∗1 := π − θ1. (2.167)

Both equations have to be transformed slightly to make them applicable for our approach.
Firstly, we remark that the angle θ which appears in the definition of the solid angle
element dΩ2 = sin θdθdφ has to be θ1 in the first and θ2 in the second medium. These
two angles are linked by Snell’s law, n1 sin θ1 = n2 sin θ2. However, in the above

14Since êp and ês are perpendicular to each other, |Apêp +Asês|2 = (Apêp +Asês) · (Apêp +Asês) =
|Ap|2 + (ApAs +ApAs)(êp · ês) + |As|2 = |Ap|2 + |As|2.
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equations, we always integrate over θ1. For the transmitted field, we thus transform the
integral over θ1 according to15

∫
C

dθ1 sin θ1 =

∫
D

dθ2 sin θ2

(
n2

n1

)2
cos θ2

cos θ1

and D = arcsin

(
n1

n2

sin[C]
)
. (2.168)

Physically, the reflected field is composed of upwards-traveling plane waves. We
emphasize this in the integral by formally exchanging θ1 and θ∗1 = π − θ1:

ER(x, y, z > 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1

[
Rpêp1(ê∗p1 · p) +Rsês1(ês1 · p)

]
· exp (iqρd cos(φ− φd)− ik1 cos θ∗1z0 + ik1 cos θ1z)

with the path C = 0→ π/2→ π/2− i∞ and with θ∗1 := π − θ1. (2.169)

In order to find the total field in the first medium, the original dipole field (2.163) has
to be added at all z > 0. Now, the position r0 of the dipole that we ignored in the free
space case becomes important for the ADR because z0 determines the relative phase
difference between the original and the reflected waves. For the upper halfspace, i.e. for
the angles θ ∈ [0, π/2], the ADR is then given by:

d2S

dΩ2

(
0 ≤ θ ≤ π

2
, φ
)

=
cn1k

4
v

8π

[∣∣(êp(θ, φ) · p)e−ik1 cos θz0 + (êp(π − θ, φ) · p)Rpe
ik1 cos θz0

∣∣2
+
∣∣(e−ik1 cos θz0 +Rse

ik1 cos θz0
)

(ês(θ, φ) · p)
∣∣2] . (2.170)

When determining the ADR for the lower halfspace, we have to remember that the
proportionality constant σi = (cπ) / (2nik

2
v) is defined in the medium i = 1, 2 where the

energy flux is determined, while the prefactor (in1k
3
v) / (2π) from the Weyl decomposition

is defined in the dipole’s medium and thus stays the same. With this, and the changed
integral (2.168), we find:

d2S

dΩ2

(π
2
≤ θ2 ≤ π, φ

)
=

cπ

2n2k2
v

(
n1k

3
v

2π

)2 ∣∣∣∣n2
2 cos θ2

n2
1 cos θ1

∣∣∣∣2
·
[
|(êp · p)Tpe

−ik1 cos θ1z0|2 + |(ês · p)Tse
−ik1 cos θ1z0|2

]
=
cn2k

4
v

8π

∣∣∣∣n2 cos θ2

n1 cos θ1

∣∣∣∣2 [|Tp(êp · p)|2 + |Ts(ês · p)|2
]

e2Im(k1 cos θ1)z0 .

(2.171)

In the last step, we took into account that for n2 > n1 there exist some waves with θ2

close to π/2 that can propagate in medium two but that are evanescent in medium one
(note that Im(k1 cos θ1) ≤ 0 for π/2 ≤ θ2 ≤ π).
After these theoretical considerations, we will now discuss some examples. The top
right panel of figure 2.16 shows a three-dimensional plot of the ADR of a dipole emitter
immersed in water and oriented parallel to the z-axis, which is the case already derived
in section 2.4.4. The distribution can be described as having a “doughnut shape”, a

15Using θ2 = arcsin(sin θ1 · n1/n2), and then finding f such that sin θ1dθ1 = f(θ2)dθ2.
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w
at

er
ai

r
/

w
at

er
gl

as
s

/
w

at
er

Figure 2.16: Angular distribution of radiation of a dipole emitter situated in water (top
row), in water directly at the interface between water and air (central row) or in water at
the interface between water and glass (bottom row). The dipole is oriented parallel to
the x- or z-axis in the left and right column, respectively. The red (blue) plane shows a
cut through φ = 0 (φ = π/2), this data is used for the curves on the right (left) side of
the polar plots in figure 2.17. All distributions are normalized such that their maximum
is one.
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Figure 2.17: Normalized angular distribution of radiation of a dipole emitter situated
in water at height z over a water/air (top row) or water/glass (bottom row) interface.
Shown are the patterns for a dipole parallel to the x-axis (left column) and parallel to
the z-axis (right column). The radius of the polar plot at angle θ ∈ [0, π] corresponds to
the flux in the direction (θ, φ = 0) on the right side of each plot (red plane in figure 2.16),
while the left side displays d2S/dΩ2(θ, φ = π/2) (blue plane in figure 2.16). As a reference,
the pattern for the same dipole only in water (top row in figure 2.16) is also included.
Furthermore, the critical angle for total internal reflection θc is shown by the green lines,
the stated values are measured between the line and the respective surface normal. Note
that here, all curves are normalized to the maximum of |d2S/dΩ2| of the water only case,
while in figure 2.16 each single ADR is normalized such that its maximum is one. This
allows to compare the total amount of emitted energy in different situations in this figure,
while figure 2.16 illustrates the overall shape of the ADR.
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vertical cut through the center reveals the typical “dumbbell shape” of sin2(θ). This
illustrates that most of the energy is transported in the direction perpendicular to the
dipole axis, while no energy at all is transported directly along the dipole axis. Due
to the symmetry of the system, the pattern of a dipole oriented parallel to the x-axis
is exactly the same, just rotated by 90◦ (top left panel of the figure). However, the
symmetry gets broken when an interface is present. The central and bottom rows of
figure 2.16 show the ADR for the same dipoles, but now situated in water directly at
the interface between water (n = 1.33) and air (n = 1) or between water and glass
(n = 1.52), respectively. Two things become apparent: Firstly, most of the energy
is emitted into the halfspace with larger refractive index. Secondly, for given φ the
θ-distribution becomes much sharper, concentrating a large part of the energy transport
in a small angular region. In fact, the polar plots in figure 2.17 show that with decreasing
distance between dipole and interface, more energy is emitted into angles that are larger
than the critical angle for total internal reflection. This means that some waves which
are evanescent in the water halfspace become propagating waves when they enter the
glass halfspace. However, if the dipole is too far from the interface, the evanescent
waves have already decayed before reaching it, which is why this effect only occurs at
small dipole-interface distance z.
These results have some practical implications based on the fact that it is always
desirable to collect as many photons as possible in an experiment. For example, if we
image single molecules that have been deposited on a glass cover slip, the situation
is similar to the top row of figure 2.17 (just with glass instead of water). Then, most
of the radiation is emitted into the glass halfspace, and it is advisable to image the
molecules with an oil immersion objective through the glass rather than through an air
objective from above. An oil-immersion objective with numerical aperture 1.49 and
refractive index 1.52 of the immersion oil has a collection angle of 79◦, which means
that a large part of the lobes around 50◦ gets collected by the objective.
We follow this example with a short remark on metals. Metals have a complex refractive
index, where the imaginary part describes absorption of energy by the metal. Thus,
the electric field generated by an oscillating dipole decays more quickly in a metal than
the 1/r-law found for dielectric materials. Therefore it makes no sense to talk about
“energy transport to the far field” if one halfspace consists of a metal. However, if only a
several nanometers thin metal layer is present between two dielectric media, the ADR
can be calculated exactly as described above – one only has to replace the Fresnel
reflection and transmission coefficients with their effective values for the stack of layers.
Figure 6.1 in the appendix shows the example of a 5 nm thick silver film between a
water and a glass halfspace. It looks very similar to the case of a simple glass/water
interface in the bottom row of figure 2.17.
Finally, we come to a quantity that will play a major role in the following chapters: the
total power of emission Stot of the dipole. In the previous section, we calculated this
quantity as the integral of the ADR over the full solid angle range, see eq. (2.162). This
approach is valid if no absorbing materials are present, so it can also be used for a dipole
emitter near a water/glass or water/air interface, as shown in figure 2.18a. However,
if a metal structure is close to an oscillating dipole, the energy actually emitted by
the latter will differ significantly from the energy transported to the far field. Then,
the Poynting vector has to be integrated over a closed surface that completely encloses
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water/Ag/glass, p || êz, total
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Figure 2.18: Total power of emission Stot of a dipole emitter located in water at varying
distance z from a planar interface. Shown are both the case of a dipole parallel to the x-
and z-axis (solid and dashed lines, respectively). All values were normalized to the total
power of emission of a dipole in water, SFS = 1

3cnk
4
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2 with n = 1.33.
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the emitter but does not contain any absorbing materials. An efficient way to do this
will be presented later, in section 3.4. For now, we restrict ourselves to a discussion
of the results, shown in figure 2.18. For an emitter that is located far away from the
interface, the total power of emission is the same as when there is no interface present
at all. This confirms our observation from the previous paragraphs that evanescent
waves play an important role in the interaction with an interface. If the emitter is close
to the interface, Stot decreases if the neighbouring material has a lower refractive index
than the host material of the dipole, and increases if the neighbouring material has a
higher refractive index. This increase is particularly pronounced if a metal is close by.
In order to explain this effect, we have to consider what happens to the energy emitted
by the dipole. We do this on the basis of the results of section 2.4.3 and especially
figure 2.15, where we investigated the energy transport of plane waves at an interface.
If the adjoining medium is transparent (n ∈ R), energy can only be transported in
the form of propagating waves. If n2 > n1, then some evanescent waves from the host
material turn into propagating waves, leading to an increase in total energy transport.
However, many evanescent waves from the dipole’s medium are still evanescent in the
neighbouring medium and thus do not contribute to the energy transport. On the
other hand, if a metal is present, then all evanescent waves that reach the metal can
dissipate energy because of the absorption properties of the material. This leads to a
much higher total energy emission.

2.4.6 Energy flux of a dipole emitter near a spherical interface

To conclude this chapter, we will now turn our attention to the energy flux of an
oscillating dipole near a spherical interface. As we saw when discussing the field of a
dipole emitter near a spherical interface, the application of the boundary conditions is
simplified significantly by decomposing the field in vector spherical harmonics. However,
the direction of energy transport of a VSH is not as easily found as for a plane wave,
where we know that energy is only transported along êk. Therefore, we will express the
field of the dipole emitter as a linear combination of VSH, use this representation to
describe the interaction with the spherical interface, and then transform the result to a
PW decomposition in order to find the angular distribution of radiation. The first step
is to decompose the original dipole field in VSH according to equation (2.80):

EVSH(r) =
∞∑
`=1

∑̀
m=−`

aD`mM
f
`m(kr) + bD`mN

f
`m(kr)

with aD`m =
4πink3

v

`(`+ 1)
p ·M g

`m(kr0) and bD`m =
4πink3

v

`(`+ 1)
p ·N g

`m(kr0) , (2.172)

with f = j and g = h for r < r0 and the reverse for r > r0. As the second step, the field
is scattered at the sphere as described in sections 2.3.3 and 2.3.4, finding the expansion
coefficients asc`m, b

sc
`m of the scattered field

Esc(r) =
∞∑
`=1

∑̀
m=−`

asc`mM
h
`m + bsc`mN

h
`m. (2.173)
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The third step is to calculate the PW decomposition of the resulting far field. This
means that r > r0 and thus f = h and g = j in equation (2.172). Thus, only VSH with
spherical Hankel functions as radial terms are needed, and we can use equations (2.60)
and (2.61) to find the plane wave decomposition of the field. This directly leads to the
fourth step, determining the angular distribution of radiation. We use the result from
the previous section that for a general electric field given as

E(r) =

∫
C

∫ 2π

0

dθ dφ sin θ A(θ, φ)eik(θ,φ)·r, (2.174)

where C contains propagating (θ ∈ [0, π]) and evanescent (θ = π/2 + iθ′′, θ′′ ∈ R) waves,
the angular distribution of radiation is given by:

d2S

dΩ2
(θ, φ) =

cπ

2nk2
v

|A(θ, φ)|2. (2.175)

For a single vector spherical harmonic, the plane-wave decompositions from section
2.1.4 can be used directly. If a dipole field is made up of several different VSH, it is
important to add the plane wave decompositions before using them in the calculation of
the flux, since |

∑
Ai|2 6=

∑
|Ai|2. Combining these four steps leads to the final result:

d2S

dΩ2
(θ, φ) =

cπ

2nk2
v


∣∣∣∣∣ 1

2π

∞∑
`=1

∑̀
m=−`

eimφ
[
(aD`m + asc`m)π`m + (bD`m + bsc`m)τ`m

]∣∣∣∣∣
2

+

∣∣∣∣∣ 1

2π

∞∑
`=1

∑̀
m=−`

eimφ
[
(aD`m + asc`m)τ`m + (bD`m + bsc`m)π`m

]∣∣∣∣∣
2
 . (2.176)

We use this formula to compare the ADR of a dipole situated close to a glass or
silver sphere of radius R = 200 nm – the same situation for which we calculated the
electric field at the end of section 2.3.4 and in figure 2.13. Figure 2.19 shows the
three-dimensional distribution for r0 = (0, 0, R) and p ‖ êx or p ‖ êz. A z-dipole
positioned on the z-axis in free space does not emit any energy along the z-axis, while
an x-dipole at the same position has its emission maximum in the whole y-z-plane.
Therefore, it seems plausible that a glass sphere at the origin has a larger influence on
the ADR of an x-dipole at (0, 0, R) than on that of a z-dipole at (0, 0, R). Indeed, that
is what figure 2.19 shows: The distribution of the z-dipole is only slightly distorted,
while that of the x-dipole displays a strong lobe in the direction θ = π, i.e. towards the
center of the sphere. This is further corroborated by the two-dimensional cuts along
the red and blue half-planes at φ = 0 and φ = π/2, which are plotted in figure 2.20.
There, the ADR is also shown for a dipole that is situated one wavelength away from
the sphere. In that case, the distribution for a z-dipole is already almost identical to
the free space ADR, while the pattern for an x-dipole still shows a preferential emission
in the direction of the sphere. On the other hand, if the sphere is made out of silver,
the distributions of radiation of both dipole orientations are strongly changed compared
to the free space case. They have several emission maxima, one of them is even close to
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Figure 2.19: Angular distribution of radiation of a dipole emitter situated in water
(top row) or on the z-axis directly at the surface of a glass or silver sphere embedded in
water (central and bottom row). The dipole is oriented parallel to the x- or z-axis in
the left and right column, respectively. The red (blue) plane shows a cut through φ = 0
(φ = π/2), this data is used for the curves on the right (left) side of the polar plots in
figure 2.20. The wavelength is λ = 500 nm, the radius of the spheres is R = 200 nm, and
all distributions are normalized such that their maximum is one.
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Figure 2.20: ADR of a dipole emitter oriented parallel to the x- or z-axis (left or right
column) and placed in water at different height on the z-axis close to a sphere made of
glass or silver (top or central/bottom row). The wavelength is λ = 500 nm, the radius of
the sphere is R, the distance ∆z between the surface of the sphere and the dipole is zero
(dotted line) or λ (dashed line). As a reference, a dipole in water without sphere is shown
with a solid line. All values are normalized to the maximum value of the water only case.
For R = 50 nm, the values for zero distance are so large that they have been divided by
10 to fit inside the figure.
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the formerly forbidden direction θ = π/2 for p ‖ êx. Now, also the radius of the sphere
plays an important role: If R is changed to 50 nm, the emission pattern resembles the
free space one with slight bias towards the negative halfspace, but is strongly enhanced
(note that the radius for ∆z = 0 in the bottom row of figure 2.20 has to be multiplied
by 10). In contrast, if a glass sphere with radius 50 nm is brought close to the dipole,
the pattern remains almost unchanged compared to free space (see figure 6.2 in the
appendix).
The dramatic change in the amplitude of the angular distribution of radiation for
different properties of the sphere raises the question how the total power of emission
is affected by these factors. Since we want to calculate Stot for both transparent and
absorbing spheres, we have to be able to integrate the Poynting vector over spherical
surfaces16. Therefore, it is advantageous to do this calculation in vector spherical
harmonics instead of plane waves. As we saw in section 2.1.3, VSH have the very useful
property that ∇×M f

`m = kN f
`m and ∇×N f

`m = kM f
`m. Thus, if an electric field is

given by the decomposition
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f
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f
`m , (2.177)

the time-averaged Poynting vector is
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Stot can now be found by integrating the time-averaged Poynting vector over the surface
of a volume that contains the dipole but no other energy sources or sinks. In the
simplest case of a dipole in free space, this can simply be a sphere with radius R > r0

centered at the origin (surface area element R2 sin θdθdφêr, θ ∈ [0, π], φ ∈ [0, 2π]).
Then we only need to find the r-component of S. To do that, consider(
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, (2.179)

16Since transparent spheres do not contain any energy sinks, Stot could in this case be determined
alternatively by integrating the ADR over the full solid angle range, as we did for a dipole in free
space in equation (2.162). For metal spheres, the total emission into the far field no longer equals
the total emission, as already discussed for a dipole close to a planar metallic region.
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where the complex conjugation of πop and τop could also be omitted since these functions
are real, anyway. If any of these expressions is integrated over φ ∈ [0, 2π], the result
will be zero unless m = p due to the complex exponential function. When proving the
orthogonality of the VSH in section 6.1.1 in the appendix, we have shown in equation
(6.4) that ∫ π

0

dθ sin θ (iπ`m(θ)τom(θ) + iπomτ`m) = 0, (2.180)

and in equation (6.5) that∫ π

0

dθ sin θ (π`mπom + τ`mτom) = δ`o
`(`+ 1)

2π
. (2.181)

Therefore, of all the terms in equation (2.178), only those where M is multiplied with
N and where ` = o and m = p give a contribution to the total power of emission Stot.
This leads us to:

Stot = − cR2
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(2.182)

Several conclusions can be drawn from this expression. Firstly, since j`(kr) ∈ R, the
total power of emission of a VSH with spherical Bessel function is zero17. Secondly,
since ([46], §19)

h`(kr)
kr�1−→ 1

kr
eikr−i(`+1)π/2

and
1

kr

d[rh`(kr)]

dr

kr�1−→ i

kr
eikr−i(`+1)π/2, (2.183)

we find for large values of R and for real k:
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]
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Therefore, a field that only consists of VSH with spherical Hankel functions has a positive
net flux towards the far-field. As a consistency check, consider the VSH decomposition
of a dipole situated at the origin, eq. (2.82). There, we found b1,0 = ink3

vp
√

4π/3 as
the only non-zero coefficient for a z-dipole. Thus, the total power of emission is

Stot(p ‖ êz, r0 = 0) =
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8πnk2
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2
(
nk3
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)2 4π

3
=

1

3
cnk4

vp
2, (2.185)

which is exactly the same as found in equation (2.162) from the closed-form solution of
the dipole field.

17Unless it is evaluated in a lossy medium where k has an imaginary component and f`(kr) /∈ R, but
that is not the case in the situations studied by us.
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Up to now, we assumed that it was possible to enclose the dipole in a (virtual) sphere
centered at the origin without including any other energy sources or sinks. However, if
a metal sphere is placed at the origin, this is no longer the case. Similar to the approach
from the previous section, we then have to change the integration surfaces. In order
to still be able to exploit the properties of the VSH with respect to integration over
concentric spheres, we simply choose two spherical surfaces: one with a large radius
rout > r0, and one that is between the dipole and the surface of the (physical) metal
sphere, r0 > rin > R. Stot is then given by the sum of the two fluxes18. Since the field
used to calculate the Poynting vector is now the sum of the original dipole field and the
scattered field, where the latter always uses h(kr) and the former uses j(kr) for r < r0

and h(kr) for r > r0, finding the flux through the inner sphere necessitates treating a
field of the form

E =
∞∑
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j
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h
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Then, mixed radial terms appear in the result:
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Does it matter where exactly we place the virtual sphere, i.e. which value we choose
for rin? If we again assume that the medium containing the dipole is transparent (i.e.
n ∈ R), the terms that only contain versions of j` are purely real and thus do not
contribute to the final result. Applied to the example of the dipole, this means that
if there is no metal particle present but a dipole is located at r0 6= 0 away from the
origin, there is no net flux through a sphere that does not contain the dipole. For the
terms that contain only versions of h`, we just saw that the r-dependence has the form
r−2, leading to a radius-independent flux through a concentric sphere. But what about
the mixed terms? We define two auxiliary functions,

f`(ρ) := j`
1

ρ

d(ρh`)

dρ
+ h`

1

ρ

d(ρj`)

dρ

and g`(ρ) := j`
1
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1

ρ

d(ρj`)

dρ
. (2.188)

18Here, one has to take into account that the vector êr, which we used as the normal vector of the
sphere, always points outwards, while we are interested in the inwards flux through the inner sphere.
Therefore, the result for the flux through the inner sphere has to be multiplied by -1.
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Then, for n ∈ R, the total flux through the inner sphere is given by
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where we exploited the fact that Re(xy) = Re(xy) and Im(xy) = −Im(xy). Since
spherical Hankel functions can be expressed as a sum of (real) spherical Bessel and
Neumann functions, h` = j` + iy`, we find for the real part of g`

19:
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Furthermore, we find the identity
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Therefore, we only need to study the behaviour of Im[f`(kr)] for different r. In the
limit of large radius, the asymptotic expression from equation (2.58) tell us that
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ρ�1−→ 1

ρ2

[
−i+ (−1)`+1 · sin(2ρ)

]
. (2.192)

Thus, for large r the imaginary part of f is simply −(kr)−2. In fact, this is true for all
r. Since a proof could not be found in the literature, a proof by induction is provided in
section 6.1.2 in the appendix of this work. To sum up, this means that the integral over
a mixed VSH-decomposition with coefficients aj`m, ah`m, bj`m and bh`m is simply given by:
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These results can now be used to find the total flux for a dipole emitter close to a
nanosphere. With the notation from equations (2.172,2.173) and the correct sign of the
flux through the inner sphere, this is:
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We now provide some examples to illustrate these results. Figure 2.21 shows the total
power of emission of an x- as well as a z-dipole on the z-axis above a glass or silver
sphere. It is immediately obvious that, for a large distance between dipole and sphere,

19Again assuming a transparent medium, i.e. k ∈ R and thus ρ ∈ R.
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Stot approaches the value of the free space case SFS = cnk4
vp

2/3. This is reasonable
since the absence of a sphere is the same as the limit of an infinite distance betwen
sphere and emitter. Remarkably, close to a glass sphere, Stot/SFS becomes larger than
one for a z-dipole but smaller than one for an x-dipole – unless the sphere is large,
then an x-dipole has a higher total power of emission, too. This can be explained by
studying the polar plots of d2S/dΩ2 in figures 2.20 and 6.2: For a z-dipole, all values
for ∆z = 0 are larger than the free space values. Contrarily, the x-dipole curves for
∆z = 0 are completely within the free space curves for R = 50. For R = 200 nm, the
dipole still emits less energy than in free space towards the upper halfspace, however,
this is overcompensated by a strong emission towards θ = π. The behaviour is different
close to a silver sphere: Directly at the surface, Stot increases significantly, more so for
a smaller sphere than a larger one. At a distance of roughly one wavelength from the
interface, figure 2.20 shows that the shape of the ADR is still distorted, but that an
increased emission in some directions is compensated by a decrease in others, leading
to Stot ≈ SFS.
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R = 50 nm, p ‖ êx
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R = 200 nm, p ‖ êz
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Figure 2.21: Total power of emission Stot of a water-immersed dipole located on the
z-axis at r0 = (0, 0, z0) and oriented parallel to the x- or z-axis (blue and red curves,
respectively). The upper image shows the results for a glass sphere with radius R = 50, 100
or 200 nm, centered at the origin, while the lower plot displays the same for a silver sphere.
Due to the different orders of magnitude, the upper plot uses a linear and the lower plot a
semilogarithmic scale. All curves are normalized to the free space value SFS = cnk4

vp
2/3.
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2.5 Fluorescence lifetime

Up to now, we have always considered a generic “oscillating dipole emitter” without
specifying what type of molecule this might be in praxis. Amazingly, even though
light emission by real molecules is described rigorously by quantum mechanics, most
light-emitting molecules can be modeled consistently by the classical electrodynamical
models presented in the previous sections. In this chapter, we will introduce several
concepts, namely fluorescence, fluorescence lifetime and fluorescence lifetime imaging,
and explain how they can be combined with the techniques developed in the previous
sections to experimentally collect information about dipole emitters.

2.5.1 Fluorescence

Some hands-on science museums offer an interesting experiment: Visitors are given a
flashlight before entering a small room that is illuminated by a yellow lamp. Several
paintings are hung on the wall, all seemingly only in shades of yellow and black. However,
as soon as the visitor turns on the flashlight and points it on the paintings, they suddenly
explode in bright shades of red, blue and green. How can this be? When monochromatic
light (i.e. light with a single wavelength) reaches our eyes, we perceive it as coloured.
Short wavelengths between roughly 400 nm and 490 nm appear blue, followed by green
up to about 560 nm, narrower regions of yellow and orange light, and finally red between
620 nm and 710 nm. Shorter or longer wavelengths are invisible to humans. However,
outside of a laboratory it is rare to observe monochromatic light – light sources such
as the sun, incandescent light bulbs or even modern white light-emitting diodes create
light with several different wavelengths simultaneously. In everyday life, the colour of
objects is determined by the absorption and reflection spectra of their components. For
example, black materials absorb all visible light, while white objects reflect this light.
Coloured substances such as pigments selectively absorb some wavelengths, reflecting or
scattering all others. This reflected spectrum is then perceived as colour, for example
“red” if all short wavelengths are absorbed. The important point to note here is that such
substances can only subtract from the original spectrum, not add any new wavelength
components. This was exploited in the mentioned experiment: The yellow lamp is a
sodium-vapor lamp which produces monochromatic light at a wavelength of λ = 589 nm.
This light is absorbed or scattered to varying degrees by the pigments in the painting’s
oil colours, but the resulting spectrum still only consists of light with λ = 589 nm, thus
appearing yellow. As soon as the white light from the flashlight illuminates the paintings,
the different pigments produce varying reflected spectra and thus the appearance of
red, blue or other colours.
There is, however, a class of substances with strongly different behaviour. When these
materials are illuminated with monochromatic light, it is partly absorbed and partly
transmitted, but additionally, light with a different (usually longer) wavelength is
emitted a short time later. This process is called fluorescence. Substances with this
unique property have a wide range of applications. For example, the aptly named
fluorescent lamp is a low-pressure mercury-vapor gas-discharge lamp that would normally
only produce invisible short-wavelength light. However, a fluorescent phosphor coating
on the inside of the lamp absorbs the high-frequency photons and emits light in the
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visible wavelenght range, making the lamp useful for lighting purposes. Another field
where fluorescent substances have found widespread use is light microscopy. Like the
pigments in the oil colours mentioned previously, fluorescent substances can be used
as “dyes” to colour something. In microcopy, they can be employed to selectively
label structures of interest. We will elaborate on this application at the end of this
section. Fluorescence is described both in many textbooks, such as [57], and reviews on
fluorescence mircroscopy and spectroscopy, such as [58]. Therefore, we restrict ourselves
to a brief summary here, which is based on the two mentioned sources.
In reality, fluorescent substances, also called fluorophores, are usually molecules with
many atoms and complex molecular electronic orbitals. However, the underlying
principle can be well understood by considering just two electronic states, the ground
state S0 and the excited state S1 with energies E0 < E1, which are each split into
several sublevels of similar energy by vibronic and rotational states20. The system
with all relevant processes is described by the Jab loński diagram in figure 2.22. A few
findings from quantum mechanics are needed to comprehend all relevant aspects of the
situation. Firstly, all elementary particles, including electrons, carry an intrinsic form
of angular momentum called spin. While the magnitude of this angular momentum
only depends on the type of particle and cannot be changed, the direction of the
spin can take on different values. To be more precise: The component of the angular
momentum measured along any direction can only take on certain values. For electrons,
one commonly chooses the z-direction, and finds that the component of the spin along
z is either +~/2 or −~/2. This is then referred to as “spin up” or “spin down” and
described by the quantum number ±1/2. Secondly, according to the Pauli exclusion
principle, identical elementary particles with half-integer spin cannot simultaneously
exist in the same state. Here, the term “state” includes properties such as position,
velocity, and several quantum numbers that also determine the energy level. As a
consequence, two electrons can only occupy the same orbital and be on exactly the
same energy level if they carry opposite spin. If the spin of one of the electrons were
flipped, the electron would have to transition to a different energy level. Thus, in the
ground state, all electrons exist in pairs of opposite spin, resulting in zero net spin –
the ground state is a so-called singlet state and is therefore denoted by S0. Without
any external influences, the steady-state distribution of the occupation of the energy
levels with energy Ei is given by the Boltzmann distribution, pi ∝ exp(−Ei/kBT ) with
the absolute temperature T and Boltzmann’s constant k. At room temperature, most
molecules occupy one of the lower vibronic levels of the electronic ground state. They
can absorb a photon if its energy (Eλ = hc/λabs with Planck’s constant h) matches
the energy difference between the current and any higher energy level. Generally,
this process cannot flip the spin of the electron, therefore the transition from S0 to
the triplet state T1 is called spin-forbidden. Instead, the excited state S1 is also a

20The field of quantum chemistry studies – among other problems – the properties of molecular orbitals.
One of the concepts is that functions called orbitals describe the probability to find an electron at
certain positions in space. These orbitals are associated with energy levels, and rules exist that
determine which orbitals are occupied by electrons. Generally, the orbitals of lowest energy are
occupied first, with higher-energy orbitals remaining empty. Then, the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) assume the roles of ground state
and excited state, respectively. For more details, see e.g. [59].
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Figure 2.22: Jab loński diagram, adapted from [58]. Shown are the electronic singlet
(S0, S1) and triplet (T1) states with vibronic sublevels (black lines), as well as possible
transition pathways between them. Typical timescales for these processes are listed in
the top left corner. The spins in opposite or parallel directions are shown schematically
as small arrows next to S0, S1 and T1. For details on the transitions see main text.

singlet state. Any of the vibronic energy levels of the excited electronic level can be
reached, depending on the exact energy of the photon and on the overlap between the
initial and final vibrational wave functions (Franck-Condon principle). Because of this,
when the molecule is irradiated with a continuous spectrum of different wavelengths,
some are more efficiently absorbed than others. This is illustrated by the absorption
spectrum of the fluorophore, see figure 2.23. In a process called vibrational relaxation,
the molecule then quickly (∼ 10−12 s) relaxes to the lowest vibrational level of the
excited electronic state, converting the excess energy to heat, which is transferred via
collisions to neighbouring molecules. From this lowest level of S1, the electron can then
relax to one of the vibrational levels of S0 while emitting a photon whose wavelength λem

is again determined by the energy difference of the two levels. Since the structure of the
vibronic sublevels of S0 and S1 is often similar, the spectrum of the emitted light is then
a near-mirror image of the absorption spectrum (mirror image rule). Because of the
vibrational relaxation, the emission spectrum is usually independent of the excitation
wavelength (Kasha’s rule), and the wavelength of the emitted light is longer than that
of the absorbed light (Stokes shift). Besides this radiative transition, the molecule
can also relax to the ground state non-radiatively, for example through collisions with
solvent molecules. The radiative and non-radiative relaxation channels are described by
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Figure 2.23: Normalized absorption and emission spectra of perylene, data from [60].
Both spectra are almost mirror images of each other. For this molecule, the Stokes shift –
i.e. the wavelength difference between the absorption and emission maximum – is zero.

their rate constants kr and knr, respectively. If an ensemble of identical molecules is
excited at time t = 0, the number N(t) of molecules still in the excited state at time t
is described by

dN(t)

dt
= −krN(t)− knrN(t) ⇒ N(t) = N(0) · e−(kr+knr)t. (2.195)

Equivalently, for one single molecule that was excited at time t = 0, the probability p(t)
to still be in the excited state at time t is given by

p(t) = ke−kt, (2.196)

where we introduced the total rate k := kr + knr. This rate determines the average time
a molecule spends in the excited state, called the excited state lifetime, fluorescence
lifetime or simply lifetime and denoted by τ :

τ :=

∫ ∞
0

dt t · p(t) = −k ∂
∂k

∫ ∞
0

dt e−kt = −k ∂
∂k

1

k
=

1

k
. (2.197)

Thus, a change in either the radiative or non-radiative relaxation rate has a direct
impact on the fluorescence lifetime. From an experimental point of view, it is interesting
to know how many emitted photons to expect for a certain number of absorption events.
This ratio, called the quantum yield (QY) Φ, is given by:

Φ =
kr

k
= krτ. (2.198)
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Finally, there is a small probability for an intersystem crossing : The excited singlet
state can pass non-radiatively to the excited triplet state, where it then stays for a
time that is orders of magnitude longer than τ because the return to S0 is again spin-
forbidden. If the relaxation occurs radiatively, the process is called phosphorescence,
otherwise the term triplet-state blinking is used to describe the long dark period. To be
exact, the rate of intersystem crossing should be included in the total deexcitation rate
k = kr + knr + kIC. However, since the probability of an intersystem crossing is so small,
or equivalently the transition rate kIC � kr, knr, this process is usually ignored when
calculating k.
One important point still has to be addressed to complete this summary: What are
the advantages of fluorophores compared to other dyes? Due to the nature of this
thesis, we answer this question for the life sciences. While some specialised applications
such as automated sequencing of DNA by the chain termination method [61] or DNA
detection in agarose gel electrophoresis [62] exist, the most widely known field is
fluorescence imaging. Gaining a deeper understanding of the processes inside single
cells is an important aim of modern biology. One of the key players of these processes
are proteins, polypeptides that are made up of one or several chains of amino acids.
Unraveling their structure and dynamics is a crucial step towards deducing the complex
interplay of the components necessary for cellular processes. There is, however, one
property of proteins that makes them hard to study: They are small, usually just a
few nanometers in diameter [63], and have a small absorption coefficient, making them
effectively transparent in conventional widefield microscpy. Here, fluorescent labels offer
the possibility to discriminate between a structure of interest and all other molecules
present in the sample. Since the label emits light of a different wavelength than the
one used to illuminate the sample, it is easily distinguished from scattered illumination
light of other parts of the sample, allowing to localize the emitter.
There are several types of fluorescent markers, among them organic dyes, fluorescent
proteins or semiconductor nanocrystals called quantum dots (QDs). Each of these have
their advantages and disadvantages, for example, while organic dyes have a size of
roughly 1 nm, fluorescent proteins measure about 3 nm to 5 nm and coated QDs have
a diameter of 10 nm-15 nm [64]. Larger labels may interfere with the function of the
labeled protein or worsen the localization precision. The labels also differ in emission
properties. On average, quantum dots are brighter than organic dyes and fluorescent
proteins [65]. Furthermore, QDs can be imaged over arbitrarily long time periods,
whereas both organic dyes and fluorescent proteins become nonemissive after prolonged
excitation – they are said to photobleach. However, both organic dyes and quantum
dots have to be linked to the target protein via (at least) one other macromolecule,
such as an antibody or a streptavidin-biotin bond. This increases the distance between
the detectable fluorescent marker and the protein whose location is of interest. Also,
antibodies can be labeled with several dye molecules, which on the one hand increases
the signal but on the other hand hinders exact counting of molecules. Fluorescent
proteins are covalently bound to the protein of interest during expression of the protein,
therefore the labeling is highly specific and monovalent. Furthermore, organic dyes and
QDs can only enter the cell if the cell membrane has been permeabilized, which is often
only possible after fixation of the cell and which might actually change the morphology
of the cell and thus the structures of interest. Fluorescent proteins, on the other hand,
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are ideally suited for life-cell imaging.
But fluorescent labels can do more than just mark specific structures: Some of them
have environment-specific properties such as solvent-dependent emission spectra [66],
pH-dependent fluorescence lifetime and quantum yield [67, 68], viscosity-dependent
fluorescence lifetime [69] or even quenching of the fluorescene by the presence of certain
substances ([57], chapter 9). This makes them suitable as sensors for a variety of
microscopic properties in their immediate surrounding which might be hard to access
otherwise, for example intracellular ion concentrations [70] or intracellular pH [71].
Furthermore, the fluorescence lifetime of an emitter can be changed by the presence of
metal or dielectric nanostructures, mirrors or simply interfaces between regions with
different refractive indices. This will be explained in detail in section 2.5.4 and is the
main driving force behind this thesis. Before coming to this exciting topic, however, we
will describe how exactly fluorescence lifetimes can be measured.

2.5.2 Fluorescence microscopy and fluorescence lifetime imaging

In fluorescence microscopy, one is interested in a certain aspect of a sample, for example
the shape and size of a fluorescently labeled structure, or the exact position of a single
fluorophore that has been attached to a small object. These fluorescence intensity
patterns carrying relevant information are called the signal. Detected intensity that
arises from other sources, such as the excitation light, contaminations of the sample, or
out-of-focus fluorescence is denoted as background or background signal. Discriminating
between signal and background is essential to recover the information one wants to gain
from the sample.
This process, and also the subsequent interpretation of the signal, is complicated by the
fact that every fluorescence intensity measurement is inherently noisy. In the previous
section, we showed that a single fluorophore emits light with a constant rate kr. However,
since the emission of a photon is a binary process21, one can find sufficiently small
time intervals of duration ∆t in which either one photon is generated or no photons
are emitted. Then, the probability for light emission within the short time interval ∆t
is given by kr∆t. The angular distribution of radiation determines which fraction of
emitted light can be collected by the objective. Together with losses in the optical path
between objective and detector, as well as a finite detection efficiency of the detector
itself, this means that the probability to detect a photon within the time interval ∆t is
given by kdet∆t, where kdet is proportional to kr

22. Then, the number N of detection
events in a longer time interval T (i.e. the measured intensity for exposure time T ) is a
random number and follows a Poisson distribution with mean kdetT ([72], §16.2.6.2, p.
833):

P (N) = e−kdetT
(kdetT )N

N !
. (2.199)

21At each given time point, the event either occurs or does not occur, but a molecule cannot emit “0.3
photons”.

22In a rigorous treatment, the probability that the fluorophore is even excited within a certain time
interval also has to be taken into account. Since the main message, namely that the detection
probability is proportional to the length of the time interval, is not changed by this aspect, it was
omitted here for simplicity.
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Figure 2.24: Simulation of a one-dimensional intensity measurement with shot noise.
The signal S of a fluorescently labeled structure is superposed by a constant background
B, the resulting ideal intensity is shown as a red line. A measurement would result in
noisy data (blue line), where the signal in each pixel follows a Poisson distribution with
mean S + B. Different combinations of signal S and background B lead to different
signal-to-noise ratios SNR = S/

√
S +B. The fluorescently labeled structure can be

distinguished more clearly from the background for a high SNR compared to a low SNR,
while it is de facto invisible for a SNR smaller than one.

Thus, even if the sample itself does not change, the number of detection events will vary
between consecutive measurements – we say that the data is noisy. Mathematically, this
is quantified by the variance σ2, the expectation of the squared deviation of N from
kdet∆t. The standard deviation σ, which is the square root of the variance, is commonly
called the noise, it has the same dimension as the signal itself. For a Poisson distributed
quantity, the variance is simply equal to the mean, and thus the standard deviation
equals the square root of the mean. This has implications for the signal-to-noise ratio
(SNR), the ratio of the desired signal to the noise:

SNR :=
signal

noise
Poisson
==
noise

N√
N
. (2.200)

This type of noise is called Poisson noise or shot noise23 in order to distinguish it

82



2.5 Fluorescence lifetime

from other types of noise. The latter arise mainly in the detector itself, for example, a
detector can report a detection event even though no photon was present (dark noise).
However, in an ideal setup, shot noise is the dominating form of noise. Therefore, we
illustrate its effect in figure 2.24 that simulates a one-dimensional intensity scan. In all
four panels, we assume a constant background B that is superposed by the signal S from
a fluorescently labeled one-dimensional structure. In red, the total ideal intensity B+S
is shown, while the blue curves are simulations of shot-noise limited measurements.
When calculating the signal-to-noise ratio, one has to take into account that the total
number of photons equals B + S, while the signal is only given by S:

SNR =
S√
B + S

(2.201)

Therefore, increasing the signal increases the SNR, while increasing the background
decreases the SNR. The aim of a measurement of this system could, for example, be to
localize the labeled structure and determine its size. As can be seen in the figure, this is
easier for a higher SNR. Equivalently, the reliability of fits of model functions to curves
such as these is increased by a higher SNR, too. To sum up, it is desirable to achieve a
high SNR experimentally. This challenging task is one of the main considerations when
designing an experimental setup for fluorescence microcopy, as we will now demonstrate
exemplarily on a setup used in our laboratory (see figure 2.25).
As stressed in the previous section, the main feature of fluorescence is the different
wavelength of the emitted radiation compared to the excitation light. This effect can be
used to separate fluorescence and scattered or transmitted excitation light by specialized
optical components. The simplest possibility are absorptive filters, glass or plastic plates
that contain pigments which selectively absorb some wavelengths, letting all others pass.
More sophisticated components are dichroic filters (also called dichroic mirrors), glass
plates that are coated with a series of thin films with different refractive indices. Due to
multiple reflections at these many interfaces, some wavelengths interfere constructively
behind the filter and can thus pass it, while others interfere destructively and are
reflected instead. Depending on the type, thickness and number of coatings, there
is usually a so-called cutoff wavelength below or above which all light is transmitted
(shortpass or longpass filter, respectively), all other light is reflected. Furthermore, there
exist bandpass filters that only allow light within a certain wavelength range (e.g. the
fluorescence light) to pass. Since dichroic filters split the light beam into a transmitted
and a reflected component, they are also called beam splitters. If the cutoff wavelength
of the filter is chosen to lie between the wavelengths of the excitation light and the
fluorescence, the two types of radiation can be efficiently separated, allowing to detect
only the fluorescence emission and thus considerably reduce the background. However,
since these filters are never perfect, but always have an – albeit very small – non-zero
transmission coefficient in the reflective wavelength range (usually on the order of 10−6),
and since the excitation intensity is usually much higher than the fluorescence intensity,
it is desirable to let as little excitation light as possible enter the detection pathway.
This is achieved in our setup by using an inverted microscope, where both excitation

23This is a translation of the German “Schroteffekt”, which Walter Schottky used in the first description
of this type of noise for current fluctuations in vacuum tubes [73].
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Figure 2.25: Schematic of the experimental setup for confocal fluorescence lifetime
imaging. A monochromatic light source (here a white light laser with a tunable optical
filter to allow rapid switching between wavelengths for multi-colour measurements) is
focused through a pinhole onto the sample. The fluorescence light from the small focal
spot is then focused onto a second pinhole, residual excitation light is blocked by an
additional filter. Adapted with permission from an image created by Alexey Chizhik.

and detection are done from below the sample (see figure 2.25). Then, the beam splitter
and any further filters which might be added directly before the detector only have to
block scattered excitation light, instead of the full power of the initial beam.
We said above that in an ideal setup, shot noise is the dominating form of noise. This
is true in a real setup, too, if the detector has a low noise level. For fluorescence
imaging, complementary metal-oxide semiconductors (CMOS) or electron-multiplying
charge-coupled devices (EMCCDs) with a cooled chip are usually used, they both
measure the intensity of the incoming light during a certain exposure time (usually on
the order of milliseconds). Both types of cameras are used in our laboratory. However,
the setup shown in figure 2.25 is used to determine fluorescent lifetimes. As we will see
below, this requires the determination of the arrival times of single photons with an
accuracy on the order of picoseconds. This is achieved using single photon avalanche
diodes (SPADs) [74], which were used for the experiments presented in chapter 4.
The shot noise itself can be reduced by lowering the background, as demonstrated
in figure 2.24. For a setup that is shielded from ambient light and that uses good
filters, this background signal is mainly fluorescence from out-of-focus planes. This is
minimized in our setup by using a confocal microscope. The general idea of confocal
microcopy is to illuminate only one point in the sample, focus the emitted light onto a
small pinhole and detect only the light that manages to pass the pinhole. Light that
originates from outside the focus is smeared out over the plane of the pinhole and thus
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does not reach the detector, reducing the background signal. Since only one point is
illuminated and imaged at a time, this point has to be scanned over the sample in order
to collect a whole image. This is in contrast to standard widefield microscopy where a
large field of view is imaged at the same time.
In equation (2.201), we showed that increasing the signal also increases the SNR. This
can be achieved by raising the number of emitters (i.e. by increasing the labeling density)
or by boosting the number of photons collected from each single emitter. The latter is
implemented in our setup by using a high-power excitation laser that efficiently excites
the fluorophores. Lasers are monochromatic, which facilitates the excitation of only
specific types of fluorophores and the selective blocking of the excitation light in the
detection pathway. Furthermore, they have a high energy flux in a small solid angle
element, allowing to collimate the beam and focus it on the sample. Last but not
least, lasers offer the probability to be pulsed, and their amplitude can be electronically
regulated, properties that are needed for determining lifetimes, as will be explained
below.
Up to now, we mainly discussed experimental methods and optical components for
fluorescence microscopy, where only the intensity of fluorescence at a point in space is of
interest. However, as presented in the previous sections, the lifetime of a fluorophore is
an observable that offers many interesting insights, too. The general term fluorescence
lifetime imaging microscopy (FLIM) encompasses different techniques to measure
fluorescent lifetimes, which can be divided into frequency-domain and time-domain
methods [57]. In a frequency-domain measurement, the sample is excited with a
periodically modulated light beam, where the modulation frequency ωmod is on the
same order of magnitude as the inverse decay time of the excited state. The intensity of
the detected fluorescence is then modulated with the same frequency, however, due to
the finite lifetime of the excited state, the emission is delayed relative to the excitation.
This leads to both a phase shift ϕ and a demodulation m of the fluorescence signal, see
the left side of figure 2.26a. For a monoexponential decay (i.e. a decay with a single
decay time, as in equation (2.196)), the decay time τ can be directly recovered from ϕ
or m:

τϕ =
1

ωmod

tanϕ or τm =
1

ωmod

√
1

m2
− 1. (2.202)

However, a sample can also contain species with different lifetimes, for example different
types of fluorophores, fluorophores in different environments, or even fluorophores that
exhibit multiple emitting states with different lifetimes [75]. Then, the total number
N(t) of molecules that is still in the excited state at a certain time t (compare with
equation (2.195)) is described by a linear combination of exponential functions with
different decay constants. Therefore, such a decay is called a multiexponential decay.
When measuring such a sample, the apparent lifetimes τϕ and τm “represent a complex
weighted average of the decay components” [57]. Then, measurements have to be
made for a wide range of modulation frequencies, and the data has to be fitted with
appropriate models. An example of real data taken from [57] is shown on the left
side of figure 2.26b. Here, phase and demodulation were measured over a range of
light modulation frequencies for the tryptophan derivative N-acetyl-L-tryptophanamide
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Figure 2.26: Comparison of frequency-domain and time-domain measurements of
fluorescence lifetimes, from [57].
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(NATA). A least-squares fit of the data to equations (2.202) resulted in a lifetime of
5.09 ns. The deviations between data and fit shown in the two bottom left panels of
figure 2.26b are random, which indicates that the decay truly is monoexponential.
In time-domain experiments, the sample is excited by very short light pulses, and the
time-dependent intensity is recorded as illustrated on the right side of figure 2.26a. The
probability that a single molecule that was excited at time t is still in its excited state
at time t+ ∆t was described in equation (2.196) as

p(∆t) =
1

τ
e−∆t/τ (2.203)

for a monoexponential decay. Consequently, the probability that this single molecule
decays radiatively at time t+ ∆t is proportional to the time derivative of p(∆t). Under
the assumption that all excited molecules follow the same law, the intensity I(t+ ∆t)
measured at the time t + ∆t is also proportional to e−∆t/τ . This is only valid for
times ∆t that are smaller than the time between consecutive excitation pulses, though.
If excitation pulses occur periodically at times t = 0, T, 2T, . . . , the time-dependent
intensity is also periodic with period T . Therefore, one can sum the intensities period-
wise and obtain a curve of the form

I(∆t) :=
∑

{τ | τ mod T=∆t}

I(τ) ∝ e−∆t/τ ∀ 0 ≤ ∆t ≤ T. (2.204)

In practice, one has to take into account two properties of detectors: Firstly, a detector
needs some time to recuperate between consecutive detection events. This time period,
where the detector is effectively “blind”, is called the dead time of the detector. Because
the dead time is usually much longer than the fluorescence lifetime [6], only one photon
can be detected per excitation pulse. Therefore, the excitation power has to be low
enough that on average, less than one photon reaches the detector per excitation pulse –
otherwise, only the first photon would be detected, leading to a shift of the average
measured arrival time to shorter times. Alternatively, we have developed a method
to correct this effect in a post-processing step, see [6] and section 6.3 in the appendix.
Secondly, detectors only have a finite time resolution. Thus, instead of recording
continuous values of arrival times, ∆t can only take on certain values, and I(∆t) is
actually a histogram.
This concept is implemented in time-correlated single photon counting (TCSPC). There,
the sample is excited with a periodic train of short laser pulses, and the relative delay
∆t between the detection of a photon and the exciting pulse is recorded. The resulting
photon number histogram I(∆t), the so-called TCSPC curve, can then be fitted with a
mono- or multiexponential model function to recover the fluorescent lifetime(s). Details
on the fitting routines used by us are presented in section 3.5. The same example as
shown for frequency domain measurements was also measured in the time domain, see
the right side of figure 2.26b. A monoexponential fit of the data resulted in a lifetime
of 5.15 ns, which is close to the result of the frequency domain measurement. The
deviation between data and fit in the bottom right panel again seems random, which is
an indicator for a correct choice of the model.
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2.5.3 Lifetime changes close to interfaces

We showed in section 2.3 that the electric field created by an osillating electric dipole is
changed close to interfaces between media with different refractive indices. This was
followed by the demonstration how both the angular distribution of radiation and the
total amount of energy emitted per time are influenced by the interface in section 2.4.
Especially the last point suggests that there might also be a variation in fluorescent
lifetime close to an interface: If more energy per time is emitted, but the energy of
one single photon stays the same, should there not be more emission events per time?
This question was answered theoretically by Edward Purcell in 1946 in the context
of nuclear magnetic moment transitions at radio frequencies. He predicted that the
spontaneous emission rate of atoms inside a resonant cavity should be increased, with
the magnitude of the effect depending on certain properties of the cavity [36]. For
transitions in the visible range, this Purcell effect was demonstrated experimentally by
Karl-Heinz Drexhage in 1970 [37]. He used a technique known since the 1930s called
Langmuir-Blodgett films (LB films) [76] to create a layer of known thickness d on top of
a silver mirror. With this method, a monolayer of fatty acid molecules is formed in a
bath by dropping a small amount of fatty acid onto the liquid. Then, the solid substrate
on which one wishes to deposit the film is dipped into the liquid and carefully removed
again, leaving behind a monolayer of fatty acid on the substrate. Since the thickness
of one monolayer is known, by repeating the process one can create layers of (almost)
arbitrary thickness. Drexhage doped the top layer with europium-dibenzoylmethane
complexes, knowing that Eu3+ ions absorb in the ultraviolet and fluoresce at about
612 nm with a decay time of about one millisecond. He measured the fluorescence
lifetime for different film thicknesses d and observed a strong variation of τ(d).
Several models exist which explain these lifetime changes, and which all lead to the
same predictions. Since the experiment concerns single ions, it seems appropriate to
start with a quantum mechanical approach. As we already pointed out when intro-
ducing fluorescence in section 2.5.1, the excited fluorophore can be approximated as
a two-state system. Let us assume the initial (excited) state has the energy Ei, while
the final (ground) state has the energy Ef . Both are eigenstates of the Hamiltonian
H0 that describes the fluorophore in free space. If an electric field E with angular
frequency ω = (Ei − Ef )/~24 is acting on the system, the total Hamiltonian H is given
by H = H0 + H ′, where H ′ = −p · E with the dipole moment p. Then, quantum
mechanical perturbation theory provides an expression for the transition rate Γ = τ−1

between the initial state i and the final state f , known as Fermi’s golden rule ([77],
section 9.2):

Γi→f =
2π

~
|〈f |H ′|i〉|2ρ(ω), (2.205)

where 〈f |H ′|i〉 is the matrix element of the perturbation H ′ between the initial and final
states and ρ(ω) is the density of final states (number of states per energy range and
per volume at energy ~ω). This rule immediately shows that the lifetime is inversely
proportional to ρ. The important point to note is that ρ(ω) becomes position-dependent,
ρ(ω, r), in the vicinity of metallic or dielectric interfaces. Thus, ρ(ω, r) is called the

24~ = h/2π is the reduced Planck constant.
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local density of states (LDOS).
On the other hand, it is known that vacuum fluctuations can excite a dipole ([77],
section 9.2). In thermal equilibrium, the dipole has to on average emit the same amount
of energy as it absorbs, which determines the spontaneous emission rate [78]. If the
density of vacuum modes is doubled, the spontaneous emission has to be doubled, too,
which leads to the same dependency on ρ(ω, r) as Fermi’s golden rule.
The drawback of this approach is the difficulty in calculating the LDOS for geometries
that are more complicated than a rectangular box in vacuum. One possibility is de-
scribed by Greffet and co-workers [56, 79]. It is based on what they call “fluctuational
electrodynamics”. The idea is that, in thermal equilibrium, electrons in the material fluc-
tuate, producing randomly fluctuating currents, which in turn generate radiation. The
statistical properties of these currents can be gained from the Fluctuation-Dissipation
Theorem (FDT). The electromagnetic fields that are generated by the currents are
changed due to the presence of the interface, as described in section 2.425. Greffet’s
argument is that the average density of electromagnetic energy at the position r is
given by

〈U〉(r) =
1

8π
〈|E(r, t)|2〉t +

1

8π
〈|B(r, t)|2〉t =

∫ ∞
0

dω

2π
u(r, ω) (2.206)

with the spectral energy density u. Alternatively, an energy density can be understood
as the product of the local density of states and the mean energy of each state at
temperature T :

u(r, ω) = ρ(r, ω)
~ω

exp(~ω/kBT )− 1
. (2.207)

As auxiliary quantities, Greffet et al. introduce the electric- and magnetic-field correlation
functions E and B:

Eij(r, r′, t− t′) = Re

[∫ ∞
0

dω

2π
Ei,j(r, r′, ω)e−iω(t−t′)

]
= 〈Ei(r, t)Ej(r′, t′)〉,

Bij(r, r′, t− t′) = Re

[∫ ∞
0

dω

2π
Bi,j(r, r′, ω)e−iω(t−t′)

]
= 〈Bi(r, t)Bj(r′, t′)〉. (2.208)

Then, by setting r = r′ and t = t′, one finds that the spectral energy density is given by

u(r, ω) =
1

8π

∑
i=1:3

Eii(r, r, ω) + Bii(r, r, ω). (2.209)

Finally, the FDT relates Eij(r, r′, ω) and Bij(r, r′, ω) to the Green’s function of the
system, thus allowing to derive the LDOS ρ(r, ω) for different geometries by comparing
(2.207) and (2.209). However, this approach was mentioned here only for the sake of
completeness and will not be used in the following.

25Alternatively, the influence of the interface can also be treated using the Green’s tensor of the system
as in [56, 79].
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Historically, the first suggestion that accurately reproduced the experiment [80, 81]
was a mechanical model, namely a classical damped oscillator that is driven by an
electric field. In this model, the excited state of the dipole emitter is described by
a harmonically bound, oscillating charge e with effective mass m. Without external
influences and without damping, this would be described by

mẍ = −kx ⇒ x(t) = x+
0 eiωt + x−0 e−iωt, (2.210)

where k is the elastic force constant, x is the three-dimensional position of the charge
and ω =

√
k/m is the oscillation frequency. Instead of using this general solution, we

choose only the term proportional to e−iωt and keep in mind that the physical solution
can be found by taking the real part, as was done in all other previous chapters. By
multiplying the whole equation with the charge e, we find an expression for the dipole
moment µ(t) = ex(t):

µ̈ = −ω2µ ⇒ µ(t) = µ0e−iωt. (2.211)

Without damping, the dipole never stops oscillating, which corresponds to an infinite
lifetime of the excited state. When damping with a damping constant b is introduced,
the equation becomes

µ̈ = −ω2µ− bµ̇ ⇒ µ(t) = µ0e−iω
′te−

b
2
t, (2.212)

with ω′ =
√
ω2 − b2/4. The oscillation frequency ω′ is thus shorter than the unperturbed

frequency ω. Furthermore, the dipole moment decays exponentially with decay rate
b/2. Since the amplitude of the electric field generated by the dipole is proportional
to |µ|, and the intensity in turn is proportional to the absolute square of the electric
field, this tells us that the intensity of this classical oscillator decays with decay rate
b. Therefore, in this model, the excited state lifetime τ is identical to 1/b. For visible
light with wavelength λ ≈ 380 nm− 780 nm, the oscillation frequency is in the range
ω = 2πc/λ ≈ (2 to 5) · 1015 s−1. On the other hand, the excited state typically lasts a
few nanoseconds, or b ≈ 109 s−1. Thus, the shift in oscillation frequency caused by the
damping is negligible, ω′ ≈ ω.
Now we come to the reason for these considerations, the interaction of the reflected
field with the dipole. Any electric field E, regardless of its origin, exerts a force eE on
the charge, resulting in:

µ̈ = −ω2µ− bµ̇+
e2

m
E. (2.213)

However, here we reach a limit of the model: If E has components that are perpendicular
to the original dipole axis, it should force the dipole to change the direction of its
oscillation. In reality, the orientation of the dipole moment is fixed relative to the dye
molecule itself, and we assume that the molecule (with its much larger mass compared
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to a single electron) is not rotated or translated by the electric field. Therefore, in the
following we project everything on the dipole axis and solve a one-dimensional equation:

µ̈ = −ω2µ− bµ̇+
e2

m
E‖ (2.214)

Since we know that the electric field is generated by the dipole, both oscillate with the
same frequency. Inserting the ansatz E‖(t) = E0 exp(−iΩt), µ(t) = µ0 exp(−iΩt) in
equation (2.214), we find:

0 = Ω2 − ω2 + ibΩ +
e2

mµ0

E0. (2.215)

Under the premise that the frequency Ω should approach ω in the absence of any
damping or external fields, we take the postive square root:

Ω = −i b
2

+

√
−b

2

4
+ ω2 − e2

mµ0

E0. (2.216)

This expression can be simplified. As shown above, b� ω. As a first-order approxima-
tion of E0, consider the closed-form solution for the electric field of a dipole in eq. (2.79):
For small r and r ⊥ p, the magnitude of the field is approximately equal to µ/(n2r3). In

the cgs-system, the elementary charge has the magnitude 4.8 · 10−10√g
√

cm
3
/s, while

the mass of an electron is 9.1 · 10−28 g. Thus, e2/m ≈ 2.5 · 108 cm3/s2. With this, the
term e2/(mµ0)E0 takes on values in the range 1026 s−2 (r = 10 nm) or less. Compared
to ω2 ≈ 1030 s−2, this is small enough to warrant a linear approximation of the square
root26:

Ω ≈ −i b
2

+ ω − b2

8ω
− e2

2mµ0ω
E0. (2.217)

Now we interpret this result. Since we used the ansatz µ(t) = µ0 exp(−iΩt), all real
components of Ω determine the oscillation frequency of the dipole,

ω′ = ω − b2

8ω
− e2

mµ0ω
Re(E0) ≈ ω, (2.218)

which is not significantly changed compared to the situation without external field.
Thus, the wavelength of the radiation stays basically constant. On the other hand, the
imaginary part of Ω describes the damping and thus the radiative deexcitation rate:

b′

2
=
b

2
+

e2

2mµ0ω
Im(E0)

26Since we use a mechanical model to describe what is actually a quantum mechanical transition dipole,
using the mass and charge of an electron is initially just a reasonable guess. However, since this
model was successfully used to explain experimental results [81], the assumption of small e2/(mµ0)E0

seems justified.
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or τ ′ =

[
1

τ
+

e2

mµ0ω
Im(E0)

]−1

. (2.219)

If the dipole is close to the mirror, the damping due to Im(E0) can be much larger than
the intrinsic damping b – the lifetime of the dipole is drastically reduced compared to
the free space case. In the original works [80, 81], the damping constant b was already
interpreted as the sum of two processes, radial damping and thermal damping, with
b = br + bnr and the quantum yield Φ = br/b, and a classical expression for the radiative
damping constant:

br =
2e2ω3n

3c3m
, (2.220)

with the refractive index n of the medium surrounding the dipole, and the speed of
light c. Then, the expression for the lifetime in the presence of the interface could be
rewritten as:

τ ′

τ
=

[
1 + Φ

3c3

2µ0ω3n
Im(E0)

]−1

. (2.221)

Since E0 is proportional to µ0, the dipole moment cancels. The speed of light, the
wavelength, all refractive indices and even the distance between dipole and mirror were
known, such that the quantum yield Φ was the only free fit parameter. Reasonably
good fits could be obtained for all distances r in [81], which was seen as a confirmation
of this model.
A completely different but still semi-classical approach was suggested by Drexhage to
explain his experimental results [37]. It is based on the idea mentioned at the beginning
of this section: The total amount of radiation emitted per time by a classical oscillating
dipole Stot changes in the vicinity of interfaces or nanostructures. Since the energy
emitted per deexcitation event is determined solely by the wavelength (energy = hc/λ
with Planck’s constant h) and thus fixed, “more energy emisison per time” can only
be realised through “more deexcitation events per time” and thus a shorter lifetime.
In his calculations, Drexhage assumed that no energy can enter the mirror, and thus
only integrated the energy flux over the top halfspace. Furthermore, he stated that a
doubled total emitted energy per time leads to a halved lifetime, both with respect to
the values in free space (i.e. in the same medium but without presence of the interface),
which can be easily determined. With this approach, Drexhage was able to explain the
lifetime variation at nd/λ & 0.6. For shorter distances, his results predicted an increased
lifetime, while the measurement showed that the lifetime strongly decreased. Drexhage
correctly assumed that this was due to the energy transfer to the metal mirror, which he
had not taken into account. This effect was included in the later calculations by Chance,
Prock and Silbey [82], who integrated the energy flux over two planes parallel to the
mirror, one above and one below the dipole, as we did in section 2.4.5. In [82] it is said
that “F↑, divided by the energy of the dipole (which we take as |µ|2 for convenience)
is simply the rate constant b↑ associated with energy loss through the upper plane”,
where F↑ is the part of Stot that is emitted into the upper halfspace. In other words, if
an oscillating dipole has some initial energy ε0 and then emits energy with a rate Stot,
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the energy is “used up” after the time τr = ε0/Stot. According to this assumption, the
radiative deexcitation rate should simply be given by Stot/|µ|2. However, it is not clear
why the initial energy of the dipole should be ε = |µ|2. After all, the energy difference
between the excited state and the ground state is hc/λ. Here, a connection between the
classical mechanical model with an oscillating charge that results in the dipole moment
µ and the quantum-mechanical system with the transition matrix element µ would have
to be found. However, later on the authors renormalise the rate to that of a dipole
emitter in free space, which is the same as Drexhage’s approach and which seems much
more robust. Therefore, our own calculations in the subsequent chapters use Chance,
Prock and Silbey’s idea to determine Stot with Drexhage’s suggestion to compare with
the free space values τ0 and S0:

τ(d)

τ0

=
S0

Stot(d)
. (2.222)

The calculations can be sped up significantly by exploiting a peculiarity of the total
energy flux. As will be shown in section 3.4, the total flux through an infinite plane27

generated by a dipole emitter with dipole moment p is given by an integral over the
angles θ′ and φ′, the latter from zero to 2π. The integrand is the sum of two terms, one
proportional to |p · êp|2 and the other proportional to |p · ês|2. These two terms have
the property that ∫ 2π

0

dφ′ |p · êp|2 =π
[
sin2 θ cos2 θ′ + cos2 θ sin2 θ′

]
and

∫ 2π

0

dφ′ |p · ês|2 =π sin2 θ (2.223)

for a dipole moment given by

p = p

sin θ cosφ
sin θ sinφ

cosφ

 . (2.224)

Since p does not appear anywhere else in the expression for the total flux, we can
draw two conclusions from this result. Firstly, the flux does not depend on the angle φ
between p and the x-axis, therefore we define the total flux generated by any dipole
oriented parallel to the interface as Stot,‖. Secondly, when the above terms are evaluated
for a dipole parallel (θ = π/2) or perpendicular (θ = 0) to the plane, either sin2 θ or
cos2 θ equals one, while the other is zero. Hence, the flux of an arbitrarily oriented
dipole emitter can be expressed as a linear combination of the flux Stot,⊥ of a vertical
dipole with θ = 0 and the flux Stot,‖:

Stot,θ(d) = sin2 θ · Stot,‖(d) + cos2 θ · Stot,⊥(d), (2.225)

27Which is assumed to be parallel to the x-y-plane.
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where we now again included the dependence on the distance d between the dipole emit-
ter and the planar interface. Thus, only Stot,‖(d) and Stot,⊥(d) have to be determined
explicitly, then all other fluxes can be quickly derived from them.
Following Drexhage’s experimental proof of Purcell’s prediction [36, 37] and the publi-
cation of various theoretical explanations ([80–84], some of those presented above), the
Purcell effect was studied in a number of experimental situations in the 1980s and 1990s.
These included fluorophores close to silver films of varying thickness [85], between two
closely spaced mirrors (i.e. inside a planar cavity) [86, 87], in multilayered thin-film
samples [88], close to silver island films consisting of many individual metal spheroids
[89], or in dielectric nanospheres [90, 91]. Parallel to the advances in nanotechnology
in the 2000s, the Purcell effect was studied experimentally for emitters in a variety of
previously inaccessible environments, such as photonic crystals [92] and electrospun
polymer nanofibers [93]. These works were accompanied by a large number of theoretical
treatments, such as predictions of the radiative rate inside nanoscopic dielectric particles
of varying size and shape [94] and inside multilayered nanoscopic spheres [95]. In 2010,
the Purcell effect was met with renewed interest, when it was applied to the rapidly
growing field of super-resolution microscopy in the form of metal-induced energy transfer
microscopy. This technique will be treated in detail in the next section.
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Figure 2.27: Relative fluorescence lifetime of Eu3+ ions in an LB-film close to a silver
mirror (more accurately: a silver halfspace). Same parameters as used by Drexhage in [37]:
λ = 612 nm, Φ = 0.7, nAg = 0.06 + 4.11i, nLB = 1.54, random orientation of molecules.
The red curve shows the result if only the flux into the uppper halfspace is taken into
account, the blue curve shows the result including energy transfer to the metal.
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2.5.4 Metal-induced energy transfer

One of the central findings of this thesis is that the fluorescence lifetime τ of a dipole
emitter changes dramatically, but in a well-defined manner, close to an interface. We
now show an example to demonstrate the dependence of this lifetime change on the
distance z between the emitter and the interface. Figure 2.27 depicts τ(z) for the same
system as used by Drexhage in [37], europium ions in an LB-film on top of a thick silver
mirror. As already mentioned above, Drexhage only integrated the energy flux over the
upper halfspace, which leads to the red curve in the figure. When Stot is used instead,
the blue curve results. It becomes clear that, at large distances from the mirror, the
emission into the upper halfspace is the dominating effect. Then, the lifetime oscillates
in z with a period of 0.5λ/n and with decreasing amplitude. This can be explained
by either of the two classical models, assuming for simplicity a perfect mirror with
reflection coefficient r = exp(iπ) and transmission coefficient t = 0:
As Drexhage already pointed out [37], if the distance between the emitter and the mirror
is given by z = λ/n · (2j+ 1)/4, j ∈ N, the reflected light interferes constructively with
the light emitted by the dipole. Since the intensity is proportional to the square of the
amplitude, the energy radiated into the upper halfspace per time is quadrupled. Due to
the perfect mirror, no energy is emitted into the lower halfspace. Together, this leads
to a doubling of Stot. Contrarily, if the path difference leads to destructive interference,
no energy is emitted at all and the lifetime would become infinite28. However, this is
only true for all emission angles if the molecule is located in the center of a spherical
mirror whose top half has been removed, such that the path difference is independent
of the emission angle. For a real planar mirror, both the path difference and the
reflection coefficient do depend on the emission angle. Thus, while some waves might
interfere constructively, others interfere destructively. This is why the amplitude of
the modulation is relatively small. Since the field of a dipole decreases with distance,
the effect of adding the reflected field also gets weaker with larger z, leading to an
asymptotic convergence τ → τ0.
Alternatively, the model of an electrical charge oscillating in a harmonic potential can
also be used to explain the far-field behaviour, as done by Kuhn in [80]. From this
perspective, the reflected electric field can be interpreted as the field of a virtual “mirror
image” oscillator identical to the real emitter and oscillating out of phase (due to the
phase of the reflection coefficient r). The field of this mirror image oscillator reaches the
real oscillator with a time delay ∆t = 2zn/c due to the finite velocity of propagation
of the fields. The electric field exerts a force on the charge, therefore it can accelerate
or decelerate the charge, depending on the magnitude of the time delay. Since in this
model the lifetime is interpreted as the time until the oscillator stops, a deceleration of
the charge results in a decreased lifetime, while an acceleration of the charge increases
the lifetime.
However, the more interesting case for us is z . λ/2. In this regime, the lifetime change
is much more pronounced than at larger distances. As the comparison between the
red and the blue curve in figure 2.27 shows, the behaviour at small distances is mainly
governed by energy transfer to the lower halfspace. We call this Metal-Induced Energy
Transfer (MIET).

28Assuming in both cases that absolutely no other relaxation pathways exist.
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As already explained at the end of section 2.4.5, all evanescent waves generated by
the dipole emitter that enter the silver halfspace will get absorbed. Of course, with
increasing distance between the emitter and the metal surface, the amplitude of the
evanescent waves when they reach the interface decreases. Thus, also the amount of
energy transported to the metal decreases. At an intermediate distance range, the
absorption by the metal is dominated by surface plasmon polaritons, which we intro-
duced in section 2.4.3. This is illustrated in figure 2.28(a), which shows the relative
contributions of SPPs, general absorption by the metal and radiation into the fatty
acid halfspace to the total energy flux29.
A more detailed understanding of this behaviour can be gained from the logarithmic
plot of the different fluxes in figure 2.28(b). We can see that the flux due to SPP
decreases monoexponentially due to the sharp resonance at a single q-value explained in
section 2.4.3. The remaining flux into the metal is caused by all other evanescent waves
and thus shows a multiexponential decrease, which is very steep at short distances. In
contrast, at large distances from the metal, evanescent waves do not play an important
role anymore. For propagating waves, the reflectivity of the silver/fatty acid interface
is larger than 96% for all angles of incidence. Thus, almost all energy that the dipole
emits is either directly radiated or reflected into the upper halfspace. To sum up, if
an emitter is located within about 150 nm from a metal surface (where the exact limit
depends on the dipole’s orientation), there is a strong energy transfer from the emitter
to the metal, which can be detected as a decrease in fluorescence lifetime.
This phenomenon can now be exploited to overcome a severe limitation of conventional
confocal microscopy, namely the low axial resolution, by “inverting” Drexhage’s ex-
periment: Instead of placing dipole emitters at known positions and measuring their
lifetimes, one can infer the unknown axial positions of dipole emitters from their fluo-
rescence lifetimes. This technique is called MIET microscopy after its main physical
mechanism. As the lifetime-versus-height curves (from now on simply called MIET
curves) for different sample geometries in figure 2.29 show, there is a window of oppor-
tunity in the first 200 nm where τ(z) inreases monotonically. This region is interesting
for studying single molecules, but also the basal (lower) membrane of cells, or cellular
structures that are close to the substrate. A number of examples are discussed in
chapter 4. The main advantage of MIET is its excellent z-resolution on the order of
a few nanometers, two orders of magnitude smaller than in confocal microscopy [96].

29As described by equation (2.156), surface plasmon polaritons obey the dispersion relation qSPP =
kvn1n2/

√
n21 + n22. However, evanescent waves with q close to this value can also couple to SPPs,

albeit with smaller efficiency. This was reflected in figure 2.15 as a sharp but not infinitely thin peak of
Sz(q) – the energy flux along the z direction caused by waves with horizontal wave vector component
q – at qSPP. Mathematically, this resonance is due to corresponding peaks in the amplitudes of
both the reflection and transmission coefficients of p-waves, |rp(q)| and |tp(q)|, at these q-values.
Unlike the concrete shape of Sz(q), these two functions are independent of the fluorophore and its
z-position. Therefore, they were used to estimate the q-range where evanescent waves couple to
SPPs: We determined the mean 〈|tp(q)|〉q over all q > k1, i.e. over all evanescent waves. All q-values
with |tp(q)| > 1.5 · 〈|tp(q)|〉q were interpreted as corresponding to an excitation of SPPs. The fluxes
presented in figure 2.28 were then obtained by integrating Sz(q) over the corresponding q-ranges.
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Figure 2.29: MIET lifetime-versus-height curves for different sample geometries. Eu3+

ions are embedded with random orientation in an LB-film (n = 1.54) at varying distance
from a metal/LB-film interface. The metal is either a complete silver halfspace (red
curve), a thin silver film on a glass halfspace (orange curve), a thin gold film on a glass
halfspace (light blue curve) or a thin gold film on a titanium layer on a glass halfspace
(dark blue curve). The ions fluoresce at λ = 612 nm with a quantum yield of Φ = 0.7.

It is mainly determined by the quality of the lifetime measurements, since a lifetime
uncertainty ∆τ can be directly converted to a height uncertainty ∆z via

∆z =
∂z(τ)

∂τ
∆τ, (2.226)

assuming that the MIET curve is locally linear. The implications will now be demon-
strated for a concrete example, the first proof-of-principle study of MIET, which was
conducted in 2010 [38]. There, microtubules were labeled with the fluorescent dye Alexa
Fluor 488, and then attached to a gold-coated surface via different spacer molecules,
see figure 2.30 (a)-(c). By measuring the fluorescence lifetime of the dye and comparing
with the MIET calibration curve, the influence of the spacer molecules on the axial
distance between gold and microtubules could be examined. For each experiment,
only one type of spacer molecule was used, therefore the microtubules were aligned
parallel to the surface. Thus, the lifetimes from all pixels could be averaged, leading to
a standard error of the mean that was much smaller than the standard deviation of
single pixels (0.04 ns-0.08 ns as compared to 0.15 ns, see the top panel of figure 2.30(d)).
The diameter of the microtubules was assumed to be 25 nm, as determined by electron
microscopy [38], and they were assumed to be evenly covered by the dye. Using this
geometry, the average observable lifetime as a function of the distance between the top
of the gold surface and the bottom of the microtubules was determined, see the bottom
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Figure 2.30: First proof-of-principle experiment of MIET microscopy, from [38]. Alexa
Fluor 488-labeled microtubules were attached to a gold-coated cover slip using avidin
(a), neutravidin and avidin (b), or kinesin-1 (c). Shown are experimental schematics and
examplary lifetime images, scale bars correspond to 5 µm. Panel (d) depicts the average
lifetimes of n regions from different samples, which were converted to absolute distances
between microtubules and gold surface using the MIET calibration curve (here called
Chance-Prock-Silbey model).

panel of figure 2.30(d). This is just a variation of the MIET curve discussed previously.
With the help of this curve, the lifetime values were converted to axial elevations of
the microtubules above the gold surface. The obtained results, given in figure 2.30(d),
were in very good agreement with the geometrical sizes of the spacer molecules avidin,
neutravidin and kinesin-1 as obtained by other methods [38]. Due to the linearity of
the MIET curve in the observed z-region (see figure 2.30(d)), the authors used the
lifetime uncertainty ∆τ = 0.15 ns to estimate a position-independent height uncertainty
∆z ≈ 3 nm. This was significantly more accurate than most other axial localization
techniques available at the time, for example 3D STORM with ∆z ≈ 20 nm− 25 nm30

30Zhuang et al. state that their axial resolution is in the range 50 nm-60 nm [31], however, this is the
full width at half maximum (FWHM) of their z-position distributions. In this work, the standard
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[31] or TIRF with ∆z ≈ 15 nm− 50 nm [97]. With fluorescence interference contrast
(FLIC) microscopy, another technique with similar localization accuracy on the order
of 1 nm had been available since the late 1990s [97, 98]. However, FLIC relies on
accurate intensity measurements and is therefore susceptible to intensity fluctuations
due to inhomogeneous labeling or photobleaching – effects that do not affect lifetime
measurements. Thus, MIET microscopy proved to be an attractive new tool for studies
of cells or single proteins.
In order to reliably achieve high z-resolution, some experimental parameters have been
optimized. As shown in equation (2.226), a smaller lifetime uncertainty ∆τ leads to
a smaller z-uncertainty ∆z. The former necessitates a high signal-to-noise ratio of
the lifetime measurement. As explained in section 2.5.2, the SNR can be increased
by reducing both residual excitation light as well as fluorescence from out-of-focus
planes, which is achieved by using an inverted confocal microscope. However, as we
have seen several times now, light only penetrates a short distance into metal before
being absorbed, thus we cannot excite or detect fluorescence through a silver halfspace.
If we tried to excite and detect from above, the thickness of the sample would result in
a distorted focus and a lot of scattered light for samples that are more complex than an
LB film, for example fluorescently labeled structures in a cell. Fortunately, the results
of modeling the situation for different sample parameters offer a good alternative: As
figure 2.29 shows, for Eu3+ ions close to a thin silver film on top of a glass halfspace,
the lifetime is still zero at z = 0, and increases monotonically up to roughly the same
distance as for the silver halfspace, z ≈ 200 nm. Such a thin metallic layer can simply
be evaporated on top of a smooth glass cover slip, and enough light can pass through
to allow accurate lifetime measurements. Another practical aspect that has to be taken
into account is the stability of the metal film: Silver oxidizes quickly, which changes the
refractive index and thus the MIET curve. It can also increase the surface roughness,
making the assumption of a plane interface inaccurate and leading to unpredicted
lifetime changes. A metal that is much more stable against oxidization is gold. Figure
2.29 also shows the MIET curve for a 15 nm thick gold film, which shares the main
characteristics of the curve of the silver film. However, gold does not adhere very well
to glass [99]. The risk of dissolution can be greatly lowered by including a 3 nm thick
layer of titanium between the glass and the gold [99]. As figure 2.29 shows, this only
has a small impact on the MIET curve. Because of these considerations, an optimal
sample for MIET microscopy consists of a layered glass/titanium/gold structure. This
is the standard sample used in the applications described in chapter 4.

Before introducing the various systems studied with MIET in the course of this work,
we now present the concrete numerical implementation of some of the aspects described
in this chapter.

deviation (STD) of such distributions is interpreted as the resolution. Since for a Gaussian distribution
FWHM =

√
8 ln 2 STD ≈ 2.4 STD, we arrive at an axial resolution of 20 nm-25 nm.
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The analytical theory presented in the previous chapter allows to formulate some general
principles, such as the orthogonality of electric and magnetic fields in the absence of free
charges and currents, or the importance of evanescent waves close to metal structures.
However, a large part of the theory cannot be used directly to interpret experimental
data. That is because the integrals and infinite sums that are part of many of our
equations (e.g. the Weyl representation of the electrical field of a dipole or the conversion
formulas for VSH and plane waves) generally cannot be solved analytically. Instead, the
analytical equations are approximated by numerial algorithms, which are implemented
on a computer system. To this end, integrals are transformed into sums, and cutoffs
have to be chosen whenever an integration or summation to infinity is required. The
errors introduced by these approximations usually decrease when more integration
points and larger cutoff values are used. This convergence behaviour is explored in
section 3.1 for some of the formulas introduced in chapter 2.
Another aspect has to be taken into account when performing calculations on a computer:
Numbers can only be stored with a finite accuracy and within a certain range. In all
of our calculations, we use floating-point arithmetic. This means that all numbers are
approximated by a representation of the form

significand× baseexponent, (3.1)

where the significand is a real number and base and exponent are integers. While
in principle any integer equal to or larger than two can be used as a base, the most
common bases are two and ten. These representations are called binary and decimal,
respectively. The exact number of bits used to store significand, base and exponent has
been defined by the IEEE Standard for Floating-Point Arithmetic (IEEE 754) [100],
which is implemented by all common programming languages such as C, C++, Python
or Matlab. The two most common floating-point numbers are called single precision
and double precision, they are defined as:

name common name base sign significand exponent

binary32 single precision 2 1 bit 24 bits∗ 8 bits
binary64 double precision 2 1 bit 53 bits∗ 11 bits

∗Inluding the implicit bit, see footnote.

Theoretically, some numbers have several possible representations, for example 34 =
3.4 · 101 = 0.34 · 102 in the decimal system. This ambiguity has been overcome in the
binary system by defining that the significand always has the form 1.f, where f has 52
digits1. Translated to decimal numbers, the standard defines that the exponents range

1 Since the leading one is always present in the binary representation, it does not have to be stored
explicitly. This is called the leading or implicit bit convention, and it is the reason why the significand
is listed with 24 (53) bits even though only 23 (52) bits are really used.
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from -126 to +127 for binary32 and from -1022 to +1023 for binary64, and that the
number of decimal digits of the significand are roughly 7 for single and 16 for double.
Furthermore, it implies that there is a largest representable number which has 1 in
every bit of the significand and the largest possible value for the exponent. This is
called the overflow level (OFL), for double precision it is given by2:

OFLdouble = (2− 2−52) · 21013 ≈ 1.8 · 10308 (3.2)

As soon as the correct result of a calculation is larger than the OFL, depending on
the concrete programming language, the generated result will be either completely
wrong or “infinity”. Wherever possible, handling such large numbers should be avoided,
for example by renormalizing the quantities used in the equation. In some situations,
only an intermediate result is larger than the OFL, while the final result would be
smaller. Then, changing the order of operations can sometimes circumvent the overflow,
which we will exploit in section 3.3. In section 3.2, fractions with very large terms in
both numerator and denominator appear. There, we avoid the overflow problem by
identifying relevant contributions and then cancelling “by hand”.
The finite precision of floating point numbers leads to rounding errors, which are
generally small for a single operation (recall that the decimal precision is roughly 16
digits for binary64). However, even a single operation can lead to a large relative error
when combining numbers of very different magnitude. An example is the so-called
catastrophic cancellation:[

(1)binary64 + (10−17)binary64

]
− (1)binary64 = (0)binary64. (3.3)

But even less extreme rounding errors can accumulate if many operations have to be
performed on the same data set. Therefore, when comparing different realizations of
the same quantity (e.g. an analytical result and a PW decomposition), we consider
them “equal within the numerical accuracy” if the relative error is smaller than or
on the order of 10−14. The accumulation of errors can have even worse effects when
using recurrence relations to determine functions of high orders. Therefore, for the
determination of the associated Legendre polynomials, we chose relations that are
described as stable recurrences in the literature (see section 3.3). Finally, the number
of numerical operations can be reduced if as many steps as possible are evaulated
analytically. To this end, choosing a suitable coordinate system, basis function or
integration surface is vital. This choice is demonstrated for the example of the total
energy flux of a dipole emitter in a stratified system in section 3.4.
Besides the theoretical modeling of dipole emitters in various situations, a substantial
part of this work consisted of the evaluation of experimental data. There, another
task was encountered which can only be performed on a computer system: the fitting
of theoretical models to measured fluorescence lifetime data. A description of the fit
procedures used in this work in section 3.5 concludes the chapter.

2 The binary numer (0.1)2 is equal to 2−1. Correspondingly, (0. 00 . . . 00︸ ︷︷ ︸
51 zeroes

1)2 = 2−52. Thus, while

(1.1)2 = 1 + 2−1 = 2− 2−1, we also have (1. 11 . . . 11︸ ︷︷ ︸
52 ones

)2 = 1 + 2−1 + 2−2 + . . .+ 2−51 + 2−52 = 2− 2−52.

This is the significand when all entries are one.
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3.1 Convergence behaviour

We found in section 2.1.4 that the conversion of a plane wave to vector spherical
harmonics requires an infinite sum, while the inverse transformation is based on an
integral on a bounded (for VSH with spherical Bessel function) or unbounded (for VSH
with spherical Hankel function) interval. Where analytical expressions exist for such
an integral, using them is never less and often more precise than solving the integral
numerically3. Thus, we use the analytical ϕ′ integration of equations (2.53)-(2.55) when
changing from VSH to plane waves, leading to the already known relations

M j
`m(ρ, ϕ, z) =

1

4i`−1

∫ π

0

dθ′eik
′ cos θ′z [π`m(θ′)pm(θ′, ρ, ϕ) + iτ`m(θ′)sm(θ′, ρ, ϕ)] , (2.56)

N j
`m(ρ, ϕ, z) =

1

4i`−1

∫ π

0

dθ′eik
′ cos θ′z [τ`m(θ′)pm(θ′, ρ, ϕ) + iπ`m(θ′)sm(θ′, ρ, ϕ)] , (2.57)

Mh
`m(ρ, ϕ, z) =

1

2i`−1

∫
C

dθ′eik
′ cos θ′z [π`m(θ′)pm(θ′, ρ, ϕ) + iτ`m(θ′)sm(θ′, ρ, ϕ)] , (2.60)

Nh
`m(ρ, ϕ, z) =

1

2i`−1

∫
C

dθ′eik
′ cos θ′z [τ`m(θ′)pm(θ′, ρ, ϕ) + iπ`m(θ′)sm(θ′, ρ, ϕ)] , (2.61)

with the path C =

{
0→ π/2→ π/2− i∞ for z > 0
π/2 + i∞→ π/2→ π for z < 0

.

When such an integral has to be evaluated numerically, it has to be discretized into a
finite sum, where both the density of integration points and the cutoff (for an unbounded
interval) have to be chosen carefully. A large number of numerical integration methods
exist [101], which can generally be expressed in the form

F (a, b) :=

∫ b

a

f(x) dx ≈ (b− a) ·
N∑
i=1

wi · f(xi) (3.4)

and which differ in the choice of weights wi and integration points xi. The simplest
technique is called the midpoint or rectangle rule, it approximates the integrand f(x) as
piecewise constant between neighbouring, equally spaced integration points with equal
weights wi = 1/N :

FMP(a, b) =
b− a
N
·
N∑
i=1

f(xi), xi = a+
b− a
N
·
(
i− 1

2

)
. (3.5)

If the interpolating function between two neighbouring integration points is a parabola
instead, one finds Simpson’s rule, which has a smaller error than the midpoint rule with
the same integration points:

FSimps(a, b) =
b− a
3N

·
N/2∑
i=1

[f(x2j−2 + 4f(x2j−1) + f(2xj)] . (3.6)

3 Provided that the functions making up the analytical expression are implemented with high accuracy
in the employed programs, which we assume here.
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In this work, the focus was more on the physical phenomena and their mathematical
description than on the optimization of the numerical implementation. Therefore, the
midpoint rule was used everywhere in this work, with one exception: The calculation
of the total energy flux of a dipole, Stot, was performed with Simpson’s rule since we
optimized this calculation for the evaluation of our MIET experiments and also published
the code in the form of a graphical user interface (see section 4.1.1). Nevertheless, the
general convergence behaviour when increasing N or changing the cutoff of unbounded
integrals is similar for both methods.
We illustrate this behaviour for an example that was already shown in section 2.1.4,
Mh

4,1. Figure 3.1 investigates the effect of the number N of integration points and the
upper limit T of Im(θ′). It becomes clear that increasing T generally improves the
results (top row). However, if N is kept constant while T is increased, this leads to a
coarser spacing of the integration points, ultimately decreasing the quality of the result
(compare the top right figure with N = 200, T = 10 and the image in the center of the
figure with N = 200, T = 20). On the other hand, increasing N also leads to a better
result (bottom row). Thus, when a good approximation of the field is desired, both
T and N have to be chosen adequately. Since both computation time and required
memory scale (only) linearly with T and with N , using high values is generally possible.
However, one must take into account the fact that rounding errors can lead to wrong
results if the spacing is too fine. Consider the discretization of the integral∫ b

a

c dx→
N∑
n=1

c · b− a
N

. (3.7)

In this case, since the integrand is constant, N = 1 would already give the correct
result. For very large N , the integration measure (b− a)/N becomes very small, and
thus many small terms have to be added to yield the final result. This can lead to
the accumulation of rounding errors. In an integral such as those in the above PW
decompositions, the integrand is generally not a constant. Thus, a length scale has
to be found on which the approximation of a piecewise-constant integrand is accurate
enough and the accumulation of rounding errors not yet too bad. In practice, we used
values on the order 102 − 103 for N and 10− 20 for T .
The inverse problem of transforming plane waves into VSH is treated next. Here, the
formula presented in the theory section was:

(Epêp + Esês) eik
′·r = 4π

∞∑
`=1

∑̀
m=−`

i`−1

`(`+ 1)
e−imφ

′ ·(
[Epπ`m(θ′)− iEsτ`m(θ′)]M j

`m(r) + [Epτ`m(θ′)− iEsπ`m(θ′)]N j
`m(r)

)
. (2.62)

Again, since it is impossible to sum over infinitely many terms numerically, a cutoff has
to be chosen. In practice, we restrict ` to values between 1 and L. Figure 3.2 shows
some exemplary results of a Matlab implementation of this expression for L = 10. An
s-wave propagating in the direction k′ = (1, 0, 1)/

√
2 is depicted in subfigure 3.2a, an

evanescent p-wave in subfigure 3.2b. The deviation between analytical result and VSH
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analytical N = 200, T = 20 N = 400, T = 20

N = 1000, T = 20 N = 2000, T = 20 N = 4000, T = 20

-15 15
log(|Eana

x − EPW
x |)

N = 200, T = 1 N = 200, T = 5 N = 200, T = 10

-15 15
log(|Eana

x |)

Figure 3.1: Convergence behaviour of Ex := Re(Mh
4,1)x in the first quadrant of the

x-z-plane (0 ≤ x, z ≤ λ/4): The center left shows the analytical result of log(|Ex|) in order
to give an idea of the relevant scales. All other plots depict the logarithmic difference of
the analytical result and the PW-decomposition log(|Eana

x −EPW
x |) for varying number N

of evanescent waves and varying integration interval [π/2, π/2 + iT ] along the imaginary
axis. The integration over propagating waves θ′ ∈ [0, π/2] with 250 integration points is
the same for all panels. The parameters of the central panel, N = 200 and T = 20, are
the same as those used for figure 2.5.
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-1.0 1.0 -0.1 0.25
|Eana|2 − |EVSH|2

-1.0 1.0
Re(Eana

y ) Re(EVSH
y )

analytical VSH approximation intensity difference

(a) VSH decomposition of a propagating s-wave E := êse
ik′·r: Analytical (left) and VSH-

approximated (center) version of Re(Ey) in the x-z-plane (−λ ≤ x, z ≤ λ) with the direction
of k′ given by θ′ = π/4, φ′ = 0. The right panel depicts the difference between the intensities
|E|2 of both forms.

-0.8 0.8 -2.0 0.5
|Eana|2 − |EVSH|2

-0.8 0.8
Re(Eana

x ) Re(EVSH
x )

analytical VSH approximation intensity difference

(b) VSH decomposition of an evanescent p-wave E := êpe
ik′·r: Analytical (left) and VSH-

approximated (center) version of Re(Ex) in the x-z-plane (−λ ≤ x, z ≤ λ) with the direction
of k′ given by θ′ = π/2 − 0.2i, φ′ = 0. The right panel depicts the difference between the
intensities of both forms.

Figure 3.2: VSH decompositions of plane waves, summation truncated at ` = 10.

decomposition increases with the distance from the origin. This becomes especially
apparent when comparing the intensities, as in the rightmost column of both images.
By varying L it is possible to decrease the discrepancy between analytical result and
VSH decomposition, as demonstrated in figure 3.3. We found that, for acceptable
results up to the same distance from the origin, a larger L is needed for quickly decaying
evanescent waves. This is not shown systematically here, but can be anticipated by
comparing figure 3.3 with θ′ = π/2 − 2i with figure 3.2b with θ′ = π/2 − 0.2i and
L = 10.
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-1.0 1.0
Re(Ey)

λ/4

L = 1 L = 5 L = 10L =

L = 15 L = 20 analytical

Figure 3.3: Convergence behaviour of the VSH decomposition of an evanescent s-wave
with θ′ = π/2 − 2i. Shown is always Re(Ey) in the first quadrant of the x-z-plane
(0 ≤ x, z ≤ λ/4). The range of the colourmap was chosen to match the analytical solution,
the artefacts actually have a much higher magnitude (between -50 and +60 for L = 5).

Finally, we turn to the decomposition of the field of an oscillating electric dipole into
basis functions. We pointed out in section 2.2.2 that the field of a dipole situated in
the origin and oriented parallel to one of the three cartesian axes is given by the linear
combination of just one or two vector spherical harmonics. For a dipole with arbitrary
position and orientation, the VSH decomposition was given as

EVSH(r) =
∞∑
`=1

∑̀
m=−`

aD`mM
f
`m(kr) + bD`mN

f
`m(kr)2.80

with the expansion coefficients

aD`m =
4πink3

v

`(`+ 1)
p ·M g

`m(kr0) and bD`m =
4πink3

v

`(`+ 1)
p ·N g

`m(kr0),

where f = h(1) and g = j for r > r0 and f = j, g = h(2) for r < r0. As in the VSH
decomposition of plane waves, the summation over ` is restricted to values between
1 and L in the concrete numerical implementation. Figure 3.4 shows the effect of L
on the VSH-decomposed field of a z-dipole that is placed λ/5 away from the origin on
the x-axis. For small or large r/r0, the sum quickly approaches the analytical value.
However, on the circle with radius r = r0, ringing-artefacts appear. They are reduced
and the overall field is improved by choosing a larger L. However, since −` ≤ m ≤ `,
this leads to a quadratic increase in memory usage and computation time.

107



Numerical Implementation

L = 1 L = 5 L = 10

L = 20 L = 40 analytical

-1.0 1.0
Re(Ez) [a.u.]

Figure 3.4: VSH-decomposition of the electric field of an oscillating z-dipole placed on
the x-axis at x = λ/5 (red dot), with arbitrary amplitude. Shown is the real part of the
z-component of the field in the x-z-plane in the interval [−λ/2, λ/2]. The origin has been
marked with a white dot. Note the decrease in artefacts with increasing L.

The ringing-artefacts are similar to those encountered near z = 0 and z = zd in the
plane wave decompositions of Mh

`m, Nh
`m and the dipole field, respectively (compare

with figures 2.5 and 2.8). In all three cases, the corresponding decompositions are
defined piecewise, using different basis functions for different regions of space4. The
artefacts always occur at the border between these regions, where they are very hard
to reduce. However, they do not impact quantities that are determined far away from
the dipole, such as the ADR. They would, however, lead to wrong results if the field
directly at the dipole’s position was needed. That is why we use the total energy flux
according to Chance, Prock and Silbey (equation 2.222) rather than the reflected field
at the position of the dipole (equation 2.221) to determine the lifetime of a dipole
close to an interface. Unfortunately, this approach is not possible for all experimental
situations. For example, if a dipole emitter is very close to a metal nanosphere, the
calculated energy flux into the nanosphere will be wrong due to the artefacts in the
VSH decomposition.

4 For the plane wave decompositions, we changed the integration interval, and thus the subset of plane
and evanescent waves used for the field, at z = 0. In the VSH decomposition, we switch between
VSH with R(r) = j(r) and R(r) = h(1)(r) at r = r0.
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3.2 Effective Fresnel Coefficients

After discussing the convergence behaviour of discretized expressions, we now turn to
the second important aspect of the implementation of theoretical models on a computer
system: the occurrence of numerical errors, and their avoidance through careful design
of the used algorithms. A large part of this work is concerned with metal-induced
energy transfer and its application to biological samples. From a physical point of view,
these situations can be described as a dipole emitter in a stratified system. In order to
calculate electric fields and energy fluxes in these systems with many planar interfaces,
effective Fresnel reflection and transmission coefficients have to be determined. Their
calculation is a good example for the appearance of numbers that are larger than the
overflow level in intermediate steps, but not in the final result. In this section, we show
how these large numbers can be handled to yield correct final results.
As described in section 2.1.1, the relationship between the amplitudes of incident,
reflected and transmitted plane waves at an interface can be expressed through the
transfer matrices

Mp
j,j+1 =

1

2

(
wj,j+1/nj,j+1 + nj,j+1 −wj,j+1/nj,j+1 + nj,j+1

−wj,j+1/nj,j+1 + nj,j+1 wj,j+1/nj,j+1 + nj,j+1

)
, (3.8)

M s
j,j+1 =

1

2

(
1 + wj,j+1 1− wj,j+1

1− wj,j+1 1 + wj,j+1

)
or more general

Mj,j+1 =

(
aj,j+1 bj,j+1

bj,j+1 aj,j+1

)
. (3.9)

with nj,j+1 = nj+1/nj the ratio of the refractive indices and wj,j+1 = wj+1/wj the ratio
of the components of the wave vector that are perpendicular to the interface. Similarly,
the phase difference between a plane wave at the top and bottom of a medium with
thickness dj is described by

Tj =

(
exp(−iwjdj) 0

0 exp(iwjdj)

)
. (3.10)

Suppose there is a stack of J layers with refractive indices nj and thicknesses dj , where
the bottommost (j = 1) and topmost (j = J) layers are infinitely thick. Then the
amplitudes of the different waves at the top of the bottommost medium and the bottom
of the topmost medium are related via(

E+
(p,s)1,t

E−(p,s)1,t

)
=M

(p,s)
12

J−1∏
j=2

[
TjM

(p,s)
j,j+1

]( E+
(p,s)J,b

E−(p,s)J,b

)

:=A(p,s)

(
E+

(p,s)J,b

E−(p,s)J,b

)
, (3.11)

where the superscript denotes waves traveling in the positive (+) or negative (-) z-
direction. We assume that there are an incident and a reflected wave in the bottommost
medium (E±(p,s)1,t 6= 0) and a transmitted wave in the topmost medium (E+

(p,s)J,b 6= 0,
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E−(p,s)J,b = 0). Thus, the effective reflection and transmission coefficients are given by
just two elements of the 2x2-matrix A:

rp,s =
E−(p,s)1,t

E+
(p,s)1,t

=
A

(p,s)
21

A
(p,s)
11

and tp,s =
E+

(p,s)J,b

E+
(p,s)1,t

=
1

A
(p,s)
11

. (3.12)

Usually, these quantities can be easily obtained numerically. However, the exponential
functions contained in Tj can quickly become larger than the OFL if wj has a large
imaginary part. Consider the case J = 3:

M12T2M23 =

(
a12e−iw2d2a23 + b12eiw2d2b23 a12e−iw2d2b23 + b12eiw2d2a23

b12e−iw2d2a23 + a12eiw2d2b23 b12eiw2d2b23 + a12e−iw2d2a23

)
. (3.13)

If w2 has a large positive imaginary part, exp(iw2d2) approaches zero while exp(−iw2d2)
becomes very large. Thus, the effective reflection and transmission coeffincients converge
to

lim
Im(w2)→∞

r =
b12a23

a12a23

=
b12

a12

and lim
Im(w2)→∞

t =
exp(−Im(w2)d2)

a12a23

= 0 . (3.14)

The large exponential functions in the reflection coefficient cancel, leading to the same
result that would have been obtained if the second medium had been infinitely thick –
the strongly evanescent wave is not influenced by the other layers because it decays
before reaching them. Accordingly, the transmission coeffiecient is zero.
However, when the matrix multiplication and subsequent division of matrix elements
is done numerically, exp(−iw2d2) > OFL leads to wrong results for the divisions. In
order to identify and handle these exceptions, we test the size of exp(−iw2d2). If it is
larger than a certain threshold (which is only slightly smaller than the OFL), both the
transmission coeffiecient and all terms that have to be multiplied by exp(+iw2d2) are
set to zero. Furthermore, the terms for the reflection coefficients are not multiplied
with exp(−iw2d2) since it cancels anyway.
To prove that this approach still yields correct results in the general situation with
more than three layers, we exploit the fact that only the left column of all matrices
needs to be known: According to equation (3.12), r and t are defined by A11 and A12.
But these can be calculated using only the left columns of all intermediate matrices, if
the product in equation (3.11) is calculated with descending order of j (i.e. from right
to left):

MJ−1,J =

(
aJ−1 · · ·
bJ−1 · · ·

)
(3.15)

MJ−2,J = MJ−2,J−1TJ−1MJ−1,J

=

(
aJ−2e

−
J−1aJ−1 + bJ−2e

+
J−1bJ−1 · · ·

bJ−2e
−
J−1aJ−1 + aJ−2e

+
J−1bJ−1 · · ·

)
(3.16)

MJ−3,J = MJ−3,J−2TJ−2MJ−2,J−1TJ−1MJ−1,J
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=


aJ−3e

−
J−2[aJ−2e

−
J−1aJ−1 + bJ−2e

+
J−1bJ−1] · · ·

+ bJ−3e
+
J−2[bJ−2e

−
J−1aJ−1 + aJ−2e

+
J−1bJ−1]

bJ−3e
−
J−2[aJ−2e

−
J−1aJ−1 + bJ−2e

+
J−1bJ−1] · · ·

+ aJ−3e
+
J−2[bJ−2e

−
J−1aJ−1 + aJ−2e

+
J−1bJ−1]

 , (3.17)

and so on. Here, we shortened the notation to aj,j+1 := aj , bj,j+1 := bj and exp(±iwjdj) :=
e±j . For small or intermediate values of Im(wj), all of the terms contribute to the final
result, and the matrix multiplication can be carried out exactly. For large wj , the same
problem of finite data size arises, but now it is hard to say which of the many mixed
exponential terms can be neglected. However, if Im(w1) is large enough, then

wj =
√
k2

0n
2
j − k2

0n
2
1 − Im(w1)2 → w1 , (3.18)

i.e. all wj become imaginary and very large. Then, the only terms that contribute
significantly to the matrix elements are those that contain only e−j , all other terms can
be ignored. But this just corresponds to the result for three layers:

r =
b12

a12

and t = 0. (3.19)

The explanation is the same as before, a strongly evanescent wave only “explores”
the first interface, and is therefore not affected by all further layers. In our numerical
implementation, all refractive indices and thicknesses as well as w1 are given. The matrix
multiplication (3.11) is carried out numerically with descending j (from right to left).
If for any j the term exp(−iwjdj) is larger than the overflow level, the multiplication is
stopped and the result (3.19) is used instead.

3.3 Associated Legendre polynomials

Besides the overflow of floating-point numbers treated in the previous section, the
accumulation of rounding errors is another important aspect to keep in mind when
designing an algorithm. In particular, it influences the stability of recursive expressions,
such as the definition of associated Legendre polynomials via recurrance relations.
Associated Legendre polynomials are needed for all calculations involving vector spherical
harmonics. As already pointed out in [101], chapter 6.7, “There are many bad ways
to evaluate associated Legendre polynomials numerically.” Press et al. give an explicit
expression for Pm

l (x), which is a sum of terms with alternating signs that lead to
“delicate cancellations between successive terms”. Since these summands quickly grow
large for increasing `, the accuracy of the result breaks down already for ` ∼ 15− 18
[101]. Therefore, a recursive definition of Pm

` (x) has to be chosen when ` > 15 is needed.
Mathematically, a large number of different recurrence formulas for associated Legendre
polynomials exist, see e.g. [102], chapter 8. However, according to [101], “most of
the recurrences involving m [are] unstable, and so are dangerous for numerical work”.
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Therefore, we started out by using the only expression that is described as stable by
the authors of [101]:

P 0
0 (x) = 1,

P `
` (x) = −(2`− 1)

√
1− x2P `−1

`−1 (x) ∀` ≥ 1,

P `
`+1(x) = (2`+ 1) x P `

` (x) ∀` ≥ 1,

Pm
` (x) =

2`− 1

`−m
· x · Pm

`−1 −
`+m− 1

`−m
Pm
`−2 ∀m ≥ 0, ` ≥ m+ 2, (3.20)

dP 0
0 (x)

dx
= 0,

dP 0
` (x)

dx
=

`

1− x2
·
[
P 0
`−1(x)− x · P 0

` (x)
]

∀` ≥ 1,

dPm
` (x)

dx
=

mx

1− x2
Pm
` (x) +

(`+m)(`−m+ 1)√
1− x2

Pm−1
` (x) ∀m ≥ 1, ` ≥ m. (3.21)

However, since the accociated Legendre polynomials themselves grow quite rapidly with
` and m, even this formula quickly reaches values that are larger than the overflow
level. This is demonstrated exemplarily for ` = m and x = 0.1, x = 40i in figure 3.5.
Contrarily, the normalization factor c`m of the vector spherical harmonics becomes very
small for large `,m, as also shown in the figure. Since we predominantly need Pm

`

for use in VSH, it is convenient to include this factor in the recurrence relations and
thus keep the terms manageable. This was already suggested in [101] under the name
renormalized associated Legendre function. But we do not only need c`mP

m
` (x), we

are also interested in the derivative c`mdPm
` (x)/dx, mostly multiplied with additional

x-dependent terms. The latter have been included in recurrence relations presented
in [49], but without c`m. Therefore, our second approach combines [101] with [49].
We define three auxiliary functions πm`(x), τm`(x) and γm`(x) that are useful when
evaluating VSH,

πm`(x) :=

√
(2`+ 1)

4π

(`−m)!

(`+m)!

m√
1− x2

Pm
` (x) =c`m

m√
1− x2

Pm
` (x) , (3.22)

τm`(x) := −

√
(2`+ 1)

4π

(`−m)!

(`+m)!

√
1− x2

dPm
` (x)

dx
=− c`m

√
1− x2

dPm
` (x)

dx
, (3.23)

γm`(x) :=

√
(2`+ 1)

4π

(`−m)!

(`+m)!
`(`+ 1)Pm

` (x) =c`m`(`+ 1)Pm
` (x) . (3.24)

These auxiliary functions are calculated according to

π0,`(x) = 0 ∀` ≥ 1,

π1,1(x) = −
√

3

8π
,

π`,`(x) = −
√
`(2`+ 1)

2
·
√

1− x2

`− 1
· π`−1,`−1(x) ∀` ≥ 2,
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Figure 3.5: Behaviour of the associated Legendre polynomials Pm` (x) and some modified
functions for large `,m; shown for the special case ` = m and two different arguments x.
Top: x = 0.1: |P `` (x)| and |dP `` (x)/dx| can be calculated up to ` ≈ 150, then they are
too large for a double precision floating point number. The normalization coefficient c``
becomes so small that Matlab sets it to zero at ` ≈ 90. In contrast, the functions π``(x),
τ``(x) and γ``(x) only grow slowly. Bottom: x = 40i: |P `` (x)| and |dP `` (x)/dx| grow
much more quickly than c−1

`` , leading to a strong increase of the normalized functions
π``(x), τ``(x) and γ``(x) with `. The former two can be calculated up to ` ≈ 90, the latter
three for up to twice as many orders.
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π`,`+1(x) =
√

2`+ 3 · x · π`,`(x) ∀` ≥ 1,

πm,`(x) =

√
(2`+ 1)(2`− 1)

(`+m)(`−m)
· x · πm,`−1(x)

−

√
(2`+ 1)(`+m− 1)(`−m− 1)

(2`− 3)(`+m)(`−m)
πm,`−2(x) ∀m ≥ 1, l ≥ m+ 2,

(3.25)

τ0,1(x) = −
√

3

4π

√
1− x2 ,

τ0,2(x) = −
√

5

4π

√
1− x23x ,

τ1,1(x) = −
√

3

8π
x ,

τ0,`(x) =

√
(2`+ 1)(2`− 1)

`− 1
xτ0,`−1 −

√
(2`+ 1)

(2`− 3)

`

`− 1
τ0,`−2 ∀` ≥ 3,

τm`(x) =
`

m
xπm`(x)− 1

m

√
(2`+ 1)(`−m)(`+m)

(2`− 1)
πm,`−1(x) ∀m ≥ 1, ` ≥ m,

(3.26)

γ0,1(x) =

√
3

π
x ,

γ0,2(x) =

√
5

π

3

2
(3x2 − 1) ,

γ0,`(x) =
(`+ 1)

`(`− 1)

√
(2`+ 1)(2`− 1)xγ0,`−1(x)

− (`+ 1)

(`− 2)

√
2`+ 1

2`− 3
γ0,`−2(x) ∀` ≥ 3,

γm`(x) =
`(`+ 1)

m

√
1− x2πm`(x) ∀m ≥ 1, ` ≥ m.

(3.27)

These three functions are shown in the same situations as the pure associated Leg-
endre polynomials in figure 3.5. For real x, these functions grow very slowly, with
π200,200(0.1) ≈ 83, τ200,200(0.1) ≈ 8.3 and γ200,200(0.1) ≈ 1.7 · 104. For imaginary x –
needed e.g. in the decomposition of evanescent waves – the three functions grow more
quickly. However, they can still be evaluated up to much higher orders than Pm

` (x)
and dPm

` (x)/dx. Thus, the three auxiliary functions π`m(x), τ`m(x) and γ`m(x) allow
to evaluate VSH up to higher orders than the usual recurrence relations for associated
Legendre polynomials. Therefore, these three functions were used in our work.
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3.4 Energy flux through an infinite plane

Numerical errors can be avoided if the number of operations that have to be performed
numerically is reduced. This can be achieved by choosing a coordinate system and
basis functions that are suited to the geometry of the problem, and by evaluating
integrals analytically when possible. In this section, we present an example of such
prior considerations that is vital for the later evaluation of MIET experiments, namely
the total energy flux of a dipole emitter close to a metal layer.
In section 2.4.5, we determined the angular distribution of radiation d2S/dΩ2(θ, φ) of a
dipole in a stratified environment, i.e. in a system of several planar layers consisting
of different materials. If at least one of these materials is absorbing (e.g. a metal),
the energy emitted in the far-field

∫
(d2S/dΩ2)dΩ2 is smaller than the total energy

emitted by the dipole Stot. The latter can be obtained by integrating the time-averaged
Poynting vector over a surface that encloses the dipole but no other energy sources
or sinks. Since the interaction of the dipole field with planar interfaces is most easily
described using plane waves, integrating over a spherical surface as we did for spherical
geometries in section 2.4.6 seems ill-advised. Instead, we form a closed integration
surface by integrating over two infinite planes, one above and one below the emitter,
but both in the same medium as the emitter5. Provided that the medium containing
the dipole has a real refractive index, which is a reasonable assumption for all our
experiments, the sum of the two integrals then yields Stot.
We start by considering the simple case that the dipole is situated in a medium with
refractive index n1 which occupies the whole upper halfspace z > 0, while arbitrary
layers make up the lower halfspace z < 0. Then, the interface between the dipole
emitter’s medium and the adjoining material at z = 0 is a good choice for the lower
of the two integration surfaces. Denoting the z-position of the dipole as z0, we saw in
section 2.3.2 that the field at z = 0 is given by:

E(x, y, 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1 exp (iqρd cos(φ− φd)− ik1 cos θ1z0)

·
[
(êp1 +Rpê

∗
p1)(êp1 · p) + (1 +Rs)ês1(ês1 · p)

]
with the path C = π/2 + i∞→ π/2→ π and with θ∗1 := π − θ1. (3.28)

The magnetic field can be obtained via B = ∇×E/kv using êk × êp = ês:

B(x, y, 0) =
in2

1k
3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1 exp (iqρd cos(φ− φd)− ik1 cos θ1z0)

·
[
(1 +Rp)ês1(êp1 · p)− (êp1 +Rsê

∗
p1)(ês1 · p)

]
. (3.29)

These two fields cause a total flux through the plane z = 0 that is given by:

S− =
c

8π
Re

{∫
z=0

dA êz · (E ×B)

}
5 Mathematically speaking, two parallel planes intersect at infinity. From a physical point of view, we

can simply say that all energy except the negligible fraction being emitted at exactly θ = π/2 will
cross one of the two planes sooner or later.
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=
cn3

1k
6
v

32π3
Re

{∫
dθ1

∫
dφ

∫
dθ′1

∫
dφ′
∫

d2ρ sin θ1 sin θ′1 êz

· exp
[
i(q − q′)(ρ− ρ0)− ik1(cos θ1 − cos θ′1)z0

]
·

[
(êp1 +Rpê

∗
p1)(êp1 · p) + (1 +Rs)ês1(ês1 · p)

]
×

[
(1 +R′p)ê

′
s1(ê′p1 · p)− (ê′p1 +R′sê

′∗
p1)(ê′s1 · p)

]}
. (3.30)

The naive implementation of this equation would require the numerical evaluation of
five integrals, entailing a high risk of numerical errors. However, in this formula, we
recognize the definition of Dirac’s delta-distribution:

δ2(q − q′) =
1

(2π)2

∫
d2ρ exp[iρ · (q − q′)]. (3.31)

Taking the integral over ρ thus produces the term δ2(q − q′), which, when integrating
over the whole q′-plane, is zero everywhere except at q′ = q. Taking into account
that q′ = k1 sin θ′1(cosφ′êx + sinφ′êy), the integral over q′-space is given by q′dq′dφ′ =
k2

1 sin θ′1 cos θ′1dθ′1dφ′. We can thus take the integrals over ρ, θ′1 and φ′ analytically:

S− =
cn1k

4
v

8π
Re

{∫
dθ1

∫
dφ

sin θ1

cos θ1

exp [2k1Im(cos θ1)z0] êz

·
[
(êk1 +Rpê

∗
k1)(1 +Rp)|êp1 · p|2 + (1 +Rs)(êk1 +Rsê∗k1)|ês1 · p|2

]}
=
cn1k

4
v

8π
Re

{∫
dθ1

∫
dφ sin θ1 exp [2k1Im(cos θ1)z0]

·
[
(1−Rp)(1 +Rp)|êp1 · p|2 + (1 +Rs)(1−Rs)|ês1 · p|2

]}
=
cn1k

4
v

8π

∫ π

π/2

dθ1

∫
dφ sin θ1

[
(1− |Rp|2) |êp1 · p|2 + (1− |Rs|2) |ês1 · p|2

]
+
cn1k

4
v

8π

∫ π/2

π/2+i∞
dθ1

∫
dφ sin θ1 exp [2k1Im(cos θ1)z0]

·
[
−2iIm(Rp) |êp1 · p|2 + 2iIm(Rs) |ês1 · p|2

]
(3.32)

where we used êz · (êp1 × ês1) = êz · êk1 = cos θ1, and equivalently êz · (ê∗p1 × ês) =
cos θ∗1 = − cos θ1. Furthermore, we know that sin(θ1) is real for both θ1 ∈ R and
θ1 = π/2 + iθ′′, while cos(θ1) can be either real (θ1 ∈ R) or imaginary (θ1 = π/2 + iθ′′).
Note that, since θ′′ ≥ 0, Im(cos θ1) ≤ 0 – the exponential function has a damping
effect on the amplitude, as expected for evanescent waves. We split the integral into
propagating and evanescent waves in order to take the real part because the integration
measure dθ1 is real for real θ1 and imaginary for the path θ1 = π/2 + i∞→ π/2. Since
we assumed that no other materials are present above the dipole, there is also no energy
sink, and we can choose an arbitrary z > z0 for the upper integration surface. It then

116



3.4 Energy flux through an infinite plane

3

d

z0 θ

z

21

eiwz01

eiwz0 ·
(
rdrue

iw2d
)

2

eiwz0 ·
(
rdrue

iw2d
)2

3

initially downwards:

z

z0

θd

initially upwards:
rue

iw(2d−z0)1

rue
iw(2d−z0) ·

(
rdrue

iw2d
)

2

rue
iw(2d−z0) ·

(
rdrue

iw2d
)2

3
1 2 3

(c) phase accumulated due to reflections(a) geometry

n1d

z0

arbitrary layers

arbitrary layers

ru

rd

(b) polarization

ês ês
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Figure 3.6: Multiple reflections in a stratified sample. (a) Sample geometry: The dipole
(green arrow) is situated at z = z0 in a medium with refractive index n1 that extends
from z = 0 to z = d. The interaction with the layers above and below is described by
the effective reflection coefficients ru and rd, which were calculated in section 3.2. (b)
Unit vectors of the polarization of p- and s-waves for downwards (-) and upwards (+)
traveling waves. (c) Due to multiple reflections between the top and bottom interface
of the dipole’s medium, a plane wave changes its amplitude and accumulates a phase
shift. When we sum these waves, we do so at fixed r, thus the phase is only acquired
due to propagation along z. The shift along the perpendicular direction is only shown for
clear labeling of the waves. The expressions on the right give the phase and amplitude
for downwards traveling waves at the marked positions, assuming that the amplitude was
one and the phase zero at the position of the dipole.

makes sense to simply use the far-field ADR from equation (2.170) and integrate it over
θ1 ∈ [0, π/2].
The situation gets slightly more complex if other materials are present above the dipole,
too. Then, a plane wave that hits the lower interface gets partially reflected, reaches
the upper interface, gets partially reflected again and so on. In order to take this into
account, we consider the geometry in figure 3.6(a): The dipole’s medium with refractive
index n1 fills the space 0 ≤ z ≤ d. Above and below, there are arbitrary other materials.
The effective Fresnel reflection coefficients for the upper and lower interfaces at z = d
and z = 0 are ru,p/s and rd,p/s, respectively, calculated according to section 3.2. With
these multiple reflections, it is easier to define θ1 as in figure 3.6(c)6 and to take the
different propagation directions into account via the sign of w1 = k1 cos θ1.
The expressions on the right side of figure 3.6(c) correspond to the amplitude and phase
that accumulate due to the multiple reflections. The electric field at z = 0 is then
composed of four different types of waves, those that have been originally emitted into
the upper or lower halfspace by the dipole (blue or red in the figure), which are each
either travelling in positive or negative z-direction at z = 0. For p-waves, the former

6 That is, with θ1 ∈ [0, π/2] for propagating waves and θ1 ∈ π/2 + i[0,∞] for evanescent waves.
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category determines the initial amplitude according to ê±p1 · p, while the latter category
gives the polarization as ê±p1 (see figure 3.6(b)). For s-waves, all four types of waves
have the same initial amplitude and polarization. The phase and final amplitude of
each wave type at z = 0 is found by summing up all single plane waves belonging to
the same category:

initially down, now down:
eiw1z0

1− rurd e2iw1d
=: cdd ,

initially down, now up:
eiw1z0 · rd

1− rurd e2iw1d
=: cdu ,

initially up, now down:
eiw1(2d−z0) · ru
1− rurd e2iw1d

=: cud ,

initially up, now up:
eiw1(2d−z0) · rurd
1− rurd e2iw1d

=: cuu , (3.33)

where we used the fact that each sum is a geometric series and thereby eliminated
another source of numerical errors. Thus, when going back to expression (3.28) for the
electric field at the interface, all we have to do is replace the single plane waves by these
sums:

E(x, y, 0) =
in1k

3
v

2π

∫
C

dθ1

∫ 2π

0

dφ sin θ1 exp (iqρd cos(φ− φd))

·
[
(cdd,pê

−
p1 + cdu,pê

+
p1)(ê−p1 · p) + (cud,pê

−
p1 + cuu,pê

+
p1)(ê+

p1 · p)

+(cdd,s + cdu,s + cud,s + cuu,s)ês1(ês1 · p)]

with the path C = 0→ π/2→ π/2− i∞. (3.34)

The total flux through the plane z = 0, S−, can then be derived as before. Since
the reflection coefficients do not depend on φ, the φ-integration can be carried out
analytically.
We give the explicit result for two special cases, a vertical dipole with p ‖ êz, and a
horizontal dipole with p ‖ êx:

S−,⊥ =
cn1k

4
vp

2

4

∫ π/2

0

dθ1 sin θ3
1

[
|cdd,p + cud,p|2 − |cdu,p + cuu,p|2

]
+
cn1k

4
vp

2

2

∫ π/2−i∞

π/2

dθ1 sin θ3
1 iIm

[
(cdd,p + cud,p)(cdu,p + cuu,p)

]
,

S−,‖ =
cn1k

4
vp

2

8

∫ π/2

0

dθ1 sin θ1

{
cos θ2

1

[
|cdd,p − cud,p|2 − |cdu,p − cuu,p|2

]
+|cdd,s + cud,s|2 − |cdu,s + cuu,s|2

}
+
cn1k

4
vp

2

4

∫ π/2−i∞

π/2

dθ1 sin θ1iIm
[
| cos θ1|2(cdd,p − cud,p)(cdu,p − cuu,p)

]
+ iIm

[
(cdd,s + cud,s)(cdu,s + cuu,s)

]
.

(3.35)

(3.36)
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These formulas were used, for example, to generate the curves in figure 2.18b that show
Stot for a dipole in water close to a silver-coated glass cover slip. All calculations of
MIET curves were done with these equations, too, exploiting the fact that for a dipole
at an angle θ relative to the z-axis (see the end of section 2.5.3),

S−(θ) = cos2 θ · S−,⊥ + sin2 θ · S−,‖ . (3.37)

As a quick consistency check, also consider the free space case. Then, all reflection
coefficients are zero, and out of the four wave types only cdd 6= 0. This leads to
S− = cn1k

4
vp

2/6 = S0/2, which is the correct result.
Due to the symmetry of the situation, a reflection of the whole geometry converts the
flux S+ towards the upper layers into S−. Thus, S+ can be obtained by exchanging all
material parameters in the formulas above.

3.5 Lifetime fitting

In order to determine fluorescence lifetimes, we have to fit TCSPC histograms with
appropriate model functions. As briefly mentioned in section 2.5.2, the detection system
divides the arrival time of photons after an excitation pulse into intervals of equal width,
called time bins, histogram bins or simply bins, and counts how many photon arrival
times fall into each bin during one measurement. The resulting data set of bins (usually
defined by the time points tb of their centers) and count numbers is called the TCSPC
histogram ITCSPC(tb). When introducing fluorescence in section 2.5, we stated that the
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Figure 3.7: (a) A typical IRF measured for a scattering sample on a confocal FLIM
setup. Note the constant background signal, which has to be subtracted before using
the IRF for IRF-fitting. Data provided by Anna Chizhik. (b) A monoexponential decay
with lifetime 3 ns, initial function (red) and convolved with the background-corrected IRF
(green). The latter corresponds to the ideal TCSPC curve (no noise, i.e. infinite number
of photons). The inset shows the peak of the TCSPC curve, which only differs from a
shifted version of the initial function in a small number of time points.

119



Numerical Implementation

intensity measured at the time t after the excitation of an ensemble of fluorophors has
the form

I(t) ∝ e−t/τ (3.38)

if all fluorophores decay with the same rate τ−1 (monoexponential decay). This is not
completely true. The first reason was already mentioned in section 2.5.2: The data is
inherently noisy, the measured intensity at time t actually follows a Poisson distribution
with expectation value I(t). The second deviation from a perfect exponential function
is inevitably caused by the experimental setup itself. Even if all photons would be
emitted at exactly the same time t after their excitation, the TCSPC histogram would
show a peak with a finite width. This is due to several factors, most notably the pulse
width of the excitation laser (which leads to slightly different excitation times of the
fluorophores) and the timing response of the detector, which is not exactly the same
for each detection event. Furthermore, the time that the light needs to travel from the
sample to the detector, and which the electronic signals need to travel through the cabel
from the detector to the counting electronics, leads to a shift of the whole curve with
respect to the time points of the excitation laser pulses. The measured intensity curve
for a sample whose components should emit at exactly the same time t = 0 is called
the instrument response function (IRF). It is often obtained by measuring a scattering
sample because scattering is almost instantaneous. Figure 3.7(a) shows a typical IRF
measured on a confocal FLIM setup like the one described in section 2.5.2. When a
fluorescent sample is measured on the same setup, the recorded TCSPC curve is the
convolution of the IRF and the exponential decay of the fluorescence, as demonstrated
in figure 3.7(b).
Since a convolution in real space corresponds to a multiplication in Fourier space, it
seems straightforward to calculate the Fourier transform of the measured signal, divide
by the Fourier transform of the IRF, and perform an inverse Fourier transform to
obtain the underlaying exponential decay. However, this approach entails two sources
of significant errors. Firstly, if the Fourier transform of the IRF has zeros, information
about the initial function has been lost during the convolution and cannot be restored
during the deconvolution7. Secondly, the measured signal is not just the convolution of
the decay and the IRF, but also has an additional noise component. This noise is also
present in the Fourier transform of the signal, and can be amplified in unpredictable
ways by the division by the Fourier transform of the IRF. For these reasons, a direct
deconvolution is usually not performed on microscopy data. Instead, a number of
more sophisticated deconvolution techniques exist, both for general and more specific
situations. An example of the former is the well-known iterative Richardson-Lucy
deconvolution scheme [103, 104].
When fitting TCSPC-curves, one can exploit the a priori knowledge that the underlying
function is a mono- or multiexponential decay, thus rendering a geneal deconvolution
algorithm unnecessary. For our purposes, good results can be obtained with an interative
fitting procedure, which we call IRF-fitting. This approach is based on measuring the
IRF independently, allowing to construct a model function m(tb,P ) by numerically

7 Also, from a purely practical point of view, division by zero leads infinite or undefined results in the
corresponding pixels, which have to be handled somehow.
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convolving a mono- or multiexponential decay with the IRF. By adjusting the decay
rates and relative amplitudes of the different decay components, one then tries to find
the “best fit” of the model to the data. The main difficulty of this approach lies in
obtaining an IRF of high quality, since noise in the measured IRF will be reflected
as a noisy model function that does not represent the true expectation value of the
intensity curve. Furthermore, the constant background that is always present in a
TCSPC measurement (see figure 3.7(a)) has to be subtracted from the IRF, which can
be challenging if the background is so small that its magnitude cannot be determined
precisely8.
Alternatively, one can avoid the need for a deconvolution by emploing tail-fitting
procedures. These rely on the assumption that the IRF is a rather sharp peak, and
that the convolution of an exponential function with the IRF only differs from the pure
exponential function up to the first few histogram bins after the maximum (see inset of
figure 3.7(b)). Then, one can simply discard all bins that are still influenced by the IRF,
and only fit the tail of the TCSPC curve. In this case, we benefit from a characteristic
of the exponential function, namely that the average arrival time after a certain time
point is independent of this time point:

〈t〉[0,∞] =

∫ ∞
0

dt t · 1

τ
· e−t/τ

= τ · d

dτ

∫ ∞
0

dt e−t/τ

= τ · d

dτ
[0 + τ ]

= τ,

〈t− t0〉[t0,∞] =

∫ ∞
t0

dt (t− t0) · 1

τ
· e−(t−t0)/τ

=

∫ ∞
0

dz z · 1

τ
· e−z/τ

= τ. (3.39)

Thus, in principle, one could simply choose a cutoff t0, re-define it as time zero, and
calculate the average arrival time relative to t0 for all photons in histogram bins after
the cutoff. However, here the same caveat as for the IRF-fit applies: When calculating
the average arrival time, a constant background would shift this average towards the
middle of the measurement interval, and thus has to be subtracted beforehand. But
again, estimating the background e.g. from pixels without sample can be too imprecise,
especially when the background is spatially varying. Therefore, the most common
procedure is to define a model function m(tb;P ), usually a mono- or multiexponential
decay, and to vary the parameters P (decay constants, relative amplitudes, amplitude
of the constant background) until the “best fit” of the model to the data is reached.

8 Keep in mind that any TCSPC curve is a histogram whose values in different bins are integers.
Thus, a low background results in bins with zeros or ones at later time points (after the decay of
the fluorescence), who have to be averaged over a number of bins to yield an estimate of the true
background level.
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The main difference to the IRF-fitting is that the model function now only describes
histogram bins tb after the cutoff t0, and can therefore be a simple linear combination
of exponential functions and the constant background.
For both IRF-fitting and tail-fitting, we defined the goal of finding the “best fit” between
model function and measured data by varying the model parameters P . This objective
is also the purpose of regression analysis, a branch of statistical modeling. In regression
analysis, several definitions of what might be a “best fit” exist. One possibility is to
minimize the sum of squared residuals (SSR), where a residual is the difference between
one data point and the corresponding value of the model. This procedure is also called
a least squares fit. When modeling a TCSPC curve, the SSR corresponds to:

SSR(P ; ITCSPC) =
B∑
b=1

[ITCSPC(tb)−m(tb;P )]2 , (3.40)

where the sum is taken over all histogram bins tb ∈ [0, T ] for an IRF-fit and only over
the bins tb ∈ [t0, T ] for the tail-fit. The estimate P̂ of the true underlying parameter
vector P is then given as

P̂ = arg min
P

{SSR(P ; ITCSPC)} . (3.41)

The least squares fit implicitly assumes that all data points have the same uncertainty,
and therefore “punishes” the deviation of any data point from the model quadratically.
Thus, outliers can strongly change the resulting fit parameters. However, if it is known
that some data points have a higher uncertainty than others, their deviation from the
model function should have less impact on the parameter choice than the deviation of
very accurate data points from the model. This is taken into account in weighted least
squares formulations, which include the variance σ2(tb) of each data point:

WSSR(P ; ITCSPC) =
B∑
b=1

[ITCSPC(tb)−m(tb;P )]2

σ2(tb)
. (3.42)

In order to estimate the variance of the count numbers in each TCSPC bin, we consider
the underlying measurement process. The histogram is acquired by summing the photon
arrival times of many excitation cycles. Within each excitation cycle, the probability
to detect a photon is proportional to the model function m(tb;P ), for example a
monoexponential decay. When considering the complete experiment with its hundreds
of thousands of excitation cycles, we can reasonably assume that for each time bin tb,
the average rate of photons being sorted into this bin is constant, and proportional to
m(tb;P ). Furthermore, since the photon emission events are independent of each other,
the probability of subsequent photons being sorted into bin tb is independent of the
number of photons already sorted into this bin. Thus, the total number of photons
ITCSPC(tb) sorted into bin tb during the experiment is Poisson distributed with mean
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m(tb). Since for a Poisson-distributed random variable the variance equals the mean,
we find:

WSSR(P ; ITCSPC) =
B∑
b=1

[ITCSPC(tb)−m(tb;P )]2

m(tb;P )
. (3.43)

Another approach to find the “best fit” of the model curve to the measured data is to
find the model function that maximizes the probability of measuring exactly the data
that was found in the experiment. This probability is called the likelihood L(P ; ITCSPC)
of the parameter set P , and the thus obtained parameter vector a maximum likelihood
estimator. The likelihood is determined as follows: Since we assume that the number of
photons sorted into bin tb follows the Poisson distribution with expectation value m(tb),

p(ITCSPC(tb);P ) = e−m(tp;P ) · m(tb;P )ITCSPC(tb)

ITCSPC(tb)
, (3.44)

the probability to obtain a specific TCSPC histogram for a given total number of
photons is

L(P ; ITCSPC) =
B∏
b=1

p(ITCSPC(tb);P ). (3.45)

Instead of directly maximizing L(P ; ITCSPC) with respect to P , it is numerically easier
to minimize − logL, called the negative log-likelihood, to find an estimate P̂ of the
parameter vector P :

P̂ = arg min
P

{− logL(P ; ITCSPC)}

= arg min
P

{
B∑
b=1

m(tb;P )−
B∑
b=1

ITCSPC(tb) · log[m(tb;P )]

}
. (3.46)

If the number of photons in one bin is very large, since this number is Poisson distributed,
the signal-to-noise ratio (SNR) of this bin is also large:

SNR(tb) =
signal

standard deviation
=

ITCSPC(tb)√
ITCSPC(tb)

=
√
ITCSPC(tb). (3.47)

Thus, with an increasing total number of detected photons, the measured TCSPC
curve is less noisy and approaches the ideal model function more closely. For this
case, it is known that the parameter vector estimates P̂ obtained by least squares or
maximum likelihood are asymptotically the same (see e.g. [105]). For smaller sample
sizes, maximum likelihood estimators have been shown to be more accurate [105].
However, least squares solvers are implemented in many commercial programs such as
Matab [106], and are still often used.
When evaluating fluorescence lifetimes for MIET experiments, the choice of the fitting
routine depends on the sample. If the expected lifetimes are very short, most of the
fluorescence photons arrive in the first few bins. Therefore, ignoring the beginning of
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the curve results in a significant loss of signal, which is why an IRF-fit is preferred over
a tail-fit. The same is true when the IRF is very broad, such that a large cutoff t0
would have to be chosen. The experimental setup used for the applications presented in
this work has a very sharp IRF, and fluorescence lifetimes were usually longer than one
nanosecond. Therefore, we avoided the potential complications arising from measuring,
smoothing and background-correcting an IRF by only employing tail-fits.
If it is known that the fluorescence signal follows a monoexponential decay (or else
has exactly N lifetime components), a maximum likelihood fit with the corresponding
model function is assumed to give the best result, as mentioned above. However, for
most MIET measurements, several fluorophores at different z-positions are contained
within the focal volume. Since the fluorescence lifetime is z-dependent, the measured
TCSPC curve is a linear combination of an unknown number of exponential decays. In
this situation, our group is routinely using a method that we call a distributed tail-fit
(DTF), and which has proven to be quite robust in extracting the average lifetime
from this type of curve. The distributed tail-fit is based on a model function mDTF(tb)
that is a sum of a large number (typically N = 200) of monoexponential decay curves
and a constant background, where the decay rates τ−1

j are fixed and only the relative
amplitudes aj are fit parameters (B = number of TCSPC bins):

mDTF(tb) =
a0

B
+

N∑
j=1

aj
1

τj
e−tb/τj , P = {aj|j = 0, · · · , N ; aj ≥ 0 ∀j}. (3.48)

This model function is then used in a least-squares approximation. The important
point to notice here is that all amplitudes are either zero or positive but cannot become
negative, reducing the risk of overfitting. Thus, this approach can be interpreted as
decomposing the measured signal into the relevant basis functions, which correspond to
different fluorescence decay components.
The optimization problem can be written in matrix notation using the vector t = {tb}
of the time points of the TCSPC bins, the data vector d = {ITCSPC(tb)}, the vector
a = {aj} of the amplitudes and defining the model matrix M

M =
(

1
B

exp(−t/τ1)
τ1

exp(−t/τ2)
τ2

. . . exp(−t/τN )
τN

)
. (3.49)

Then, the estimator â of the amplitudes is given as

âᵀ = arg min
aᵀ

||M · aᵀ − d||22 where aj ≥ 0 ∀j. (3.50)

Exactly this fitting problem is implemented in many numerical computing environments,
e.g. as the function a=lsqnonneg(M ,d) in Matlab, which we use in all lifetime fits
presented in this work. Once an estimator â of the different amplitudes has been found,
this can be utilized to estimate the average lifetime 〈τ〉 of all fluorophores contributing
to the TCSPC curve:

ˆ〈τ〉 =

∑N
j=1 âj · τj∑N
j=1 âj

. (3.51)
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With this last step, we acknowledge that the individual fluorescence lifetimes of all
fluorophores within the focal volume generally cannot be distinguished by this (or any
other) method. Instead, we assume that when the average lifetime 〈τ〉 is converted to
a height using a MIET lifetime-versus-height curve, the resulting height corresponds
approximately to the average height of the fluorophores. Some discrepancy is expected
because the brightness of a fluorophore is also distance-dependent and thus influences
the amplitude aj of the corresponding lifetime component τj, however, the deviation is
small, as we will now demonstrate for an example.
We start by simulating a TCSPC curve generated by a single fluorophore whose decay
curve is monoexponential with a lifetime of 1 ns or 3 ns, where we take into account
the Poisson-distribution of the count numbers of the single TCSPC bins. As figure
3.8(a, b) shows, the lifetime estimated using the distributed tail-fit converges to the
correct value as the total number of photons is increased, accompanied by a decrease of
the variance of the lifetime estimate. There is a small bias towards larger lifetimes at
small photon numbers. For 3000 photons, the minimum number required for our MIET
experiments (pixels with less counts are ignored in the evaluation), the bias is less than
3 %. In the next step, we simulate the TCSPC curve generated by two fluorophores
of equal brightness and with fluorescence lifetimes τ1 = 1 ns and τ2 = 3 ns, see figure
3.8(c). Again, the estimated average lifetime approaches the correct value 〈τ〉 = 2 ns
for large photon numbers.
Now, we move on to a more realistic situation. We model the experiment conducted in
[38], where a microtubule (diameter 25 nm) was uniformly labeled with the fluorescent
dye Alexa Fluor 488 (emission maximum λ = 525 nm, quantum yield Φ = 0.8, free
space lifetime τ0 = 3.5 ns), and suspended over a gold-coated glass cover slip (1 nm
titanium as an adhesion layer, 15 nm gold) using various spacer molecules. We consider
the case that the microtubules are covered by neutravidin and immobilized on the
surface by avidin, a situation for which the average distance between the lowest point
of the microtubule and the top of the gold layer was found to be 13.3 ± 1.5 nm. As
depicted in figure 3.9(a), we determine the height hi of 40 dye molecules evenly spaced
on the surface of the microtubule. Using the MIET calibration curve determined for
the sample parameters, we convert these height values into 40 lifetime values τi (b).
The corresponding TCSPC-curves (c) are then added up (d), where we neglect the
height-dependent brightness of the fluorophores, attributing the same total number of
photons to each curve. The resulting total TCSPC histogram is then passed to our
distributed tail-fit, resulting in an estimate of the average lifetime ˆ〈τ〉. When directly
averaging the 40 “true” lifetime values τi, we find 〈τ〉 = 0.8629 ns, which is identical

to the estime ˆ〈τ〉 obtained for 107 photons. The mean and standard deviation of
200 simulations per photon number are depicted in figure 3.9(e), here the bias for small
photon numbers is less than 1 %. The average height estimated using this procedure
shows a similar convergence behaviour (not shown), approaching the value corresponding

to the average lifetime 〈τ〉, ˆ〈h〉 = 26.9 nm. The true average height of the fluorophores
is (13.3 + 25/2) nm = 25.8 nm. The (small) discrepancy between these values can be
explained by the fact that the MIET curve is not a perfect straight line. For this reason,
Berndt et al. – knowing the diameter of the microtubules – modeled the complete
lifetime distribution to find the distance between the bottom of the microtubules and
the top of the gold surface [38]. In situations where the labeled structure is not as
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Figure 3.8: Application of the distributed tail-fit (DTF) to simulated mono- (a, b) or
biexponential (c) noisy data. The ideal model function m(tb) for TCSPC time bins of
width 32 ps and a total length of the TCSPC curve of 50 ns (corresponding to a pulse
repetition rate of 20 MHz) is a monoexponential decay with lifetime τ = 1 ns (a) or
τ = 3 ns (b), or a linear superposition of both with relative amplitudes 0.5 (c). By
adjusting the total amplitude of the model function in the simulation, the number of
detected photons for the whole curve (horizontal axis) could be chosen. For each time bin
tb, the ideal model m(tb) was then taken as the expectation value of a Poisson distribution
to generate a noisy curve. Subsequent evaluation of the thus generated data by the DTF
yielded an estimate of the average lifetime 〈τ〉. The mean of 200 repetitions of the data
generation and evaluation is shown as filled circles in the graph, the errorbars denote the
standard deviation. Note that the estimated average lifetime approaches the true average
lifetime for large photon numbers, with a small bias towards larger values at small photon
numbers.
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Figure 3.9: Application of the distributed tail-fit (DTF) to simulated realistic MIET
data. (a) Schematic of the modeled situation: A microtubule (grey circle, ∅25 nm) is
homogeneously labeled with the dye Alexa Fluor 488 (green dots). The bottom of the
microtubule is elevated 13.3 nm above the MIET substrate by avidin and neutravidin. (b)
MIET curve calculated using the optical parameters of the MIET substrate, the buffer
surrounding the microtubule and the dye. The height-lifetime pairs (hj , τj) of some of the
dye molecules are indicated as green dots, the dotted green line corresponds to the average
lifetime of all dye molecules, 0.863 ns. (c) Semilogarithmic plot of the monoexponential
decay curves of some of the individual fluorophores. (d) Semilogarithmic plot of the sum
of all the decay curves, corresponding to the ideal TCSPC curve one would measure in
this situation if there was no noise (i.e. infinite number of detected photons). (e) When
evaluating noisy TCSPC curves – generated from the curve in (d) by using only a finite
number of photons – with the DTF, an estimator of the average lifetime 〈τ〉 is obtained.
The mean and standard deviation of 200 repetitions of this procedure are shown as circles
and errorbars, respectively. The dotted green line is again the true average lifetime,
0.863 ns. Note that here, the bias at 2000 photons is 3� (or 2� at 3000 photons).
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well-defined, the average lifetime and the derived height value offer good descriptions of
the sample. In particular, when relatively thin structures such as lipid membranes are
labeled, the different lifetime components are very similar, and thus the averaging leads
to a height value that approximates the true average height even more closely.
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Due to the properties of MIET discussed in the previous section, the method offers an
opportunity to study systems where the positions of one or several structures within
the first 200 nm from the surface are of interest. In this chapter, three such examples
are presented: focal adhesion complexes in human mesenchymal stem cells, the nuclear
membrane of HeLa cells, and the behaviour of the basal cell membrane in the epithelial-
to-mesenchymal transition of NMuMG cells. In all three cases, the sample preparation
and all measurements were performed by my colleagues as indicated in the respective
sections; my contributions were the extraction of lifetime values from the raw data,
their conversion to height maps, as well as a variety of statistical evaluations. The data
evaluation was greatly facilitated by a flexible software package which was developed as
part of this work as described in section 4.1.1.
Besides demonstrating the versatility of MIET in sections 4.1.2 to 4.1.4, we also present
an investigation of its accuracy and the parameters influencing it in section 4.2. These
findings provide a valuable basis when appraising height values obtained from MIET
measurements.
Based on the profound knowledge of the interaction of fluorophores with metal layers
presented in sections 2.3 to 2.5, the challenging determination of absolute quantum
yield values has been accomplished. When measuring lifetimes close to metal layers, out
of the five parameters free space lifetime τ0, free space quantum yield Φ0, orientation θ,
lifetime τ and height z, four have to be known in order to determine the fifth. In MIET
experiments, we presume the knowledge of τ0, Φ0 and θ, such that a measurement
of τ yields z. Conversely, if z is known – for example when molecules are deposited
on a silica spacer of known thickness – and τ is measured, the quantum yield could
theoretically be determined by a single measurement. In practice, however, every
lifetime measurement suffers from noise. Therefore, the accuracy of the determined
value for Φ can be improved by doing several such measurements at different spacer
thicknesses and fitting for Φ. As a drawback, this approach is very time-intensive.
Furthermore, it relies on the fact that the molecules are located directly on the silica/air
interface, and is thus not suited for measurements of quantum yields in solution. A
more sophisticated technique using a nanocavity was developed by our group in 2013
[107] and further improved in this work. It is presented in section 4.3.
Due to the large scope of this work, not all projects and publications can be presented in
the main text. Some further examples of MIET measurements, as well as an application
of the theory describing the interaction of light with spherical particles, are therefore
summarized in section 6.3 in the appendix.
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4.1 Application of MIET to biological samples

Following the proof-of-principle study [38] described at the end of section 2.5.4, MIET
was applied to living cells in 2013/2014 [39]. Cell-substrate distance maps were obtained
for several cell lines, showing different average distances for benign and more motile,
cancerous cells. Furthermore, the three phases of cell spreading of one cell type could
be observed in a MIET time series. This publication proved MIET microscopy to be a
versatile tool to answer relevant biological questions.
However, at this stage, the MIET data analysis was still performed using a bundle
of custom-written software which required a lot of manual adjustment and a deep
understanding of the underlying physical concepts. In order to make the technique more
accessible for general users, an easy-to-adopt software package was compiled as part of
this work, providing a graphical user interface (GUI) that allows to evaluate MIET data
using Matlab without any knowledge of programming. This program is described in
section 4.1.1. The software was used to evaluate several different experiments, and was
in turn constantly improved. The application of MIET imaging to structures within
cells posed new challenges, which will be adressed in the context of these experiments
in sections 4.1.2 to 4.1.4.

4.1.1 MIET analysis software

After the first applications of MIET microscopy had been published, the further
development and establishment of the technique quickly required a well-maintained
software package implementing the latest analysis methods. Thus, a major part of this
work was to improve, extend and re-implement previous proof-of-principle methods
based on the theoretical concepts introduced above into a reliable and consistent
toolchain. To simplify and document the data analysis steps for general users, the
software was equipped with a graphical user interface (GUI). Since this is the part of
the program which primarily determines the user experience, we call the whole software
package MIET GUI. It has been described in detail in [7], and a free version is available
online from the institute’s homepage.
In general, the data analysis of a MIET experiment consists of three steps. Firstly,
lifetime values are extracted from the raw data. Secondly, a MIET lifetime-versus-height
calibration curve is calculated based on the sample parameters. Thirdly, the lifetimes
are converted to height values based on the MIET curve. The implementation of the first
step varies strongly based on the FLIM setup used to acquire the data, starting from
the fundamental differences between frequency- or time-domain measurements, but also
including the very specific data formats used by different manufacturers. Commercial
FLIM setups usually include a proprietary software which performs this analysis step,
while users who tailor a FLIM setup to a specific purpose often like to have full control
over the employed fitting algorithms. In an internal version of the software package, we
included the full lifetime fitting process: Starting with the extraction of photon arrival
times from the binary data produced by the counting electronics, TCSPC histograms
are compiled and dead-time corrected as described in section 6.3.2 in the appendix, and
finally fitted using IRF- or tail-fits as described in section 3.5. However, this module
was not included in the published version for the aforementioned reasons.
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Figure 4.1: Screenshots of the MIET graphical user interface. Top: Main window, choice
between conversion of lifetimes to height values (Complete analysis) or only calculation
of MIET curve; specification of lifetime data. Bottom: Parameters window, opened
by button Choose sample parameters, defines stratified system and optical properties of
fluorophore. In the schematic, orange arrows represent fluorophores.
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A screenshot of the published version of the MIET GUI is shown in figure 4.1. It allows
the user to specify the two important sets of sample parameters – the refractive indices
and thicknesses of the materials making up the stratified system, as well as the optical
properties of the fluorophore – which are needed to calculate a MIET calibration curve,
and to specify the lifetime values that are to be converted into heights.
The software simplifies the workflow in several ways. To name just two examples, the
GUI offers the option to only output the MIET curve1, or to process an arbitrary
number of data sets from the same sample type (i.e. with the same MIET curve) in
bulk. The representation of the stratified system as three stacks of layers – one layer
containing the fluorophore, with one stack above and one below it, see lower half of
figure 4.1 – is capable of mapping virtually any sample that has a planar geometry. This
is in accordance with our aim of creating a general-purpose MIET analysis software that
is not restricted to a specific sample type. The only assumption made by the algorithm
is that the bottommost medium of the lower stack (usually the glass cover slip) and
the uppermost medium of the upper stack (usually buffer in a cell sample, or air when
molecules are deposited on a silica spacer) are assumed to be infinitely thick.
In the simplest case, a MIET curve is calculated for one single wavelength λ, usually
the maximum emission wavelength of the fluorophore. In reality, however, emitters
fluoresce over a range of wavelengths, which all have slightly different MIET curves.
This is taken into account if the free space fluorescence spectrum F (λ) is specified:

〈τ(z)〉λ =

∫ λmax

λmin

τ(z, λ) · F (λ) dλ

/ ∫ λmax

λmin

F (λ) dλ. (4.1)

When the actual evaluation is initiated, the program first calculates the MIET curve.
In principle, the total energy Stot emitted per time by one emitter depends not only on
the z-position of the emitter but also on its orientation θ with respect to the optical
axis. When denoting the values for fluorophores with a vertical or a horizontal dipole
moment as Stot,⊥(z) and Stot,‖(z), respectively, the linearity of the relevant equations
leads to the simple relation:

Stot(z, θ) = Stot,⊥(z) · cos2 θ + Stot,‖(z) · sin2 θ. (4.2)

In our evaluations, we assume an ensemble of randomly oriented fluorophores, and thus
set Stot(z) = [Stot,⊥(z) + 2Stot,‖(z)]/32. This value is then used to determine the MIET
curve according to equation (2.222): τ(z) = τ0 ·Stot(z)/S0. Since this function oscillates
with decreasing amplitude at large z, an unambiguous relation between τ and z can only
be found up to the z-value of the first minimum, zmin. If some prior knowledge makes
it unlikely that fluorophores are at high z-values, the user can alternatively choose
to use the curve up to the z-value of the first maximum, zmax. All lifetimes higher
than τ(zmin/max) are marked as “not a number” when transforming lifetime values into
heights.
Finally, the resulting height images are automatically plotted and the raw data is saved.

1 Which can be used to estimate the impact of certain sample parameters on the obtainable height
resolution when designing an experiment.

2 If it is known that the fluorophores have a specific orientation, the code can be adapted accordingly.
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4.1.2 Cell-substrate dynamics of the epithelial-to-mesenchymal
transition

The first of three MIET projects presented in this work (which all employed the software
package presented above) concerned cell-substrate measurements. The results, and all
figures shown in this section, were published in:

[1] T. Baronsky, D. Ruhlandt, B. R. Brückner, J. Schäfer, N. Karedla,
S. Isbaner, D. Hähnel, I. Gregor, J. Enderlein, A. Janshoff, and A. I. Chizhik,
“Cell-substrate dynamics of the epithelial-to-mesenchymal transition,” Nano
Letters, vol. 17, no. 5, pp. 3320–3326, 2017. T. B., D. R. and B. R. B.
contributed equally to this work. D. R. provided analysis tools and analysed
the data.

Motivation

Epithelial tissues line the outer surfaces of blood vessels and organs throughout the body,
where one of their main tasks is to provide a barrier between different compartments of
the body and to protect against physical trauma. This is achieved by very tight cell-cell
adhesions (also called anchoring junctions), where actin fibers – relatively stiff structures
that are a part of the cytoskeleton, which gives the cell its shape and resistance to
mechanical transformation – are anchored. These, in turn, transmit stresses across the
interior of each cell, distributing them over larger areas of the tissue. More details can be
found in textbooks such as [108] (chapter 19), or directly in our publication [1]. Under
certain conditions, for example as a component of wound healing but also in cancer
progression, epithelial cells can transform to more mobile mesenchymal cells. This
process, called epithelial-to-mesenchymal transition (EMT), can be triggered externally
by adding certain growth factors to epithelial cells. During the EMT, cells undergo a
variety of changes, including a loss of cell-cell adhesions, actin reoganization, and an
altered cell-substrate interaction, that allow them greater mobility. Further details on
the mechanism, as well as its biological relevance, are given in [1]. It was our aim to
observe one of the mentioned effects, the altered cell-substrate interaction, using MIET
microscopy, and to draw conclusions regarding possible stages of the EMT from these
measurements.
The temporal progression of the EMT had already been studied in a previous work [109]
by Schneider et al. employing electric cell-substrate impedance sensing (ECIS). In ECIS,
a confluent cell layer is grown on an electrode and the electrical impedance measured
for different alternating current frequencies. By fitting these frequency sweeps with
appropriate models, conclusions about cell-cell contacts, cell shape and the impedance
in the cleft between the cells and the substrate (which is linked to the cell-substrate
distance) can be drawn. Furthermore, an analysis of the temporal fluctuations of
the impedance provides information about collective vertical motility of the cells. A
repetition of these experiments at several time points after addition of TGF-β1 revealed
increased impedance fluctuations and thus a higher micromotility that started about
one to three hours after induction of the EMT and lasted for roughly five to seven
hours. This time span was denoted transitional state I, the elevated variance of the
fluctuations was attributed to membrane ruffling. About eight hours after addition of
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TGF-β1, the impedance fluctuations reduced to the value of untreated cells. However,
fits of the frequency sweeps indicated a gradual decrease of cell-cell contacts after ten
to thirty hours, accompanied by the formation of some actin stress fibers and stronger
adhesion of the cells to the substrate. This interval was given the name transitional
state II. Afterwards, a mesenchymal-like state was reached where NMuMG cells further
changed their morphology and developed more stress fibers. Forty-eight hours after
addition of TGF-β1, the EMT was complete.
The study by Schneider et al. formed the basis for our MIET measurements. While they
already provided a comprehensive image of the EMT, some aspects still required further
investigation. Firstly, ECIS is an ensemble measurement: In [109], for each impedance
measurement 100,000 NMuMG cells were seeded on a circular gold electrode with a
diameter of 250 µm. Thus, a precise picture of the different stages on the cellular or
even subcellular level was lacking due to the limited spatial resolution. Secondly, fits of
ECIS frequency sweeps only provide a quantity that depends both on the cell-substrate
distance z and the resistivity of the medium between cells and substrate. The latter,
however, may change due to altered ion concentrations in the different stages of the
EMT. In contrast, MIET is de facto independent of the ion concentration. Thus,
accurate height values could not be obtained in [109]. It was therefore our goal to
investigate the evolution of cell-substrate distances during the different EMT stages
both on a single-cell level and regarding average values.

Methods

As a first step, a protocol to induce EMT in the mouse mammary gland epithelial
cell line NMuMG was established. Figure 4.2 demonstrates that upon addition of the
transforming growth factor-β1 (TGF-β1) to NMuMG cells, the cells exhibit several
hallmarks of an EMT. In particular, the phase contrast images in figure 4.2(a) and
(b) show a transition of the general morphology from compact cells forming a tight
epithelial layer to individual, elongated, mesenchymal-like cells. Fluorescence images of
F-actin filaments labeled with the fluorescent dye Alexa Fluor 546 (Life Technologies,
Darmstadt, Germany) in (c) and (d) exhibit a remodeling of the F-actin network to
well-defined stress fibers, which traverse the entire cell. Finally, another typical property
of the EMT is the downregulation of E-cadherin, a protein that is essential for junctions
between neighbouring cells. This process can be observed in the fluorescence images
in figure 4.2(e) and (f), where E-cadherin was labeled with Alexa Fluor 488. These
three observations, together with some further checks presented in the supplementary
material of [1], proved a successful induction of the EMT in NMuMG cells.
With this, we moved on to conduct lifetime measurements on NMuMG cells in the
epithelial state or during and after the EMT. The setup we used is shown schematically in
figure 4.3, it is basically the same as already presented in figure 2.25. The only specialty
is an incubation chamber which keeps the cells at 37 °C, allowing measurements of living
cells for up to 1.5 hours. Details on the specifications of the used optical components
can be found in the supporting information of [1].
The plasma membrane of the cells was stained using the fluorophore CellMask Deep
Red (Life Technologies), which has its emission maximum around 680 nm. We checked
that effectively no dye was internalized by the cell by acquiring confocal images of a
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Figure 4.2: Morphological changes of NMuMG cells during EMT. Comparison of cells
without (“Control”) and after 48 hours of exposure to the transforming growth factor
TGF-β1 (“TGF-β 48 h”). (a, b) Shape changes of NMuMG cells as observed by phase
contrast microscopy. (c, d) Reorganization of the F-actin cytoskeleton (red, Alexa Fluor
546-phalloidin) visualized by confocal fluorescence miscrocopy. Nuclei in blue labeled
with DAPI. (e, f) Dowregulation of E-cadherin (green, Alexa Fluor 488) as observed
by confocal fluorescence microscopy. (g, h, i, j) Simultaneously acquired fluorescence
intensity and lifetime images of the basal membrane of living NMuMG cells grown on
a gold-covered glass cover slip. (k, l) Three-dimensional height profiles of the basal cell
membrane calculated from the lifetime images. Each row of images shows the same cells.
Scale bars correspond to 20 µm. Immunostaining measurements performed by Bastian
Brückner, MIET measurements performed by Alexey Chizhik. This image was published
in [1].

135



Applications

Figure 4.3: FLIM setup for MIET measurements of NMuMG cells during EMT. The
basic setup is the same as already presented in figure 2.25. The main new feature is
an incubator that keepts the cells at 37 °C; LP = longpass; tunable optical filter set to
an excitation wavelength of 645 nm. This image was created by Alexey Chizhik and
published in [1].

Figure 4.4: Confocal z-stack of an NMuMG cell whose plasma membrane has been
stained with CellMask Deep Red, and which is attached to a glass cover slip. The scale bar
corresponds to 20 µm. Note that basically no dye has been internalized by the cell, only
the plasma membrane fluoresces. Image recorded by Thilo Baronsky & Alexey Chizhik
and published in the supplementary information of [1].
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labeled cell grown on a normal glass cover slip at different focus positions (commonly
called confocal z-stack), see figure 4.4. Thus, measured lifetimes belong to dye molecules
situated at the basal cell membrane. Employing a technique explained in detail in
section 4.3, we determined the free space lifetime and quantum yield of CellMask Deep
Red in water, τ0, water = 2.4 ns and Φwater = 0.80. The refractive index of the cell culture
medium was the same as that of water (n = 1.33), thus we did not expect a change
of the radiative emission rate of the fluorophore when introducing it in our sample.
However, a different chemical environment can change the non-radiative emission rate.
Thus, we measured the lifetime of CellMask Deep Red labeled cells on untreated glass
substrates to determine “free space” values for calculation of the MIET curves, and
found τ0, cell = 1.5 ns. Assuming that this lifetime reduction is only due to a changed
non-radiative emission rate, we calculated the quantum yield of the dye in the cell
sample:

Φcell =
kr

kr + knr, cell

=
kr

kr + knr, water

· kr + knr, water

kr + knr, cell

= Φwater ·
τ0, cell

τ0, water

= 0.50 (4.3)

MIET was induced by a 20 nm thick gold film, which was attached to a glass cover
slip (thickness 170 µm) via a 3 nm thick titanium layer. The metal films were prepared
by vapor deposition using an electron beam source (Univex 350, Leybold, Cologne,
Germany) under high-vacuum conditions at ∼ 10−6 mbar. During vapor deposition, the
film thickness was monitored using an oscillating quartz unit, and afterwards verified
by atomic force microscopy. The refractive indices of the metals were taken from
[110]. Knowing all refractive indices, the thicknesses of the metal layers and the optical
properties of CellMask Deep Red, we were able to calculate the lifetime-versus-height
MIET curve, implemented in the MIET software package according to the procedure
explained in sections 2.5.3 and 3.4. With the help of this curve, measured lifetime
values could be converted to cell-substrate distances, in the following called “height
values” for short.

Results

Exemplary fluorescence lifetime and intensity images of both untreated and TGF-β1
treated NMuMG cells are shown in figure 4.2(g)-(j). They confirm the basic conclusions
drawn from the phase contrast images, namely that NMuMG cells undergo morphological
changes from a compact epithelial type towards a more spindle shaped mesenchymal
type upon TGF-β1 treatment. However, they offer even more information, namely how
the cell-substrate distance changes during the EMT. Transforming the lifetimes into
height values by means of the MIET curve, we could reconstruct a three-dimensional
map of the basal membrane of the cells, as shown in figure 4.2 (k) and (l). This type of
height map was then used to gain insights into the temporal progression of the EMT.
To this end, MIET measurements as described above were conducted at different
time points after addition of TGF-β1 to NMuMG cells. Figure 4.5(b)-(f) shows some
exemplary height maps acquired 0 h (b), 12 h (c), 24 h (d), 48 h (e) and 72 h (f) after
addition of the growth factor. As expected from the previous observations, the cells
change their phenotype from a compact epithelial layer (b) to larger, separated cells (e,
f). On a single-cell level, it was found that cells displayed a more homogeneous height
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Figure 4.5: Cell-substrate distances during different stages of the EMT. Height maps
were reconstructed from lifetime data at different time points, as shown exemplarily
in (b)-(f) for cells examined 0 h, 12 h, 24 h, 48 h and 72 h after TGF-β1 addition (scale
bar 20 µm), allowing to draw conclusions on a single-cell level. Distributions of average
cell-substrate distances for the different time points were found as explained in figure
4.6; histograms and Gaussian fits are shown in (g)-(k) for the same time points. The
mean values of these distributions are plotted as red dots in (a), where the shaded
region corresponds to the standard error of the mean. See the table in the main text for
numbers of evaluated cells. As a comparison, the results for untreated cells are shown
in blue. Above the graph, cartoons depict the compact, ordered epithelial state, the
transitional state I with dissolution of cell-cell contacts and increased membrane ruffling,
the transitional state II where cells change their shape and start to form actin stress fibers
(red lines) and finally the mesenchymal-like state, where cells spread further and form
more stress fibers. Data recorded and image created by Alexey Chizhik, published in [1].
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Figure 4.6: Illustration of the necessary steps to gain information about average cell-
substrate distances at different time points after addition of TGF-β1. (a) For each single
cell, the lifetime image was converted to a height map using the MIET curve. Some
examples can be found in figure 4.5(b)-(f). (b) By employing an intensity threshold, the
pixels belonging to the cell were identified and their height values histogrammed. (c) The
mean height values of all cells belonging to the same time point were then collected in a
common histogram, some of these are shown exemplarily in figure 4.5(g)-(k). The average
cell-substrate distances of all time points as determined by Gaussian fits to the data (red
line) are plotted as red dots in figure 4.5(a), together with the standard error of the mean.
Image created by Alexey Chizhik and published in the supplementary information of [1].

after completion of the EMT (e, f) compared to cells at the beginning of the process (b,
c). This is in agreement with the MIET study [39] mentioned at the beginning of this
chapter, where the cell-substrate distances of three cell types were compared. There, it
was found that the benign epithelial cell line displayed a rather wavy basal membrane,
while the height map of a mesenchymal cancer cell line appeared much smoother.
In order to collect information about average cell-substrate distances, MIET images of
a larger number of cells at different time points were acquired, see the following table:

treatment
0 1 2 3 5 7 9 11 12 13 14 16 17 20 22 24 48 72

time [h]
number

21 21 10 17 7 11 18 17 19 6 6 14 10 16 20 21 25 20of cells

The data evaluation process is illustrated in figure 4.6: For each single cell, a height map
of the basal membrane was constructed as before. With the help of an intensity threshold,
pixels belonging to the cell were identified and their height values histogrammed. The
mean values of all cells belonging to the same time point were then collected in another
histogram, shown for exemplary time points in figure 4.5(g)-(k). Gaussian fits of these
latter histograms resulted in mean cell-substrate distances for 17 time points, which are
shown as red dots in figure 4.5(a). The standard error of the mean is visualized as a
red shaded area, identical measurements for untreated (control) cells are depicted in
blue. For comparison, the different stages of the EMT identified in [109] are indicated
with black arrows and schematic cartoons at the top of figure 4.5. While untreated
cells maintain a constant average height of 110 nm-120 nm during the whole observation
time, TGF-β1 treated cells significantly increase the cell-substrate distance by 20 nm to
30 nm in the initial stages of the EMT. Approximately ten to twenty hours after EMT
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initiation, i.e. within the transitional state II, the average height of the basal membrane
decreases, ultimately returning to the level of untreated cells. Cells were measured up
to 72 h without noticeable further changes of the average cell-substrate distance (data
not shown).
It remains to investigate what might be the biological mechanism of these height changes.
One hypothesis is that the extracellular matrix 3 changes its thickness during the EMT,
pushing the cell upwards. If this was the case, one would expect that all parts of the cell
were elevated similarly. Another hypothesis is that the number of focal adhesions (the
main subject of section 4.1.3, large protein complexes connecting the cytoskeleton to
the extracellular matrix) decreases during the EMT, allowing the membrane in between
to lift-off and be raised higher above the surface.
For a test of these hypotheses, we conducted time-resolved MIET measurements within
the first six hours of the EMT, the time range during which cells display the initial and
strongest height changes. Since even when observed in an incubator, cells gradually lost
vitality, each single cell was only examined for 1.5 hours. Each coloured dot in figure
4.7(a) corresponds to the average height of one cell measured at one time point, where
all data points belonging to the same cell have the same colour. Images were acquired
every two minutes, providing a good time resolution with only moderate photobleaching
of the dye. Data sets with exactly the same time points belong to experiments where it
was possible to monitor two cells simultaneously. The general trend of the plot is in
accordance with figure 4.5(a): The cell-substrate distance increases rapidly within the
first hour of the EMT and then stays at a high level with large fluctuations. In contrast,
untreated control cells (shown as black solid and dashed lines in figure 4.7(a)) display a
constant height of the basal membrane above the substrate. This indicates that the
repeated lifetime measurements did not have a detrimental effect on the cells within
the duration of the experiment. Thus, we are now able to exploit the full potential of
MIET microscopy by studying in detail the cell-substrate distance on a subcellular level.
Figure 4.7(b) shows a rendered three-dimensional height map of the basal membrane
of one single cell at four different time points within the first 1.5 hours of the EMT.
Already from these images, it is apparent that the majority of the membrane area is
elevated during this time, while there are also regions with close cell-substrate contact
that remain largely unchanged. In the following, the latter areas are called adhesion
points since their exact molecular nature was not studied in this work, which means
that they could not be identified unequivocally as focal adhesions. Histograms of the
height values of all pixels whose intensity was higher than the background are presented
in figure 4.7(c). With the exception of the time t = 0 h, these distributions show a
pronounced skewness toward larger height values and thus do not correspond to single
Gaussian functions anymore. Instead, we decomposed them into two populations for
t > 0 h by fitting two Gaussian distributions to the data (red solid lines). We interpret
the areas closer to the substrate as adhesion points. Their average height is always
close to 120 nm during the measurement, increasing by less than 10 nm. This increase
might be attributed to the production of extracellular matrix proteins. The second
peak at larger cell-substrate distances was assigned to the cell membrane between the
adhesion points. The average distance of this population increases more strongly, from

3 A three-dimensional macromolecular network comprised of water, proteins and polysaccharides that
are secreted by the cells which forms a sheet-like structure underneath epithelial cells.
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Figure 4.7: Time-elapsed MIET imaging of the cell-substrate distance during the first
six hours of the EMT. (a) Coloured dots correspond to the average cell-substrate distance
of one cell at one time point, where subsequent measurements of the same cell have the
same colour. Exemplary height maps are shown as insets. (b) Height maps of the same
cell acquired 0 min, 15 min, 60 min and 78 min after induction of the EMT. The average
cell-substrate distance increases, however, some regions remain close to the substrate.
Cross sections along the dashed lines are shown in figure 4.8. The scale bars correspond
to 20 µm in all height maps. (c) Histograms of the height values calculated for single
pixels of the height maps shown in (b). The histograms can be fitted with a sum to two
Gaussian distributions (dashed lines, sum represented by solid line). Vertical dashed lines
show the maxima of the Gaussian distributions, indicating that average cell-substrate
distance of the population at larger height increases during the early EMT. Data recorded
and image created by Alexey Chizhik, image published in [1].
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Figure 4.8: Time evolution of a cross section through the basal cell membrane at 0 min
to 80 min after induction of the EMT (black dashed lines in the height maps shown in
figure 4.7(b)). Colour encodes height, the numbers (I-IV) indicate the time points. Both
the formation of new adhesion points (red arrows) and the dissolution of adhesion sites
(black arrows) can be observed, while the membrane between these adhesion points overall
displays an increasing height (“lift off”). Data recorded and image created by Alexey
Chizhik, image published in [1].

approximately 110 nm to 150 nm within 80 minutes. Furthermore, the relative amount of
membrane associated with adhesion points decreases steadily during this measurement:

time after EMT induction [min] 15 60 78
fractional area of Gaussian fit 1 [%] 65 49 33
fractional area of Gaussian fit 2 [%] 35 51 67

These findings motivated us to study the adhesion points in more detail. Figure 4.8
depicts four consecutively acquired cross sections (stacked) of the membrane-substrate
distance taken along the dashed lines in figure 4.7. Both dissolution (black arrowheads)
and formation (red arrowheads) of adhesion points could be observed. However, on
average, more adhesion sites are lost than newly formed during this period (data not
shown). The temporal resolution of 2 min is in line with the expected turnover time of
focal adhesions [111]. The cross-sections also show that the height of the membrane in
between focal points increases, as discussed above.
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Summary

To sum up, the z-resolution of MIET of approximately 2 nm to 3 nm allowed us to
study the cell-substrate distance of NMuMG cells during the epithelial-to-mesenchymal
transition with high precision. We found that during the initial stages of the EMT, the
average distance between the basal membrane of the cell and the substrate increases
significantly, by 20 nm-30 nm. This might be partly due to an increased thickness of the
extracellular matrix, but is mostly caused by a reduction of focal adhesion points and an
elevation (“lift-off”) of the membrane between these points. In the transitional state II,
the cell-substrate distance slowly decreases, finally reaching the level of untreated cells.
Furthermore, our results indicate that the general structure of the basal membrane
changes from a rather wavy form to a smoother profile during the EMT, which could be
explained by the formation of stress fibers and a higher tension of the final mesenchymal
phenotype reported in [112].
Our findings are in agreement with previous works using complementary methods that
each studied different aspects of the EMT and related fields: The ECIS measurements of
[109] not only suggested the different stages of the EMT and reported increased vertical
motion of the cell membrane at the onset of EMT, but also found evidence of active
processes generating long memory fluctuations also explainable by the lift-off process
found by us. MIET measurements of different cell lines in [39] indicated the same trend
of wavy or smooth membranes for epithelial and mesenchymal cells as we saw. And
finally, results concerning signalling cascades and the activation of certain proteins
involved in remodeling of focal adhesions support the hypothesis of dynamical changes
of the adhesion sites, see [1] for further details. Thus, we were able to successfully shine
light on a complex cellular adhesion process with unprecedented axial resolution.

143



Applications

4.1.3 Dual-color metal-induced and Förster resonance energy
transfer for cell nanoscopy

With the next application, we stay in the realm of cell-substrate interactions. Instead of
studying the cell membrane, we now focus on focal adhesions, sites of strong interactions
between the cell’s cytoskeleton and the substrate. The results were published in:

[4] A. M. Chizhik, C. Wollnik, D. Ruhlandt, N. Karedla, A. I. Chizhik,
L. Hauke, D. Hähnel, I. Gregor, J. Enderlein, and F. Rehfeldt, “Dual-color
metal-induced and Förster resonance energy transfer for cell nanoscopy,”
Molecular Biology of the Cell, vol. 29, no. 7, pp. 846–851, 2018. D. R.
provided analysis tools and analysed the MIET data.

Motivation

Depending on the situation, cells need to be able to preserve or change their shape, be
tightly linked to their environment or move relative to it. A key player in these tasks
is the cytoskeleton, an intracellular biopolymer scaffold encompassing three types of
long, thin structures: actin filaments, intermediate filaments, and microtubules. This
network is highly dynamic, filaments can polymerize and depolymerize, or interact with
other cellular components such as motor proteins to enable movement and intracellular
transport. In section 4.1.2, we already encountered one component of the cytoskeleton,
so-called actomyosin stress fibers. These are contractile bundles of actin fibers, motor
proteins and various crosslinking proteins. Due to the relative rigidity of the cytoskeleton,
it also plays an important role in the transmission of forces both within a single cell and
between neighbouring cells or cells and the extracellular matrix. The latter situation is
mediated by focal adhesions, large complexes consisting of different proteins (among

Figure 4.9: Architecture of focal adhesions as suggested by Kanchanawong et al. in
[113]. Focal adhesions consist of many different proteins, among them vinculin, which are
suggested to be organised in (partially overlapping) layers, from which actin stress fibers
emerge. Image adapted from [113].
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them vinculin, on which we focused in our experiments) which link stress fibers to the
extracellular matrix. Focal adhesions are known to translate mechanical cues from the
extracellular environment into biochemical signaling, influencing the behaviour of the
cell. Further details on the cytoskeleton and focal adhesions can be found in biology
textbooks such as [108] and also in our publication [4].
In order to understand the mechano-sensing of cells, it is important to deduce the
forces acting at focal adhesions and the adjoining stress fibers. A prerequisite for this
step is to know the exact architecture of the focal adhesion/stress fiber complexes. In
2010, Kanchanawong et al. used interferometric PALM to map the organization of nine
different proteins in focal adhesions with an axial resolution of 10 nm-15 nm [113]. Their
study resulted in the model of a stratified system with partly overlapping layers shown
in figure 4.9. However, Kanchanawong et al. were mostly interested in the average
height values of the different proteins, and did not directly examine the co-localization
of proteins (i.e., they only labeled one type of protein per cell, conducting a separate
experiment for each protein). Furthermore, iPALM requires specialized markers, namely
photoactivatable fluorescent proteins fused to the protein of interest, and complex
instrumentation, thus the work by Kanchanawong et al. is not easily reproducible.
In contrast, MIET can be achieved with any fluorescent marker4, in particular with
commercially available fluorescently labeled antibodies, and using any FLIM setup.
The only peculiarity is the need for metal-coated substrates, but those can be either
purchased from commercial suppliers or be produced by vapor deposition using an
electron beam source as existing in many research institutions. Therefore, we set out
to confirm the suggested model by investigating the three-dimensional architecture of
focal adhesions using MIET microscopy. Furthermore, we wanted to complement the
previous work by detecting two types of proteins simultaneously, allowing us to directly
observe their relative positions.

Methods

Since we wanted to elucidate the interplay of focal adhesions and stress fibers, we had to
co-localize focal adhesions and stress fibers in the same cells. To this end, we extended
MIET microscopy to a dual-colour technique, termed dual-colour MIET (dcMIET).
This required an adjustment of the optical setup, the experimental procedure and also
the data evaluation, as will be explained below. As a model system, we chose human
mesenchymal stem cells (hMSCs) because it is known that focal adhesions and stress
fibers are key players in their mechano-induced differentiation, see e. g. [114]. Stress
fibers were stained using the red dye Atto 647N (ATTO-TEC GmbH, Siegen, Germany)
and vinculin as an exemplary focal adhesion protein was labeled with the green dye Atto
488 (ATTO-TEC). MIET substrates were prepared as described in section 4.1.2, they
consisted of glass cover slips covered with 3 nm titanium, 15 nm gold, 3 nm titanium
and 20 nm silica (SiO2), in this order. The silica spacer was introduced to prevent
quenching of the dyes if the focal adhesions were very close to the substrate. The
setup we used is shown schematically in figure 4.10, it is the same type of confocal
FLIM microscope as introduced in section 2.5.2. The combination of a white-light

4 Provided that the lifetime is not too short (free space value of at least ∼ 2 ns), otherwise the lifetime
fits can become unreliable.
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Figure 4.10: Dual-colour MIET setup used to study focal adhesions and stress fibers.
The basic design is the same as in figures 2.25 and 4.3. Since we worked with chemically
fixed cells, no incubator was needed. The main new feature is that two different excitation
wavelengths, namely 488 nm and 635 nm, were generated consecutively by the white light
laser and the acousto-optic tunable filter without any required hardware changes in the
excitation pathway. In the detection pathway, different longpass and bandpass filters were
utilized to block back-scattered excitation light. For further details on the manufacturers
and the specifications of the optical components, see [4]. Image created by Alexey Chizhik
and published in [4].

laser and an acousto-optical tunable filter allowed to switch easily between the two
excitation wavelengths (488 nm and 635 nm) needed to efficiently excite the fluorescent
dyes. Different longpass and bandpass filters were used to block residual excitation
light for the red and green channels, and fluorescent lifetimes were calculated according
to the procedure described in section 3.5. Additionally, a high-powered red laser (laser
power ∼ 1 mW after passing the objective lens) was used in some measurements to
bleach Atto 647N. See the methods section of [4] for further details on the cell culture
and staining protocols as well as the manufacturers and the specifications of the optical
components.
When designing the experimental procedure, we had to take into account the probable
occurrence of an additional process that can change the fluorescence lifetime, called
Förster resonance energy transfer (FRET) after its discoverer Theodor Förster, see e.g.
textbooks such as [57] chapter 13, or reviews such as [115]. FRET can be observed
when two different types of fluorophores are used within the same sample, and the
emission spectrum of one fluorophore (called the donor, Atto 488 in our experiments)
overlaps with the absorption spectrum of the other fluorophore (called the acceptor,
Atto 647N). If two such molecules come very close (∼ 10 nm), the near field of the
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donor can excite the acceptor, thus resulting in an energy transfer. The presence of
this additional deexcitation pathway leads to a reduction of the donor’s fluorescence
lifetime.
This effect can be treated exactly using concepts introduced in chapter two. Briefly,
the excitation rate of an acceptor molecule is given by the product of its wavelength-
dependent absorption cross section σA(λ) and the number of (virtual) photons per area
and time reaching it from the donor. The latter is simply the Poynting vector of the
donor’s near field divided by the energy per photon λ/hc. Since the acceptor dipole
excitation is proportional to the scalar product of its dipole moment and the exciting
electric field orientation, both the relative orientation between donor and acceptor and
their distance r also influence the rate of energy transfer. The exact mathematical
formulation of these considerations finally results in an energy transfer rate kFRET that
is given by

kFRET =
1

τD

·
(
R0

r

)6

, (4.4)

where τD is the donor’s lifetime in the absence of the acceptor and R0 is the Förster
radius. This quantity includes all parameters mentioned above:

R6
0 =

9

128π5n4
κ2 ΦD

∫
dλ λ4FD(λ)σA(λ). (4.5)

Here, n is the refractive index of the surrounding medium, κ2 is an orientation factor
which has the value 2/3 for freely rotating donor and acceptor, ΦD is the quantum yield
of the donor and FD(λ) is the normalized emission spectrum of the donor (

∫
dλ FD = 1).

Since it is more common to measure the molar extinction coefficient εA (in L·mol−1·cm−1)
than the absorption cross section (in cm2) of a fluorophore, one can also use the relation

σ =
1000 · ln 10

NA

ε (4.6)

to arrive at the standard textbook expression [57] for R0:

R6
0 =

9000 · ln 10

128π5n4NA

κ2 ΦD

∫
dλ λ4FD(λ)εA(λ). (4.7)

For most donor-acceptor pairs, the Förster radius is between 3 nm and 6 nm [115].
For our sample, we calculated R0 = 5.0 nm (see supporting information of [4] for
details). Due to the sixth-power dependence of kFRET on r, FRET is very sensitive
to small distance changes for donor-acceptor distances in the order of 1 nm to 10 nm.
At larger distances, kFRET is negligible compared to the excited donor’s radiative and
non-radiative decay rates kr and knr. Because of this high distance sensitivity, FRET
microscopy has become a routine tool in modern cell biology, for example in the field
of cellular signalling phenomena [115]. Since kFRET cannot be measured directly, it is
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Figure 4.11: Demonstration of the photobleaching of the FRET acceptor. (a, b)
Fluorescence intensity images of Atto 647N-actin before and after photobleaching with a
red diode laser, respectively. (c) Fluorescence intensity image of Atto 488-vinculin after
actin bleaching. The cell was fixed on glass 24 h after seeding. Image size is 32 µm ×
32 µm (150 × 150 scan positions), acquisition time was 5 ms per pixel. Note that the
potential FRET acceptor Atto 647 N is de facto bleached completely, while the FRET
donor Atto 488 is not affected at all. Data recorded by Anna Chizhik, published in [4].

inferred from other quantities such as the donor’s fluorescence intensity or lifetime in
the absence (D) and presence (DA) of the acceptor. The lifetime changes according to:

τD = (kr + knr)
−1

τDA = (kr + knr + kFRET)−1 =

(
1

τD

+ kFRET

)−1

= τD ·
(

1 +
R6

0

r6

)−1

. (4.8)

Thus, both FRET and MIET decrease the fluorescence lifetime of the donor, while
the fluorescence lifetime of the acceptor is only influenced by MIET. This has to be
taken into account when two types of fluorophores with overlapping spectra are used
simultaneously in a MIET measurement. In our experiments, we combined FRET
and MIET to make full use of the advantages of both methods. To this end, we
modified an experimental procedure that has long been established [116] in FRET
studies: In order to determine both τDA and τD at the same points of a sample, one can
perform a first lifetime measurement of the donor (τDA), then completely bleach the
acceptor with a strong excitation source that coincides only with the acceptor’s and
not the donor’s absorption spectrum (and thus does not destroy the donor), and then
acquire a second lifetime value for the donor (τD). In some of our measurements, we
employed exactly this technique on cells seeded on normal glass cover slips to measure
FRET between Atto 488-vinculin and Atto 647N-actin. In all MIET experiments on
metal-coated substrates, we started by acquiring a lifetime image in the green channel
(Atto 488-vinculin). The dye was then bleached as for the FRET experiments, enabling
the subsequent collection of lifetime data in the red channel (Atto 647N-actin) that
was only influenced by MIET, not FRET. Figure 4.11 demonstrates the effectiveness
of this approach, by comparing an intensity image of Atto 647N-actin before (a) and
after (b) ten minutes of photobleaching with light at λ = 640 nm provided by a diode
laser (laser power ∼ 1 mW after passing the objective lens). An intensity image of
Atto 488-vinculin acquired after the photobleaching of Atto 647N does not show any
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bleaching of Atto 488, see 4.11(c).
The main novelty in the data evaluation was the need for two MIET curves, one for
each dye. The refractive index of the mounting medium Fluoroshield5 (Sigma-Aldrich,
St. Louis, MO) was determined to be 1.4, the wavelength-dependent refractive indices
of the metals were taken from [110]. The manufacturer provided emisison spectra
of the two dyes as well as the quantum yield and fluorescence lifetime of Atto 647N
in phosphate-buffered saline (PBS), Φ647N, PBS = 0.65 and τ0, 647N, PBS = 3.5 ns. For
Atto 488, we measured the quantum yield and fluorescence lifetime in PBS with a
metal nanocavity, a technique that will be explained in detail in section 4.3. We found
Φ488, PBS = 0.67 and τ0, 488, PBS = 2.9 ns. When a dye is conjugated to an antibody and
introduced in a cell, the non-radiative decay rate of its excited state can be modified
due to interactions with the surroundings, while the radiative rate can change due to a
different refractive index of the environment. This leads to changes of both the lifetime
and the quantum yield as compared to measurements of the pure dye suspended in a
buffer such as PBS. We took these effects into account by acquiring FLIM images of
labeled cells on uncoated glass cover slips6, see figure 4.12, and found average lifetimes
τ0, 488, cell = (1.9± 0.2) ns and τ0, 647N, cell = (3.4± 0.2) ns. Since we saw in section 2.4.4
that the total energy flux Stot of an ideal electric dipole emitter is proportional to the
refractive index, we assumed that the radiative rate changes according to7

kr, cell

kr, PBS

=
Stot, cell

Stot, PBS

=
ncell

nPBS

. (4.9)

This resulted in a modified quantum yield

Φcell = ΦPBS ·
τcell

τPBS

· ncell

nPBS

. (4.10)

With nPBS = 1.33 and the already mentioned refractive index of the mounting medium
ncell = 1.4, we obtained Φ488, cell = 0.46 and Φ647N, cell = 0.66. Finally, we assumed an
isotropic orientation of the dye molecules, which is justified considering that they were
linked to the makromolecules recognizing actin or vinculin (the filamentous-actin-binding
toxin phalloidin for Atto 647N-actin and one primary and one secondary antibodiy for
Atto 488-vinculin) via a flexible linker. The two MIET curves calculated using these
sample parameters are shown in figure 4.13 (solid lines), they provided a direct relation
between measured lifetimes on metal-coated cover slips and height values above the
silica spacer. As a reference, the free space lifetimes in the cells τ0, 488, cell and τ0, 647N, cell

are given as dashed lines.
When evaluating MIET measurements, we only took pixels into account whose intensity
was above a certain threshold (usually 3000 counts, compare with simulations in section

5 Since the chemically fixed cells were permeabilized using Triton X-100 before being stained and
mounted, we assume that the dye molecules are surrounded by the mounting medium.

6 To exclude FRET, we firstly measured the lifetime of Atto 647N, then bleached this dye and measured
the lifetime of Atto 488, as described above.

7 After the submission of the work presented here, we explored this topic further, as will be explained
in section 4.1.4. When using those improved formulas, we find Φ488, cell = 0.49 and Φ647N, cell = 0.70.
However, the simulations presented in section 4.2 show that this only leads to a shift of determined
height values in the order of 1 nm to 3 nm for dye molecules in focal adhesions.
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Figure 4.12: Free space lifetime measurements of Atto 488-vinculin and Atto 647N-
actin. Simultaneously acquired fluorescence intensity (a, b) and lifetime (c, d) images of
vinculin (a, c) and actin (b, d) filaments. The images have a total size of 20 µm × 20 µm
(150 × 150 scan positions), the acquisition time was 5 ms. All scale bars correspond to
5 µm. (e) Depicts the lifetime distributions for vinculin (blue) and actin (orange). The
fit with Gaussian distributions (black lines) resulted in τ0, 488, cell = (1.9 ± 0.2) ns and
τ0, 647N, cell = (3.4 ± 0.2) ns. Data recorded by Anna Chizhik, image published in the
supplementary information of [4].
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Figure 4.13: MIET lifetime-versus-height curves used to convert measured fluorescence
lifetimes into distances between the fluorophores and the top of the substrate. The
red solid curve was calculated for Atto 647N-actin, the green solid curve for Atto 488-
vinculin. The dashed horizontal lines show the free space lifetimes τ0, 647N, cell = 3.4 ns
and τ0, 488, cell = 1.9 ns. Image published in the supplementary information of [4].

3.5). This ensured that only meaningful lifetime (and thus height) values were used
to draw conclusions regarding the biological sample: Pixels with smaller intensities
could either belong to regions without sample, where the detected fluorescence is just
noise and the fitted lifetimes are random, or to true sample regions with a low intensity,
where lifetime fits would be highly unreliable.
For the evaluation of the FRET measurements, the fluorescence lifetime of the donor
Atto 488-vinculin acquired before (DA) and after (D) photobleaching of the acceptor
Atto 647N-actin had to be compared. Since the calculated distance r between donor
and acceptor depends sensitively on the lifetime, we optimized our evaluation scheme
to account for the accuracy of the lifetime fits: In a first step, we identified connected
pixel clusters with a high fluorescence intensity in both images, which we interpreted as
focal adhesions if they contained a minimum of 20 pixels. This largely prevented us
from evaluating e.g. contaminations whose autofluorescence was in the same wavelength
region as the fluorescence of Atto 488, or small amounts of vinculin in the cytoplasm
or other areas of the cell. In a second step, the clusters were divided into sections of
approximately 4×4 pixels (deviating from this number at the edges of the clusters),
pooling all photons to increase the signal-to-noise ratio. For each such section, the
fluorescent lifetimes τDA and τD were determined using a bootstrapping procedure: In
order to be able to estimate the lifetime uncertainty, the detection events were divided
into bunches of 104 photons. From each such bunch, a TCSPC histogram was generated,
and a lifetime value obtained by tail-fitting as explained in section 3.5. Subsequently,
the mean 〈τDA〉 (or 〈τD〉) and standard deviation σDA (or σD) of all lifetime values
belonging to the same section were calculated. Only if the difference between 〈τDA〉
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Figure 4.14: Time series of three-dimensional actin maps reconstructed from lifetime
measurements. Human mesenchymal stem cells were fixed 1 h, 6 h, 12 h, 18 h or 24 h after
seeding on metal-coated MIET substrates and actin filaments were labeld using Atto 647N.
Hue encodes height according to the colour bar, while the saturation encodes fluorescence
intensity. All scale bars correspond to 30 µm. Data recorded by Anna Chizhik, image
published in [4].

and 〈τD〉 was larger than the two standard deviations, a donor-acceptor distance was
calculated according to

r = R0

(
〈τDA〉

〈τD〉 − 〈τDA〉

) 1
6

. (4.11)

We are aware that the condition 〈τD〉 − 〈τDA〉 > σDA, σD creates a bias towards smaller
donor-acceptor distances r. However, as we will explain below, the aim of our FRET
measurements was not to determine precise values r, but rather to provide an all-or-
nothing check if FRET occurred. For this purpose, demanding a lifetime change that is
larger than the uncertainty of the lifetime determination reduces the number of false
positives.

Results

In order to study the developing actomyosin stress fiber structure and the architecture
of focal adhesions, we fixed human mesenchymal stem cells (hMSCs) at different time
points after seeding, followed by labeling of actin and vinculin and fluorescence imaging
as described above. Figure 4.14 shows a time series of actin height maps acquired
between one and 24 hours after seeding. While only few stress fibers are visible in the
first image, they are more distanct at later time points. In the early regime (1-6 h),
stress fibers are mainly found at a distance of 150 nm or more from the silica spacer.
Subsequently, they form tight connections to focal adhesions at low heights (∼ 40 nm)
at the edges of the cells, spanning throughout the cell to heights above 180 nm with
their other ends. The height maps are weighted by the fluorescence intensity to better
visualize the positions of the actin filaments. These findings confirmed the success
of our fixation, labeling and imaging techniques, and allowed us to now study focal
adhesions in greater detail.
To this end, we acquired FLIM images of double labeled samples with reduced pixel
size. Figure 4.15 focuses on areas at the edges of the cells, illustrating the temporal
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Figure 4.15: Detailed view of the temporal maturation of focal adhesions. (a, b)
Intensity-weighted height maps of Atto 647N-actin and Atto 488-vinculin, respectively.
Hue encodes height according to the colour bar at the top of the figure. (c) Identification
of focal adhesions by detection of Atto 488-intensity clusters. Within these clusters, height
values are colour coded according to the small colour bar in the rightmost panel. (d)
Height distributions accumulated over all clusters detected within the cells from (c). In
red, Gaussian distributions with the same mean, standard deviation and area are shown
as a comparison. Cells were fixed on metal-coated cover slips at different time points after
seeding. These are exemplary images, total numbers of cells imaged for the time points
are: 1 h – 4, 6 h – 3, 12 h – 4, 18 h – 4, 24 h – 7. All scale bars correspond to 10 µm. Data
recorded by Anna Chizhik, cluster identification performed by Narain Karedla. Image
published in [4].

maturation of focal adhesions. Again, it becomes clear that actin stress fibers develop
over time, moving close to the surface at the edge of the cell and reaching larger heights
towards the center of the cell, see figure 4.15(a). While the Atto 488-vinculin signal is
weak one hour after seeding, cells fixed at later time points show distinct regions with
strong signal (b). Within these regions, vinculin is on average at a lower height than
the actin ensembles, which is in agreement with the standard picture of stress fibers
anchoring at focal adhesions [113]. By employing an intensity threshold and detecting
clusters (as described for the FRET evaluation), vinculin height distributions were
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obtained, see figure 4.15(c, d). These revealed a rather small spread of height values
in the order of 2 nm (early stages) to 5 nm (24 h), as well as a slight increase of the
average vinculin-substrate distance from 11 nm to 19 nm. We tested if these values were
reproducible by determining the average height of vinculin in seven cells fixed 24 h after
seeding, see figure 6.3 in the appendix. The result of (20± 8) nm agrees well with the
value in figure 4.15(d). It is also within the range of previous works that found vinculin
only slightly higher than the plasma membrane (90 nm-106 nm vs. ∼ 100 nm [117] and
(54± 6) nm vs. (32± 5) nm [113]).
When interpreting these results, we have to take into account that the obtained lifetime
value for a single scan posision is always the average lifetime of all fluorophores present
within the focal volume. Thus, if several vinculin molecules within a focal adhesion
complex are fluorescently labeled, the reconstructed MIET height is actually the distance
between the top of the silica spacer and the center of mass of the complex. Similarly,
if a stress fiber is homogeneously labeled with Atto 647N, the reconstructed height
corresponds to the center of the fiber8. In the first proof-of-principle study of MIET on
microtubules [38], this relation was explicitly taken into account, and the lifetime values
were directly related to the distance between the bottom of the microtubule and the
top of the substrate. However, those were in vitro experiments under tightly controlled
conditions. When labeling structures within a cell, it is conceivable that there might be
unlabeled regions due to crowding – dye molecules, and especially the larger antibodies
needed for staining, might simply be unable to access certain structures. Therefore,
the center of mass of the labeled structure might not coincide exactly with the center
of mass of the fluorophores. But in general, both should be very similar. Under this
assumption, we suggest that the increased average height and also the larger spread
of height values of vinculin during maturation of focal adhesions is caused by a slow
growth of the vinculin aggregates.
For a detailed view of the relative positions of actin and vinculin, we generated height
profiles along stress fibers. For hMCSs fixed 12 h or 24 h after seeding, we identified
focal adhesions and anchoring stress fibers in the fluorescence intensity images, figure
4.16(a, b) and (d, e). By hand, we traced complete vinculin clusters (b, e) or actin
stress fibers from the first significantly bright scan positions approximately up to the
end of the focal adhesion (a, d). Resulting height profiles are depicted in figure 4.16(c)
and (f). We derived the uncertainties ∆z of the single height values (shaded areas in the
figure) by multiplying the inclination of the MIET height-versus-lifetime curves with the
uncertainties ∆τ of the lifetime values. The latter were estimated from the number N
of counts contained in the corresponding TCSPC curves according to ∆τ ≈ 4.8τ/

√
N .

For our fitting procedures, this empirical formula was found to reproduce the spread of
lifetime values of both simulations and bootstrapping of experimental data quite well.
The height profiles confirm the general observations that vinculin is situated below actin,
and that actin likely forms tighter bonds over time, resulting in lower height values at
24 h than at 12 h. Note the different scales of the horizontal and vertical axes in (c, f):
Averaged over the three stress fibers per cell, we find very shallow inclination angles of
(0.15± 0.01)°and (0.18± 0.05)°. Even though there is an apparent gap of at least 20 nm
(12 h) or 10 nm (24 h) between actin and vinculin, it is likely that they are actually in

8 Neglecting in both cases the height-dependent brightness of the molecules, which serves as weights
during averaging.
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Figure 4.16: Height profiles of actin and vinculin in focal adhesions in hMSCs fixed
12 h (left) or 24 h (right) after seeding. FLIM images were converted to intensity-weighted
height maps for Atto 647N-actin (a, d) and Atto 488-vinculin (b, e). Hue encodes height
according to the colour bar shown in (e). In each cell, we chose three focal adhesions,
which we traced by hand (starting points indicated by white dots). The height values
along these traces are depicted in (c, f). Each colour represents one focal adhesion, circles
mark actin heights, and triangles represent vinculin. Shaded regions indicate the height
uncertainty ∆z determined as described in the main text. All scale bars correspond 10 µm.
Data recorded by Anna Chizhik, image published in [4].

contact, keeping in mind that the reported heights are the positions of the centers of
mass, as discussed above. In this case, many actin and vinculin molecules – and with
them also Atto 647N and Atto 488 – should be in rather close contact, enabling FRET
in unbleached samples.
We checked this assumption by measuring FRET9 for cells fixed at different time
points after seeding. Figure 4.17 shows lifetime measurements of the FRET donor
Atto 488-vinculin before (τDA, top row) and after (τD, second row) bleaching of the
FRET acceptor Atto 647N-actin. As explained before, donor-acceptor distances were
only calculated for clusters with significant difference τDA − τD, they are presented
as intensity-weighted distance maps in the third row. The distance distributions in
the bottom row reveal no significant change in the calculated distances over time.
This reveals the proximity between actin and vinculin in focal adhesions that is stable
throughout the maturation process. Furthermore, FRET was not observed in all focal
adhesions, or sometimes only in distinct small areas. While this might be partly due
to our strict criterion of significant lifetime changes compared to the measurement
uncertainty, we believe that it also illustrates the complexity and heterogeneity of these

9 For these measurements, cells were seeded on uncoated glass cover slips. In this way, all lifetime
changes could be assumed to originate from FRET, not MIET.
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Figure 4.17: FRET measurements in focal adhesions. Lifetime images of the FRET
donor Atto 488-vinculin before (top row) and after (second row) bleaching of the FRET
donor Atto 647N-actin. For clusters chosen as explained in the text, donor-acceptor
distances were calculating using the quantitative theory of FRET, assuming that each
donor interacts with exactly one acceptor (third row). Distributions of the resulting
distances are shown in the bottom row, together with Gaussian fits. Cells were fixed,
stained and imaged 1 h, 6 h, 12 h, 18 h and 24 h after seeding. All scale bars correspond to
5 µm. Note that the assumption of one-on-one interactions is likely not true and these
distances are thus a lower threshold, see text for a discussion. Data recorded by Anna
Chizhik and analysed by Narain Karedla. Image published in [4].

supramolecular structures.
One has to be careful, though, when trying to draw conclusions about the exact distances
between Atto 488 and Atto 647N from the results presented in figure 4.17. The theory
that lead to equation (4.11) assumed an interaction of exactly one donor and one
acceptor. Contrarily, in a focal adhesion with an anchoring stress fiber, there are many
fluorescently labeled actin and vinculin molecules in close proximity. If a donor can
interact with N acceptors, the different decay rates simply add up:

1

τDA

= kr + knr +
N∑
j=1

kFRET, j(rj), (4.12)

where rj is the distance between the donor and the acceptor j. In the most general case
without any prior knowledge, measuring just one data set (τDA, τD) does not allow to
reconstruct the positions of the acceptors. However, we can estimate the effect of the
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Figure 4.18: Influence of additional acceptors on FRET donor lifetime. The graph
depicts the lifetime ratio τDA/τD assuming the presence of N acceptors at a distance r from
the donor. The black horizontal line shows the average measured lifetime ratio for hMSCs
fixed at different time points. The dashed black lines indicate which donor-acceptor
distance would result in this value for the given numer of acceptors. Even for N = 100, r
is still within approximately 15 nm. Note that in a real situation, the acceptors likely all
have different distances from the donor.

presence of multiple acceptors by assuming that they all have the same distance from
the donor, rj = r ∀j. Then, all FRET rates are equal. Inserting this assumption and
the relation (4.12) in the calculations at the beginning of this section, equation (4.11)
transforms to:

rN = R0 ·
(

τDA

N (τD − τDA)

) 1
6

. (4.13)

Thus, if the number of acceptors increases by a factor of N , the donor-acceptor distance
calculated from the same data set decreases by the sixth power of N . Alternatively,
one can study this effect from the perspective of the difference in the measured lifetime
when increasing N and keeping r constant. Starting from the same considerations as
before, we find:

τDA

τD

=
1

1 +N
(
R0

r

)6 . (4.14)

This relation is illustrated in figure 4.18, where different colours correspond to various
values of N . In black, we show the average ratio τDA/τD ≈ 0.88 measured in the cells
in figure 4.17. Dashed vertical lines indicate which donor-acceptor distance r would
result in this value for different numbers of acceptors if all acceptors had the same
distance from the donor. Even for N = 100, r is still in the order of 15 nm. Thus,
we interpret the value of r ≈ 7 nm from figure 4.17 as a lower bound, and repeat our
previous conclusion that the occurrence of FRET proves the general proximity of at
least some populations of actin and vinculin in stress fibers. This is in accord with
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the results of Kanchanawong et al. who found that approximately half of the vinculin
molecules overlap with actin [113].

Summary

On a methodological level, we have established dual-colour MIET as a powerful technique
for the axial co-localization of two fluorescently labeled species with nanometer precision.
We have furthermore shown that the occurrence of FRET in this situation can be
a benefit rather than a problem by proving the existence of close contacts within
distributions of molecules at different heights.
On a biological level, we investigated the interaction of actin stress fibers and focal
adhesion complexes (represented by vinculin). We were able to confirm the standard
model of stress fibers anchoring at focal adhesions, and thus of actin being located at
larger distances from the surface than vinculin. We could observe the maturation of focal
adhesions, including the growth of vinculin aggregates and the gradual lowering of the
actin filaments, probably indicative of the formation of tighter bonds. The occurrence
of FRET suggests at least a partial overlap of the actin and vinculin populations.
Finally, by making use of the nanometer resolution to reconstruct height profiles of
focal adhesions, we found that actin emerges from the focal adhesions under a very
shallow angle of below one degree.
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4.1.4 Three-dimensional reconstruction of nuclear envelope
architecture using dual-colour MIET imaging

After having studied the plasma membrane itself in section 4.1.2 and membrane-
associated focal adhesions in section 4.1.3, we now move on to a structure that is located
higher within the cell, and thus approaches the operating limit of MIET: the nuclear
envelope. The results were published in:

[3] A. M. Chizhik, D. Ruhlandt, J. Pfaff, N. Karedla, A. I. Chizhik, I. Gre-
gor, R. H. Kehlenbach, and J. Enderlein, “Three-dimensional reconstruction
of nuclear envelope architecture using dual-color metal-induced energy trans-
fer imaging,” ACS Nano, vol. 11, no. 12, pp. 11839–11846, 2017. A. M. C.,
D. R. and J. P. contributed equally. D. R. provided analysis tools and
analysed the MIET data.

Motivation

The cells of eukaryotes are characterized by having a cell nucleus that is enclosed by
membranes, containing most of the cell’s genetic material. The membrane system is
called the nuclear envelope, it consists of the inner nuclear membrane (INM) and the
outer nuclear membrane (ONM). Employing electron microscopy, it has been shown
that the space between INM and ONM has a typical width of 30 nm - 50 nm [118].
The protein composition of both membranes is not identical – while some proteins can
be found on either membrane, others localize preferentially at the INM or the ONM.
This topic has been studied using a large variety of techniques, from immunoelectron
microscopy to differential permeabilization of membranes, to name just two. Recently, a
study by Mudumbi et al. investigated the concentration ratios between the INM and the
ONM of several proteins using single-point fluorescence recovery after photobleaching
[119]. The proteins they chose localized preferentially at the ONM, but were also
present at the INM with a ratio of 1:10 to 1:2. However, for several hundred proteins,
it is known that they are found preferentially at the INM [3]. One of the best-described
members of this class is the lamina-associated polypeptide 2β (LAP2β), which we chose
as a representative of the INM in this work.
An exchange of molecules between the nucleus and the surrounding cytoplasm requires
a transport mechanism across the nuclear envelope. They key players for this process
are nuclear pore complexes (NPCs), large protein complexes which consist of a core
that is embedded between the INM and the ONM and nuclear extensions forming a
basket-like structure (see figure 4.19(a) for a schematic drawing). The height of the core
structure is approximately 80 nm, or 150 nm - 200 nm when the extensions are taken into
account, while the diameter is in the order of 120 nm. Like the nuclear envelope, the
NPC contains proteins which localize either on both sides, or are found preferentially on
one of them. In this study, we concentrated on Nup358, which is known to be specific
to the endoplasmatic side of the NPC (i.e. on the same side as the ONM). More details
on NPCs and references to the relevant literature can be found in the introduction
of [3]. NPCs have attracted much attention both due to their biological relevance,
but also because their well-defined structure is an interesting model system to test
super-resolution methods, e. g. demonstrating the high lateral resolution of dSTORM
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of about 20 nm [120]. However, what has been missing so far is a study of the NPC
focusing on the axial localization of different components using optical microscopy.
We wanted to close this gap by studying the three-dimensional architecture of the
nuclear envelope not just at one point (as in [119]), but rather along the whole basal
part of the nuclear envelope. To this end, we chose Lap2β and Nup358 as proteins
with distinct localization in the INM and ONM, respectively, and determined their
axial positions with nanometer resolution using MIET. Furthermore, we seized the
opportunity to study the influence of sample parameter uncertainties (such as intricate
refractive index compositions) on the localization accuracy of MIET. The nuclear
envelope is more suited for this endeavour than, for example, the basal cell membrane,
since it is located deeper within the cell and thus in a more complex environment.

Methods

We studied the nuclear envelope in HeLa cells. The proteins of interest were fluorescently
labeled using primary and secondary antibodies, resulting in the labeling of Lap2β
and Nup358 with the green dye Alexa Fluor 488 (Molecular Probes by Invitrogen [now
Thermo Fisher Scientific, Waltham, MA]) and the far red dye Alexa Fluor 633. For
compactness of notation, we call the resulting labeling schemes Lap2β-A488 etc. For
comparison, we measured samples with Lap2β-A633 and Nup358-A488 (samply type I )
as well as samples with switched labels, i.e. Lap2β-A488 and Nup358-A633 (sample
type II ), see schematic drawings in figure 4.19(a) and 4.20(a). As already mentioned in
the previous section, coupling a fluorescent dye to an antibody and introducing it into
a cell can change both its radiative and non-radiative deexcitation rate, and thus its
quantum yield and free space lifetime. Since different antibodies were used for all four
labeleing schemes, we measured four free space lifetimes inside cells seeded on uncoated
glass slides and calculated four quantum yield values. This will be explained in detail
below (“Results II: methodological”). More details on the cell culture and staining
procedures can be found in our publication [3].
The FLIM setup was exactly the same as described for the study of focal adhesions
in the previous section. Due to the similar absorption and emission spectra of Atto
488 / Alexa Fluor 488 and Atto 647N / Alexa Fluor 633, even the same filters and the
same excitation wavelengths could be used. The substrates for MIET measurements
were improved slightly: We found that 2 nm titanium (instead of the 3 nm used when
studying focal adhesions) sufficed for improving adhesion of gold to glass but lead to
less absorption of fluorescence when traversing the substrate. Thus, the composition of
the substrates was: glass cover slip (170µm), 2 nm Ti, 15 nm Au, 2 nm Ti, 10 nm SiO2.
Since we were studying structures further away from the substrate, the silica spacer
was not needed to avoid quenching of the dyes. We included it nevertheless to ensure
that the same sample preparation procedures as for glass surfaces (as used for standard
immunofluorescence measurements) could be used. For acquiring FLIM images, we
used our three-step procedure established in [4] to exclude any occurrence of FRET:
First, the fluorescence of the potential FRET acceptor A488 was measured. Second, a
powerful red laser was used to completely bleach A488. Third, an image of the potential
FRET donor A633 was acquired. Fluorescent lifetimes were extracted from the TCSPC
data using a distributed tailfit as described in section 3.5, and converted to height
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values using four distinct MIET curves (calculated for optical parameters of the four
labeling schemes).
As a control, we also explicitly measured FRET between Lap2β-A488 and Nup358-A633
(sample type II) in HeLa cells on untreated glass cover slips. Both the experimental
procedure and the data analysis were identical to the procedure described in section
4.1.3, and even the Förster radius of the two dye pairs was found to be the same, namely
R0 = 5.0 ns.

Results I: biological

Initially, we tested our staining procedure by acquiring fluorescence images with a
standard confocal microscope. The axial resolution of a confocal microscope, and thus
the size of the focal volume along the optical axis, can be described by [121]

λ

n(1− cos θ)
, (4.15)

where λ is the wavelength of the light, n is the refractive index of the medium, and θ
is the maximum angle of light collection of the objective. The fluorescence intensity
images 4.19(c, d) and 4.20(c, d) were acquired using a water-immersion objective with
numerical aperture 1.3 (i.e. n = 1.33, θ ≈ 78,°), all following FLIM images were taken
with an oil-immersion objective with numerical aperture 1.49 (i.e. n = 1.52, θ ≈ 79 °).
This results in axial resolutions of 0.95λ and 0.82λ, respectively, or roughly 500 nm
to 700 nm. The nucleus of a HeLa cell can be approximated as an oblate spheroid,
where the diameter in the equatorial plane is between 10 µm and 20µm and the height
is around 2 µm to 3 µm [122]. Thus, when the focal plane of the microscope coincides
with the equatorial plane of the nucleus, a staining of the INM or the ONM should
result in ring-like bright structures. These can be clearly observed for Nup358-A488
and Lap2β-A633 in figure 4.19(c) and (d), respectively, and for Nup358-A633 and
Lap2β-A488 in figure 4.20(c) and (d). Besides proving the quality of the labeling, these
images nicely demonstrate the sectioning capabilites of the confocal microscope: Only
light originating from the focal plane is detected with high efficiency. When focusing
on the top of the substrate instead of the equatorial plane, we can therefore expect to
excite only fluorophores on the basal side of the nuclear envelope.
With this, we turned to the study of exactly this part of the nuclear envelope using
MIET. Figure 4.19(e) and (f) show the fluorescence intensity of Nup358-A488 and
Lap2β-A633 (sample type I), respectively, while the panels (g) and (h) depict the
corresponding height distributions. The same can be found for sample type II in figure
4.20(e)-(h). In order to estimate the height range in which the two proteins can be
found, the height values of six cells per sample type were compiled in the histograms
on the left side of figure 4.21. All localizations occurred above 50 nm, with a significant
proportion of molecules found even above 150 nm. Thus, these structures are at the
limit of the operating range of MIET, where the lifetime-versus-height curve is very
flat (see e.g. figure 4.25). This results in a dramatic loss of axial localization accuracy
compared to measurements closer to the metal layer, where accuracies of 2.5 nm to 3 nm
have been demonstrated [38–40]. Using the same estimate for the lifetime uncertainty
∆τ as in the study of focal adhesions, ∆τ ≈ 4.8τ/

√
N , where N is the number of counts
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Figure 4.19: Sample type I: (a) Schematic depicting the labeling scheme, Lap2β-A633
and Nup358-A488. In the following, the top row shows results for Nup358-A488, the
bottom row for Lap2β-A633. (c, d) Confocal fluorescence intensity images of the equatorial
plane of the nuclear envelope showing ring-like structures. (e, f) Fluorescence intensity
of FLIM images of the basal part of the nuclear envelope. The corresponding lifetimes
were converted to the height maps shown in (g, h). The pixelwise difference between the
height values of INM and ONM (i.e. “(h) minus (g)”) are histogrammed in panel (b).
Data recorded by Janine Pfaff (c-d) and Anna Chizhik (e-h), schematic (a) created by
Alexey Chizhik. Image published in [3].
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Figure 4.20: Sample type II: (a) Schematic depicting the labeling scheme, Lap2β-A633
and Nup358-A488. (c-h) Everything switched compared to sample type I. Again, the
pixelwise distance between the height values of the INM and ONM are histogrammed in
(b). Same contributions as above, published in [3].
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Figure 4.21: Overview of determined height values (left) and estimated height uncer-
tainties (right) for the two membranes (ONM and INM) in both samples types (I and II).
For each sample type, six cells were examined, the pixels belonging to the cells (rather
than the background) identified, and the height values of Lap2β and Nup358 from these
pixels histogrammed. Height uncertainties ∆z were determined by multiplying the local
slope of the MIET curve ∂z(τ)/∂τ with estimated lifetime uncertainties ∆τ . Note that
the height uncertainty is larger for large z due to the shape of the MIET curve. Data
recorded by Anna Chizhik, image previously unpublished.

in the TCSPC histogram, we calculated estimates for the height uncertainty ∆z (right
side of figure 4.21). While the details of the curves depend on the individual intensities,
the general trend is as expected: The more large height values occur in a sample type,
the more large uncertainties are observed, ranging from ∆z ≈ 5 nm to ∆z ≈ 50 nm.
Despite these large uncertainties of the height values of individual pixels, the two
height images in figure 4.19(g) and (h) – which, assuming that the two membranes
closely follow each other, can be seen as two independent measurements of the same
topology – show similar large-scale features (peaks and valleys). The same behaviour
can be observed in figure 4.20(g) and (h). This finding indicates that while the spread
of obtained height values is large, the mean is probably correct. In accordance with
this theory, the histograms of the single-pixel height differences between Lap2β and
Nup358 in figures 4.19(b) and 4.20(b) are very broad, even containing approximately
20 % negative values, but have a maximum around the expected value of 30 nm to
50 nm. In order to investigate this point further, better statistics had to be obtained.
To this end, we repeated the MIET measurements for six cells of each sample type. The
corresponding INM-ONM distance distributions are shown as grey-scaled strips in figure
4.22. For each histogram, we determined the mean value (indicated as open red circles)
and standard deviation (horizontal red lines). From these results, we calculated the
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Figure 4.22: Comparison of INM-ONM distance for six different cells per sample type.
The same kind of distance distribution as in figure 4.19(b) and 4.20(b) was obtained
for each cell. Instead of twelve classical histograms, we chose two greyscale images to
compactly represent these distributions. The mean of each distribution is indicated as
an open red circle. Together with the standard deviations of the individual distributions
(horizontal red lines = mean ± std. dev.), these mean values were used to determined the
weighted arithmetic mean for each sample type (dashed red line). The standard deviation
of the weighted arithmetic mean is represented by a red rectangle. The resulting average
distance between INM and ONM is (35± 19) nm for sample type I and (31± 16) nm for
sample type II. Data recorded by Anna Chizhik, image published in [3].

weighted arithmetic mean (dashed red line) and its standard deviation (red rectangle).
For sample type I, we found a distance of 35± 19 nm, and for sample type II 31± 16 nm.
These values are in excellent agreement with each other, but also with previous electron
microscopy studies [118, 123] and the FRAP measurements in [119]10. It should be
pointed out that the electron microscopy studies [118, 123] showed local variations in
the distance between the two membranes. Therefore, when histogramming the height
difference between INM and ONM for the whole basal part of the nuclear envelope,
some spread would be expected even for a technique with perfect axial localization.
Some further information can be gained from FRET measurements. We were able to
observe a change in the donor lifetime in the presence of the acceptor as compared to
the absence of the acceptor, see figure 6.4 in the appendix. The calculated distance
between donor and acceptor was approximately 8 nm, however, as explained in the

10We remark that the latter, which is also an optical microscopy technique, reports a much smaller
standard deviation than we do (2 nm - 4 nm). That is because Mudumbi et al. measured in the
equatorial plane of the nucleus, where the distance between both membranes corresponds to a
lateral distance that can be determined precisely using single-molecule localization microscopy.
Furthermore, they only measure distances in a single spot (diameter 500 nm) and thus do not capture
the heterogeneity of the distances across the whole basal part of the nuclear envelope as we do, see
below.
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previous section, this value is just a lower bound due to the likely interaction of one
donor with several acceptors. We interpret the occurrence of FRET as a sign that
a small proportion of Lap2β is located at the ONM. This is feasable, since Lap2β is
synthesized in the cytoplasm and has to be translocated to the INM via the nuclear
pore complex.

Results II: methodological

In the first proof-of-principle studies of MIET, labeled structures were either attached to
the surface but immersed in a buffer [38] or single molecules were deposited on a surface
and then surrounded by air [40]. In both cases, there was no ambiguity in the choice of
refractive indices used to determine the MIET calibration curve. When labeling the
basal cell membrane during the epithelial-to-mesenchymal transition (section 4.1.2),
since the label was on the extracellular side of the membrane11, using the refractive
index of the buffer seems reasonable. However, one might ask if the presence of the cell
close to the dye also has an impact on its lifetime. Since the nuclear envelope is located
within the cell, and thus in a much more complex environment, the question arises
which impact the modeling of this environment has on the resulting MIET curves.
We studied this subject by calculating MIET curves for four different model scenarios of
increasing complexity, see figure 4.23. As a first step, we conducted an extensive analysis
of the literature concerning refractive indices of cellular components. The refractive
index of the plasma membrane has been reported as n = 1.46 [124] or n = 1.48 [125],
whereas the refractive index of the nuclei of four different cells lines, including HeLa
cells, has been determined as n = 1.36 [126]. Values found for the cytosol range between
1.36 and 1.39 [124, 127, 128]. Finally, the average refractive index of a HeLa cell was
reported to be n = 1.37 [126, 129]. For MIET measurements, cells were mounted using
Mowiol 4-88 (Calbiochem, Merck, Darmstadt, Germany). For this mounting medium,
no official refractive index value exists, it seems to vary from batch to batch. We found
reports of refractive indices between 1.41 and 1.49, and used the “worst case” n = 1.49
(i.e. largest deviation from the average cell value of n = 1.37). These findings were then
used to construct four model systems:

a) The MIET substrate, followed by a general cell halfspace with refractive index
n = 1.37.

b) The MIET substrate, followed by a 10 nm thick layer of Mowiol and then a general
cell halfspace with refractive index n = 1.37.

c) The MIET substrate, followed by a general cell halfspace with refractive index
n = 1.37 almost everywhere, except for a 6 nm thick lipid bilayer (n = 1.46)
situated 2 nm below (INM) or above (ONM) the fluorophore.

d) The MIET substrate, followed by a 10 nm thick layer of Mowiol, a 6 nm thick
lipid bilayer (n = 1.46) representing the plasma membrane, and then the same
cell / nuclear membrane system as in c).

11In those experiments, we incubated cells with dye-containing culture medium for five minutes and
then replaced the staining solution by normal cell culture medium. Since we did not permeabilze the
membrane, no (or only very little) dye should have been able to penetrate the cell membrane.
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Figure 4.23: Four different models of the sample structure used to study the impact
of the refractive index on the calculated height difference between INM and ONM. Red
dots represent the dye molecules situated at different heights whose relative fluorescence
lifetime makes up the MIET curve. The cell is modeled as a homogeneous space with
n = 1.37 (a, b) or including the 6 nm thick nuclear membrane (c, d). A layer of 10 nm
mounting medium (Mowiol) is included in models b) and d), the latter also takes the cell
membrane into account. In c) and d), the nuclear membrane is situated 2 nm above or
below the fluorophore for the ONM and INM, respectively (visualized by two rows of red
dots). Image published in [3].

Since the refractive indices of nucleus and cytosol are rather similar, and partly overlap
with the average refractive index reported for a HeLa cell, these are set to n = 1.37 in
all four models. Both a) and c) assume that either the extracellular matrix possibly
secreted by the cell prevents Mowiol from reaching the space between the cell and the
substrate, or that the Mowiol layer does not have a large influence on the MIET curve
because it is a just a thin, transparent layer that is not in the immediate vicinity of the
fluorophore. The presence of the plasma membrane that surrounds the whole cell is
ignored in all models except d), however, its refractive index is likely very similar to
that of Mowiol, as we saw above. Furthermore, the presence of the nuclear membrane
close to the fluorescent labels is only taken into account in c) and d).
After having obtained the MIET calibration curves for all four situations, we repeated
the calculation of the average distance between inner and outer nuclear membrane for
twelve different cells as described above and as shown in figure 4.22. The resulting
average distances are summarized in the following table:

sample model a) model b) model c) model d)

sample type I (35± 18) nm (35± 18) nm (34± 19) nm (35± 18) nm
sample type II (31± 16) nm (29± 15) nm (31± 16) nm (29± 15) nm

For each sample type, the calculated average distance between INM and ONM changes
by 1 nm to 2 nm when different refractive index structures are taken into account.
Compared to the standard deviation of 15 nm to 19 nm, this is not a significant change.
We therefore decided to use the simplest model, a homogeneous halfspace with refractive
index n = 1.37, for all calculations.
Besides having a model of the sample, the second prerequisite for calculating a MIET
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curve is knowing the optical parameters of the fluorophore. We measured the spectra
of Alexa Fluor 488 and Alexa Fluar 633 inside the HeLa cells using a spectrograph
equipped with a CCD camera, thus we were able to correctly average the MIET curves
of the relevant wavelengths. The determination of the free space lifetime and quantum
yield of the fluorophores is more challenging. In [107], Chizhik et al. used a nanocavity
(see section 4.3) to study Alexa Fluor 488 in water, resulting in τ0, A488, water = 4.4 ns
and ΦA488, water = 0.94. For this work, we performed the same type of measurement
for Alexa Fluor 633 in water and found τ0, A633, water = 3.2 ns and ΦA633, water = 0.59.
When conjugating the dyes to antibodies and introducing them into the HeLa cells, we
expected both the radiative and non-radiative deexcitation rates to change, leading
to a different quantum yield and free space lifetime. However, we could only directly
measure the changed free space lifetime τ0, cell = (kr, cell + knr, cell)

−1 by acquiring FLIM
images of labeled HeLa cells on untreated glass cover slips. In order to find the quantum
yield of the conjugated dye inside the cell, either kr, cell or knr, cell had to be determined
independently. In the previous work on focal adhesions (section 4.1.3), we assumed a
functional relation between the refractive index and the radiative rate. Because kr in
water can be determined as Φwater/τ0, water, this allows to calculate the radiative rate in
the cell. Thus, we started with the ansatz

kr(n) = f(n)kvac
r , (4.16)

where kvac
r is the radiative rate in vacuum (n = 1). Several theoretical models provide

possible forms for f(n). Firstly, all our MIET calculations are based on the assumption
that kr is proportional to the total energy flux per time, Stot. Since for a dipole in free
space, Stot = cnk4

vp
2/3 (see equation 2.162), this is equivalent to

flin(n) = n. (4.17)

This relation was suggested already in 1976 by Nienhuis and Alkemade [130]. The
fact that Drexhage’s original experiments as well as several MIET studies from our
group (including the work on focal adhesions in section 4.1.3) can be explained by
the assumption kr ∝ Stot strongly supports this theory. However, these studies always
examined the change in Stot due to the presence of an interface, and thus to a change
in the angular distribution of radiation, never due to a change of the medium directly
surrounding the dipole itself. Furthermore, the theory leading to equation 2.162 is
based on a macroscopic version of Maxwell’s equations. In particular, the dielectric
material surrounding the emitter is modeled as a homogeneous medium (neglecting
the fact that it actually consists of individual molecules) and the fluorophore itself
is modeled as a point dipole (neglecting the size of the molecule). As a consequence,
the space where the fluorophore resides is assumed to have the refractive index of the
surrounding dielectric – de facto, the theory pretends the dipole emitter is not there.
In reality, the dipole emitter displaces the neighbouring molecules of the dielectric,
leading to a changed electric field. This effect can be taken into account by introducing
the concept of a local field at the position of the dipole emitter, which differs from
the field predicted by the macroscopic Maxwell’s equations. A common approach to
derive these local field corrections is to assume a spherical cavity inside the dielectric
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surrounding the emitter. Depending on the nature of the cavity, two limiting cases have
been described [131, 132]: In the empty-cavity model, the dipole emitter is inside a real,
empty cavity, and one finds

fe.c. = n

(
3n2

2n2 + 1

)2

. (4.18)

Contrarily, if the cavity is only virtual, i.e. filled with a medium having the same average
polarizability density as the surrounding dielectric, but the dipoles inside the cavity do
not contribute to the local field, then

fv.c. = n

(
n2 + 2

3

)2

. (4.19)

Alternatively, an expression for the spontaneous radiative emission rate can be derived
starting from the Einstein coefficients for absorption and emission, and taking into
account the refractive index of the surroundings as well as the broad absorption and
emission spectra of molecules. The result [133] is known as the Strickler-Berg equation:

kr, SB(n) = 2.88 · 10−9 n2

∫
I(ν̃)dν̃∫

I(ν̃)ν̃−3dν̃

∫
ε(ν̃)

ν̃
dν̃, (4.20)

where ν̃ = λ−1 is the wavenumber, I(ν̃) is the fluorescence spectrum and ε(ν̃) is the
(wavelength-dependent) molar extinction coefficient. Thus, if absorption and emission
spectra are independent of the refractive index, the Strickler-Berg equation suggests

fSB(n) = n2. (4.21)

Some efforts have been made to determine experimentally which of these four equations
truly describes the impact of the refractive index on the radiative rate of real fluorophores.
Rikken et al. dissolved fluorescent europium Eu3+ complexes in different liquids and
found the lifetime values following the empty cavity model. However, exchanging
the solvent might change not only the refractive index (and thus kr), but also the
non-radiative rate. Therefore, Schuurmans et al. [132] studied an Eu3+ complex in
dense supercritical CO2, where they varied n by increasing the pressure, which is not
expected to influence knr. They also found excellent agreement with the empty-cavity
model. Contrarily, Suhling et al. were able to explain their measurements of green
fluorescent protein in various solvents by the Strickler-Berg equation [134]. Furthermore,
they cite a number of studies that also found a quadratic dependence of the radiative
rate of tryptophan residues or anthracene derivatives on n. This apparent contradiction
can be resolved by comparing the four different models in the relevant refractive index
range, see figure 4.24. While the linear model corresponds to the smallest change and
the virtual cavity model predicts a drastic increse of kr with n, the empty-cavity model
and the Strickler-Berg equation give almost identical results.
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Figure 4.24: Comparison of the ratio f(n) between the radiative rate in a medium with
refractive index n and in vacuum for the four different models described in equations
(4.17) to (4.21), namely the linear, empty cavity, virtual cavity and Strickler-Berg model.
When quantum yield values have been measured in one medium but need to be known in
another, usually both media are liquids or polymers, limiting the relevant refractive index
range to approximately 1.3 ≤ n ≤ 1.5. Figure previously unpublished.
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Figure 4.25: MIET lifetime-versus-height calibration curves for the four different label
types: Alexa Fluor 488 labeling Nup358 (A488-ONM, sample type I) or Lap2β (A488-INM,
sample type II), and Alexa Fluor 633 labeling the same proteins in the inverse order
(A633-INM, sample type I, and A633-ONM, sample type II). Dashed lines indicate the
free space lifetimes τ0, cell of the constructs inside the cells. Note that Lap2β was almost
exclusively found above 100 nm with significant populations above 150 nm, while Nup358
was mostly located above 50 nm. Thus, the height of especially the inner but also of parts
of the outer nuclear membrane is in a range where the MIET curve is very flat, resulting
in large height uncertainties for given lifetime uncertainties. Figure adapted from [3].
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From these findings, we concluded that either the empty-cavity model or the Strickler-
Berg equation can be used to estimate the radiative deexcitation rate inside the cell,
and thus the quantum yield inside the cell. We chose the former and arrived at:

Φcell = Φwater ·
τ0, cell

τ0, water

· n
5
cell

n5
water

· (2n2
water + 1)2

(2n2
cell + 1)2

, (4.22)

with nwater = 1.33 and ncell = 1.37 as described above. The results for the free space
lifetimes measured inside the cell and the derived quantum yields are summarized for
the four different dye-antibody combinations in the following table:

sample τ0, cell [ns] Φcell

A488-Nup358 (sample type I) 2.6 0.59
A488-Lap2β (sample type II) 2.4 0.54
A633-Nup358 (sample type II) 1.9 0.37
A633-Lap2β (sample type I) 2.4 0.47

These values were then employed in the calculation of the four different MIET calibra-
tion curves shown in figure 4.25, which were used to transform lifetimes into height
information.

Summary

We have performed dual-colour MIET measurements to map the three-dimensional
distance between the inner or outer nuclear membrane along the whole basal part of the
nucleus. This was the first time that the nuclear envelope structure has been studied
along the vertical axis using optical microscopy. With a height of approximately 100 nm
to 150 nm above the substrate, the nuclear envelope is situated at the limit of the
operating range of MIET, resulting in a strongly decreased localization accuracy. Even
though the height uncertainties of some individual pixels were as large as the distance
between INM and ONM reported previously (30 nm to 50 nm, [118]), the value that we
found for the average distance between INM and ONM (30 nm to 35 nm) agrees well
with previous works, both electron microscopy images of isolated nuclear membranes
and horizontal measurements of single-point FRAP of the nuclear membrane in the
equatorial plane.
We have studied the impact of four different sample models on the obtained distance
between INM and ONM, and found no significant difference despite the fact that the
nuclear envelope is situated in a highly complex environment. However, motivated by
this work, this important question for estimating the accuracy of MIET will be studied
more generally in the following section. Finally, we have compared different theories
for relating the radiative deexcitation rate to the refractive index of the surrounding
medium, which is crucial when estimating the quantum yield of fluorophores inside a
cell. We found that the two models which are most endorsed in the literature – the
empty-cavity model and the Strickler-Berg equation – yield very similar results in
the relevant range of refractive indices, and were thus able to resolve this apparent
contradiction.
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4.2 Parametes influencing MIET z-localization
accuracy

The MIET studies presented in the previous sections were concerned with structures
situated in increasingly more complex environments: From microtubules on a coated
glass cover slip surrounded by a buffer, via the outer membrane of a cell, to focal
adhesions (which are close to the outer membrane of the cell) and finally the challenging
regime of the nuclear envelope. As we stated in the introduction of chapter two, it is
not feasible to model every detail of a real system. The main simplification which is
used in all MIET calculations is the assumption of a stratified system. This means that
the sample (excluding the dipole emitter itself) is modeled as a system of parallel planar
layers with different thicknesses and refractive indices. As the studied structures get
more complex, they deviate more from this model. Therefore, an important question
when using MIET to study biological samples is which influence a deviation of the
real structure from this ideal model has on the calculated height values. The second
important parameter set that affects the MIET calibration curve consists of the optical
properties of the fluorophore, namely the free space lifetime τ0 and the quantum yield
Φ. The former can be readily obtained by measuring the same sample on an untreated
cover slip12, therefore we assume that it is always correct. The latter is often only
known in a different environment and with some measurement uncertainty, and has to
be converted using the measured value of τ0 and the assumed value of the refractive
index. Thus, it may also suffer from inaccuracies and introduce a bias in the calculated
height values.
In this section, we study the effect of both the refractive index (RI) structure and the
quantum yield values by calculating MIET curves for different scenarios and comparing
the thus obtained height values zcalc with the true heights ztrue. Depending on the
experiment, we are sometimes interested in the absolute height of a fluorophore above
the substrate, and sometimes only in the z-position of two different types of fluorophores
relative to each other. Therefore, both absolute height values z and height differences
∆z = zupper − zlower will be examined.
The top row of figure 4.26 illustrates the situation studied in the first part of this
section. A MIET substrate consisting of a glass cover slip (nglass = 1.52) coated with
thin metallic films – namely 2 nm titanium, 10 nm gold and 2 nm titanium – and a 10 nm
thick silica spacer (nsilica = 1.52) is covered completely by a homogeneous halfspace
with refractive index ncell = 1.37. The composition of the MIET substrate is the same
as that used for the examination of the nuclear envelope in the previous section, while
1.37 is the average RI of a HeLa cell. We now simulate a MIET curve for a hypothetical

12If the fluorophores are very close to the glass cover slip, e.g. when working with cells whose plasma
membrane has been labeled, one has to take into account that a water/glass interface also induces a
lifetime change, albeit a much smaller one of typically less than 10 %. See figure 2.18a for a plot
of Stot versus z at a water/glass interface. In this case, one has to roughly estimate the height of
the fluorophores, and use a curve such as that in figure 2.18a to determine a guess of the free space
lifetime. This value may then be used to calculate the actual MIET calibration curve, and the refined
height estimate can then be used to iterate the procedure. Due to the much weaker z-dependence of
the lifetime at a water/glass rather than a water/metal interface, this calculation usually converges
quickly.
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Figure 4.26: Impact of incorrectly modeled sample parameters on z-localization accuracy.
Top row: Schematic of the true sample (left) and six “wrong” models (a-f) used to
calculate MIET curves. Models (a-c) correspond to incorrect assumptions about the
sample itself, while (d-f) concern wrong modeling of the MIET substrate, see text for more
details. Central row: Deviation between the height values zcalc calculated using the
MIET curves (a-f) and the true height values ztrue for various emitter positions. Bottom
row: Relative error of height differences ∆z between an upper and a lower fluorophore,
plotted against the z-coordinate of the lower fluorophore. Calculations were done for true
distances ∆ztrue = 5 nm (solid lines), 15 nm (dashed lines) and 25 nm (dotted lines). In
all four panels, the emission wavelength is λ = 600 nm and the quantum yield Φ = 1.

172



4.2 Parametes influencing MIET z-localization accuracy

fluorophore emitting at λ = 600 nm and having a quantum yield of Φ = 1 that is
situated at many different heights ztrue above the silica layer13. The thus obtained
lifetimes are then transformed back into height values zcalc using MIET curves calculated
for the following “wrong” sample models (see top row of figure 4.26):

a) Homogeneous halfspace filled with water (nwater = 1.33).

b) Homogeneous halfspace filled with mounting medium Fluoroshield (nFS = 1.40).

c) Homogeneous halfspace filled with mounting medium Mowiol, using the average
refractive index found in the literature (nMow = 1.46).

d) Replacing the three-layered metal system Ti-Au-Ti by a single gold layer whose
thickness (14 nm) equals the sum of the three metal layers (2 nm-10 nm-2 nm).

e) Assuming the gold layer has a thickness of 12 nm instead of 10 nm.

f) Assuming the silica layer is only 5 nm thick.

Thus, a)-c) model the situation that the refractive index of the sample itself was guessed
incorrectly, while d)-f) treat errors in the composition of the MIET substrate, namely
an oversimplification of the sample by ignoring the presence of the titanium, or wrong
thickness assumptions as they might occur due to errors during the sample preparation.
The central row of figure 4.26 depicts the error zcalc − ztrue for all six situations. An
incorrect refractive index in the sample halfspace leads to a bias of the height, where a
too small RI leads to larger zcalc (a) and a too large RI results in smaller zcalc (b, c).
We only study the height range where the MIET curves are monotonically increasing,
i.e. up to ztrue = 200 nm. Within this range, the absolute error rises with z, however,
it levels off at approximately z = 100 nm, leading to a decreasing relative error. In
contrast, the error due to incorrectly modeled metal layers can lead to both over- and
underestimation of the height. Finally, assuming that the silica layer is only 5 nm
instead of 10 nm thick results in a MIET curve whose shape is almost unchanged but
that is shifted by 5 nm. Thus, when adding the silica spacer thickness and zcalc to obtain
the distance of the emitter from the top of the metal layers, the result is almost correct.
This indicates that the refractive indices of dielectric materials which are not in direct
contact with the emitter do not have a large impact on the MIET curve. The same
calculations were repeated for a quantum yield of 30 % but are not shown here because
they only differ in the fourth significant digit from the results for Φ = 1.
In co-localization experiments such as the study of focal adhesions in section 4.1.3 or
the distance determination of INM and ONM in the nuclear envelope in section 4.1.4,
the main quantity of interest is the height difference ∆z between two fluorophores.
Neglecting that these are usually dual-colour measurements, we present the relative
error of ∆zcalc for ∆ztrue = 5 nm, 15 nm and 25 nm in the bottom row of figure 4.26. For
all three fluorophore distances, the relative error of a model with incorrect sample RI
(a-c) shows a similar behaviour that is consistent with the plots in the central row: At
small (ztrue < 30 nm) and large (ztrue > 120 nm) distances from the substrate, the height

13Since the MIET curve is proportional to the free space lifetime and the latter is assumed to be
known, its value is arbitrary for these calculations.
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bias is almost constant, leading to a small relative error of ∆z in the order of 5 % or less.
At intermediate distances, where the height bias zcalc−ztrue changes rapidly, the relative
error of ∆z has a maximum around 6 % to 20 %, depending on the difference between
the correct and the actually used refractive index. If the sample is modeled correctly
but the metal layers are represented wrongly (d-e), very large relative deviations up to
40 % can occur. Contrarily, assuming a smaller thickness of the silica spacer (f) results
in relative errors that are always smaller than 4 %, consistent with the almost parallel
curve in the central row.
These results explain why we only saw a very small impact of the four different sample
geometries on the calculated average distance between the two nuclear membranes in
section 4.1.4. Including a 10 nm thick layer of Mowiol with a higher RI than the cell
in the model is similar to changing the thickness of the silica layer, thus only small
deviations of ∆zcalc between models are expected. Similarly, the inclusion of the plasma
membrane (i.e. a thin dielectric layer) in the model does not result in large changes. In
the study of focal adhesions in section 4.1.3, vinculin was found at heights around 10 nm
to 20 nm, while actin was located at approximately 20 nm to 50 nm. At these small
distances from the substrate, even when comparing the smallest and largest refractive
indices used in the simulation, namely 1.33 and 1.46, the calculated heights differ by less
than 6 nm (difference between a) and c) in the top row of figure 4.26), or the relative
height difference between actin and vinculin by less than 6 % (bottom row). Since the
true refractive index inside the cells is probably in between the RI of cytosol (n = 1.37)
and the RI of the mounting medium (n = 1.4), using the latter as sample RI is a valid
approximation that should not introduce significant errors.
With that, we turn to the influence of incorrect quantum yield values on the deter-
mination of height values. The sample we study is the same as before, but now the
fluorophore either has a quantum yield of Φtrue = 1.0 or Φtrue = 0.3. Figure 4.27 shows
the same kind of height deviation plots as figure 4.26, now for varying assumed quantum
yields. The curves in the top row demonstrate that there is one point at ztrue = 161 nm
where all MIET curves predict the same lifetime, independent of the quantum yield. At
this height, the total energy Stot(z) emitted by an ideal dipole emitter with λ = 600 nm
equals the free-space value S0, thus, τ(z) = τ0/(1−Φ + Φ · Stot(z)/S0) = τ0 irrespective
of Φ. For ztrue < 161 nm, an underestimation of the quantum yield leads to an underes-
timation of the height, and vice versa. For ztrue > 161 nm, the opposite is true. The
effect is stronger for small quantum yield values than for large Φtrue. For example, the
height error is always less than 1 nm if one assumes a quantum yield of 98 % instead
of 100 %. The plots in the lower row of figure 4.27 illustrate the relative error of the
determined relative distance ∆zcalc for ∆ttrue = 5 nm, 15 nm or 25 nm. Here, a complex
behaviour can be observed, but the general trend is the same for all seven cases: For
fluorophores that are close to the substrate (ztrue, lower ≤ 30 nm), the relative error is
quite small, while it increases drastically at heights above 150 nm. As before, the effect
is smaller for fluorophores with a higher quantum yield.
Overall, the height deviation observed when employing a wrong quantum yield is larger
than the height bias introduced by using a wrong refractive index. This highlights
the importance of knowing the correct quantum yield of a fluorophore. However, this
quantity is often not published by the manufacturers of fluorescent substances, because
it is harder to determine than, say, a fluorescent lifetime or an emission spectrum.
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Figure 4.27: Impact of incorrect quantum yield values on z-localization accuracy. In
the left column, the “true” quantum yield is Φtrue = 0.3, in the right column Φtrue = 1.0.
Top row: Deviation between the height values zcalc calculated using MIET curves with
“wrong” quantum yield values Φ as indicated and the true height values ztrue for various
emitter positions. Bottom row: Relative error of height differences ∆z between an
upper and a lower fluorophore, plotted against the z-coordinate of the lower fluorophore.
Calculations were done for true distances ∆ztrue = 5 nm (solid lines), 15 nm (dashed lines)
and 25 nm (dotted lines). In all four panels, the emission wavelength is λ = 600 nm.
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Therefore, the next section introduces a method for determining quantum yield values
using a metal nanocavity.
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4.3 Nanocavity-based quantum yield measurements

As mentioned previously, the fluorescence quantum yield (QY) Φ is defined as the
average number of fluorescence photons emitted per absorbed excitation photons. In
fluorescence microscopy, the QY used to be an interesting quantity mainly because,
together with the absorption cross-section (i.e. the probability of the fluorophore to
absorb excitation light), it determines the average number of fluorescence photons that
can be detected at a given excitation power. Thus, fluorophores with a larger QY
generally yield a higher signal, and consequently better images. More recently, the QY
has also attracted attention because it influences effects such as metal-induced energy
transfer, as we saw in detail in the previous sections. Therefore, methods to accurately
determine the fluorescence quantum yield are of high importance. Before describing a
relatively new technique that utilizes the fluorescence lifetime changes close to metal
surfaces, which was refined and applied to various systems over the course of this work,
we briefly describe alternative methods that have been used in the past. This summary
is mostly based on a review article by Demas and Crosby [135].
Historically, the first reliable technique for obtaining absolute QY values was described
by Wawilow in 1924 [136]. It was used with slight modifications until the 1960s [135].
The basic idea behind Wawilow’s method was based directly on the definition of the
quantum yield,

Φ =
number of fluorescence photons

number of absorbed excitation photons
. (4.23)

In a cuvette, the fluorophore to be studied was dissolved in a solvent at a sufficiently high
concentration that an excitation light beam was almost completely absorbed. Normal
to the front surface of the cuvette, a detector then measured the fluorescene signal.
In a second step, the fluorescent sample was exchanged with a scattering sample that
allowed to determine the intensity of the excitation light at the position of the cuvette.
Taking into account some correction factors, the ratio of these two measurements yielded
the fluorescence quantum yield. However, the accuracy of this method depended on
several parameters that were difficult to control, such as the quality of the scattering
sample, the wavelength-depenence of some of the correction factors, or distortion of
the measured fluorescence due to reabsorption of the light in the highly concentrated
solution. Therefore, even under optimal conditions, the relative uncertainty of the
obtained quantum yield values was around 5 %, and for most molecules, a relative error
of 10 % was “more realistic” [135]. The development of more reliable scattering samples,
as well as better instrumentation, later allowed more accurate measurements.
As soon as the quantum yield values of a number of fluorophores had been confirmed
independently by several groups, these could be used as reference samples, making
the (sometimes unpredictable [135]) scattering samples unneeded: If both the solution
of the compound to be studied and the reference could be excited with light of the
same wavelength, and if both solutions had the same optical density, the ratio of the
measured intensities equaled the ratio of the quantum yields (with some corrections,
see e.g. [135]). However, for these measurements, too, there were some experimental
difficulties. To name just one, if the emission spectra of the fluorophore of interest and
the reference sample were not identical, wavelenght-dependent detection efficiencies
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required an exact calibration of the detector. Furthermore, this type of measurement
could only be conducted if a reference sample with a similar absorption spectrum existed.
And finally, any error in the quantum yield value of the reference resulted in an error
in the quantum yield of the studied fluorophore. Nevertheless, relative quantum yield
measurements are probably the most common technique used today.
A complementary approach to measure fluorescence quantum yields is calorimetry, a
technique that measures temperature changes during irradiation. When a nonlumines-
cent material is irradiated, the absorbed light is transformed entirely to heat. Contrarily,
when a luminescent sample is irradiated, only a fraction of the absorbed energy – namely
(1−Φ) of the absorbed photons – is transformed to heat. Thus, when optically exciting
solutions of a nonluminscent reference and the sample to be studied, both with the same
optical density, and comparing the temperature change, one can deduct the fraction of
non-radiative deexciation events, and thus Φ. This type of measuremet requires very
precise temperature sensors, a good thermal isolation of the sample chamber, and a
careful design to prevent systematic errors e.g. from back-reflected fluorescence that
heats the sample. This method is still used today, but it is not so widespread due to the
typically custom-designed and more expensive equipment ([137] and citations therein).
Some of the experimental difficulties of the methods discussed so far can be overcome
by using an integrating sphere, a large globe with a reflective coating on the inside.
The excitation light enters through a window and reaches the sample in the center of
the sphere. Subsequently, the fluorescence light is reflected multiple times at the inside
of the sphere before exiting through a second window, where the detector is placed.
Due to the multiple reflections, polarization effects are eliminated, and a non-uniform
angular distribution of radiation of the sample (e.g. in crystals) is equalized. Nowadays,
integrating spheres are mostly used for absolute quantum yield measurements [137–139],
while relative methods mostly employ absorption and fluorescence spectromenters [137].
Although this introduction presented a number of different techniques for determining
QY values, a new class of fluorophores has exposed a common weakness of all these
methods: Photoactivatable proteins have two distinct states, one where they are not
luminescent (dark state), and one where they fluoresce (bright state) [140, 141]. By
illumination with light of a certain wavelength, the proteins can be stochastically
switched from the bright to the dark state. If the proteins absorb light in their dark
state, then all techniques introduced so far would yield an effective quantum yield value
that depends on the ratio of bright and dark molecules in the solution. However, the
true quantum yield of the proteins in the bright state could only be obtained on a
sample where all molecules have switched from the bright to the dark state, which one
generally cannot guarantee. Therefore, a technique is needed that is only sensitive to
fluorescent molecules.
Such a method was developed by Enderlein, Chizhik et al. in [107]. It is based on fluo-
rescence lifetime measurements in metal nanocavites, and the main physical mechanism
exploited to determine the QY is MIET. The theoretical refinement of this method, the
programming of a software package to improve the accessibility for new users, and the
application to special samples was a large part of this work. Therefore, the theoretical
basics are explained in detail in the next subsection, followed by a short presentation
of the software implementation and finally the application of the technique to dye
molecules in lipid membranes.
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4.3.1 Theory

As we saw previously, metal-induced energy transfer imaging is based on the observation
that the fluorescence lifetime τ of a dipole emitter decreases close to a metal halfspace
or even just a thin metal layer. The central equations describing this effect are

τ(z, θ) =
1

kr(z, θ) + knr

,

and kr(z, θ) =
Stot(z, θ)

S0

kr,0. (4.24)

Here, z is the distance between the fluorophore and the metal interface (i.e. the “height”
of the emitter) and θ is the angle between the dipole moment and the optical (z-) axis,
i.e. θ = 0 for a vertical and θ = π/2 for a parallel dipole. Furthermore, kr(z, θ) is
the radiative deexcitation rate of a dipole emitter at z with orientation θ, knr denotes
the position- and orientation-independent non-radiative deexcitation rate, Stot(z, θ) is
the electromagnetic energy emission per time for a fluorophore at z with orientation θ
(derived in sections 2.4.5 and 3.4), and S0 is the energy emission per time for the same
fluorophore in the same medium but in the absence of the metal. The quantum yield Φ
of the fluorophore in the absence of the metal relates the directly measurable free space
lifetime τ0 (i.e. the lifetime of the fluorophore in the absence of the metal) to the not
directly accessible rates kr,0 and knr:

Φ :=
kr,0

kr,0 + knr

= kr,0 · τ0 = 1− knr · τ0. (4.25)

This leads to the equation we use to calculate MIET calibration curves:

τ(z, θ) =
τ0

Φ · [Stot(z, θ)/S0] + 1− Φ
. (4.26)

Theoretically, by preparing a sample with known metal-fluorophore distance z and
known orientation14 θ, and by subsequently measuring the lifetime τ(z, θ), one can
deduce Φ. In practice, the accuracy of such a measurement can be improved (and
possible errors in the assumptions of τ0, S0 and the optical properties of the sample
entering Stot(z, θ) can be discovered) by measuring lifetimes for a number of z-values
and fitting equation (4.26) with Φ as the free parameter.
While this is a valid approach, it has some drawbacks. Firstly, the most straightforward
way to achieve different z-values is by fabricating samples with spacer layers of different
thickness, which is tedious. Secondly, in order to minimize the uncertainty of the z-
position, fluorophores either have to be deposited directly on the spacer or be embedded
in a very thin layer of a transparent material15. However, this might change the non-
radiative transition rate. Moreover, as we argued in section 4.1.4, it is not trivial to

14Which usually means averaging over a random distribution of θ-values.
15The former can be achieved, for example, by spin-coating a droplet of fluorophore-containing solution

on the sample which evaporates quickly, leaving behind a thin layer of fluorophores. The second
can be produced in a similar manner, but using e.g. a polymer or optical glue instead of a quickly
evaporating solvent. However, the thickness of a layer prepared in this manner is difficult to control.
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Figure 4.28: White-light transmittance spectra T (λ) = |tp,s(λ)|2 for two nanocavities,
one with height h = 150 nm (blue line) and one with height h = 200 nm (red line). In
both cases, the bottom silver mirror has a thickness of 30 nm and the upper a thickness of
60 nm, the cavity itself is filled with DMSO (refractive index 1.48). In our setup, the white
light lamp is placed directly above the sample, which corresponds to normal incidence
of the light. Therefore, there is no distinction between p- and s-waves. Note that the
transmission maximum shifts towards longer wavelengths for an increased cavity height.
The magnitude of the peak decreases because the reflectance of the silver mirrors increases
with λ.

convert quantum yield values for materials with differing refractive indices. Thus, it
is desirable to measure the quantum yield in the same medium in which one intends
to use the fluorophore later – which generally means a liquid of some kind. In that
case, fluorophores are present at many different z-positions simultaneously, and the
measured lifetime is the average lifetime of all fluorophores within the focal volume.
Since the latter has a z-extension of approximately 500 nm to 700 nm (see equation
4.15 in section 4.1.4) and since MIET causes lifetime changes only in the first 250 nm
to 300 nm (see e.g. figure 2.29), the change of the measured average lifetime with the
quantum yield is small, which leads to large uncertainties of the obtained Φ values.
Here, Chizhik et al. found a simple, yet powerful solution with several practical advan-
tages [107]: Instead of using just one metal-coated surface, they placed two parallel
metal-coated glass surfaces – denoted (semi-transparent) “mirrors” in the following
– approximately h = 100 nm to h = 200 nm apart, with the fluorescent solution in
between. This geometry is called a nanocavity, a microresonator, or a Fabry-Pérot inter-
ferometer. It is mainly known for the fact that its transmission spectrum (as a function
of wavelength λ) displays distinct peaks corresponding to constructive interference of
the multiply reflected waves. Figure 4.28 shows exemplary transmittance spectra for
two dimethyl sulfoxide (DMSO)-filled cavities with silver mirrors of thickness 30 nm
and 60 nm and with cavity heights h = 150 nm and 200 nm. The transmittance T is the
square of the absolute value of the effective Fresnel transmission coefficient t(θ, λ) of
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Figure 4.29: Height-dependent fluorescence lifetime of quickly rotating fluorophores
(emission wavelength 650 nm) with varying quantum yield Φ inside a DMSO-filled nanocav-
ity. Thicknesses of the silver mirrors are 30 nm (bottom mirror) and 60 nm (top mirror),
which is why the curves are not symmetric.

the whole sample, i.e. the stratified system glass-silver-DMSO-silver-glass, calculated
as described in section 3.2. It is assumed that the light source is positioned above
the sample, i.e. θ = 0, thus there is no distinction between p- and s-waves. Since the
mirrors are relatively thin, their reflectance is low (monotonically increasing with λ in
the visible range, 0.6-0.9 for the 30 nm thick mirror and 0.90-0.97 for the 60 nm thick
layer), which means that the resonance peaks are slightly smeared out. Nevertheless,
by measuring these transmission spectra and fitting |t(λ)|2 to the data with h as the fit
parameter, the cavity height can be determined with a high precision in the order of
1 nm. Furthermore, deviations of the metal layer thicknesses from the design values
can be detected as a deviation between model and data which cannot be eliminated by
changing h. This renders any further checks of the sample fabrication unnecessary.
The second advantage of a nanocavity is that all fluorophores are close to a metal layer,
which increases the sensitivity of the lifetime measurement with respect to quantum
yield changes. Figure 4.29 compares the lifetimes of dipole emitters at different heights
inside a cavity with h = 200 nm for varying quantum yields of the fluorophores. It
becomes apparent that a higher quantum yield leads to a significantly lower average
fluorescence lifetime. The exact amount of this lifetime change varies for different h
(not shown in the figure)16.
Thirdly, the need for spacer layers of varying thickness to generate independent data
points is eliminated by a nanocavity: One can simply vary the distance h between the

16If this were not the case, changing the MIET curve by using a different free space lifetime τ0 might
result in the same expected average lifetime. Then, one would have to determine the exact value of
τ0 separately in order to find the correct value of Φ. However, because the lifetime change with h is
non-linear, we can define τ0 as a second fit parameter, as will be shown later in this section.
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two mirrors and measure the average lifetime τmeas each time. Experimentally, this can
be achieved elegantly by using a silver-coated convex lens as the second mirror. The
curvature of the lens surface is so small that it can be approximated as plane within
the focal volume. By moving the sample laterally, one moves between regions with
different distances between the planar bottom mirror and the lens, and thus between
cavities with different height h. For each lifetime measurement, the current height of
the cavity can be obtained by acquiring a white-light transmission spectrum and fitting
it to |t(λ)|2 with h as fit parameter, as explained above.
Thus, the main challenge of using a nanocavity to determine quantum yield values is
not of practical but of theoretical nature: For each cavity height, a single TCSPC curve
is acquired, and has to be related to the quantum yield Φ via an accurate theoretical
model. We do this in a two-step approach. Firstly, the average photon arrival time
τmeas is extracted from the TCSPC histogram. Secondly, this value is modeled taking
into account a number of different effects:

1. The lifetime of a single excited dipole emitter depends both on the z-position and
the orientation θ of the emitter, as described by equation (4.26).

2. The probability to excite a dipole emitter with a focused laser beam depends on
z and θ.

3. If a radiative decay occurs, the probability to actually detect the resulting photon
also depends on z and θ.

4. Generally, the fluorophores are dissolved in a buffer, and thus free to rotate.
Depending on the relative magnitudes of the rotational diffusion time and the
fluorescence lifetime, the fluorophores can be treated as fixed, or the rotational
diffusion has to be included in the model.

Based on [107], the last three aspects will now be discussed separetely, and finally
combined to yield an expression of the measured average photon arrival time τmeas that
depends on the cavity height h and the quantum yield Φ. By measuring τmeas for several
values of h and fitting the model to the data, an estimate of Φ is obtained.

Excitation probability

Assuming that the excitation intensity is small enough that non-linear saturation effects
can be ignored, the excitation rate of a molecule with position rm = (ρm, ϕm, zm) and
absorption dipole moment p is proportional to |p ·E(rm)|2, where E is the exciting
electric field that will now be determined. The nanocavity lifetime measurements are
performed on a confocal FLIM setup as already described in this work. The calculation
of the electric field of the excitation laser inside the nanocavity is performed on the
basis of the concept developed by Wolf and Richards [142, 143]. The details are given in
[107], we will only briefly outline the basic idea here and show the resulting formulas.
The focusing of a linearly polarized laser beam by an objective with high numerical
aperture can be described by decomposing the field in plane p- and s-waves, which
are then treated individually. This is depicted schematically in figure 4.30: When
the focusing is close to diffraction limited, one can assume that the field in the back
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Figure 4.30: Focusing of a linearly polarized laser beam into a nanocavity. In the back
focal plane of the objective, the electric field is approximated as a plane wave. At each
point, the electric field vector E is decomposed into a radial and a tangential component,
which will turn into p- and s-waves in the cavity, respectively. The further such a point is
from the optical axis, the larger the angle χ that the wavevector makes with the optical
axis after passing the lens. The maximum angle χmax is determined by the numerical
aperture of the objective, NA = n · sinχmax. Figure adapted from [107].

focal plane of the objective is a single plane wave, and thus has the same amplitude
at each point. At each such point, the electric field vector is decomposed into a radial
and a tangential component, which will become p- and s-waves, respectively, when
the light from this point is focused into the nanocavity. The further the point is from
the optical axis, the larger the angle χ between the beam and the optical axis after
the beam passes through the lens system. Since the numerical aperture (NA) of the
objective is related to the largest angle χmax under which light can leave the objective,
NA= n sinχmax where n is the refractive index of the objective’s mounting medium,
it defines which plane waves have to be taken into account when calculation the field
inside the nanocavity. Upon reaching the nanocavity, the plane waves are reflected and
transmitted multiple times in the stratified system. This situation was already treated
in section 3.4 (Energy flux through infinite plane), with the core idea to sum all upwards-
or downwards-traveling waves independently. When denoting the angle between the
optical axis and the propagation direction within the fluorophore’s medium as χm and
the refractive index of said medium as nm, then Snell’s law gives n sinχ = nm sinχm,
connecting the propagation directions outside and inside the cavity. Combining these
steps leads to the final result for the electric field [107]:

Ex(ρ, ϕ, z) = f0(ρ, z) + f2(ρ, z) · cos(2ϕ)

Ey(ρ, ϕ, z) = f2(ρ, z) · sin(2ϕ) (4.27)

Ez(ρ, ϕ, z) = f1(ρ, z) · cos(ϕ),

where it was assumed that the electric field in the back focal plane is polarized along the
x-axis, and the point r = (ρ, ϕ, z) in the nanocavity is given by cylindrical coordinates
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Figure 4.31: Excitation rate for a dipole oriented parallel (Iexc
‖ ) or perpendicular (Iexc

⊥ )
to the cavity mirrors, calculated for excitation light of wavelength λ = 585 nm and
for a cavity that is filled with DMSO (nm = 1.48). The bottom mirror extends from
z = −30 nm to z = 0 nm, the top mirror from z = 200 nm to z = 260 nm, both are made
of silver.

to account for the symmetry of the situation. The functions f0,1,2(ρ, z) are independent
of the angle ϕ, they are obtained by integrating over all plane wave components, taking
into account all optical properties of the sample, including the cavity height. The exact
form of these functions is given in section 6.1.3 in the appendix.
As mentioned above, the excitation rate of a molecule situated at rm is proportional
to |p ·E(rm)|2. Since only the orientation of the absorption dipole moment p relative
to the optical axis (given by the angle θ), and not in the plane perpendicular to it,
influences the lifetime, the dipole orientation can be averaged over the azimuthal angle
around the optical axis. Then, the excitation rate Iexc is given by:

Iexc(θ, rm) = Iexc
⊥ (rm) · cos2 θ + Iexc

‖ (rm) · sin2 θ

with Iexc
⊥ (rm) =

1

2

[
|Ex(rm)|2 + |Ey(rm)|2

]
Iexc
‖ (rm) = |Ez(rm)|2. (4.28)

As an example, figure 4.31 shows the excitation rate for dipoles that are oriented
parallel (θ = π/2) or perpendicular (θ = 0) to the cavity mirrors and that are located
in the x-z-plane in the cavity. Note that the dipoles parallel to the mirrors are excited
much more efficiently than the ones perpendicular to the interfaces. Furthermore, the
excitation maximum is close to the center of the cavity for the former, while it is near
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Figure 4.32: Molecule detection function u(θ, zm) inside a cavity for dipoles oriented
perpendicular (θ = 0) or parallel (θ = π/2) to the mirrors. The top silver mirror
has a thickness of 60 nm, the bottom mirror is 30 nm thick, the cavity is filled with
DMSO (nm = 1.48). The height of the cavity is h = 200 nm, the numerical aperture
of the objective is 1.49 (oil immersion with n = 1.52, i.e. χmax = 79°) and the emission
wavelength is λ = 650 nm.

the mirrors for the latter17. Since the fluorescence lifetime of a fluorophore only depends
on θ and zm, not ρm or ϕm, Iexc(θ, rm) is integrated over ρm and ϕm to yield Iexc(θ, zm)
for the later evaluation of the lifetime data. As the final result will be normalized,
anyway, this does not change the calculated lifetimes.

Molecule detection function

In order to model the average detected photon arrival time of all molecules inside the
focal volume, not only the excitation probabilities of fluorophores at different positions
have to be taken into account, but also the probabilities to actually detect emitted
photons. The molecule detection function u(θ, zm) is proportional to the probability
that a photon is detected if a dipole emitter situated at height zm and with its emission
dipole moment at an angle θ relative to the optical axis undergoes a radiative transition
from the excited to the ground state. The proportionality factor is determined by
parameters such as the quantum yield of the detector or losses in the optical path
between objective and detector, and thus independent of the sample. It will cancel
later and is therefore ignored. Physically, a photon can be detected if it is emitted in a
direction that is within the objective’s cone of light collection, which is defined as all
angles χ relative to the optical axis that are smaller than the angle χmax = arcsin(NA/n)
defined by the numerical aperture of the objective and the refractive index n of the
objective’s immersion oil. Thus, u(θ, zm) can be obtained by integrating the angular
distribution of radiation of the emitter (ADR, see section 2.4.5) over the solid angle of

17The probabilities are not symmetric in z because of the different thicknesses of the silver mirrors.
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the cone of light collection, and dividing by Stot, i.e. the total amount of energy emitted
per time by the dipole:

u(θ, zm) =
Sdet,⊥(zm) cos2 θ + Sdet,‖(zm) sin2 θ

S⊥(zm) cos2 θ + S‖(zm) sin2 θ
, (4.29)

where Sdet,⊥,‖ is the result of the integration of the ADR over the cone of light collection
for a dipole that is perpendicular or parallel to the planar system. Similarly, S⊥,‖(zm)
is Stot(zm) for a vertical or horizontal dipole. The large differences between the ADR of
dipole emitters with different orientations was already discussed in section 2.4.5, we
now only show examples of u(θ, zm) for θ = 0, π/2 and varying zm in figure 4.32. The
general trend is the same as for the excitation rate: If the dipole moment is oriented
parallel to the mirrors, the detection is most efficient in the center of the cavity, while
orthogonally oriented dipoles are detected best when they are situated close to the
mirrors.

Rotational diffusion

Up to now, we have always considered a dipole emitter whose dipole moment has a
fixed orientation θ relative to the optical axis. For this case, we derived expressions for
the fluorescence lifetime τ(θ, zm), the excitation probability I(θ, zm) and the molecule
detection function u(θ, zm). This assumption is valid if all fluorophores are embedded in
a solid, e.g. in optical glue, or if the fluorescing molecules are so large that their rotation
is much slower than the decay of their excited state. For small fluorophores in solution,
however, this model breaks down. If an excited fluorophore rotates quickly, its coupling
to the electric field also changes quickly. Employing the different models presented in
section 2.5.3, one could say that the one-dimensional oscillator changes the direction of
its oscillation and is thus driven by different components of the reflected electric field,
which of course have different magnitudes. Alternatively, one can state that the total
amount of emitted energy per time Stot varies rapidly as the molecule rotates. Both
explanations result in the prediction that the overall decay rate is a superposition of
the decay rates associated with the orientations θ that are sampled by the molecule as
it rotates. The explicit mathematical description of this process is challenging because
the rotational diffusion is intrinsically a stochastic process, and the exact “path” θ(t)
that the dipole moment of a single dipole emitter describes while the emitter is in its
excited state is unknown.
In the following, we will use two different approaches to determine the lifetime of a
rotating fluorophore in a nanocavity. The first is the analytical calculation used in [107]
which employs probability distributions. The second approach is a numerical simulation
of many rotating molecules that proves the applicability of the first approach to this
situation.
Assume that a fluorophore with dipole moment p is located at the height zm inside
the cavity and shows no lateral diffusion on the timescale of the fluorescence lifetime.
At time t = 0, the sample is illuminated with a short light pulse. Provided that the
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dipole emitter was excited by this light pulse, the probability that its dipole moment
was oriented at an angle θ relative to the optical axis at time t = 0 is given by:

p(θ, zm, t = 0) =
Iexc(θ, zm)∫ π

0
Iexc(θ, zm) sin θdθ

=
3[Iexc
⊥ (zm) · cos2 θ + Iexc

‖ (zm) · sin2 θ]

2[Iexc
⊥ (zm) + 2Iexc

‖ (zm)]
. (4.30)

The function p(θ, zm, t) describes the probability that there is an excited dipole emitter
at height zm with orientation θ at time t18. As time progresses, there are two processes
that can change p: The dipole can undergo a (radiative or non-radiative) transition
from the excited to the ground state, or it can change its orientation θ. These two
possibilities are contained in the following rotational diffusion equation:

∂p(θ, zm, t)

∂t
=

D

sin θ

∂

∂θ
sin θ

∂p(θ, zm, t)

∂θ
−K(θ, zm)p(θ, zm, t). (4.31)

Here, D is the rotational diffusion constant (linked to the rotational diffusion time
τrot via D = (6τrot)

−1) and K is the total deexcitation rate. The latter can always be
expressed in the form

K = knr + kr(zm, θ)

= [knr + kr,⊥(zm)] cos2 θ + [knr + kr,‖(zm)] sin2 θ

=: K⊥(zm) cos2 θ +K‖(zm) sin2 θ, (4.32)

where knr is the position- and angle-independent non-radiative deexcitation rate, and
kr,⊥ and kr,‖ are the radiative deexcitation rates of a vertical and horizontal dipole at zm,
respectively. In equation (4.31), explicitly performing the differentiation with respect to
θ can be avoided by expanding p(θ, zm, t) into a series of Legendre polynomials P`(cos θ)
with time-dependent expansion coefficients a`(zm, t),

p(θ, zm, t) =
∞∑
`=0

a`(zm, t) P`(cos θ), (4.33)

because Legendre polynomials fulfill

0 =
∂

∂x

[
(1− x2)

∂P`(x)

∂x

]
+ `(`+ 1)P`(x)

=
1

sin θ

∂

∂θ

[
sin θ

∂P`(cos θ)

∂θ

]
+ `(`+ 1)P`(cos θ). (4.34)

18Note that the integral
∫ π
0

dθ sin θ p(θ, zm, t = 0) equals one, in accordance with our assumption: At
time t = 0, we know that there is an excited dipole at height zm.
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Inserted into equation (4.31), this gives:

∞∑
`=0

∂a`(zm, t)

∂t
P`(cos θ) = D

∞∑
`=0

`(`+ 1)a`(zm, t)P`(cos θ)−K
∞∑
`=0

a`(zm, t)P`(cos θ).

(4.35)

As a next step, the deexcitation rate K is rewritten as

K = cos2 θK⊥ + sin2 θK‖ = cos2 θ(K⊥ −K‖) +K‖ =: cos2 θ∆K +K‖. (4.36)

By multiplying equation (4.35) by P`′(cos θ) and integrating over sin θdθ from 0 to π,
one can exploit the orthogonality of the Legendre polynomials19,∫ 1

−1

dx P`(x)P`′(x) =
2

2`+ 1
δ``′ , (4.37)

to transform (4.35) into an infinite set of ordinary differential equations for a`(zm, t):

∂a`(zm, t)

∂t
= −D`(`+ 1) a`(zm, t)−

∞∑
`′=0

M``′(zm)a`′(zm, t), (4.38)

with the transition matrix

M``′(zm) =



(`−1)`
(2`−3)(2`−1)

∆K for `′ = `+ 2

2`(`+1)−1
(2`−1)(2`+3)

∆K +K‖ for `′ = `

(`+1)(`+2)
(2`+3)(2`+5)

∆K for `′ = `− 2

0 else.

(4.39)

In matrix notation, the set of differential equations for fixed zm can be compactly
written as

∂

∂t
a(t) = −M̃a with M̃``′ = M``′ + `(`+ 1)Dδ``′ . (4.40)

If M̃ were a diagonal matrix, the solutions would simply be given by a`(zm, t) =

a`(zm, 0) · exp[−M̃``(zm) · t]. Since this is not the case, we numerically diagonalize M̃ ,

i.e. we find a matrix V and a diagonal matrix L such that M̃ = V LV −1. Then, the
differential equation is given by

∂

∂t

(
V −1a

)
= −L

(
V −1a

)
. (4.41)

Denoting b := V −1a, the solutions are

b`(zm, t) = b`(zm, 0) · e−L``t. (4.42)

19And use the recursion relation x · P` = `+1
2`+1P`+1 + `

2`+1P`−1 twice to eliminate the cos2 θ-term.
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The initial values b(zm, t = 0) can be found by projecting the initial values a(zm, t = 0)
on the eigenvectors of M̃ ,

b(zm, 0) = V −1a(zm, 0), (4.43)

where a(zm, 0) can be obtained from the probability distribution p(θ, zm, t = 0) given
in equation (4.30):

a0(zm, t = 0) =
1

2

a2(zm, t = 0) =
Iexc
⊥ (zm)− Iexc

‖ (zm)

Iexc
⊥ (zm) + 2Iexc

‖ (zm)

a`(zm, t = 0) = 0 ∀` 6= 0, 2. (4.44)

The coefficients a(zm, t) are then obtained from b(zm, t) via

a(zm, t) = V b(zM , t) =
∑
`

ê`
∑
`′

V``′b`′(zm, 0)e−L`′`′ t. (4.45)

The final result, i.e. the probability distribution p(θ, zm, t), is then given by:

p(θ, zm, t) =
∞∑
`=0

P`(cos θ)
∞∑
`′=0

V``′(zm)b`′(zm, 0)e−L`′`′ t. (4.46)

This function was used in [107] for the evaluation of the measured data. However,
since it only makes statements about the probability to find an excited molecule at
a certain orientation at time t, while a single molecule’s dipole moment follows one
specific trajectory θ(t), we wanted to check that the predicted fluorescence lifetime of
the ensemble average truly corresponds to the average of many fluorophores with their
specific paths θ(t). In order to do this, we first had to derive the predicted lifetime τ(zm)
using equation (4.46). The fluorescence lifetime is defined as the average time between
the excitation of the fluorophore and the emission of a photon. The probability that a
photon is emitted at time t is given by the probability that the molecule undergoes a
transition from the excited to the ground state at time t, multiplied by the probability
that such a transition is radiative (as opposed to non-radiative). The latter is simply the
quantum yield Φ(zm, θ), while the former equals the probability that the fluorophore is
in its excited state at time t, multiplied by the total deexcitation rate. Thus, the number
of photons Iem(zm, t) emitted by a fluorophore at height zm at time t is proportional to:

Iem(zm, t) ∝
∫ π

0

dθ sin θ p(θ, zm, t) ·K(zm, θ) · Φ(zm, θ) (4.47)

Note that the quantum yield Φ(zm, θ) is the local quantum yield in the presence of the
metal mirrors, not the free space quantum yield which we want to determine with the help
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of the cavity. The formula can be simplified by noting that K(zm, θ)·Φ(zm, θ) = kr(zm, θ).
With this, the average emission time of a photon – and thus the lifetime τ – is given by

τ =

∫∞
0

dt I(t) · t∫∞
0

dt I(t)

=

∫ π
0

dθ sin θ kr(zm, θ) ·
∑

` P`(cos θ)
∑

`′ V``′b`′(zm, 0)
∫∞

0
dt t · exp(−L`′`′t)∫ π

0
dθ sin θ kr(zm, θ) ·

∑
` P`(cos θ)

∑
`′ V``′b`′(zm, 0)

∫∞
0

dt exp(−L`′`′t)
. (4.48)

The integration over t can be carried out analytically, it yields L−2
`′`′ in the numerator

and L−1
`′`′ in the denominator. Thus, only the integration over θ has to be performed

numerically. Two points deserve to be mentioned here. Firstly, the free space quantum
yield Φ is implicitly contained in this expression via V and L, which were derived from

M̃ with M̃``′ = M``′ + `(` + 1)Dδ``′ , where M``′ contains the rates K⊥ and K‖. The
latter are related to the quantum yield Φ and the free space lifetime τ0 via

K⊥,‖ = knr + kr,⊥,‖(zm)

= knr + kr,⊥,‖,0 ·
Stot,⊥,‖(zm)

S0

=

[
(1− Φ) + Φ ·

Stot,⊥,‖(zm)

S0

]
· τ−1

0 . (4.49)

In the same way, Φ is also contained in the term kr(zm, θ) = kr,⊥(zm) cos2 θ+kr,‖(zm) sin2 θ.

Secondly, the relative magnitudes of D and K have an impact on M̃ , and as a conse-
quence also on τ . Figure 4.33 displays the average relative lifetime τ/τ0 for three different
free space quantum yields and for varying rotational diffusion times. For the calculation,
we assume a DMSO-filled nanocavity with height h = 200 nm, an emission wavelength
of λ = 650 nm, and a fluorophore at height zm = 100 nm. The dashed lines represent
the case of purely horizontal excitation (Iexc

⊥ = 0, p(θ, t = 0) = 3/4 sin2 θ), while the
solid lines represent purely vertical excitation (Iexc

‖ = 0, p(θ, zm, t = 0) = 3/2 cos2 θ).
For short rotational diffusion times, both curves converge to a common limit, namely

τfast rot.(zm) =
τ0

1− Φ + Φ · [2Stot,‖(zm) + Stot,⊥(zm)]/3S0

. (4.50)

Thus, the decay rate of the excited state of a quickly rotating fluorophore is obtained
by averaging over the decay rates of fluorophores with all possible orientations, where
the orientations are uniformly distributed. Contrarily, at the limit of extremely slow
rotation, the calculated average lifetime is identical to the average lifetime of an ensemle
of fixed dipoles, where the orientations follow p(θ, zm, t = 0):

τslow rot.(zm) =

∫ π

0

dθ sin θ
τ0

1− Φ + Φ · [Stot(θ, zm)/S0]
· p(θ, zm, t = 0). (4.51)

These predictions, which were derived employing the theory published in [107], were
tested by means of a numerical simulation as part of the present work. The core idea
is to simulate the rotational diffusion of the dipole moment p concurrently with the
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Figure 4.33: Simulation of the average excited state lifetime of a fluorophore with
quantum yield Φ = 0.1 (orange), 0.5 (cyan) or 0.9 (pink) that is situated at zm = 100 nm
inside a DMSO-filled nanocavity with height h = 200 nm and mirror thicknesses 30 nm
and 60 nm, assuming either purely vertical (solid lines) or purely horizontal excitation
(dashed lines). The emission wavelength is λ = 650 nm.

(radiative or non-radiative) decay of the excited state, taking into account that the decay
rate depends on the angle θ between p and the optical axis. The resulting decay times
tdecay of many such simulation runs are then histogrammed, and an average lifetime
τsim is determined as

τsim =
1

M

M∑
m=1

tdecay(m). (4.52)

First, an algorithm to simulate the rotational diffusion of p had to be designed. The
orientation of p is completely defined by the angle θ with the optical axis and the angle
ϕ with the x-axis. Thus, the rotational diffusion of p can be modeled as a random
walk on the unit sphere, with the trajectory {(θi, ϕi)}, where the index i denotes the
time steps. Since the diffusion is isotropic, at each time point i, the next step can
be taken in any direction with equal probability. Mathematically, this can be defined
straightforwardly if the position at time i is the “North pole” (i.e. θi = 0) by randomly
choosing a longitude between 0 and 2π, and then taking a step of fixed step length l.
Based on this concept, our procedure for the rotational diffusion is (see figure 4.34):

1. At time i, the position of the random walker on the unit sphere is defined by the
angles (θi, ϕi).
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1. Position of walker at time i 2./3. Step in random direction at
North pole: N → P

α

N

P
l

N

(θi, ϕi)

(θi+1, ϕi+1)

P

(θi+1, ϕi+1)

(θi, ϕi)

4. Rotate coordinate system 5. Append R(P ) to trajectory

(θi, ϕi)

ϕi

θi

Figure 4.34: Algorithm for simulating the rotational diffusion of the dipole moment p.
1. At time i, the position is described by the angles (θi, ϕi). 2. A random meridian at
longitude α is chosen. 3. Starting at the North pole N , a step with step lenght l is taken
along the meridian, ending at the point P . 4. The coordinate system is rotated such
that R(N) = (θi, ϕi). 5. The rotation of P yields the next point of the random walker’s
trajectory, (θi+1, ϕi+1) = R(P ).

2. For the transition i→ i+1, draw a random number α from a uniform distribution
between 0 and 2π.

3. Take a step of step length l from the North pole N = (0, 0) along the meridian
with longitude α, ending in the point P = (l, α)20.

4. Rotate the coordinate system such that the North pole is moved to (θi, ϕi),
R(N) = (θi, ϕi).

5. By applying the same rotation to P , the next position of the random walker is
obtained, R(P ) = (θi+1, ϕi+1).

20Since the walker moves on the unit sphere, the arc length l of a step along a meridian equals the
angle θ that is covered by this step.
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This procedure was tested and characterized by simulating a number of trajectories
{(θi, ϕi)}, creating θi-distributions at several time points i, and comparing with the
analytical probability distribution p(θi). The distribution of start values (θ0, ϕ0) was
given as

p(θ0, ϕ0) = p(ϕ0) · p(θ0) =
1

2π
· 3

2
cos2 θ0 =

1

2π
·
[

1

2
P0(cos θ0) + P2(cos θ0)

]
, (4.53)

corresponding to excitation with vertically polarized light. The pure rotational diffusion
equation (without the decay constant K) results in the differential equations

∂a`(t)

∂t
= −D`(`+ 1)a`(t), (4.54)

thus, a0 = const. = 1/2 and

a2(t) = a2(0) · e−6Dt = e−6Dt, (4.55)

while all other a`(t) equal zero. By fitting the discrete θi-distributions H(θi) with

H(θi) =
1

2
P0(cos θi) + a2(ti)P2(cos θi) (4.56)

with a2(ti) as the only fit parameter, and then using

D = − log[a2(ti)]

6ti
(4.57)

we could therefore obtain a relationship between D and the step length l, the only
adjustable parameter of our algorithm. Figure 4.35(a) exemplarily shows θi-distributions
H(θi) for i = 0, 10, 20 and 30 and a step length l = 0.2, together with the best fits
of equation (4.56) to the data. The resulting fit values of D for i ≥ 1 were averaged
to find D(l = 0.2). At very long times, the distribution p(θi) approaches P0(cos θi) as
a2(θi)→ 0, then the fit of a2(θi) becomes unreliable. At which time point the fit breaks
down depends on the magnitude of D and thus on the step length l. Therefore, the
number of time points that were included in the calculation of D was different for each
step length l. Figure 4.35(b) shows an overview of diffusion constants for step lengths
between 0.01 and 0.5. For small l,

√
D rises linearly with l:

D(l) =
1

4
l2
[

1

time step

]
for l ≤ 0.2. (4.58)

For step lengths between 0.3 and 0.5, D(l) starts to become larger than l2/4. Therefore,
we only used l ≤ 0.3 in the subsequent simulations.
For the simultaneous simulation of the rotational diffusion of p and the decay of the
excitated state, several parameters had to be chosen, starting with the ratio R between
the free space fluorescence lifetime τ0 and the rotational diffusion time τrot, R = τ0/τrot.
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Figure 4.35: Simulations to determine the relation between the step length l of the
rotational diffusion algorithm and the diffusion constant D. For each step length, 106

trajectories with 41 time steps i = 0, . . . , 40 were simulated, starting with the distribution
p(i = 0) = 1

2P0(cos θ0) + P2(cos θ0). At each time point i, the 106 coordinates (θi, ϕi)
were binned with respect to θi, resulting in distributions H(θi) as shown in (a) for l = 0.2.
Fits of equation (4.56) to H(θi) for i ≥ 1 yielded 40 estimates of D for each step length l.
Fits at late time points were unreliable because a2(ti)→ 0, thus for each step length, a
different subset of these 40 values was used to determine the average diffusion constant
D. In (b), the square root of D is plotted against l (pink dots), the standard deviations
are smaller than the marker size and therefore not shown as errorbars. The blue line
corresponds to l/2, showing that for small step lengths, we have the relation D = l2/4.
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Figure 4.36: Comparison of simulated average photon arrival times τsim (points with
errorbars) and the values predicted by the probability-distribution based approach in
equation (4.48) (black lines). The initial distribution at time zero corresponded to
vertically polarized excitation light (squares), horizontally polarized light (circles) or
uniform polarization (open diamonds). For the simulation, step lengths of l = 0.01
(cyan), l = 0.1 (orange) and l = 0.3 (magenta) were employed to cover different R-ranges
without having to choose too small excited state decay rates ktot. Over the whole R-
range, simulations with different step length for the same R-value are consistent, and all
simulated values agree excellently with the analytical predictions. It becomes apparent
that the lifetime depends strongly on the polarization of the excitation light for fixed
or slowly rotating fluorophores (small R), while all curves converge to the same value
τfast rot. (eq. 4.50) for quickly rotating fluorophores. Simulation for a DMSO-filled cavity
with h = 200 nm, silver mirror thicknesses 30 nm and 60 nm, and a fluorophore at height
z = 100 nm with Φ = 0.8.

Based on R and the step length l of the rotational diffusion, the total decay rate of the
fluorophore’s excited state in units of [time step−1] was determined:

ktot =
1

τ0

=
1

R · τrot

=
6D(l)

R
=

3l2

2R
. (4.59)

The simulation of a single excited molecule lasted until the excited state decayed, or
a pre-defined number of time steps was exceeded. In order to prevent a bias towards
shorter decay times, this number of time steps had be sufficiently large. We chose
8/ktot, since exp(−8) ≈ 3.4 · 10−4 was deemed suffciently small. As a small decay rate
entails many time steps before a decay event, it is desirable from a numerical point of
view to avoid too small numbers of ktot. Therefore, step lengths of l = 0.01, 0.1 or 0.3
were employed to cover different R-ranges from 10−3 to 103. The Matlab code used
for the simulation is given in section 6.1.4 in the appendix. For each parameter set
(l, R), 1000 “experiments” were simulated, each consisting of the simulation of 5000
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“fluorophores” whose decay times were averaged to obtain τsim. The averages of these
1000 values for τsim, together with their standard deviations, are depicted in figure
4.36. They are compared with the average lifetimes τ(zm) predicted by the probability
distribution-based approach in equation (4.48), shown as solid black lines. Both agree
very well over the whole R-range. Moreover, we find that the simulated values of
τsim converge towards the limits τfast rot. and τslow rot. from equations (4.50) and (4.51)
for fast and slow rotation, respectively. It becomes apparent that the polarization of
the excitation light, and thus the initial distribution of orientation of p, has a strong
impact on the average fluorescence lifetime when fluorophores are fixed or only slowly
rotating. In contrast, quickly rotating fluorophores sample the whole p-orientation
space several times before decaying, resulting in lifetimes that are independent of the
initial θ-distribution.
Due to this confirmation of the probabilistic approach, and because it is computationally
much faster than the single-fluorophore simulations, it was employed for the nanocavity-
based determination of fluorescence quantum yield values as described below.

Measured average arrival time

We will now combine the results from the previous paragraphs to predict the measured
average photon arrival time τmeas for a given sample geometry and given optical properties
of the fluorophore. We start by revisiting equation (4.47), which describes the time
dependence of the number of photons emitted by a fluorophore situated at zm:

Iem(zm, t) ∝
∫ π

0

dθ sin θ p(θ, zm, t) · kr(zm, θ).

The number of photons that is actually detected is lower than Iem: The molecule
detection function u(θ, zm) specifies which fraction of emitted photons enters the
objective. Additionally, the detection efficiency of the detector and possible losses in
the optical path between objective and detector could be taken into account, however,
since they are independent of the sample itself, they cancel in the calculation of τmeas.
Thus, we find for the number of photons Idet detected from a photon at height zm:

Idet(zm, t) ∝
∫ π

0

dθ sin θ p(θ, zm, t) · kr(zm, θ) · u(zm, θ). (4.60)

Note that, when inserting the definitions of kr and u, the formulas simplify due to

kr(θ, zm) · u(θ, zm) =
Stot,⊥ cos2 θ + Stot,‖ sin2 θ

S0

·
Sdet,⊥ cos2 θ + Sdet,‖ sin2 θ

Stot,⊥ cos2 θ + Stot,‖ sin2 θ

=
Sdet,⊥(zm) cos2 θ + Sdet,‖(zm) sin2 θ

S0

. (4.61)

All calculations performed so far assumed a single emission wavelength λ. However, real
fluorophores can emit with different probabilities at various wavelengths, described by
the emission spectrum F (λ)21. As described in section 2.5.1, this is due to the presence

21In the following, we assume that the emission spectrum has been normalized, i.e.
∑
λ F (λ) = 1.
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of many vibrational and rotational sublevels in the electronic ground state, which all
have slightly different energies. In an exact treatment, the radiative decay rate has to
be viewed as the sum of the rates of all possible transitions from the excited state to any
of these sublevels of the ground state. Since MIET is wavelength-dependent, each of
these rates is changed by a slightly different amount by the presence of the nanocavity:

kr(θ, zm) =
∑
λ

kr,λ(θ, zm)

=
∑
λ

kr,λ,0 ·
Stot,λ(θ, zm)

S0,λ

= kr,0 ·
∑
λ

F (λ) · Stot,λ(θ, zm)

S0,λ

. (4.62)

Equivalently, the molecule detection function is different for each λ. Since p(θ, zm, t)
contains the radiative decay rate, this probability distribution, too, depends on λ.
Therefore, the correct expression for the number of detectable photons originating from
a fluorophore at height zm is:

〈Idet〉λ(zm, t) ∝
∑
λ

F (λ)

∫ π

0

dθ sin θ pλ(θ, zm, t) · kr,λ(zm, θ) · uλ(zm, θ). (4.63)

In practice, the calculation of pλ(zm, θ, t) is one of the most time-consuming steps due to
the matrix diagonalization. The repeated determination of this probability distribution
can be avoided by assuming that the emission spectrum is not too broad, and the
variation of the radiative rates therefore not too large. Then, the wavelength-averaged
radiative rate

〈kr〉(θ, zm) =

(∑
λ

kr,⊥,λ(zm)

)
cos2 θ +

(∑
λ

kr,‖,λ(zm)

)
sin2 θ (4.64)

can be used to calculate the wavelength-averaged distribution 〈p〉λ(zm, θ, t). Thus, we
have:

〈Idet〉λ(zm, t) ∝
∫ π

0

dθ sin θ 〈p〉λ(θ, zm, t) ·
∑
λ

F (λ)kr,λ(zm, θ) · uλ(zm, θ). (4.65)

It remains to take into account that the detector collects photons from the whole
focal volume simultaneously by summing over zm. Since the rotational diffusion
calculations were performed under the condition

∫ π
0

dθ sin θp(zm, θ, t = 0) = 1, i.e. with
the assumption that there was an excited molecule at height zm at time zero, the relative
weights for the different heights zm have yet to be determined. This is can be achieved
by realising that the probability to excite a molecule at height zm is proportional to the
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intensity of the electric field at zm. Thus, the needed weights are simply proportional
to Iexc

⊥ (zm) + 2Iexc
‖ (zm):

〈I〉λ,zm(t) =

∫ h

0

dzm〈Idet〉λ(zm, t) ·
[
Iexc
⊥ (zm) + 2Iexc

‖ (zm)
]
. (4.66)

With this, we arrive at the desired expression for the average measured photon arrival
time τmeas:

τmeas =

∫∞
0

dt t · 〈I〉λ,zm(t)∫∞
0

dt 〈I〉λ,zm(t)
. (4.67)

After the rigorous and thus rather complex derivation of this equation, it is worth to
recapitulate which parameters influence τmeas. The refractive indices and thicknesses of
all sample layers – the glass cover slip and the convex lens, the silver layers serving as
mirrors, and the medium between the mirrors containing the fluorophores – influence
kr, u and Iexc. These parameters are assumed to be known. Another member of this
class of parameters is the height h of the cavity, which is determined by measuring a
white light transmission spectrum such as the ones shown in figure 4.28 and fitting
the data with h as the free parameter. The other group of parameters concerns the
fluorophore itself, it consists of the quantum yield Φ, the free space lifetime τ0 and the
rotational diffusion time τrot. It is the aim of the nanocavity measurements to determine
Φ. In principal, the other two parameters can be determined by additional experiments.
Alternatively, they are kept as free parameters in the fit. Then, comparing the fit values
of τ0 and τrot with results obtained by other methods can serve as a control of the whole
fitting process, including the result for Φ.
Before introducing the analysis software for nanocavity measurements that was developed
as a part of this work, we present a short example of real data. The squaraine-based
membrane-staining dye dSQ12S developed by the group of Klymchenko et al. [144] was
shown to fluoresce brightly in dioxane and DMSO, as well as when it is incorporated in
a lipid bilayer, but to be almost dark when dissolved in water. This makes dSQ12S
interesting for staining cell membranes with a low background signal. The quantum
yield of this dye was only determined by comparison with the commercially available
dye DiD (1,1’-dioctadecyl-3,3,3’,3’-tetramethylindodicarbocyanine perchlorate), and the
result was published without specifying the details of the measurement [144]. Therefore,
we performed a nanocavity-based measurement of dSQ12S in DMSO (n = 1.48), with
cavity mirror thicknesses of 30 nm (bottom silver mirror evaporated on glass cover slip)
and 60 nm (top silver mirror evaporated on convex lens). The spectrum of dSQ12S in
DMSO as measured by us is given in figure 6.5 in the appendix. For the main experiment,
the cavity was moved laterally to allow the acquisition of TCSPC histograms and white
light transmission spectra at various cavity heights h. By fitting the absolute square
of the effective Fresnel transmission coefficient |tp,s(λ)|2 to the transmission spectrum
with h as the free parameter, the cavity heights were determined. In figure 4.37, the
average photon arrival times τmeas are plotted against h. The errorbars indicate the
estimated uncertainties of the lifetimes, determined as ∆τmeas ≈ 4.8τmeas/

√
N , where

N is the number of photons used to determine τmeas ([4] and section 4.1.3). Note that
the signal is strongest when the emission maximum of the dye is in resonance with
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Figure 4.37: Quantum yield measurement of the squarine-based dye dSQ12S. Measured
average photon arrival time τmeas plotted against cavity height h (red circles), lifetime
uncertainty ∆τmeas indicated by errorbars. Solid blue line corresponds to the best fit of
equation (4.67) to the data. Fit parameters: Φ = 0.49, τ0 = 1.4 ns and τrot = 0.08 ns.
The nanocavity consisted of two silver mirrors (thicknesses 30 nm and 60 nm) on glass,
separated by DMSO (n = 1.48) containing the dye. Data recorded by Alexey Chizhik.

the cavity, and grows weaker as the cavity height is changed. Therefore, the lifetime
values obtained at the edges of the measurement interval are known with less accuracy
than those in the center of the interval. The solid line corresponds to the best fit of
equation (4.67) to the data, with Φ, τ0 and τrot as fit parameters. We found Φ = 0.49,
τ0 = 1.4 ns and τrot = 0.08 ns (i.e. R = τ0/τrot ∼ 20). In their original publication [144],
Klymchenko et al. claimed a quantum yield of 0.73 in DMSO. The plausibility of these
two conflicting results can be tested by comparing with an independent measurement:
We stained the plasma membrane of blood platelets with dSQ12S and found a lifetime
of τ0,cell = 2.5 ns in the absence of any metal. The refractive index of the medium was
determined to be ncell = 1.33, as opposed to nDMSO = 1.48. The empty-cavity model
(see section 4.1.4) therefore predicts a quantum yield of

Φcell = ΦDMSO ·
τ0, cell

τ0, DMSO

· n5
cell

n5
DMSO

· (2n2
DMSO + 1)2

(2n2
cell + 1)2

≈ 0.72 (4.68)

inside the cell. By inserting Klymchenko’s value ΦDMSO = 0.73 instead, we find a
predicted quantum yield of Φcell ≈ 1.03, which is impossible. We therefore conclude
that our measurement was more accurate than that reported in [144].
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4.3.2 Numerical implementation: graphical user interface

As the previous section has shown, the extraction of a quantum yield value from lifetime
measurements in a nanocavity requires a considerable knowledge of the underlying
theory. In order to enable non-expert scientists to perform and evaluate this type
of quantum yield measurements, a Matlab-based software package equipped with a
graphical user interface (GUI) similar to the MIET GUI was created. Figure 4.38
presents a screenshot and explains all relevant elements. Notably, the user can choose
between a Standard mode that assumes a simple cavity consisting of two metal mirrors
and one type of material in between, the latter containing the fluorophore, and an Expert
mode that enables the definition of more complex sample geometries. Furthermore,
prior knowledge about the free space lifetime and the rotational diffusion time can be
incorporated in the Expert mode in the form τ0 ±∆τ0 or τrot ±∆τrot, respectively.
The data evaluation starts with the determination of the cavity heights h from the
transmission spectra. Since the white light lamp generally does not provide a uniform
intensity of all wavelengths, and since the detection efficiency of the detector is usually
wavelength dependent, before fitting, all transmission spectra are divided by a transmis-
sion spectrum recorded without the sample. The resulting heights h, together with the
predefined sample parameters, are then used to calculate the excitation rates Iexc

⊥ (zm, h)
and Iexc

‖ (zm, h), the relative radiative rates Stot,⊥(zm, h)/S0 and Stot,‖(zm, h)/S0, and

the relative amount of detected radiation Sdet,⊥(zm)/S0 and Sdet,‖(zm)/S0. This greatly
speeds up the subsequent fitting of the lifetime data to equation (4.67). The fit itself
employs a Nelder-Mead downhill simplex method [145] to minimize the sum of the
squared residuals of the lifetime values. Finally, a figure is produced showing the fitted
lifetime values together with the measured values to allow a visual inspection of the fit
quality, see figure 4.37 for an example.
If desired, the fitting is repeated for one hundred simulated data sets which are based
on the measured data set to obtain estimates of the uncertainties of the fit parameters
(bootstrapping). The individual simulated data sets only differ in the lifetimes τmeas(h).
If the measurement uncertainty is known, these lifetime values are drawn from Gaussian
distributions with mean values τmeas(h) and standard deviations ∆τmeas(h). Otherwise,
data sets are produced by randomly discarding 20 % of the data points and only fitting
the remaining 80 %. The latter technique is less reliable than the former because the
estimated uncertainties depend on the fraction of discarded data points, however, it
is able to reveal the order of magnitude of the uncertainties. In the last part of this
section, a general analysis of the accuracy of the determined quantum yield values will
be presented.
This software was used to evaluate a large number of experiments during the course of
this work. One published example is given in the next section.
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Standard mode → Expert mode

a) b)

Figure 4.38: Screenshot of the graphical user interface for the evaluation of quantum
yield measurements. a) Main window. The user can switch between the Standard mode
and an Expert mode which allows unusual sample compositions. In both cases, the
files containing the emission spectrum of the fluorophore, a white light transmission
spectrum acquired without the sample, a list of all measured lifetimes, and all white light
transmission spectra have to be defined. In the standard mode, the cavity is assumed
to consist of a metal-coated cover slip and a metal-coated lens with a fluorescent liquid
or solid in between. Then, the type and thickness of the metal, the refractive index of
the medium containing the fluorophores, and the numerical aperture have to be chosen.
Alternatively, in the expert mode, one can freely define a stratified system: By clicking
the button Choose parameters, the second window (b) opens. Here, two stacks of layers
can be defined, the bottom one containing a cover slip and the top one situated on a lens.
In between, there is a variable layer, whose height varies due to the curvature of the lens.
In this mode, it is possible that the fluorophores are not inside the variable layer, e.g.
when they are confined to a lipid bilayer that is located at the bottom of a water-filled
cavity. Furthermore, the expert mode enables the user to incorporate prior knowledge
about the free space lifetime or the rotational diffusion time. In both operation modes, it
is possible to obtain estimates of the uncertainties of the fit parameters by ticking the
box Bootstrap the data?. If the lifetime file also contains lifetime uncertainties, several
data sets are simulated whose lifetimes at height h are randomly drawn from Gaussian
distributions with means τmeas(h) and standard deviations ∆τmeas(h). The spread of the
resulting fit parameters then yields ∆Φ, ∆τ0 and ∆τrot. Contrarily, when no information
regarding ∆τmeas exists, bootstrapping is done by fitting data sets containing only 80 %
of the data points (chosen randomly).
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4.3.3 Quantum yield measurements of fluorophores in lipid bilayers
using a plasmonic nanocavity

One of the main advantages of the nanocavity-based quantum yield measurement is its
flexibility regarding the sample type. For example, the required amount of sample in
a nanocavity is very small, since typical cavity heights range from 100 nm to 200 nm,
enabling to study compounds that are expensive or difficult to synthesize. In contrast,
common techniques using integrating spheres or spectrometers usually employ cuvettes
of 10 mm × 10 mm [137]. The sandwich-structure of the sample also allows more
complex sample compositions, for example fluorophores inside a lipid membrane. This
was used to full capacity in a study comparing the quantum yields of two dyes in water
and in a lipid membrane, which is summarized in this section:

[2] F. Schneider, D. Ruhlandt, I. Gregor, J. Enderlein, and A. I. Chizhik,
“Quantum yield measurements of fluorophores in lipid bilayers using a plas-
monic nanocavity,” Journal of Physical Chemistry Letters, vol. 8, no. 7,
pp. 1472–1475, 2017. F. S. and D. R. contributed equally to this work.

The experiments were performed by Falk Schneider and Alexey Chizhik, I provided the
data analysis software, and we all analyzed the data.

Methods

The setup used for the nanocavity measurements is shown in figure 4.39. It differs
from the standard FLIM setup previously shown in this work in two respects: Firstly,
a white light source is placed above the sample, and a flipping mirror allows to guide
the transmitted light to a spectrometer and a CCD camera for acquiring white light
transmission spectra. Secondly, the sample contains not only a plane metal-coated
cover slip as for MIET imaging, but also a metal-coated glass lens. The thicknesses of
these silver layers were 30 nm for the bottom mirror and 60 nm for the top mirror, both
were prepared by vapor deposition as described in the MIET section. For details of the
used instruments and optical components, see [2].
We studied two different commercially available fluorophores, the hydrophobic dye
Atto 647N and the hydrophilic dye Atto 655 from Atto-Tec (Siegen, Germany). In the
first part of the study, lipid conjugates were examined, namely Atto 647N-1,2-dioleoyl-
sn-glycero-3-phosphoethanolamine (Atto 647N-DOPE) and Atto 655-1,2-dipalmitoyl-
sn-glycero-3-phosphoethanolamine (Atto 655-DPPE). The fluorescent lipid analogues
were incorporated into a supported lipid bilayer (SLB), a commonly used model of cell
membranes [146–148]. The SLBs were formed by spin-coating a solution of 1 mg/ml of
the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in a 2:1 mixture of chloroform
and methanol onto the substrate at 3000 rpm for 45 s. The dye-lipid conjugates were
incorporated into the SLBs by adding them to the DOPC solution at ratios between
1:20 000 and 1:50 000 (w/w) prior to spin-coating. Subsequently, the lipid bilayers were
hydrated and washed with a buffer containing 150 mM NaCl and 10 mM HEPES. After
removal of excess buffer, the silver-coated lens was placed on top of the buffer and
the SLB. Since the SLB was assumed to be very close to the substrate, a 30 nm thick
silicon dioxide spacer was deposited above the bottom silver mirror to decrease direct
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Figure 4.39: Schematic of the setup used to measure fluorescence lifetimes and white
light transmission spectra inside a nanocavity. The inset shows the structure of the
sample inisde the cavity, where small red dots represent the fluorophores. Image created
by Alexey Chizhik and published in [2].
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Figure 4.40: Confocal scan images of Atto 655-DPPE incorporated in a supported
lipid bilayer and placed inside a nanocavity. (a) Fluorescence intensity in the λ/2 region,
visible as a bright ring. The segment with approximately doubled fluorescence intensity
corresponds to a region with an accidentally formed double bilayer. (b) Fluorescence
lifetime distribution within a part of the λ/2 region where there is only a single bilayer.
The dashed line represents a typical scan used for the quantum yield measurement, while
the arrow points towards the center of the cavity where the lens touches the cover slip.
Data recorded by Falk Schneider and Alexey Chizhik, figure published in [2].
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quenching of the dye by the metal, see also the inset in figure 4.39. In a confocal
fluorescence intensity image of such a sample, distinct bright rings are visible. These
correspond to regions where the emission maximum λmax of the dye is in resonance
with the cavity. Our measurements were always performed in the innermost ring, called
the λ/2 region, since a smaller cavity height ensures a stronger modification of the
fluorescence lifetime. Besides guiding the choice of measurement positions, the lifetime
images also acted as controls of the integrity of the lipid bilayers, since a disruption of
the SLB would lead to loss of fluorescence. An interesting example (which was not used
for the quantum yield measurement) of Atto 655-DPPE inside the SLB is shown in
figure 4.40(a). There, coincidentally a small region with two SLBs on top of each other
formed, resulting in a higher fluorescence intensity. This observation confirmed our
trust in the intensity images as monitors of the SLB integrity. Figure 4.40(b) depicts a
FLIM image of part of the λ/2 region, illustrating the lifetime change with cavity height.
For determining the quantum yield, both the fluorescence lifetime and the white light
transmission spectra were measured along the dashed line. When fitting the lifetime
values to the theoretical model, we took into account the unusual sample geometry:
Underneath the SLB, there is a thin water film with a height of one to two nanometers
[149]. The lipid bilayer itself was assumed to be approximately 6 nm thick [108], with
dye molecules placed within ±2 nm of either surface of the bilayer (due to the carbon
chain linking the fluorophore to the lipid anchor).
In the second part of the study, the pure dyes (or, more accurately, the maleimide
derivative of Atto 647N and the N-hydroxysuccinimide ester of Atto 655) were separately
dissolved in water at a submicromolar concentration. A droplet of the solution was
placed between the cavity mirrors, and both average photon arrival times and white
light transmission spectra were obtained at several positions as described above. Since
the fluorophores were able to explore the full cavity in this scenario, no spacer was used.
Additionally, free space fluorescence lifetimes τ0,meas of all four samples were obtained
on pure glass cover slips in order to compare them with the fit results for τ0.

Results

The measured fluorescence lifetimes are plotted against the cavity height in figure 4.41.
Filled circles correspond to measurements of the lipid conjugates incorporated into the
SLB, while open circles denote values obtained in water. The best fit of our model to
the data is shown as solid and dashed lines, respectively. The fit results are (kr = Φ/τ0,
knr = (1− Φ)/τ0):

sample Φ [-] τ0 [ns] kr [ns−1] knr [ns−1] τ0,meas [ns]

Atto 647N, water 0.62 3.6 0.17 0.11 3.6
Atto 647N, SLB 0.77 3.9 0.20 0.06 4.0
Atto 655, water 0.31 1.9 0.16 0.36 1.9
Atto 655, SLB 0.46 3.0 0.16 0.19 2.9

In all four cases, the fit results of τ0 differ by 0.1 ns or less from the measured values
τ0,meas, which indicates a high fit quality. For both dyes, the quantum yield inside the
SLB is larger than in water. At the same time, the free space lifetime of Atto 655
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Figure 4.41: Average photon arrival time of Atto 647N (a) and Atto 655 (b) as a
function of the cavity height. Solid circles denote measurements of the lipid analogues in
an SLB, while open circles correspond to the pure dye in water. Solid and dashed curves
are the best fit of the theoretical model to the data, where the free parameters are the
quantum yield Φ, the free space lifetime τ0 and the rotational diffusion time τrot (not
shown). Data recorded by Falk Schneider and Alexey Chizhik, image published in [2].
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increases by approximately 50 %, while the lifetime of Atto 647N is only weakly changed
(∼ 8 %).
In order to explain these results, the environment of the fluorophores has to be considered:
They might enter the lipid bilayer, or remain in the water phase (which is possible
due to the carbon chain linking the dye to its lipid anchor). Assuming that the free
space radiative rate only depends on the refractive index of the medium in which the
fluorophore is embedded, kr should be constant if the dye remains in the water phase.
Contrarily, since the refractive index of the lipid membrane is much higher than that of
water, nlipid ≈ 1.46 [124] as opposed to nwater = 1.33, models such as the empty cavity
model or the Strickler-Berg-equation (see section 4.1.4) predict that the radiative rate
of the dye should increase if the dye enters the lipid bilayer. For Atto 647N, based
on kr = 0.17 ns−1 in water, both models predict a radiative rate of 0.20 ns−1 in an
environment with refractive index 1.46, in excellent agreeemnt with our measurements.
In contrast, the radiative rate of Atto 655 remains constant, indicating that the dye
does not enter the lipid membrane. This is in accordance with results from Hughes et
al. [150], who found that pure Atto 647N interacts strongly with lipid bilayers, while
Atto 655 only interacts very weakly with them.
The non-radiative rates of both dyes decrease by a factor of two when incorporated
into the lipid bilayer. Environmental effects on non-radiative decay rates are a very
complex topic: While detailed descriptions of decay mechanism have been given for
some fluorophores, there is no general theory covering all emitters because a number
of very different processes can lead to a non-radiative decay of the excited state (see
e.g. [57], chapter 6 for an overview). Therefore, we do not attempt to explain the
exact nature of the change of knr here. Instead, we only note that it is plausible that
the very different environment inside or close to a lipid membrane leads to an altered
non-radiative decay rate.

4.3.4 Accuracy of the quantum yield measurements

Several factors determine the accuracy of the quantum yield estimation: the quality of
the raw data, the chosen fitting procedure, and the shape of the error landscape. The
first aspect is quite intuitive, the less noisy the data, the more reliable the fit results.
Contrarily, the last two points are non-trivial. We fit the measured average photon
arrival times to the theoretical model by minimizing the sum of squared residuals
(SSR) as a function of Φ, τ0 and τrot. Finding the global minimum is a difficult non-
linear three-dimensional optimization problem, see e.g. [151] for an overview of global
optimization algorithms. The Nelder-Mead downhill simplex method [145] used in the
present work to minimize the SSR does not guarantee that the obtained minimum is a
global minimum, however, it is generally faster and easier to implement than true global
minimization algorithms [151]. Yet, even if a true global minimization procedure would
be used, the fit results could still be wrong if the position of the global minimum of
the SSR does not coincide with the true values of Φ, τ0 and τrot. Figuratively speaking,
this situation can occur, for example, if the error landscape is relatively flat in a region
around the true parameters, such that noise in the data can shift the global minimum
away from the true values. In this case, restricting the allowed parameter space (e.g. by
defining bounds for τ0 or τrot based on independent measurements) can help to find a
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Figure 4.42: Data sets used for the simulation of lifetime data acquired in a nanocavity
with known ground truth Φ = 0.5, τ0 = 1 a.u. and τrot = τ0 (other values tested in
the simulations: τ0/τrot = 10±4). The blue points with errorbars denote the mean and
standard deviation of Gaussian distributions, from which single lifetime values are drawn.
One exemplary data set is shown as pink dots; typically, 100 such data sets were evaluated
per parameter set.

local minimum which is close to the true parameters. Conversely, it is useful to know
which conclusions regarding the accuracy of the fitted quantum yield can be drawn
from a comparison of the fit results of τ0 or τrot with measured values.
In order to test the robustness of the quantum yield fits, and to see how the uncertainty
∆Φ changes when the other parameters are restricted, we performed fits of simulated
data for which the ground truth was known. The results are presented in this section.
The simulated system was similar to the experiment done on the membrane staining
dye dSQ12S: a nanocavity with silver mirrors (thicknesses 30 nm and 60 nm) and
filled with DMSO (n = 1.48), an objective with numerical aperture 1.49, an excitation
wavelength of 585 nm, a quantum yield of the dye of 0.5 and the same emission spectrum
as we measured for dSQ12S (figure 6.5 in the appendix). We assumed different R-
values (R = τ0/τrot) and calculated the expectation values of the measured average
photon arrival times 〈τmeas〉(h) for cavity heights h within the λ/2 region of the cavity.
Noisy data was simulated by drawing random values from Gaussian distributions with
means 〈τmeas〉(h) and standard deviations 〈τmeas〉(h) ·σrel using the relative uncertainties
σrel = ∆τmeas(h)/τmeas(h) from the dSQ12S data set. In figure 4.42, the Gaussian
distributions for R = 1 are visualized as blue points with errorbars, together with an
exemplary data set (pink dots).
In a first step, 100 such data sets were evaluated using the fitting procedure described
previously, with completely free fit parameters Φ, τ0 and τrot. Figure 4.43(a-c) show
scatter plots of the obtained parameter pairs (τ0,Φ), (τrot,Φ) and (τ0, τrot), respectively.
The ground truth (Φ = 0.5, τ0 = 1 a.u. and τrot/τ0 = 10−4, 1 or 104) is indicated as
vertical or horizontal dashed lines. It becomes apparent that the fitted quantum yield
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Figure 4.43: Fit parameters obtained by evaluating 100 data sets such as the one shown
in figure 4.42. The only restrictions placed on the fit parameters were positivity for τ0

and τrot and 0 ≤ Φ ≤ 1. The simulations were carried out for three ratios R = τ0/τrot,
namely R = 10−4 (‘slow rotation’, orange), R = 1 (‘medium rotation’, cyan) and R = 104

(‘fast rotation’, pink). Each point corresponds to one data set. Vertical and horizontal
lines indicate the underlying true parameter values. Note that correct values of τ0 or τrot

coincide with correct values of Φ. The legend is valid for all three plots.
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Figure 4.44: Fit parameters obtained by evaluating 100 data sets such as the one shown
in figure 4.42. Either τrot (top) or τ0 (bottom) were fixed to the values indicated on the
axis. The simulations were carried out for three ratios R = τ0/τrot, namely R = 10−4

(‘slow rotation’, orange), R = 1 (‘medium rotation’, cyan) and R = 104 (‘fast rotation’,
pink). Vertical and horizontal lines indicate the underlying true parameter values. The
legend is valid for both plots.

value is only correct if the fitted free space lifetime and rotational diffusion time are
also close to their true values, with one exception: For slowly rotating molecules (true
τrot = 104 τ0), all fitted rotational diffusion times larger than 102 τ0 coincide with correct
quantum yield fits. As a consequence, it seems advantageous to conduct an independent
measurement of τ0 or τrot. Then, the measured values can either be used to retroactively
check the fit quality, or to directly restrict the parameter space used for fitting.
Therefore, the second step of the study examined the performance of this approach.
We hypothesized that setting τ0 or τrot to their correct value would improve both the
accuracy and the precision of the estimate of the QY, while fixing them at a wrong
value would also lead to an incorrect Φ. The top panel of figure 4.44 shows the mean
and standard deviation of Φ obtained by fitting 100 data sets with fixed τrot. The
correct value of Φ = 0.5 is recovered for τrot, guess/τ0 ≤ 10−2 if the true ratio was 10−4,
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and for τrot, guess/τ0 ≥ 102 if the true ratio was 104. Thus, if the rotation is by at least
two orders of magnitude smaller or larger than the fluorescence lifetime, the exact value
is unimportant, and it suffices to know that the rotation is ‘slow’ or ‘fast’. Contrarily, if
the rotational diffusion time is similar to τ0, then the fit result depends sensitively on the
assumed value of τrot, guess. Depending on the true rotation behaviour of the fluorophore,
the quantum yield values obtained for different assumed rotational diffusion times differ
by as little as 0.25 (fast rotation) or as much as 0.5 (slow rotation). Therefore, the
rotational diffusion time should only be fixed to a specific value – or a small range of
values – if it is known with reasonable certainty.
A similar conclusion can be drawn from the fit results for fixed τ0 in the bottom panel of
figure 4.44. Close to the correct value of τ0, the quantum yield changes approximately
linearly with the assumed value of τ0, with the slope depending on the rotational
behaviour of the emitter. In these cases, if the lifetime has been determined with an
error of ±10 %, the resulting error of the quantum yield is between 0.08 (slow rotation)
and 0.14 (fast rotation). We performed the same simulations for a true quantum
yield of Φ = 0.8 (see figure 6.6 in the appendix), and there found errors between 0.02
(slow rotation) and 0.18 (fast rotation). To put this result into perspective, consider
the determination of the quantum yields of Atto 655 and Atto 647N in water and in
supported lipid bilayers described in the previous section. There, the fit itself was
performed with unconstrained parameters, yielding values for Φ, τ0 and τrot. Independent
measurements of τ0 for the four different samples deviated by 3 % or less from the fit
results, indicating that the quantum yield results are most likely also within ±0.05 of
the true values.
To conclude, an unconstrained fit of lifetime data acquired in a nanocavity can, in
some cases22, lead to completely wrong results for the quantum yield, see figure 4.43.
However, these wrong results are accompanied by wrong values of the free space lifetime
and the rotational diffusion time, and can therefore be identified by comparing with
independent measurements of τ0 or τrot. If the latter are close to the fit results, then the
quantum yield value can be assumed to be quite accurate, too, typically within 5 %-10 %
of the correct value. Alternatively, a restriction of the allowed fit parameters of τ0 or
τrot to independently measured ranges results in the same accuracy of the quantum
yield values.

22Since the number of data points is not so large, this depends mostly on the random variations of the
measured lifetimes. For example, if, by chance, all lifetimes at small cavity heights are higher than
their expectation value, this already drastically changes the shape of the curve, shifting the global
minimum of the SSR and thus leading to wrong fit results.
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5 Discussion and outlook

In recent years, significant progress has been made in the field of optical microscopy.
This process was driven by experimental advances (such as the development of fluo-
rophores with tuned properties or detectors with higher sensitivity), new theoretical
approaches, as well as improved data analysis. In this work, it was shown how a
profound theoretical understanding of a seemingly exotic phenomenon, namely the
influence of metal structures on fluorescence lifetimes, has lead to the development of
a microscopy technique with outstanding z-resolution that is based on a completely
different physical concept than other optical super-resolution methods.
The first part of this work was dedicated to classical electrodynamics. In particular, the
radiation properties of oscillating electric dipoles – such as the angular distribution of
radiation or the total energy flux – were derived in both planar and spherical geometries.
Remarkably, these results can be used to explain a quantum mechanical phenomenon,
namely the change of the fluorescence lifetime of single fluorophores in the vicinity of
metal structures. The power of this semi-classical approach was demonstrated in the
second part of this work, where metal-induced energy transfer (MIET) microscopy was
employed to study several biological systems, and the fluorescence quantum yield of dyes
in different environments was determined via lifetime measurements in a nanocavity.
As one application of MIET, a complex cellular adhesion process (the epithelial-to-
mesenchymal transition in NMuMG cells) was studied with unprecedented axial resolu-
tion, revealing a reduction of focal adhesion sites and a lift-off of the cell membrane
between these sites during the initial stages of the process. By carefully taking into ac-
count possible Förster resonance energy transfer (FRET) between different fluorophores,
MIET was equipped with dual-colour imaging capabilities. This new technique allowed
to monitor the maturation of focal adhesion complexes in human mesenchymal stem
cells and to elucidate their three-dimensional structure, confirming the standard picture
of a partial overlap of actin stress fibers and focal adhesion complexes (represented by
vinculin), and showing that stress fibers emerge from focal adhesion complexes under a
very shallow angle of below one degree. In a second dual-colour MIET experiment, three-
dimensional profiles of the basal part of the inner and outer nuclear membrane of HeLa
cells were obtained, providing the first study of the nuclear envelope structure along the
vertical axis using optical microscopy. Even though these intracellular structures were
localized at the limit of the MIET operating range, the obtained results of the average
distance between inner and outer nuclear membrane agreed well with previous electron
microscopy and horizontally acquired optical microscopy measurements, proving the
applicability of MIET even in challenging samples.
For the evaluation of these various experiments, a versatile software package equipped
with a user-friendly graphical interface was developed and constantly improved. It
implements the non-trivial calculation of the height profile from given lifetime values
for virtually arbitrary stratified samples. To encourage the application of MIET in the
general biological community, the software is freely available. From personal communi-
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cation, we know about a recent increase in the usage of the technique.
It can be expected that MIET will soon be applied to answer a broader range of
biological questions when it becomes possible to conduct live-cell MIET imaging of
intracellular structures1. Typically, fluorescence microscopy of living cells is performed
with fluorescent proteins that are expressed by the cell itself. However, most fluorescent
proteins exhibit a multiexponential fluorescent decay due to the presence of different con-
formations of the chromophore or the amino acid residues in its immediate surroundings
(see e.g. [75, 152–154]). If these species have different quantum yields that are not known
individually, calculating an accurate MIET calibration curve is not possible. Similar
problems have been identified in the context of lifetime-based FRET measurements,
which lead to the development of some truly monoexponential fluorescent proteins, e.g.
the cyan variant mTurquoise2 [155] and the red variant mScarlet [156]. With the help
of these new labels, live-cell MIET measurements are now a realistic option.
The range of possible MIET applications also depends on the achievable localization
accuracy. While an axial resolution of 2.5 nm to 3 nm was shown in previous single-
molecule and ensemble MIET experiments [38–40], those measurements were performed
in well-defined environments. Thus, the resolution was determined solely by the accuracy
of the lifetime values and the steepness of the MIET curve. In this work, the additional
error introduced by incorrectly modeling the sample structure during the calculation
of the MIET curve was studied. It was found that the refractive index of the sample
itself has a relatively small impact, for example, replacing a correct value of n = 1.37
with an incorrect value of n = 1.33 or n = 1.40 only leads to a bias of less than 7 nm
in the calculated axial position of the fluorophore in a typical sample. The refractive
index of dielectric structures which are not in direct contact with the fluorophore, such
as the plasma membrane in experiments targeting intracellular structures, influences
the MIET curve even less. In general, the error due to simplified or incorrectly guessed
refractive indices is z-dependent, with smaller errors at small z. The same trend was
found when assuming an incorrect quantum yield in the calculation of the MIET curve.
These results are encouraging in two respects. Firstly, while of course an effort should be
made to determine the refractive index structure of the sample as accurately as possible,
z-positions obtained by MIET are quite accurate even in complex cellular environments
that have to be simplified for the calculations. Secondly, a future application of MIET
in structural biology (by labeling and localizing two distinct sites within a biological
macromolecule in order to determine its three-dimensional structure) would mainly
require to determine heights close to the surface, where the accuracy is highest.
The latter example leads us from the discussion of MIET experiments on densely labeled
samples, which were the focus of this work, to potential applications of single-molecule
MIET (smMIET). The basic physical principle of smMIET is the same as for MIET
of densely labeled samples, however, the orientation dependence of the MIET curve
becomes more important when observing single molecules. In dense samples, the
fluorophores were either assumed to rotate quickly (e.g. in solution measurements) or
to be oriented randomly, thus leading to an averaging of the different MIET curves
when many fluorophores are present within the focal spot. The former case is also
possible for single molecules, for example if they are attached to the structure of interest

1 To the present date, MIET measurements of living cells always targeted the plasma membrane
because it can be labeled by organic fluorophores without a lethal permeabilization of the membrane.
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via a flexible linker. Contrarily, if the molecules are fixed, their orientation has to
be determined in order to choose the correct MIET curve. Some pioneering work in
this direction was done in [40], where the intensity patterns observed in defocused
images of single fluorophores were used to determine the orientation of the dipole
moment. More recently [9], an extensive study containing theoretical considerations,
simulations and experimental data treated the three-dimensional localization of fixed
dipoles by performing smMIET-scans with a radially polarized excitation laser or by
alternatively combining smMIET with defocused imaging. It was demonstrated that
lateral and horizontal localization accuracies of 2 nm to 4 nm and 0.5 nm to 1.5 nm,
respectively, can be achieved under realistic experimental conditions. In the same work,
a similar theoretical resolution was derived for rapidly rotating dipoles studied with a
simple confocal FLIM setup. The latter situation was recently realized in [8], where
rapidly rotating fluorophores were used to label rigid DNA origami pillar structures
with well-defined geometry and orientation. By imaging single pillars labeled with two
dyes, two bleaching steps could be observed in the intensity time-traces, allowing to fit
two lifetime components to the corresponding TCSPC curves and thus to colocalize
the two dyes along the optical axis. There, axial localization accuracies ranged from
3 nm to 5 nm. These examples demonstrate the potential of smMIET for the field of
structural biology. Potentially, this can be improved even further by screening for dyes
that exhibit both photoswitching suitable for approaches such as PALM or dSTORM,
and stable, environment-independent fluorescence lifetimes.
The second important application of electrodynamics simulations presented in the
present work is the determination of fluorescence quantum yield (QY) values using a
metallic nanocavity. This technique has the great advantage of yielding absolute QY
values without need of calibration or comparison with a known sample. Furthermore, it
does not underestimate the QY of samples with a non-fluorescent population (such as
photoactivatable fluorescent proteins) because it is solely based on the cavity-induced
fluorescence lifetime modulation of the fluorescent population. Finally, the method
allows to determine the QY of fluorophores in a large variety of environments, from
solution measurements to molecules embedded in a solid, thin layers of dyes deposited
on a surface, or even single molecules [157]. This versatility was demonstrated in
the present work by measuring and comparing the QY of two dyes both in aqueous
solution and embedded in a supported lipid bilayer. The results strongly suggest that
both the empty-cavity model and the Strickler-Berg equation correctly predict the
refractive index dependence of the radiative deexcitation rate of a dipole emitter. This
finding allows to deduce the QY of a fluorophore in any medium based on a lifetime
measurement in said medium, and the knowledge of the QY and lifetime of the emitter
in a second medium. Such calculations are especially important for MIET in cells,
where it is hard to measure the QY but straightforward to determine the lifetime.
To sum up, the present work has treated an unusual application of classical elec-
trodynamics by modeling the fluorescence lifetime changes of dipole emitters in the
vicinity of metal nanostructures. Two applications of this theory were demonstrated:
MIET microscopy, which provides axial super-resolution in fluorescence microscopy,
and lifetime-based quantum yield measurements in a metal nanocavity. Based on our
own results and the recent developments outlined in this discussion, exciting advances
in lifetime-based localization microscopy can be expected in the near future.
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6 Appendix

6.1 Proofs, additional calculations and code snippets

6.1.1 Orthogonality of vector spherical harmonics

We want to show that ∫ 2π

0

dφ

∫ π

0

dθ M f
`m ·N

g
`′m′ sin θ = 0 , (6.1)∫ 2π

0
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∫ π

0

dθ M f
`m ·M

g
`′m′ sin θ ∝ δl,l′δm,m′ , (6.2)

and

∫ 2π

0

dφ

∫ π

0

dθ N f
`m ·N

g
`′m′ sin θ ∝ δl,l′δm,m′ . (6.3)

It is easy to see from the orthogonality of the complex exponential functions eimφ

(equation 2.24) that all three integrals are zero for m 6= m′. The `-dependency is a little
harder to prove, the following is based heavily on [44]. We will start with equation
(6.1), it requires us to determine the following integral:∫ π
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where the second step uses the fact that Pm
` solves equation (2.25) and the third step

employs the orthogonality of the Pm
` . In the fourth step we used again that Pm

` (cos θ)
is zero at θ = {0, π} for m 6= 0 and finite for m = 0. Thus,∫ 2π
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The proof of equation (6.3) simply requires us to combine some previous results:∫ 2π
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6.1.2 Radius-independence of spherical flux integrals

We want to proof that Im[f(ρ)] = −1/ρ2 for all ρ ∈ R, as used in section 2.4.6. The
function is defined as

f`(ρ) := j`
1

ρ

d(ρh`)

dρ
+ h`

1

ρ

d(ρj`)

dρ
, (6.8)

with the spherical Bessel function j` and the spherical Hankel function h`, and where a
bar denotes complex conjugation. We make use of the fact that the spherical Hankel
function can be expressed as a sum of j` and the spherical Neumann function y`,
h` = j` + iy`, to find an expression of real functions:
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As the induction basis, we evaluated this expression numerically for ` = 1 and ` = 2,
and found the result to be −1/ρ2 within the numerical accuracy. For the induction
step, we need the two recursion formulas ([46], §19):

Z`+1 + Z`−1 =
2n

ρ
Z`

Z`+1 − Z`−1 = −2
dZ`
dρ

, (6.10)

which can be combined to give
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where Z can be either j or y. This also has the useful implication that
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we can then prove the inductive step:
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6.1.3 Excitation intensity in a nanocavity

Continuing the discussion from the section Excitation probability in 4.3.1, the electrical
field inside a nanocavity that is illuminated with a confocal microscope is given by
[107]:

Ex(ρ, φ, z) = f0(ρ, z) + f2(ρ, z) · cos(2φ)

Ey(ρ, φ, z) = f2(ρ, z) · sin(2φ) (6.15)

Ez(ρ, φ, z) = f1(ρ, z),

where it was assumed that the electric field in the back focal plane is polarized along
the x-axis, and that the point r = (ρ, φ, z) in the nanocavity is given by cylindrical
coordinates. The functions f0,1,2(ρ, z) are independent of the angle φ, they are obtained
by integrating over all plane wave components up to the maximum angle permitted by
the numerical aperture of the objective, χmax = arcsin(n/NA):

fj =

∫ χmax

0

dχ sinχ
√

cosχJj(km sinχmρ)
[
κ+
j (χm)eizkm cosχm + κ−j (χm)e−izkm cosχm

]
.

(6.16)

Here, km = nmkv is the wave vector in the fluorophore’s medium, Jj is a Bessel function
of the first kind, and the two summands in the square brackets describe upwards (+)
and downwards (-) traveling waves:

κ±0 (χm) = T±s (χm) cos(χm) + T±p (χm)

κ±1 (χm) = −2iT±s (χm) sin(χm) (6.17)

κ±2 (χm) = − T±s (χm) cos(χm) + T±p (χm).

The coefficients T±p,s are the effective transmission coefficients (from the objective to the
cavity) for plane p- and s-waves, which already include the multiple reflections of the
waves between the two cavity mirrors:

T+
p,s =

t+p,s
1− r+

p,sr
−
p,se

2ihkm cos(χm)

T−p,s =
t+p,sr

+
p,se

2ihkm cos(χm)

1− r+
p,sr
−
p,se

2ihkm cos(χm)
. (6.18)

The Fresnel reflection and transmission coefficients r±p,s and t+p,s at the bottom or top of
the cavity are calculated as described in section 3.2. Here, t+p,s describes the transmission
from the objective’s immersion medium to the inside of the cavity (wave traveling in
positive z-direction), r+

p,s describes the reflection at the top of the cavity (incident wave
traveling in positive z-direction) and r−p,s describes the reflection at the bottom of the
cavity (incoming wave traveling in negative z-direction).
For the determination of quantum yield values from lifetime measurements in a nanocav-
ity, the ρ- and φ-coordinates are not important, since the lifetime only depends on z.
Therefore, the intensity is averaged over ρ and φ, see also section 4.3.1.
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6.1.4 Simulation of a rotating fluorophore inside a nanocavity

The following code is a Matlab-implementation of the algorithm introduced in section
4.3.1.

1 func t i on [R, tau ] = DecayRotDif fus ion ( i n i D i s t r )
% sample parameters
nruns = 1000 ; % number o f s imu la t i on runs
ncurves = 5000 ; % number o f ” molecu le s ” per run
load ( ’ metals . mat ’ , ’ wavelength ’ , ’ s i l v e r ’ ) ; % d i s p e r s i o n o f r e f r . index

6 lamem = 650 ; % emis s ion wavelength [nm]
n0 = [ 1 . 5 2 s i l v e r ( wavelength==lamem) ] ; % bottom mirror on g l a s s
n = 1 . 4 8 ; % r e f r a c t i v e index o f DMSO
n1 = [ s i l v e r ( wavelength==lamem) 1 . 5 2 ] ; % top mirror on g l a s s
d0 = 30 ; % t h i c k n e s s bottom mirror [nm]

11 d = 200 ; % he ight o f the cav i ty [nm]
d1 = 60 ; % t h i c k n e s s top mirror [nm]
QY = 0 . 5 ; % quantum y i e l d o f the f l uo rophor e
k0 = 2* pi /lamem ; % wave vec to r in vacuum

16 % s imu la t i on parameters
s t e p l e n g t h s = [ 0 . 0 1 0 .01 0 .01 0 .01 0 .1 0 .1 0 .1 0 .1 0 .3 0 .3 0 .3 0 . 3 ] ;
r a t e s = [1 .5*10 .ˆ [ −1 −2 −3 −4 −1 −2 −3 −4] 1 .35*10.ˆ [−1 −2 −3 −4 ] ] ;

% MIET
21 [ ˜ , ˜ , ˜ , ˜ , qvd , qvu , qpd , qpu ] = LifetimeLSimpsExp ( k0*d/2 , n0 , n , n1 , k0*d0 , k0*d , k0*d1 ) ;

S0 = n*4/3 ; % t o t a l energy S to t emitted per time in f r e e space
Sv = qvd+qvu ; % S to t f o r v e r t i c a l d i p o l e
Sp = qpd+qpu ; % S to t f o r h o r i z o n t a l d i p o l e ( i . e . p a r a l l e l to mi r ro r s )

26 % r e s u l t s : mean and standard dev i a t i on over a l l ” nruns ” s imu la t i on runs
tauMean = ze ro s (1 , numel ( r a t e s ) ) ;
tauStd = ze ro s (1 , numel ( r a t e s ) ) ;

f o r Dcounter =1:numel ( r a t e s )
31 s t ep l eng th = s t e p l e n g t h s ( Dcounter ) ; % s t ep l eng th o f r o t a t i o n a l d i f f u s i o n

ra t e = r a t e s ( Dcounter ) ; % t o t a l decay ra t e in f r e e space
kr = QY* r a t e ; % r a d i a t i v e ra t e in f r e e space
knr = (1−QY) * r a t e ; % non−r a d i a t i v e ra t e in f r e e space
nt = c e i l (8/ ra t e ) ; % maximum number o f time s t ep s f o r one ” molecule ”

36 dt = 1 ; % length o f one time step [ a . u . ]
tauV = ze ro s ( nruns , 1 ) ; % f i t t e d l i f e t i m e s f o r a l l runs

% s t a r t va lue s f o r theta , depending on p o l a r i z a t i o n o f e x c i t a t i o n l i g h t
thetaV = ( 0 : 1 0 0 ) /100* pi ;

41 i f i n i D i s t r == 0 % random e x c i t a t i o n
prob = s i n ( thetaV ) ;

e l s e i f i n i D i s t r == 1 % p a r a l l e l e x c i t a t i o n
prob = s i n ( thetaV ) . ˆ 3 ;

e l s e % v e r t i c a l e x c i t a t i o n
46 prob = cos ( thetaV ) . ˆ 2 . * s i n ( thetaV ) ;

end
cumprob= cumsum( prob ) ; cumprob=cumprob/cumprob ( end ) ;
% in t e rp1 cannot dea l with non−unique x−va lue s :
% average the ta s with same value o f cumulat ive p r o b a b i l i t y

51 cumprobU=unique ( cumprob ) ; thetaVU=thetaV ; index=f a l s e ( s i z e ( thetaV ) ) ;
f o r counter =2:numel ( cumprob )

i f cumprob ( counter )==cumprob ( counter −1)
thetaVU ( counter −1)=(thetaVU ( counter )+thetaVU ( counter −1) ) /2 ;
index ( counter )=true ;

56 end
end
thetaVU ( index ) = [ ] ;

pa r f o r rc = 1 : nruns
61 % v a r i a b l e f o r s t o r i n g decay t imes

time = NaN( ncurves , 1 ) ;

% draw random s t a r t p o s i t i o n s

219



Appendix

theta0 = in t e rp1 (cumprobU , thetaVU , rand (1 , ncurves ) ) ;
66 phi0 = 2* pi * rand (1 , ncurves ) ;

x s t a r t = s i n ( theta0 ) .* cos ( phi0 ) ;
y s t a r t = s i n ( theta0 ) .* s i n ( phi0 ) ;
z s t a r t = cos ( theta0 ) ;

71 % ” propagate ”
f o r k=1: ncurves

% p o s i t i o n o f the molecule , r w i l l be updated with each step
r = [ x s t a r t ( k ) ; y s t a r t ( k ) ; z s t a r t ( k ) ] ;
% random st ep s from the ” north po le ”

76 ang l e s= 2* pi * rand ( nt , 1 ) ;
xstep = s i n ( s t ep l eng th ) * cos ( ang l e s ) ;
ystep = s i n ( s t ep l eng th ) * s i n ( ang l e s ) ;
z s t ep = cos ( s t ep l eng th ) ;
% random numbers f o r f l u o r e s c e n t decay

81 decayNumbers = rand ( nt , 1 ) ;
% decay a l r eady at time zero ?
krTheta = kr *( Sv* cos ( theta0 ( k ) )ˆ2+Sp* s i n ( theta0 ( k ) ) ˆ2) /S0 ;
i f decayNumbers (1 )<=(krTheta+knr ) *dt % decay , rad . or non−rad .

i f decayNumbers (1 )<=krTheta /( krTheta+knr ) % decay i s r a d i a t i v e
86 time ( k ) =1;

end
cont inue

end
f o r j =2: nt

91 theta = acos ( r (3 ) ) ; % on uni t sphere : theta=acos ( z )
phi = atan2 ( r (2 ) , r (1 ) ) ; % phi=atan ( y/x )
M = [ cos ( theta ) * cos ( phi ) −s i n ( phi ) s i n ( theta ) * cos ( phi ) ; . . .

cos ( theta ) * s i n ( phi ) cos ( phi ) s i n ( theta ) * s i n ( phi ) ; −s i n ( theta ) 0
cos ( theta ) ] ; % r o t a t i o n matrix

r = M* [ xstep ( j ) ; ystep ( j ) ; z s t ep ] ; % r o t a t e North−po le s tep
96 krTheta = kr *( Sv* cos ( theta )ˆ2+Sp* s i n ( theta ) ˆ2) /S0 ; %theta−dep . rad . r a t e

i f decayNumbers ( j )<=(krTheta+knr ) *dt % decay , rad . or non−rad
i f decayNumbers ( j )<=krTheta /( krTheta+knr ) % decay i s r a d i a t i v e

time ( k )=j ;
end

101 break
end

end
end

106 % c a l c u l a t e average photon a r r i v a l time
tauV ( rc ) = MeanNaN( time ) *dt ; % MeanNaN i g n o r e s a l l e n t r i e s that are NaN

end

tauMean ( Dcounter ) = mean( tauV ) ;
111 tauStd ( Dcounter ) = std ( tauV ) ;

end
R = (3* s t e p l e n g t h s . ˆ2/2 ) . / r a t e s ; % R=tau0 / taurot=tau0 *6D=tau0 *3 l ˆ2/2
tau = [ tauMean .* r a t e s ; tauStd .* r a t e s ] ; % r e l a t i v e time tau/ tau0
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Figure 6.1: Angular distribution of radiation (ADR) of an oscillating dipole emitter
oriented parallel to the x- or z-axis (left or right image) and placed in water near a 5 nm
thick silver film on glass. The distance ∆z between the surface of the silver layer and the
dipole is zero (dotted line) or λ (dashed line). As a reference, a dipole in water without
interface is shown with a solid line. All values are normalized to the maximum value of
the water only case.
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p || êx p || êz
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Figure 6.2: ADR of a dipole emitter oriented parallel to the x- or z-axis (left or right
image) and placed in water at different height on the z-axis close to a sphere made of
glass. The wavelength is λ = 500 nm, the radius of the sphere is R = 50 nm, the distance
∆z between the surface of the sphere and the dipole is zero (dotted line) or λ (dashed
line). As a reference, a dipole in water without sphere is shown with a solid line. All
values are normalized to the maximum value of the water only case.
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Figure 6.3: Height distributions of vinculin in seven different human mesenchymal stem
cells 24 h after seeding. Vinculin was labeled with the fluorescent dye Atto 488, fluorescence
lifetimes were acquired and converted to height values using a MIET calibration curve.
Vinculin clusters were identified as explained in section 4.1.3, and the height values of
all pixels belonging to such a cluster were histogrammed. Red solid lines correspond to
Gaussian distributions with the same mean and standard deviation as the histograms.
The overall mean value of (20± 8) nm agrees well with the value for a cell fixed at 24 h
in figure 4.15(d), (19 ± 6) nm. Data recorded and analyzed by Anna Chizhik, image
published in the supplementary information of [4].
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Figure 6.4: FRET between Lap2β-A488 and Nup358-A633, see section 4.1.4. (A, B)
Fluorescence lifetime of A488 before and after bleaching of the acceptor A633, respectively.
For clusters of 4×4 pixels, average lifetimes τDA and τD were determined as described in
section 4.1.3 and converted to donor-acceptor distances assuming a one-on-one interaction
of donor and acceptor. The resulting distances are histogrammed in C and visualized
in the false-colour image E. For comparison, τDA and τD are histogrammed in D. Data
recorded by Anna Chizhik and analyzed by Narain Karedla, image published in [3].
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Figure 6.5: Fluorescence spectrum of the membrane-staining dye dSQ12S whose fluores-
cence quantum yield was determined in section 4.3.1, see also figure 4.37. Data provided
by Alexey Chizhik.
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Figure 6.6: Fit parameters obtained by evaluating 100 data sets such as the one shown
in figure 4.42, but now with quantum yield Φ = 0.8 instead of 0.5. Either τrot (top) or τ0

(bottom) were fixed to the values indicated on the axis. The simulations were carried out
for three ratios R = τ0/τrot, namely R = 10−4 (‘slow rotation’, orange), R = 1 (‘medium
rotation’, cyan) and R = 104 (‘fast rotation’, pink). Vertical and horizontal lines indicate
the underlying true parameter values. The legend is valid for both plots.
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Besides the MIET and nanocavity measurements presented in chapter 4, the electro-
magnetic models described in this work were applied to a number of other projects.
These mainly include other MIET studies, for example the axial colocalization of single
fluorophores attached to DNA origami structures with an accuracy of 5 nm [8], or a
joint theoretical and experimental study of the three-dimensional localization of single
molecules [9]. One very different example is the calculation of an electric field close to
silica nanospheres, where a decomposition of the field into vector spherical harmonics
was used [5]. This work will be briefly presented in the following section.
Additionally, I was involved in the development of a technique which significantly
improves TCSPC-based FLIM by correcting dead-time effects. This work is summarized
in section 6.3.2.

6.3.1 Photoactivation of luminescent centers in single SiO2

nanoparticles

Since the localization accuracy of all single molecule localization microscopy techniques
is improved when more photons are detected from the fluorophore, increasing the
photon yield of fluorescent labels is an important subject of current investigations. One
approach is to find labels which can be re-activated after photobleaching. Silicon dioxide
(SiO2) nanospheres were identified as possible candidates. These particles can possess
luminescent defects, similar to nanodiamonds, but because of the weaker chemical bonds
these defects can be generated by UV light. The fluorescence of SiO2 nanoparticles of
varying sizes during the simultaneous illumination with a pulsed 488 nm laser beam for
exciting fluorescence and UV light (378 nm) for photogeneration of luminescent centers
was studied in:

[5] L. Tarpani, D. Ruhlandt, L. Latterini, D. Hähnel, I. Gregor, J. Ender-
lein, and A. I. Chizhik, “Photoactivation of luminescent centers in single
SiO2 nanoparticles,” Nano Letters, vol. 16, no. 7, pp. 4312–4316, 2016. D.
R. calculated the excitation intensity distributions for various particle sizes.

Based on the fluorescence time traces, it was found that some particles exhibited two
or more periods of fluorescence, separated by dark times of several seconds. Since the
fluorescence lifetime of each bright period was stable, but different from the lifetimes of
other bright periods, this observation was interpreted as the creation and subsequent
photobleaching of new luminescent defects. When comparing the relative number of
reactivated SiO2 nanoparticles, it was found that small particles showed significantly
more new defects than larger spheres (blue bars in figure 6.7).
One possible explanation was that the small spheres strongly amplified the local intensity
of the UV light. In order to test this hypothesis, I modeled the electric field strength in
the air around the nanospheres, see figure 6.8. To this end, both the spherical interface
between a SiO2 nanoparticle and the surrounding air, as well as the planar interface
between the air and the glass cover slip on which the particle rests had to be taken
into account. This was accomplished iteratively: Firstly, the field in the absence of
the nanosphere was calculated using the approach of Wolf and Richards [142, 143], in

225



Appendix

Figure 6.7: Number of reactivated SiO2 nanoparticles out of 200 observed particles per
particle size (blue histogram) and maximum excitation field intensity near the surface of
the particles (red dots, see figure 6.8 for more details). Experimental data recorded by
Alexey Chizhik, image published in [5].

the same way as described in section 4.3.1 when calculating the excitation intensity
inside a nanocavity. Secondly, the resulting field was decomposed into vector spherical
harmonics (VSH), which were then scattered at the nanosphere. This step made use of
the theory described in sections 2.1.4 (Conversion between PW and VSH ) and 2.3.3
(VSH at a spherical interface). The scattered field was then again decomposed in
plane waves, which were allowed to interact with the planar interface, the reflected
field converted to VSH and so on. The magnitudes of the scattered or reflected fields
descrease quickly, leading to a convergence of the sum of all fields after approximately
ten iterations.
Based on these results, the maximum excitation field intensity (in arbitrary but consistent
units) at the particle surface was compared for all particle sizes, see red dots in figure 6.7.
Since the maximum excitation intensity decreases much less dramatically with increasing
particle size than the number of reactivations, it was ruled out as the dominant effect.
Instead, it was proposed that the previously shown [158] distortion of the chemical
bonds on the surface of ultrasmall SiO2 particles increases the chemical reactivity and
can thus facilitate the formation of structural defects.
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Figure 6.8: Calculated excitation field intensity distributions for a linearly polarized
laser beam (λ = 378 nm) focused at the interface between air and a cover slip (objective’s
NA = 1.49). Shown is only the air halfspace, the glass halfspace is below the field of
view. (a-f) SiO2 nanoparticles of different sizes are aligned with the optical axis. (g-l)
Calculations in the absence of the nanoparticles. Scale bars 50 nm. (m-n) Excitation field
intensity distribution within the dashed rectangles in (f) and (l), respectively, calculated
with the same spatial resolution as the one in image (a). All of the images are normalized
to the same intensity scale. Figure published in [5].
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6.3.2 Dead-time correction of fluorescence lifetime measurements
and fluorescence lifetime imaging

Figure 6.9: Effect of dead-time correction on exemplary FLIM data: Human mesen-
chymal stem cell whose actin filaments were labeled with Atto 647N, and imaged with a
confocal scanning TCSPC microscope. Fluorescence lifetime before (left) and after (right)
dead-time correction. The highest number of photon hits per excitation cycle was 0.5, the
scale bar corresponds to 5 µm. Note that the corrected lifetimes are more homogeneous
and overall higher than the uncorrected values. Sample prepared by Carina Wollnik, data
recorded by Anna Chizhik and analyzed by Narain Karedla, published in [8].

Modern TCSPC systems such as those used for the FLIM measurements presented
in the present work measure the arrival times of detected photons independent of
the laser pulse times, and only correlate the two retrospectively. However, both the
photon detectors as well as the timing electronics have dead times, i.e. they need to
recover between two subsequent detection/timing events. Typically, these dead-times
are in the order of tens of nanoseconds, and thus longer than standard fluorescence
lifetimes (∼ 1 ns − 5 ns) but similar to the inverse of the laser pulse repetition rate
(∼ 20 MHz− 80 MHz). Especially at high photon count rates, which are desirable in
FLIM scan-images to reduce the required pixel dwell time, dead-time effects can lead to
a loss of recorded photons and a distortion of the measured TCSPC curve. Our group
has developed a data evaluation method which provides dead-time corrected TCSPC
curves that faithfully reproduce the correct fluorescence decay curves even at high count
rates. My contribution mainly consisted of the implementation of the algorithm in
Matlab, including an optimization of time-critical routines as C++ MEX files. The
method, its theoretical derivation and several examples were published in:

[6] S. Isbaner, N. Karedla, D. Ruhlandt, S. C. Stein, A. Chizhik, I. Gregor,
and J. Enderlein, “Dead-time correction of fluorescence lifetime measure-
ments and fluorescence lifetime imaging,” Optics Express, vol. 24, no. 9,
pp. 9429–9445, 2016. D. R. contributed to the implementation of the
algorithm in Matlab, including C++ MEX files.
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[73] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elek-
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Physik, vol. 22, no. 1, pp. 266–272, 1924.

[137] C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative
and absolute determination of fluorescence quantum yields of transparent samles,”
Nature Protocols, vol. 8, no. 8, pp. 1535–1550, 2013.

[138] L. Porrès, A. Holland, L.-O. P̊asson, A. P. Monkman, C. Kemp, and A. Beeby,
“Absolute measurements of photoluminescence quantum yields of solutions using
an integrating sphere,” Journal of Fluorescence, vol. 16, no. 2, pp. 267–272, 2006.

[139] K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida,
Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum
yields of standard solutions using a spectrometer with an integrating sphere and
a back-thinned CCD detector,” Physical Chemistry Chemical Physics, vol. 11,
no. 42, pp. 9850–9860, 2009.

[140] G. H. Patterson and J. Lippincott-Schwartz, “A photoactivatable GFP for selective
photolabeling of proteins and cells,” Science, vol. 297, no. 5588, pp. 1873–1877,
2002.

[141] K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, and V. V. Verkhusha, “Pho-
toactivatable fluorescent proteins,” Nature Reviews Molecular Cell Biology, vol. 6,
pp. 885–890, 2005.

[142] E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representa-
tion of the image field,” Proceedings of the Royal Society of London A, vol. 253,
no. 1274, pp. 349–357, 1959.

[143] B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II.
Structure of the image field in an aplanatic system,” Proceedings of the Royal
Society of London A, vol. 253, no. 1274, pp. 358–379, 1959.

[144] M. Collot, R. Kreder, A. L. Tatarets, L. D. Patsenker, Y. Mely, and A. S. Klym-
chenko, “Bright fluorogenic squaraines with tuned cell entry for selective imaging
of plasma membrane vs. endoplasmatic reticulum,” Chemical Communications,
vol. 51, no. 96, pp. 17136–17139, 2015.

[145] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

243



Bibliography

[146] C. Steinem, A. Janshoff, W.-P. Ulrich, M. Sieber, and H.-J. Galla, “Impedance
analysis of supported lipid bilayer membranes: a scrutiny of different preparation
techniques,” Biochimica et Biophysica Acta - Biomembranes, vol. 1279, no. 2,
pp. 169–180, 1996.

[147] R. P. Richter and A. R. Brisson, “Following the formation of supported lipid bi-
layers on mica: A study combining AFM, QCM-D, and ellipsometry,” Biophysical
Journal, vol. 88, no. 5, pp. 3422–3433, 2005.
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