
Algorithms for Optimal Transport
and Wasserstein Distances

Dissertation

for the award of the degree

“Doctor rerum naturalium” (Dr. rer. nat.)

of the Georg-August-Universität Göttingen

within the doctoral program “Mathematical Sciences”

of the Georg-August University School of Science

(GAUSS)

submitted by

Jörn Schrieber

from Hamburg

Göttingen, 2019

ii

Thesis Committee
Prof. Dr. Dominic Schuhmacher, Institute for Mathematical Stochastics
Prof. Dr. Anita Schöbel, Institute for Numerical and Applied Mathematics

Members of the Examination Board
Reviewer:
Prof. Dr. Dominic Schuhmacher, Institute for Mathematical Stochastics
Second Reviewer:
Prof. Dr. Anita Schöbel, Institute for Numerical and Applied Mathematics

Further Members of the Examination Board
Prof. Dr. Axel Munk, Institute for Mathematical Stochastics
Prof. Dr. Stephan Huckemann, Institute for Mathematical Stochastics
Prof. Dr. Gerlind Plonka-Hoch, Institute for Numerical and Applied Mathe-
matics
Prof. Dr. Russell Luke, Institute for Numerical and Applied Mathematics

Date of the oral examination
14 February, 2019

Acknowledgements

I would like to express my gratitude towards everyone, who supported me
during my work on this thesis.

First and foremost, thanks to my supervisors Dominic Schuhmacher and
Anita Schöbel, who took the time for discussions on a regular basis and
provided me with their unique perspectives, insights on the matter and
invaluable advice. This dedication is not taken for granted and greatly
appreciated!

I wish to thank everyone else I had the pleasure to collaborate with on
research projects: Carsten Gottschlich, Max Sommerfeld, Axel Munk and
Yoav Zemel from the Institute for Mathematical Stochastics. Further thanks
to Carsten Gottschlich and Christian Böhm for their aid in resolving countless
technical difficulties.

I would also like to thank my colleagues from the Institute for Mathematical
Stochastics, who all contribute to the friendly and cooperative atmosphere
at the institute, and the workgroup for optimization at the Institute for
Numerical and Applied Mathematics, who despite my spatial distance always
welcomed me to seminars and workshops.

Furthermore, thanks to Khwam Tabougua Trevor for helping me with the
creation of the plots in Chapter 5 during his time as a student assistant.

I gratefully acknowledge funding by the German Research Foundation
(DFG) as part of the Research Training Group 2088 “Discovering Structure in
Complex Data: Statistics Meets Optimization and Inverse Problems” during
the time from October 2015 to September 2018.

iv

Preface

Optimal Transport and Wasserstein Distance are closely related terms that
do not only have a long history in the mathematical literature, but also
have seen a resurgence in recent years, particularly in the context of the
many applications they are used in, which span a variety of scientific fields
including - but not limited to - imaging, statistics and machine learning.
Due to drastic increases in data volume and a high demand for Wasserstein
distance computation, the development of more efficient algorithms in the
domain of optimal transport increased in priority and the advancement picked
up pace quickly.

This thesis is dedicated to algorithms for solving the optimal transport
problem and computing Wasserstein distances. After an introduction to the
field of optimal transport, there will be an overview of the application areas
as well as a summary of the most important methods for computation with
a focus on the discrete optimal transport problem. This is followed by a
presentation of a benchmark for discrete optimal transport together with a
performance test of a selection of algorithms on this data set. Afterwards,
two new approaches are introduced: a probabilistic approximation method
for Wasserstein distances using subsampling and a clustering method, which
aims to generalize multiscale methods to discrete optimal transport problems,
including instances with a non-metric cost function.

Collaborations and Contributions

While this thesis is largely based on the author’s original research, it would
not have been possible without the work of other people. In particular, parts

vi

of this thesis have been previously published as papers and are the results of
collaborations.

Chapters 1 and 2 serve as a general introduction into optimal transport
and an overview over popular algorithms, respectively, and is the author’s
compilation of work done by other researchers.

Chapter 3 is a collaboration between Dominic Schuhmacher, Carsten
Gottschlich and the author of this thesis and was published as the paper
DOTmark - A Benchmark for Discrete Optimal Transport [78] in IEEE Access.
Conceptualization and creation of the benchmark itself was largely done by
Dominic Schuhmacher, while the author was responsible for the performance
test, including the implementation of the shielding method, execution and
analysis of the results.

The content of Chapter 4 is available as the preprint Optimal Transport:
Fast Probabilistic Approximation with Exact Solvers [90], which is joint work
with Max Sommerfeld, Yoav Zemel, Axel Munk. While the author and Max
Sommerfeld contributed in equal parts to the simulations and analysis in
Section 4.4, Max Sommerfeld and Axel Munk conceptualized the subsampling
scheme and proved the theoretical results with several improvements con-
tributed by Yoav Zemel. The proofs of the results in Section 4.3 are omitted
in this thesis and they can be found in the appendix of the paper [90]. Due
to this collaboration the content of this chapter is also contained in Max
Sommerfeld’s doctoral thesis [88].

Chapter 5 is based on the author’s own research.

Contents

1 Introduction 1
1.1 Mathematical Setup . 2
1.2 Applications . 8
1.3 Motivation and Organization of this Work 10

2 Algorithms for Optimal Transport 15
2.1 Linear Programming . 16
2.2 AHA Method . 22
2.3 Entropically Regularized Optimal Transport 25
2.4 Multiscale Methods . 28

3 DOTmark: A Benchmark for Discrete Optimal Transport 33
3.1 Brief Theoretical Background 34
3.2 Benchmark . 37
3.3 Tested Methods . 41
3.4 Computational Results . 44

3.4.1 Runtimes . 44
3.4.2 Errors of the AHA Method 47
3.4.3 Iterations of the Shielding Method 48

3.5 Discussion . 50
3.6 Outlook . 52

4 Probabilistic Approximation with Exact Solvers 55
4.1 Introduction . 55

4.1.1 Computation . 56

viii CONTENTS

4.1.2 Contribution . 57
4.2 Problem and Algorithm . 58
4.3 Theoretical Results . 60

4.3.1 Expected Absolute Error 61
4.3.2 Concentration Bounds 64

4.4 Simulations . 65
4.4.1 Simulation Setup . 65
4.4.2 Computational Results 69

4.5 Discussion . 72

5 Cost-Based Clustering: A General Multiscale Approach to
Discrete Optimal Transport 75
5.1 Introduction . 75
5.2 The Cost-Based Clustering Problem 78

5.2.1 Deviation Bounds of Clusterings 80
5.2.2 Comparison to Other Clustering Objectives and Devia-

tion Bounds . 83
5.3 Clustering Algorithms . 87

5.3.1 Agglomerative Clustering 88
5.3.2 Clustering with Random Representatives 93
5.3.3 Propagation . 95

5.4 Simulations . 98
5.4.1 Simulation Setup . 98
5.4.2 Computational Results 100

5.5 A General View on Cost-Based Clustering 112
5.6 Summary and Discussion . 115
5.7 NP-Hardness Proof . 118

5.7.1 Geometric Clustering Simplification 119
5.7.2 Geometric Reduction Concept 126
5.7.3 Geometric Reduction Proofs 129
5.7.4 Auxiliary Lemmas . 144

Chapter 1

Introduction

Between the different mathematical fields, the subject of optimal transport is
uniquely positioned. The history of its theory goes back to the 18th century,
when the French mathematician Gaspard Monge published his work [59] on a
novel problem formulation at the boundary between analysis and probability
theory, which would later become known as the Monge formulation of optimal
transport. Two centuries later, Kantorovich revised this subject with his
more general statement of the problem [46], which laid the foundation for
optimal transport to be as widely applied as it is today and the Kantorovich
formulation is primarily considered in modern applications. In the discrete
case, both formulations have deep connections to well studied optimization
problems. For example, the assignment problem is a special case of the Monge
formulation and the Kantorovich problem can be written as a minimum cost
flow problem on a complete bipartite network.

Conceptually, this problem revolves around the idea of efficient rearrange-
ment and operates on probability measures. What is rearranged in a particular
application can vastly differ - from physical goods, people or particles to more
abstract concepts, like greyscale values of pixels in images or the classification
result of a neural network - as long as it can be cast in the form of a measure.
It comes as no surprise that potential applications are plenty and consequently
optimal transport research has thrived in recent years. The rich theoretical
background in this field is more and more supported by the development and

2 1.1. MATHEMATICAL SETUP

analysis of modern methods to tackle optimal transport problems.
However, in many subject areas, the application of optimal transport or

Wasserstein distances is still held back by the large computational burden.
Despite the ability to cast optimal transport into the form of a very simple
linear program, the input sizes often vastly exceed the boundaries of viability of
even the latest linear programming methods with high runtime and memory
consumption. This was somewhat mitigated by advances on regularized
optimal transport and the introduction of the Sinkhorn scaling algorithm to
optimal transport [20], which gave it another boost to viability in applications,
as it is a simple and fast, albeit not necessarily precise, algorithm.

1.1 Mathematical Setup

The theory of optimal transport has been explored thoroughly since its
inception with connections drawn to analysis and probability theory. There
is great and extensive literature for anyone who wants to engage deeply
with the theory, in particular, a book written by Fields Medal holder Cédric
Villani [96]. More recently, two books have been published with a higher
emphasis on applied mathematics - one in 2015 by Filippo Santambrogio
[74] giving insight into the theory from a numerical point of view and a new
open book by Gabriel Peyré ad Marco Cuturi from 2018 [65], which gives a
comprehensive overview of numerical methods. Since this thesis is focused on
algorithms and applications for optimal transport, we keep the mathematical
introduction succinct. For further background see the literature mentioned
and the references therein.

Transport Maps and Couplings In what follows, we consider optimal
transport between two separable and complete metric spaces X and Y,
equipped with Borel σ-algebras, and probability measures µ on X and ν

on Y. Most of the time throughout this thesis we have X = Y and only
consider Euclidean spaces. A transport map (or Monge map) is a measurable
mapping T : X → Y that transports the mass of µ onto ν, that is, T#µ = ν,
where T#µ denotes the pushforward of µ under T . In other words, for each

CHAPTER 1. INTRODUCTION 3

X

µ
ν

XAT−1(A)
T

Figure 1.1: The left picture shows two measures µ and ν on X given as
densities. The right depicts a measurable subset A ⊆ X and its inverse image
under a transport map T . The push forward condition requires, that ν(A)
and µ(T−1(A)) are equal for any measurable subset A.

measurable set A ⊆ Y , µ(T−1(A)) = ν(A).
A different notion of rearrangement is the transference plan or coupling

between measures. This is a measure π on the product space X × Y , whose
marginals are µ and ν on X and Y, respectively, that is, π(A× Y) = µ(A)
and π(X × B) = ν(B) for any measurable A ⊆ X , B ⊆ Y. This condition
can be expressed in terms of pushforwards of projections: prX#π = µ and
prY#π = ν, where prX is the projection onto X and prY the projection onto
Y . We denote the set of all couplings between µ and ν as Π(µ, ν).

In the case X = Y, if we think of measures on X as “configurations of
mass” or “piles of sand” on X , then a transport map T can be seen as a shift
of the mass that transforms one configuration (µ) into the other (ν). This
is ensured by the pushforward condition, as the amount of “sand” ν(A) in
a set A after the shift has to match with the amount µ(T−1(A)) before the
shift (see Figure 1.1). Similarly, a transference plan contains information of
origins and destinations of mass relocations. For measurable sets A,B ⊆ X ,
π(A×B) is the amount of “sand”, that is picked up at A and placed at B.

It is important to note that couplings are the more general concept than
transport maps, as each transport map T defines a coupling as the unique
measure πT that satisfies πT (A×B) = µ(A∩T−1(B)), but not every coupling
defines a transport map (see Figure 1.2). In fact, in many cases where µ is a
discrete measure a transport map cannot exist (for example, if ν is absolutely

4 1.1. MATHEMATICAL SETUP

1
2

1
2

1 1

1
2

1
2

Figure 1.2: Two very simple discrete examples. The mass of µ is indicated in
red, ν in blue. On the left, the transport can be expressed either as a Monge
map or a coupling. In the right example, however, since the mass from one
location is split among multiple destinations, this transport cannot be written
as a Monge map. Since it is the only possible coupling, the Monge problem
is infeasible in this simple case.

continuous with respect to Lebesgue measure in RD), but there always exists
a coupling, since the product measure µ⊗ ν is a trivial example in any case.

Remark. When X = Y , and in particular for discrete optimal transport, we
often consider two subsets X and Y of X with supp(µ) ⊆ X and supp(ν) ⊆ Y .
It suffices to look at restrictions of transport maps T to X and of couplings
π to X × Y . Also, the measures µ and ν are not technically required to be
probability measures - it suffices to assume finite measures with µ(X) = ν(X).

Optimal Transport Formulations Now that we have an idea of the
concepts of transportation, we have a look at the efficiency of transportation,
which is indicated by a cost function c : X × Y → R+. For two points x ∈ X
and y ∈ Y , c(x, y) is the cost of transporting mass from location x to location
y. For optimal transport on a single metric space (X , d), the cost function is
often c = dp for p ≥ 1, which means transportation cost is simply a power of
the distance between source and target locations. However, a close connection
between cost function and distance is not necessary and many other cost
functions are possible.

With a cost function c we can now define the cost of transport maps and
couplings. The cost of a transport map T is the integral of the cost between

CHAPTER 1. INTRODUCTION 5

source and target locations under T with respect to µ,
∫
X
c(x, T (x)) dµ(x).

Trying to find the feasible transport map with the least cost is formulated in
the Monge formulation of optimal transport (MOT), as follows:

(MOT) min
T

∫
X
c(x, T (x)) dµ(x), s.t. T#µ = ν

This is the first version of an optimal transportation problem. It is mostly
considered in the context of continuous measures, since it is not feasible in
many discrete cases. The problem formulation that operates on couplings,
the Kantorovich formulation, is always feasible and since couplings are more
general than transport maps, the Kantorovich formulation can be viewed as
a relaxation of the Monge formulation.

The cost of a transference plan π is defined as the integral of the cost
function on the product space with respect to π,

∫
X×Y

c(x, y) dπ(x, y),

and consequently, the Kantorovich formulation of the optimal transport
(KOT) problem is to find the feasible coupling with the least cost,

(KOT) min
π

∫
X×Y

c(x, y) dπ(x, y) s.t. π ∈ Π(µ, ν).

This is a (potentially infinite-dimensional) linear problem and thus generally
expected to be easier than the Monge problem. It always admits an optimal
solution, as long as the cost function c : X ×Y → R+ is lower semi-continuous
(see for example [74, Theorem 1.7]).

We mainly consider KOT throughout this work, although we generally
put an emphasis on discrete measures, which allows us to restate it as a finite
linear program.

6 1.1. MATHEMATICAL SETUP

Wasserstein Distance One very important aspect of optimal transport is
that it gives rise to the Wasserstein distance [95]. Essentially, this concept
allows us to lift the ground metric d on a complete, separable metric space X
to a distance between probability measures on X , which is the core reason
it is useful in many theoretical contexts and applications. It has several
different names, such as earth mover’s distance [71], Mallows distance [55],
Monge-Kantorovich-Rubinstein distance or similar ([47], [52]), depending on
the field in which it is used.

Simply put, the p-Wasserstein distance between two probability measures
µ and ν on a complete, separable metric space (X , d) for p ≥ 1 is the p-th
root of the optimal transport cost above, with respect to the cost function
c = dp:

Wp(µ, ν) =
(

min
π∈Π(µ,ν)

∫
X×X

dp(x, y) dπ(x, y)
) 1
p

Wp defines a metric on the space of probability measures over X with finite
moment of order p, that is, the set

Pp(X) =
{
µ ∈ P (X) :

∫
X
dp(x0, x)dµ(x) <∞

}
,

where P (X) is the set of probability measures on X and x0 ∈ X is an arbitrary
element [96]. A proof that Wp satisfies the metric axioms can be found for
example in [96, Chapter 6]. The fact that the Wasserstein distance Wp

incorporates the ground distance d on X is very attractive both in theoretical
and practical contexts, since large distances between mass locations of µ and
ν on X are reflected in a higher Wasserstein distance.

Discrete Optimal Transport Depending on the measures µ and ν the
optimal transport problem can take different forms. Usually, one differentiates
between three types of optimal transport problems:

• Continuous optimal transport - both measures are continuous.

• Semi-discrete optimal transport - one of the measures is continuous, the
other one is discrete.

CHAPTER 1. INTRODUCTION 7

• Discrete optimal transport - both measures are discrete.

These three problem types require different, carefully tailored methods,
and algorithms suited to solve one of these types usually do not transfer easily
to other types. However, it is possible to reformulate a problem as a different
type. For example, if both measures are continuous, one can discretize one
or both to obtain the (semi-)discrete optimal transport problem and utilize
(semi-)discrete methods for solving it. Similarly, discrete measures can be
made continuous by interpreting a Dirac mass as uniformly distributed over
a small area. Both introduce an error that is controllable, for example by the
diameter of the area a Dirac mass is blurred on.

In this work, we mostly focus on algorithms for the Kantorovich formula-
tion of finite, and hence discrete, optimal transport, although we also have
a look at important methods for the semi-discrete case and the entropically
regularized optimal transport. In the discrete case KOT can be written as a
finite linear program. To this end, we consider measures µ and ν, which are
finite sums of Diracs,

µ =
n∑
i=1

µiδxi and ν =
m∑
j=1

νjδyj ,

where n,m ∈ N, all µi, νj ∈ R+ and xi, yj ∈ X for all i, j, and require that

n∑
i=1

µi =
m∑
j=1

νj.

Further, we define the sets X = supp(µ) and Y = supp(ν) (sometimes the
elements in X are called sources and the elements of Y are called sinks). Any
cost function c : X × Y → R+ only has finitely many values and as such, we
can interpret it as a cost matrix C = (ci,j) ∈ Rn×m, where ci,j = c(xi, yj).

Any transference plan π is finitely supported on X × Y and we write it as
πi,j = π(xi, yj) for i = 1, . . . , n and j = 1, . . .m. With that the marginality
condition π ∈ Π(µ, ν) is simply that the rows of π written as a matrix (πi,j)i,j
sum up to the values µi and the columns of π sum up to the values νj. The

8 1.2. APPLICATIONS

objective function, the cost of the transference plan, is a linear function in π,

∑
x∈X

∑
y∈Y

c(x, y)π(x, y) =
n∑
i=1

m∑
j=1

ci,jπi,j.

We obtain the following linear programming formulation with variables πi,j:

(DOT) min
n∑
i=1

m∑
j=1

ci,jπi,j

subject to
m∑
j=1

πi,j = µi ∀i = 1, . . . , n

n∑
i=1

πi,j = νj ∀j = 1, . . . ,m

πi,j ≥ 0 ∀i, j

This formulation is known in the linear programming literature as the trans-
portation problem [54]. It is a special case of the minimum cost network
problem and contains itself the assignment problem as the special case with
n = m and µi = νj = 1 for all i, j.

1.2 Applications

Recently, Wasserstein distances particularly have gained a lot of attention in
many fields mainly due to the ability to meaningfully incorporate the ground
distance of a space into the distance between measures. This often makes the
Wasserstein distance the preferable option over different distances between
measures, such as for example the total-variation distance. It also means the
Wasserstein metric, and by extension optimal transport, is applied in many
different contexts. We outline some of the main fields, where these concepts
are applied. Again, this is by no means an exhaustive list and there are many
other important applications.

Imaging This is a broad field with high importance to many scientific areas
(biology, medicine and others) and contains itself a plethora of subfields and

CHAPTER 1. INTRODUCTION 9

problems. Optimal transport distances are considered in a lot of different
imaging contexts, mainly as a way to gauge the difference between two images.
Greyscale images, for example, are easily interpreted as discrete measures
through the greyscale values of the pixels. Since the ground distance on the
pixel grid is incorporated in the Wasserstein distance, it reflects well what
humans perceive as similar or different. This was shown by Ruber and others
[71], who successfully applied the earth mover’s (Wasserstein) distance to
image retrieval.

Since then, both continuous and discrete optimal transport has been ap-
plied to different imaging problems. Some are demonstrated in [63], including
image interpolation along transport maps [42], adaptive color transfer [67]
and color image segmentation [68]. There are applications in medical imaging
[73], computer vision [34, 61], shape matching [40], image classification [99]
and on more specific problems, such as the detection of phishing web pages
[31], measuring plant color differences [48] or three-part image decomposition
[93, 52, 17], which itself can be applied to fingerprint segmentation [94].

Probability and Statistics In probability theory, the Wasserstein metric
is a useful tool for approximation, convergence of measures and more. Two
select applications are perturbation for Markov chains with applications
to Marcov chain Monte Carlo (MCMC) methods [72] and Poisson process
approximation [79].

Mallows distance is an alternative term for the Wasserstein metric, that
is often used in the context of mathematical statistics. It can give rise
to theoretical techniques, for example used in proofs of central limit and
similar theorems [45, 24]. However, it also appears in practical applications
like goodness-of-fit testing [60, 29]. Other important concepts in the realm
of optimal transport in statistics are empirical optimal transport distances
[89, 92, 60] and Wasserstein barycenters [1], which are for instance used for
Bayesian inference [91].

Machine Learning Artificial intelligence, deep learning, neural networks
– those are fields, which have gained wide-spread traction over the last few

10 1.3. MOTIVATION AND ORGANIZATION OF THIS WORK

years. Although neural networks have been a well-known concept for over a
century now and machine learning was conceptualized over fifty years ago, the
hardware technology has only recently become powerful enough for machine
learning techniques to bear fruit in many applications. The Wasserstein
distance is considered as a loss function, for example in multi-label learning
[30], since it can incorporate a ground distance on the label space in an
intuitive way. It can occur in altered forms, such as smoothed Wasserstein
loss used for dictionary learning [70] or optimal spectral transport for musical
unmixing [26]. Generative adversarial networks (GAN) [37] are immensely
popular in unsupervised learning and the Wasserstein metric has been adopted
to this concept as well [3, 16].

Economics One simple example for optimal transport, that is often used
to illustrate the problem, but is also considered in the economics literature, is
optimal assignment [50]. It has been explored in different economic contexts
such as the labor market [83] or marriage market [6, 19]. Different economic
models often require adjustments in the formulation of the transportation
problem. For example, introducing unobserved heterogeneity into the match-
ing model leads to a regularized variant of optimal transport [33]. Equilibrium
transport is considered in the context of adding taxes to the matching market
[25]. For more in-depth information on the matter, we refer to a book by
Alfred Galichon published in 2016, Optimal Transport Methods in Economics
[32], which gives broad insight into the synergy between the two fields.

Other applications besides matching include the quantification of risk
measures [69] and martingale optimal transport, which is essentially the usual
optimal transport problem with the added constraint that the transport plan
is a martingale. It is applied in mathematical finance, for example in robust
hedging [23].

1.3 Motivation and Organization of this Work

In this section we outline how the remainder of the thesis is organized.
Chapters 3 and 4 are part of the publications [78] and [90], respectively,

CHAPTER 1. INTRODUCTION 11

and the overview of these chapters we present here contains parts of the
introductions of the mentioned papers.

As we have shown above, optimal transport is considered in many different
fields and modern applications. Due to the massive volume of available
data in many of these applications there is a high demand for increasingly
efficient methods to tackle optimal transport problems on a large scale. While
considerable advancement has been achieved, as many new and improved
algorithms have been developed in the last few years, this is an ongoing
research objective.

In Chapter 2 we give an overview of some of the most important algorithms
to tackle optimal transport problems. The selection presented is not exhaus-
tive, but rather focused on the most relevant methods in the world of modern
optimal transport, which include linear programming approaches, multiscale
methods and entropically regularized optimal transport, also known as the
Sinkhorn method.

While many of these methods undoubtedly mean substantial progress
compared to what was available a decade ago, it is nearly impossible from
the current literature to figure out how various of these methods compare
to one another and which method is most suitable for a given task. This
is mainly due to the fact that only for a few of the modern methods user-
friendly code is publicly available. What is more, many articles that introduce
new methods compare their computational performance only on a restricted
set of self-generated ad-hoc examples and typically demonstrate improved
performance only in comparison to some classical method or to a simplified
version that does not use the novelty introduced.

This is why we introduce the DOTmark in Chapter 3, which stands for
discrete optimal transport benchmark. It is a collection of greyscale images
divided into ten different classes, including various mass distributions, shapes,
microscopy images, as well as classic test images used in image processing. Its
main purpose is to serve as open and neutral test data for optimal transport,
so that methods can be compared in a more meaningful way. Together with
this data set we give a first test of a selection of algorithms on the DOTmark
and report the results. See Chapter 3 for a more thorough description of the

12 1.3. MOTIVATION AND ORGANIZATION OF THIS WORK

benchmark and the results of the test.
In this test we focus on precise, singlescale algorithms and it becomes

apparent that those methods are not very suitable for optimal transport
solutions on high resolution images, as 128 × 128 pixel images are already
excluded from the test due to prohibitively high runtimes. Thus, multiscale
methods and approximate methods are increasingly important. In Chapter 4
we introduce a simple subsampling scheme, which proves to be a powerful
tool in approximating Wasserstein and other optimal transport distances. It
can use exact methods as back-end solvers, provides us with non-asymptotic
approximation guarantees in the Wasserstein case and by changing the sample
size it can be tuned toward higher accuracy or lower runtimes as desired.
We show that this scheme performs very convincingly on instances from the
DOTmark delivering an approximation with a relative error of less than 5% in
about 1% of the runtime. The theoretic results imply that the approximation
quality is independent of the size of the full problem in the low-dimensional
case, which includes many examples, such as 2D-imaging.

In the recent past, several multiscale approaches for optimal transport
have been introduced. The idea is to reduce the number of sources and sinks
by aggregating them to clusters and define an instance of optimal transport
on the clusters in resemblance of the original problem. The solution process
on the coarsened instance is much faster and by propagating a solution to the
finer scale, a good solution to the original problem can typically be obtained
efficiently. The coarsening and propagation can be iterated to create multiple
scales of the problem. See Chapter 2 for a more detailed explanation of
the ideas behind multiscale methods. Ad-hoc tests suggest that multiscale
methods typically lead to a significant speedup compared to the singlescale
version of an algorithm. However, those methods rely on the ability to easily
create coarser versions of the problems at hand. For example, in images we can
simply lower the resolution in order to get a coarser version. Similarly, when
the optimal transport instance is comprised of point clouds in a Euclidean
space there are clustering methods, which can be used to aggregate points
in accordance to the distances between them. But other problems, such as
assignment problems, typically do not have cost matrices, which are defined

CHAPTER 1. INTRODUCTION 13

through proximity in a metric space. In these cases, the multiscale approaches
mentioned above cannot be applied.

We aim to change this unfortunate circumstance by introducing cost-based
clustering in Chapter 5. This is an approach to cluster sources and sinks into
subsets in a meaningful way only based on the data we have available in any
discrete optimal transport instance: the measures µ and ν and the cost matrix
C. We show that any clustering provides us with a rigorous error bound on
the orginal optimal transport cost after solving the problem on the coarse
scale and we set up the cost-based clustering problem as to find the clustering
with the best error bound. Unfortunately, this problem is NP-hard, thus
finding the best clustering is not a feasible strategy in the context of multiscale
methods for optimal transport. However, we provide several heuristics to this
problem and show that clusterings of reasonable quality can be found in a
reasonable runtime. This lays the foundation for the application of multiscale
methods to general discrete optimal transport problem. Moreover, we show
that applying these data-driven algorithms to geometric problems can yield
interesting clusterings typical geometric clustering methods cannot find.

Although all necessary preliminaries for Chapters 3, 4 and 5 are introduced
in the first two chapters of this thesis, the specific problem setting is still
stated in each of the later three chapters. While this may lead to repetition
for readers of the whole thesis, this is done to clarify the notation and setting,
which is slightly different in each chapter. Furthermore, the chapters end up
being more self-contained.

14 1.3. MOTIVATION AND ORGANIZATION OF THIS WORK

Chapter 2

Algorithms for Optimal
Transport

Several methods to tackle optimal transport problems have been known for
a long time. Many of the algorithms that are used in modern applications,
however, were developed over the last decade. Gabriel Peyré and Marco
Cuturi released an open book in 2018, Computational Optimal Transport
[65], in which a majority of the relevant algorithms for optimal transport
is discussed. It provides a comprehensive overview of the different types of
methods and applications.

In light of this publication, we intend to keep this chapter concise and
focused on a summary of the most important methods. This includes the
algorithms tested in Chapter 3, multiscale methods and others, which are
particularly relevant in the context of this thesis. Furthermore, we give a
rather heuristic description of the methods and since their correctness is well
established, we refrain from discussing this in detail.

The methods discussed in Chapter 3 were also briefly introduced in the
paper about the DOTmark [78]. Parts of the descriptions in this chapter are
taken from this publication.

16 2.1. LINEAR PROGRAMMING

2.1 Linear Programming

Obviously, since the Kantorovich formulation in the discrete setting is a
finite linear program, standard algorithms, such as the simplex method, are
applicable. However, this formulation has a very particular form as a special
case of the minimum cost flow network problem, which makes it possible
to use more specialized algorithms to solve it. We start by restating the
program:

(DOT) min
n∑
i=1

m∑
j=1

ci,jπi,j

subject to
m∑
j=1

πi,j = µi ∀i = 1, . . . , n

n∑
i=1

πi,j = νj ∀j = 1, . . . ,m

πi,j ≥ 0 ∀i, j

Here, ci,j are the elements of the cost matrix C ∈ Rn×m
+ and the measures µ

and ν satisfy ∑i µi = ∑
j νj in order for the problem to be feasible. The dual

formulation is given as follows:

max
n∑
i=1

uiµi +
m∑
j=1

vjνj

subject to ui + vj ≤ ci,j ∀i, j

The dual variables ui and vj are also called potentials. This dual formulation
is utilized in most of the linear programming methods. The complementary
slackness condition is

(ci,j − ui − vj) · πi,j = 0 ∀i, j.

This means, whenever we find a primal feasible solution π and a dual feasible
solution (u, v) satisfying the above condition, the solutions must be optimal.

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 17

We have a look at well-established methods, such as the Hungarian
method for assignment problems, the auction algorithm and the transportation
simplex, as well as more modern modifications, such as the shortlist method
and the shielding neighborhood method.

Hungarian Method This method goes back to Kuhn in 1955 [51], who
developed it based on the results of two Hungarian mathematicians and
dubbed it the Hungarian method. It is an algorithm specialized on assignment
problems, that is, the special case of the transportation problem with n = m

and µi = νj = 1 for all i, j. Thus, one source is assigned to precisely one sink
(you can think of workers assigned to jobs) in such a way that the total cost
of the assignment is minimized. The algorithm is a primal-dual method at
heart and more generalized primal-dual algorithms were derived from this
method later. It is described in more detail for example in [5, Section 10.7],
including a proof of its convergence.

The algorithm begins by defining a dual feasible solution (û, v̂) via

ûi := min
j=1,...,n

ci,j ∀ i = 1, . . . , n

and
v̂j := min

i=1,...,n
ci,j − ûi ∀ j = 1, . . . , n.

The reduced cost matrix Ĉ is defined by ĉi,j := ci,j − ûi − v̂j. Now, if we can
find an assignment π such that each non-zero entry of π corresponds to a zero
entry of Ĉ, by complementary slackness this assignment is optimal.

If not, we look at the minimum number of rows and columns necessary to
cover all zero entries in Ĉ, fix one such cover and define the sets of uncovered
rows and columns as Sr and Sc, respectively. Now we find the minimal
uncovered entry in Ĉ:

c0 := min
i∈Sr
j∈Sc

ĉi,j > 0.

We obtain a new feasible dual solution (ū, v̄) by setting ūi = ûi+ c0 for i ∈ Sr,
ūi = ûi for i 6∈ Sr, v̄j = v̂j for j ∈ Sc and v̄j = v̂j − c0 for j 6∈ Sc and in turn a
new reduced cost matrix C̄. This process is iterated until the complementary

18 2.1. LINEAR PROGRAMMING

slackness conditions are satisfied and we get an optimal assignment through
the zero entries of the reduced cost matrix.

Auction Algorithm This is an algorithm, which was originally introduced
by Bertsekas in 1981 to solve the assignment problem [9]. It has been adapted
to the general discrete optimal transport problem [11]. We describe the
version for assignment problems as in [65].

We simply set X = {1, . . . , n} here. Note that any feasible basic assign-
ment π is the permutation matrix of a permutation σ : X → X and vice versa.
With this connection we can rewrite the complementary slackness conditions
as

ui + vσ(i) = ci,σ(i) ∀ i ∈ X.

Also, if we fix the dual variables v, the best possible completion to a feasible
dual solution (u, v) can be achieved by defining ui = minj ci,j − vj for all i.
This is also called a Ct-transform (see [65] for details). Consequently, if we
have v and σ such that

ci,σ(i) − vσ(i) = min
j
ci,j − vj ∀ i ∈ X,

then σ is an optimal assignment.
The algorithm maintains partial assignments consisting of a subset S ⊆ X,

an injective assignment map ξ : S ↪→ X, and a dual vector v. It is initialized
with an empty assignment S = ∅ and v = 0 and iteratively adds elements
to S until S = X. For now, we fix ε > 0. In one iteration of the algorithm,
choose i ∈ X \ S and search for the first- and second-best indices in the
Ct-transform, that is,

j
(1)
i ∈ argmin

j
ci,j − vj and j

(2)
i ∈ argmin

j 6=j(1)
i

ci,j − vj.

Then, v is updated by subtracting the value (c
i,j

(2)
i
− v

j
(2)
i

)− (c
i,j

(1)
i
− v

j
(1)
i

) + ε

from v
j

(1)
i
. S and ξ are updated to reflect that i is now assigned to j(1)

i . That
means i is added to S and ξ(i) is set to j(1)

i . If j(1)
i was assigned before (if

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 19

there was i′ ∈ S with ξ(i′) = j
(1)
i), that assignment is removed. This way, the

number of assigned objects |S| never decreases and one entry of v decreases by
at least ε in each iteration. Further, the algorithm maintains ε-complementary
slackness throughout the iterations [65, Proposition 3.7], that is

ci,ξ(i) − vξ(i) ≤ ε+ min
j
ci,j − vj ∀ i ∈ S.

Eventually, all objects are assigned (S = X). For large ε bigger steps
can be taken in each iteration, but smaller ε keep the assignments closer to
satisfying the complementary slackness conditions. By changing ε throughout
the iterations, finite convergence to an optimal assignment can be achieved.
This is called ε-scaling [11].

Transportation Simplex This is a specialized version of the network
simplex and described in detail for example in [54]. Like other simplex
variants, the transportation simplex has two phases: one phase to construct
an initial basic feasible solution π and another phase to improve this solution
to optimality. Typically, the majority of time is spent in the second phase, as
an initial solution to optimal transport is easily obtained.

There are quite a few different ways to construct an initial basic feasible
solution. See [39] for a selection of methods suited for this task or [81] for
a thorough analysis of the performance of primal and dual heuristics. The
method we point out here, the modified row minimum rule, has a universally
solid performance both in runtime and quality of the solution constructed. We
iterate over all source locations (rows) xi ∈ X that still have mass left, choose
for each source the available target cj with the least cost, and include it in the
solution by setting πi,j to the largest possible value. This process is repeated
until all sources are depleted. The solution we obtain is automatically basic.

If we interpret the source and target locations as nodes in a graph and draw
arcs for every possible transport, we get a complete bipartite graph. Every
non-degenerate basic feasible solution can now be represented by a spanning
tree in this graph by choosing all the arcs belonging to active transports in
our solution. Given a basic feasible solution, a simplex step is performed as

20 2.1. LINEAR PROGRAMMING

follows:

• A new variable (a transport πi,j) is selected to enter the basis.

• This creates a cycle in the previous tree, which is then identified.

• The maximal amount of mass possible is shifted along this cycle, that
is, alternately added to and subtracted from consecutive transports.

• A variable that has become zero in the process is removed from the
basis.

When searching for a new basic variable, there are again many options, but
we focus on the following row minimum strategy due to performance reasons:
We use the current solution to compute the values of dual variables ui and
vj via the complementary slackness conditions that ui + vj = ci,j, whenever
πi,j > 0. This is a linear system of n+m− 1 equations with n+m variables,
which can be solved via backwards substitution after setting u1 = 0. Then we
scan the non-basic variables πi,j row by row and compute the reduced costs
ri,j = ci,j − ui − vj. If we encounter a variable with negative reduced costs,
we stop at the end of that row and choose the variable with the least reduced
cost encountered thus far as a new basic variable. If no candidates are found
among all rows, the current solution is optimal and we stop.

The second phase of the transportation simplex is very similar to the
network simplex. The only difference is that we always have a complete
bipartite network in the optimal transport problem. In phase one, however,
this structure is very beneficial and allows for easy construction of a feasible
solution, whereas in the more general network case the introduction of artificial
variables is often necessary. More details on the network simplex can also be
found in [54].

Shortlist Method At its core, the shortlist method is a variant of the
transportation simplex. It comes with three parameters:

• A parameter s for the shortlist length.

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 21

• Parameters p and k that control how many variables are searched to
find a new basic variable.

Before optimization starts, a shortlist is created for every source, consisting
of the s targets with least transport costs, ordered by cost. The basic feasible
solution is again constructed by a modified row minimum rule, where the
shortlists are prioritized. After that, the solution is improved by simplex steps
similar to the transportation simplex, but the search is limited to the shortlists.
The lists are scanned, until either k variables with negative reduced costs are
found, or p percent of the shortlists have been searched. Then the candidate
with least reduced cost is chosen to enter the basis. If no improvement can
be achieved within the shortlists, the last solution is improved to global
optimality by the same simplex steps as in the transportation simplex. For
further details see [39].

Shielding Neighborhood Method The shielding neighborhood method,
or shortcut method, was introduced by Schmitzer in [76]. Its main idea is to
solve a sequence of sparse (i.e. restricted) optimal transport instances instead
of the dense (full) problem. The algorithm is proposed as a multiscale method,
but we focus on the singlescale variant, which basically works in the same
way:

A neighborhood is a small subset N ⊆ X × Y of the product space and
imposes a restricted instance of the problem by only considering transport
variables πij such that (xi, yj) ∈ N . Due to the significant reduction in the
amount of variables, this instance is much faster to solve.

The idea behind shielding neighborhoods is the so-called shielding condi-
tion, which ensures that for (xi, yj) 6∈ N a shortcut exists. For a given coupling
π with supp(π) ⊆ N a shortcut for a pair (x1, yn) ∈ X × Y is a sequence of
active transports, ((x2, y2), . . . , (xn−1, yn−1)) in supp(π) with (xi, yi+1) ∈ N
for all i = 1, . . . , n− 1, such that

c(x1, yn) ≥ c(x1, y2) +
n−1∑
i=2

(c(xi, yi+1)− c(xi, yi)) .

22 2.2. AHA METHOD

This ensures that the dual constraint corresponding to (x1, yn) is satisfied [76,
Proposition 3.2].

The shortcuts are not constructed explicitly. Rather, their existence follows
from the shielding condition between xA ∈ X and yB ∈ Y : (xs, ys) ∈ supp(π)
shields xA from yB if

c(xA, yB)− c(xs, yB) > c(xA, ys)− c(xs, ys).

A subset N ⊆ X × Y is a shielding neighborhood for π if supp(π) ⊆ N

and every pair (x, y) ∈ X × Y is either included in N or there is an active
transport (xs, ys) ∈ supp(π) with (xA, ys) ∈ N , which shields x from y. The
main result exploited by the algorithm is that if π is an optimal coupling
with respect to N and N is a shielding neighborhood for π, then π is optimal
for the original instance [76, Corollary 3.10].

Starting with a basic feasible solution generated with the modified row
minimum rule a shielding neighborhood for that solution is constructed as
described in [76]. The algorithm then alternates between optimizing the
sparse instance of the problem and generating a new shielding neighborhood
for the current solution. If a solution is optimal for two successive shielding
neighborhoods, it is globally optimal and the algorithm stops.

2.2 AHA Method

The acronym AHA stands for Aurenhammer, Hoffmann and Aronov, who
showed in their seminal paper [4] that the transport problem with squared
Euclidean cost is equivalent to an unrestricted continuous minimization
problem for a certain convex objective function Φ. The algorithm exploiting
this fact is introduced in [57] as a multiscale method, but as in the case of
the shielding neighborhood method the singlescale variant works essentially
in the same way.

This method applies to the semi-discrete case in RD with the squared
Euclidean distance d(x, y) = ‖x − y‖2. We assume that µ is absolutely
continuous with respect to Lebesgue measure and ν is a finite sum of Diracs,

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 23

ν = ∑n
j=1 νjδyj . The key observation utilized by the AHA method is that any

power diagram (a.k.a. Laguerre tessellation) governed by the support points
y1, . . . , yn of ν and arbitrary weights w1, . . . , wn ∈ R characterizes an optimal
transport plan from µ to some measure living on these support points. By
minimizing the function Φ in the weights w1, . . . , wn we can find a power
diagram that defines an optimal transport to the correct measure ν.

The power diagram is defined as the following decomposition of RD: Each
point yj has a weight wj. The cell belonging to yj with respect to the weight
vector w ∈ Rn is the set

Powj(w) =
{
x ∈ RD : ‖x− yj‖2 − wj ≤ ‖x− yi‖2 − wi for all i = 1, . . . , n

}
.

The intersection of two adjacent cells is a part of the hyperplane, where the
above holds with equality, thus a null set with respect to µ (see Figure 2.1 for
a two-dimensional example). Geometrically, the intersection hyperplanes can
be roughly characterized as follows: If we draw spheres around the points yj,
whose radii are the square roots of the weights wj, the hyperplane between
two cells contains the intersection of the spheres if it is nonempty. If the two
spheres touch, the hyperplane is the common tangent plane at the intersection
point. If the two spheres are disjoint, the hyperplane is the set of points in
RD, whose distances to the points of tangency of the two spheres are equal.
Figure 2.1 shows the circles around the points.

The transport map Tw, that maps an element x ∈ RD to the point yj such
that x ∈ Powj(w) is well-defined µ-almost everywhere. It is a known result
that Tw is an optimal transport map between µ and Tw#µ [57]. Therefore,
we need to find a weight vector w, so that Tw#µ = ν. As it turns out [57,
Theorem 2], a weight vector w satisfies Tw#µ = ν if and only if it is a global
minimizer of the convex function

Φ(w) =
n∑
j=1

(
νj · wj −

∫
Powj(w)

(
‖x− yj‖2 − wj

)
dµ(x)

)
.

Evaluating Φ at a given weight vector w ∈ Rn involves computation of
the power diagram for w and a rather simple integration procedure over each

24 2.2. AHA METHOD

Figure 2.1: Example of a power diagram in R2. The black dots are the twenty
support points yj of ν. The radii of the grey circles around the points are
the square roots of the weights wj. The cells Powj(w) are constrained by
the blue line segments. Each power diagram defines a Monge map µ-almost
everywhere as the piecewise constant map, which maps the interior of each
cell Powj(w) onto yj. This example also shows that the points yj are not
necessarily contained in their own cells.

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 25

power cell. The gradient of Φ is accessible, and its i-th component is in fact
just the difference between νi and the µ-mass transported to this point under
the current power diagram. In [57] it is shown that using the L-BFGS-B
algorithm with Moré–Thuente type line search, a quasi-Newton method in
which the inverse Hessian is estimated, outperforms gradient descent methods.
Second order algorithms such as the Newton method are problematic, since
they require exact computation of the Hessian. A damped Newton algorithm
was recently proposed and analyzed [49]. Moreover, the method can be
adapted to the case of the non-squared Euclidean distance (p = 1) [41].
The main challenge here is that the boundaries of the cells are no longer
hyperplanes, which makes the integration over the power cells, and thus the
evaluation of the function Φ, more expensive.

2.3 Entropically Regularized Optimal Trans-
port

Although the idea to regularize optimal transport problems by adding an
entropic penalty term goes back to 1969 [97], only recently has this appo-
rach gained massive traction in computational optimal transport, as it was
discovered by Cuturi in 2013 that entropically regularized optimal transport
problems can be very efficiently solved by a simple matrix scaling algorithm
[20]. This algorithm is somtimes called Sinkhorn scaling or Sinkhorn-Knopp-
Algorithm and was introduced as early as 1967 [86]. It is one of the key
reasons why the entropy is used as a regularization term instead of other
options, and why regularized optimal transport is covered as an algorithm in
this chapter. We loosely follow the explanations given in [65], but keep them
more concise.

As usual, we cover the discrete case of the Kantorovich problem. For a
coupling π we consider the entropic regularization term

H(π) := −
∑
i,j

πi,j (log(πi,j)− 1) .

26 2.3. ENTROPICALLY REGULARIZED OPTIMAL TRANSPORT

For a regularization parameter λ > 0 the entropically regularized optimal
transport problem is

min
π∈Π(µ,ν)

∑
i,j

ci,jπi,j − λH(π).

Since the entropy is a strictly concave function, this results in the regularized
transport problem being a strictly convex problem. Consequently, it admits
a unique solution π∗λ for any λ > 0. This solution always has full support, in
sharp contrast to the basic solutions to the original problem obtained through
linear programming, which are sparse.

If λ is small, the regularized problem is close to the original, while the
convexity is stronger for large λ (in fact, the objective function is λ-strongly
convex). This is reflected in the limiting behaviour of π∗λ, since

lim
λ→0

π∗λ = π∗,

where π∗ is the optimal solution of the original transport problem with the
highest entropy, and

lim
λ→∞

π∗λ = µ⊗ ν,

since the product measure is the coupling that maximizes the entropy.
In the Wasserstein case c = dp, we can view the results of the regularized

problem as a slightly different optimal transport distance

Wp,λ(µ, ν) =
 min
π∈Π(µ,ν)

∑
i,j

dp(xi, yj)πi,j − λH(π)
 1

p

,

which can be seen as an approximation to the Wasserstein distance, especially
for small λ, since Wp,λ(µ, ν)→ Wp(µ, ν) as λ→ 0.

The Sinkhorn Scaling Algorithm For a fixed value λ > 0, the Gibbs
kernel associated to the cost matrix C is K ∈ Rn×m, where

Ki,j = e−
ci,j
λ , i = 1, . . . , n, j = 1, . . . ,m.

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 27

The main fact, that is exploited by the algorithm is that the unique solution
π∗λ has the form π∗λ,i,j = uiKi,jvj with vectors u ∈ Rn, v ∈ Rm akin to dual
vectors in the linear program [65, Proposition 4.3]. Since π∗λ has to be a
feasible coupling, we need to find vectors u and v, such that π∗λ ∈ Π(µ, ν),
that is, u and v satisfy the constraints

diag(u)Kv = µ and diag(v)Ktu = ν,

where µ and ν are interpreted as mass vectors and diag(u) is the n by n

matrix, which has the entries of u on the diagonal and zero elsewhere.
These are nonlinear constraints in u and v. The general strategy to

satisfy these constraints is to start with an arbitrary positive vector (e.g.
v(0) = (1, . . . , 1)t) and update u and v alternatingly to satisfy the constraints.
This is achieved by the iterations

u(k+1) := µ

Kv(k) and v(k+1) := ν

Ktu(k+1) ,

where the division is performed entry-wise. At its core, this is an alternating
projections method: The current solution is projected alternatingly onto the
sets of solutions (u, v) satisfying the source constraints diag(u)Kv = µ and
the sink constraints diag(v)Ktu = ν. The iterates of transportation matrices
π

(k)
λ = diag(u(k))K diag(v(k)) converge to the unique optimal solution π∗λ as
k →∞ [65, Theorem 4.2].

This algorithm has a very good runtime performance in practice and is thus
used in many applications where large-scale computation or approximation of
optimal transport distances is necessary, for example in computing Wasserstein
barycenters for shape interpolation [87]. However, it has its own issues, in
particular with numerical stability. As mentioned before, the approximation of
the Wasserstein distance through the regularized version is better the smaller
the regularization parameter λ. There are two problems with choosing a small
λ in this algorithm:

• A small λ leads to a problem with weaker convexity. Consequently, the
convergence of π(k)

λ → π∗λ is slower.

28 2.4. MULTISCALE METHODS

• Entries of the Gibbs kernel K approach zero quickly for small λ. This
leads to numerically unstable iterations of the matrix scaling, which is
especially problematic when K approaches or falls below the machine
precision threshold. This means λ cannot be chosen arbitrarily small.

There are, however, workarounds for these problems, such as λ-scaling or
log-domain stabilization [77]. Another very recently proposed variant of
Sinkhorn scaling only updates one greedily selected row or column in each
step and is consequently called Greenkhorn [2].

2.4 Multiscale Methods

Multiscale approaches to tackle optimal transport problems go back at least to
2010 for the semi-discrete transportation problem [15]. Independently, Mérigot
integrated a mulstiscale scheme into the AHA method in 2011 [57]. There,
the discrete measure ν is coarsened in order to decrease the dimension of the
convex optimization problem that needs to be solved. For discrete optimal
transport different methods have been proposed by Oberman and Ruan in
2015 [62] and later by Schmitzer [76], as well as Gerber and Maggioni [35],
among others. We describe the general ideas behind the multiscale approach
with the discrete case in mind and summarize the concepts presented in the
aforementioned papers.

Consider the (Kantorovich) discrete optimal transport setting with two
measures µ and ν with finite supports X = supp(µ), Y = supp(ν) and a cost
function c : X × Y → R+ written as a cost matrix C. Essentially, multiscale
methods can be divided into three steps:

• Coarsening: From the original instance, a finite sequence of successively
coarser instances is created. This requires the construction of hierarchi-
cal partitions for the sets X and Y and the definition of a cost function
(matrix) on each scale.

• Propagation: Assuming we have a feasible transport plan π(i) on a
certain scale i, propagation methods construct a feasible plan π(i−1) on
the finer scale i− 1.

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 29

• Refinement: A transport plan is iteratively improved towards optimality.
Refinement strategies usually operate on a single scale.

The three terms are chosen according to [35]. Multiscale methods as a
whole work roughly as depicted in this diagram, where (Xi,Yi, Ci) denotes an
optimal transport instance on scale i and π(i) is a coupling for that instance:

(X0,Y0, C0) coarsening // (X1,Y1, C1) coarsening // . . .
coarsening // (Xk,Yk, Ck)

solve
��

π(0)

refinement

EE π(1)
propagation

oo

refinement

EE . . .propagation
oo π(k)

propagation
oo

We now discuss the three processes in more detail.

Coarsening There are two constructions that have to be taken care of for
the coarsening of an optimal transport instance: hierarchical partitions for
X and Y and the construction of a cost matrix for each scale. If we fix the
number k of scales, a hierarchical partition for X = {x1, . . . , xn} is a sequence
X0,X1, . . . ,Xk of systems of subsets of X, such that

i) X0 = {{x1}, {x2}, . . . , {xn}}.

ii) Xi is a partition of X for all i = 0, . . . , k.

iii) For each i = 0, . . . , k−1 and each subset S ∈ Xi, there is a set T ∈ Xi+1,
such that S ⊆ T .

These conditions ensure that our partitions of X are nested in such a way
that they become successively coarser. While it is not technically required
that the partitions get strictly coarser, as Xi = X0 for all i would satisfy the
above conditions, identical successive partitions are pointless in practice.

Given a measure µ = ∑n
i=1 µiδxi on X a hierarchical partition X0, . . . ,Xk

defines a sequence of measures µ(i) in a natural way: For i = 0, . . . , k, we
define

µ(i) =
∑
S∈Xi

µ
(i)
S δS, where µ

(i)
S = µ(S) =

n∑
i=1
xi∈S

µi.

30 2.4. MULTISCALE METHODS

This means, we simply sum up the masses of the elements in each subset of
X.

Constructing a cost matrix Ci on scale i is not as straight forward as
constructing the measures. Depending on the surrounding space of X and Y
and the original cost matrix different options are available:

• If X and Y are supported on regular grids in RD with c(x, y) = ‖x−y‖p,
a simple coarsening strategy is to aggregate 2D adjoining points to one.
When operating on two-dimensional images, for example, this means
decreasing the resolution from N ×M to N/2×M/2 pixels. The new
cost matrix is defined by the values ‖x̄ − ȳ‖p, where x̄ and ȳ are the
respective center points of the 2D grid points.

• If X, Y ⊆ RD are point clouds with c(x, y) = ‖x− y‖p, the cost matrix
between two subsets can be defined as ‖x̄ − ȳ‖, where x̄ and ȳ are
(weighted) medians or centers of their respective subsets.

• Generally, for subsets S ⊆ X and T ⊆ Y one can define the cost
between S and T as the cost between two selected representatives, that
is, c(x̄, ȳ) with x̄ ∈ S and ȳ ∈ T .

• Alternatively, the cost between S and T can be set as the minimum,
median, center or mean of the set {c(x, y) : x ∈ S, y ∈ T} ⊆ R+.

See [76] or [35] for more options and details.
Given partitions Xi,Yi and a cost matrix Ci on the subsets, together with

the natural measures µ(i) and ν(i) this defines the optimal transport instance
on scale i:

min
∑
S∈Xi

∑
T∈Yi

Ci(S, T) · π(i)
S,T

subject to
∑
T∈Yi

π
(i)
S,T = µ

(i)
S ∀S ∈ Xi

∑
S∈Xi

π
(i)
S,T = ν

(i)
T ∀T ∈ Yi

π
(i)
S,T ≥ 0 ∀S ∈ Xi, T ∈ Yi

CHAPTER 2. ALGORITHMS FOR OPTIMAL TRANSPORT 31

The number of variables in this instance is |Xi||Yi| instead of nm. Therefore,
we obtain a sequence of successively coarser instances with fewer and fewer
variables.

Propagation The way a coupling π(i+1) is propagated to π(i) on scale i
again depends on the type of problem. Sometimes, it is not the coupling
itself, that is propagated, but rather a neighborhood N . This is a subset of
the set of variables (or equivalently, a subset of Xi×Yi) with the goal that an
optimal coupling for the finer scale i is likely supported on this neighborhood.
From a neighborhood N a coupling supported on N can be constructed, for
example via a network simplex method.

We describe several options from the aforementioned papers, based on
neighborhoods or otherwise:

• A simple neighborhood propagation method is to define a neighborhood
on scale i through the support of the coupling π(i+1) on scale i+ 1 via

N :=
{

(S, T) ∈ Xi × Yi : ∃(S ′, T ′) ∈ supp(π(i+1)) with S ⊆ S ′, T ⊆ T ′
}
.

• Spatial neighborhood growth [62]: a similar method on grids. The
support of π(i+1) is extended by the four adjacent grid points in Xi and
Yi. Then, the neighborhood is propagated as above.

• Shielding neighborhood propagation [76]: The shielding method main-
tains a shielding neighborhood on each scale and this neighborhood is
propagated as above.

• Capacity constraint propagation [35]: By adding randomized capacity
constraints on the active transports of a coupling π(i+1) a larger support
is forced, including also the second-best transportation arcs. This
support is propagated as above.

• We introduce another propagation technique in Section 5.3.3, which
directly propagates a coupling π(i+1) to a coupling π(i) on scale i.

32 2.4. MULTISCALE METHODS

Refinement Refinement strategies mostly employ iterations of optimal
transport methods, such as iterations of the transportation simplex, in order
to improve the coupling π(i). If the propagation was done via a neighborhood,
this neighborhood can also be used to restrict the number of variables in
the refinement process. Another strategy is potential refinement [35], where
the potentials (dual solution) of a coupling are improved. If the transport
problem on scale i is an assignment problem, then the primal-dual iterations
of the Hungarian method can be used as a refinement strategy.

Chapter 3

DOTmark: A Benchmark for
Discrete Optimal Transport

This chapter is largely identical to the paper DOTmark - A Benchmark
for Discrete Optimal Transport [78], which is a collaboration with Dominic
Schuhmacher and Carsten Gottschlich. Its purpose is twofold. First, we
propose a collection of real and simulated images, the DOTmark, that is
designed to span a wide range of different mass distributions and serves as
a benchmark for testing optimal transport algorithms. The data can be
downloaded at www.stochastik.math.uni-goettingen.de/DOTmark/. We
invite other researchers to use this benchmark, report their results, and thus
help building a more transparent picture of the suitability of different methods
for various tasks.

The second purpose is to provide a survey and a performance test based on
the DOTmark for a cross section of established methods. Since not much code
is freely available, we have used previous implementations of our own (done
to the best of our knowledge) of various methods, added an implementation
of the recently proposed shielding neighborhood method [76] and let them
compete against each other. This also allows us to draw conclusions about
the behavior of different methods on different types of input data. In order
to make this comparison as meaningful as possible, we restricted ourselves to
using only singlescale methods and the squared Euclidean distance as a cost

www.stochastik.math.uni-goettingen.de/DOTmark/

34 3.1. BRIEF THEORETICAL BACKGROUND

function. We hope this comparison will provide a first spark for a healthy
competition of various methods in the public discussion.

3.1 Brief Theoretical Background

For the present context it is sufficient to restrict ourselves to optimal transport
on Rd. Let X, Y be subsets of Rd and let µ and ν be probability measures on
X and Y , respectively. In this paper we will always have X = Y , but using
different notation for domain and target space makes definitions easier to
grasp.

A transport map T is any (measurable) map X → Y that transforms the
measure µ into the measure ν. More precisely it satisfies µ(T−1(B)) = ν(B)
for every measurable B ⊂ Y . A transference plan is a measure π on X × Y
with marginals π(· × Y) = µ and π(X × ·) = ν. The set of transference
plans from µ to ν is denoted by Π(µ, ν). Any transport map T from µ to ν
defines a transference plan πT from µ to ν as the unique measure satisfying
πT (A×B) = µ(A∩T−1(B)) for all measurable A ⊂ X and B ⊂ Y . Not every
transference plan π can be represented in this way, because transference plans
allow mass from one site x ∈ X to be split between multiple destinations,
which is not possible under a transport map. Figure 3.1 shows such an
example.

We assume that the cost of transporting a unit mass from x ∈ X to y ∈ Y
is cp(x, y) = ‖x− y‖p for some p ≥ 1. The minimum cost for transferring µ
to ν is then given by

Cp(µ, ν) = min
π∈Π(µ,ν)

∫
X×Y
‖x− y‖p dπ(x, y). (3.1)

Taking the p-th root, we obtain the Wasserstein metric Wp. More precisely
we have

Wp(µ, ν) = Cp(µ, ν)1/p

for any measures µ and ν that satisfy
∫
X ‖x‖p dµ(x) <∞ and

∫
Y ‖y‖p dν(y) <

∞. In order to evaluate the Wasserstein metric, we need to find an optimal

CHAPTER 3. DOTMARK 35

solution to (3.1), i.e., a minimizing transference plan π. This problem is often
referred to as the Kantorovich formulation of optimal transport. Note that
by Theorem 4.1 in [96] a minimizing π always exists. However, it neither has
to be unique nor representable in terms of an optimal transport map.

Often one would like to compare data sets that are available as images from
a certain source, e.g. real photography, astronomical imagery, or microscopy
data. We may think of such images as discrete measures on a grid. For
example, the first two panels in Figure 3.1 show tiny clippings from STED
microscopy images of mitochondrial networks. A question of interest might
be whether both images stem from the same part of the network, which can
in principle be answered by finding an optimal transference plan (third panel
in Figure 3.1) and computing the Wasserstein distance. Note that this coarse
resolution is not representative for a serious analysis, but was only chosen for
illustrative purposes.

Even if the measures we would like to consider are more general probability
measures, we can always approximate them (weakly) by a discrete probability
measure, e.g. by considering the empirical distribution of a sample from
the general measure or based on a more sophisticated quantization scheme.
Lemma 8.3 in [12] characterizes when optimal costs are approximated in this
way (e.g. always if X and Y are compact). Theorem 5.20 in [96] and the
subsequent discussion give sufficient conditions about the approximation of
optimal transference plans.

Assume now that we have discrete measures of the form µ = ∑m
i=1 µiδxi

and ν = ∑n
j=1 νjδyj and write cij = ‖xi − yj‖p. In what follows, we always

have m = n, and (xi)1≤i≤m = (yj)1≤j≤n form a regular square grid in R2, but
since it is more intuitive, we keep different notation for source locations and
target locations. Let πij be the amount of mass transported from xi to yj.

36 3.1. BRIEF THEORETICAL BACKGROUND

Figure 3.1: Left panels: Two tiny clippings A (top) and B (bottom) from
STED microscopy images of mitochondrial networks. Right panel: The
difference A−B of the first two panels with an optimal transference plan for
p = 2 superimposed. Arrows show from where to where mass is transported
in the optimal transference plan. The colors indicate the amount of mass
from dark red (small) to bright yellow (large). Since mass from individual
sites is split (indicated by several arrows leaving the site), this transference
plan cannot be represented by a transport map.

Then, the problem (3.1) can be rewritten as a linear program:

(DOT) min
m∑
i=1

n∑
j=1

cijπij

subject to
n∑
j=1

πij = µi ∀i = 1, . . . ,m

m∑
i=1

πij = νj ∀j = 1, . . . , n

πij ≥ 0

This is the classic transportation problem from linear programming. Efficient

CHAPTER 3. DOTMARK 37

ways of solving this problem for small to medium sized (m and) n have
been known since the middle of the last century. However, in the context of
modern optimal transport problems it has become necessary to solve such
problems efficiently at a scale where (m and) n are many thousands or even
tens of thousands and more. Currently, this cannot be done with the classical
algorithms and requires utilizing the geometry of the problem in one way or
the other.

3.2 Benchmark

Our philosophy in compiling this benchmark was to represent a wide range
of theoretically different structures, while incorporating typical images that
are used in praxis and/or have been used for previous performance tests in
the literature. We refer to it as DOTmark, where DOT stands for discrete
optimal transport.

The benchmark consists of 10 classes of 10 different images (in what follows
sometimes called mass distributions or measures), each of which is available
at the 5 different resolutions from 32× 32 to 512× 512 (in doubling steps per
dimension). This allows for a total of 45 computations of Wasserstein distances
between two images for any one class at any fixed resolution. Table 3.1 gives an
overview of how the classes were created. Classes 1–7 are random simulations
of scenarios based on various probability distributions. Images at different
resolutions are generated independently from each other but according to the
same laws. Classes 8–10 were obtained by ad-hoc choices of simple geometric
shapes, classic test images and images of mitochondria acquired using STED
super-resolution microscopy [43, 44, 98]. For geometric shapes and classic test
images the various resolutions available are coarsenings of a single image. For
the microscopy images different clippings of various sizes have been selected
from larger images to obtain the various resolutions.

We shifted and scaled the pixel values for all classes and randomly re-
distributed a small percentage of the mass in order to achieve non-negative
integer values at each pixel with an average of 105. We chose integer values
to make the benchmark (directly) accessible to a wide range of algorithms

38 3.2. BENCHMARK

Name Description
1 WhiteNoise i.i.d. uniformly distributed values in [0, 1] at each

pixel
2 GRFrough GRF with σ2 = 1, ν = 0.25, γ = 0.05
3 GRFmoderate GRF with σ2 = 1, ν = 1, γ = 0.15
4 GRFsmooth GRF with σ2 = 1, ν = 2.5, γ = 0.3
5 LogGRF exp-function of a GRF with σ2 = 1, ν = 0.5, γ = 0.4
6 LogitGRF Logistic function of a GRF with σ2 = 4, ν = 4.5,

γ = 0.1
7 CauchyDensity Bivariate Cauchy density with random center and

a varying scale ellipse
8 Shapes An ad-hoc choice of simple geometric shapes
9 ClassicImages Standard greyscale test images used in image pro-

cessing
10 Microscopy Clippings from STED microscopy images of mito-

chondria

Table 3.1: The 10 classes in the DOTmark with details about their creation.
GRF stands for Gaussian random field. For technical details and the meaning
of the parameters see text.

and to be able to verify correctness of the optimal transport cost precisely,
at least in the case p = 2, where integer transportation costs between grid
points may be assumed.

Figure 3.2 shows the first image of each of the classes 1–6 along with
average histogram over all members of the class. Figure 3.3 shows the complete
collection of images in classes 7–10.

We provide some more details on how classes 2–6 are generated. The
images are simulated from stationary centered Gaussian random fields (GRF)
on [0, 1]2 with Matérn covariance function k := kσ2,ν,γ : R2 × R2 → R,

kσ2,ν,γ(x, y) = σ2 2ν−1

Γ(ν)

(√
2ν ‖x− y‖

γ

)ν
Kν

(√
2ν‖x− y‖/γ

)
,

where Kν is the modified Bessel function of the second kind of order ν.
In brief this means that the pixel values are distributed according to a

CHAPTER 3. DOTMARK 39

0 5 10 15 20

F
re

qu
en

cy

0 5 10 15 20

F
re

qu
en

cy

0 5 10 15 20 25

F
re

qu
en

cy

0 5 10 15 20 25

F
re

qu
en

cy

0 25 55 85 120 155 190

F
re

qu
en

cy

0 5 10 15 20

Figure 3.2: Top row: One representative at resolution 128 × 128 for each
of the completely randomly generated classes 1–6. Bottom row: Average
histograms of all images at resolution 128× 128 in classes 1–6. A regular bin
width of 5000 was used. The annotated pixel values are in multiples of 104.

Figure 3.3: The images in the classes 7–10 at resolution 128× 128.

multivariate normal distribution with mean vector zero and covariance matrix
(k(xi, xj))1≤i,j≤m, where xi, 1 ≤ i ≤ m, is an enumeration of the pixel centers.
The Matérn covariance function is a popular choice in spatial statistics. Its
significance comes from the fact that in addition to having parameters σ2 > 0
for the variance and γ > 0 for the range of the covariance, it also has a
parameter ν > 0 that allows to control the regularity of the random image
created from very rough (ν small) to very smooth (ν large). Accordingly,
classes 2–4 go from very rough with short range dependence to quite smooth
with long range dependence. Class 5 is rough with long range dependence,
which is hard to see from Figure 3.2 because of the exponential function

40 3.2. BENCHMARK

applied to the pixel values. Class 6 is very smooth with medium range
dependence and the logistic function ψ : R → [0, 1], ψ(x) = ex

/
(1 + ex)

was applied to the pixel values. See [36] for more theoretical details about
Gaussian random fields. Our simulations were performed using the R package
RandomFields; see [75] and [66].

Histograms 4 and 6 deviate quite a bit from the theoretical histograms
expected due to the rescaling and redistribution of mass that we apply in
order to obtain mass distributions that are non-negative, integer-valued, and
have an average of 105. Also, due to long range dependence and smoothness,
histogram 4 is based on a sample of much smaller effective size from the
normal distribution than histograms 2 and 3.

On the whole we consider this a reasonable and versatile benchmark for
many (planar and typically grid-based) optimal transport algorithms. It covers
a wide selection of types of mass distributions whose comparisons are useful
for theoretical or practical investigations. Similar types have been considered
in the literature before. Gottschlich and Schuhmacher [39] have considered
a sparse version of the WhiteNoise class. Schmitzer [76] considered sums of
randomly scaled and positioned Gaussian densities (sometimes filtered by
discontinuous masks), which is a somewhat different type of random function
generation along the lines of our classes 2–7. Further random or deterministic
functions and geometric shapes were considered by Benamou, Carlier, Cuturi,
Froese, Nenna, Oberman, Peyré, Ruan and others; see e.g. [8], [7], [62]. The
use of real greyscale images as in class 9, but also color images, is abundant
in the computer science literature (e.g. [71], [64]), where optimal transport
is typically considered on some feature space. Mérigot [57] illustrated and
tested his algorithm on greyscale images directly. Biological imagery has been
used in [38] (fingerprints in feature space), [35] (brain MRIs) and elsewhere.

Another example that is frequently used, in particular in the statistics and
machine learning literature, are images from the MNIST handwritten digit
database. Due to the low resolution of these images we do not consider them,
but we might include other images of handwritten text in later revisions of
the benchmark.

All in all, we see the current benchmark as a first stable version. We are

CHAPTER 3. DOTMARK 41

happy to adapt and extend future versions based on feedback from other
researchers.

3.3 Tested Methods

In what follows, we list the methods that we have tested on the DOTmark.
Due to the large number of suggested methods, which unfortunately is not
well reflected in the number of user-friendly implementations available, some
restrictions had to be made. We chose methods with a good track record,
such as the AHA method, as well as some new and promising methods, such
as the shielding method. In order to make our comparison as meaningful as
possible, we abstained from using methods of a purely approximative nature,
such as Sinkhorn scaling [20].

Multiscale versions exist for all tested methods. Sometimes these are
tailor-made, like for the AHA and the shielding methods (see [57] and [76]).
Sometimes these are just relatively simple but efficient procedures exploiting
the fact that all mass distributions considered live on a square grid in R2.
Such a simple strategy may be as follows: First solve the transport problem on
coarsened images (e.g. obtained by adding up the pixel values in contiguous
squares of four pixels); then propagate the obtained transport plan in a
suitable way so that a feasible transport plan for the finer images is obtained;
finally solve the original (fine) problem using this transport plan as a starting
value.

In our experience this simple strategy already results in an improvement
by a factor of 2 to 5 in the transportation simplex at resolution 64× 64. A
more elaborate, efficient, but not entirely rigorous alternative was proposed
in [62]. Since the precise variant and implementation of a multiscale method
may distort competition and distract from the merit of an algorithm as such,
we decided not to use any multiscale methods for this first comparison.

All used methods are described in Chapter 2. For more information see
the respective sections and references therein.

42 3.3. TESTED METHODS

Transportation Simplex One of the classical optimal transport methods
we test in this paper is the transportation simplex. We use the modified row
minimum rule to determine a basic feasible solution and in the simplex steps
we use the row minimum strategy to find a variable to include into the basis.
These methods were chosen due to their consistently good performance. In
the test we use our implementation of the transportation simplex in Java.

Shortlist Method Just as with the transportation simplex, we use our Java
implementation of the shortlist method for the benchmark. Many routines
are shared with the transportation simplex. We use the default parameters
presented in [39]. They were chosen with regard to the problems considered
in that paper – a version of the class WhiteNoise with the Euclidean distance
as cost function (p = 1) and irregular source and target locations.

Shielding Neighborhood Method For the internal sparse instances we
follow the recommendation of the paper introducing this method [76] and use
the network simplex solver of CPLEX with a warm start of the previously
optimal basis. The Java API is used to create the models and we implemented
the shielding neighborhood generation routine in Java as well. One call of the
CPLEX solver for a single sparse instance is what we refer to as one iteration
of the shielding method in the remainder of this paper.

Schmitzer published his own code of the method on his website1. But
since we encountered difficulties in getting it to run on our server and since
we already had our own well-working implementation of this method in place,
we decided to use the latter in our test. As all the other methods it was
implemented to the best of our knowledge. Since the majority of the runtime
is occupied by the internal CPLEX solver, we expect our code to have a
similar runtime as the code provided by Schmitzer.

Additionally, we tested the shielding method with an adapted implemen-
tation of the transportation simplex as internal solver, using the same pivot
strategy and simplex step routines as before.

1https://www.ceremade.dauphine.fr/~schmitzer/

https://www.ceremade.dauphine.fr/~schmitzer/

CHAPTER 3. DOTMARK 43

AHA Method Our concrete implementation is largely based on [57], but as
with other algorithms we only use the singlescale version for comparability and
we follow that paper in using the L-BFGS-B algorithm with Moré–Thuente
type line search. Since we use a continuous optimization method, we typically
cannot reach a weight vector w∗ where the gradient of Φ is exactly zero (and
hence the image measure of µ is exactly ν), but have to stop when its length
is still slightly positive. We thus commit a small controllable error, which we
refer to as precision error.

In order to make the algorithm applicable to the fully discrete situation
we study in the other algorithms, we turn the first image into an absolutely
continuous measure µ by interpreting pixel values as masses uniformly dis-
tributed over the squared areas represented by the pixels, rather than centered
at grid points. Compared to the other methods this leads to slightly different
results, a discrepancy we refer to as blurring error.2

Unlike for the other methods we use an implementation that is written
mainly in C with some minimal R overhead. The construction of power
diagrams was reimplemented in C based on ideas from the CGAL Regu-
lar_triangulation_2 package and other sources. For the L-BFGS-B algorithm
we used the implementation in the R function optim.

Solvers For representatives of LP solvers, we used CPLEX and Gurobi.
For both we modeled the optimal transport problem as an LP and used the
default parameters. This is denoted CPLEX-Def and Gurobi-Def, respectively.
Additionally, we tested the network simplex solver CPLEX provides (CPLEX-
NWS). Gurobi does apparently not come with a network solver, but as the
Gurobi documentation page for methods3 recommends the dual simplex for
memory intensive models, we included it in our tests (Gurobi-DS). All models
were set up using the Java APIs of the solvers.

2Note that the term “error” is subjective. We might as well declare that we want to solve
the semidiscrete problem, in which case all the other methods commit a “concentration
error”.

3http://www.gurobi.com/documentation/6.5/refman/method.html#parameter:
Method

http://www.gurobi.com/documentation/6.5/refman/method.html#parameter:Method
http://www.gurobi.com/documentation/6.5/refman/method.html#parameter:Method

44 3.4. COMPUTATIONAL RESULTS

3.4 Computational Results

All our tests were performed using a single core on a Linux server (AMD
Opteron Processor 6140 from 2011 with 2.6 GHz). Note that much better
absolute runtimes can be achieved when using modern CPU hardware. For
many of the algorithms considerable further improvements are possible by
multithreaded implementations that use multiple CPU cores simultaneously.

In our experiments we placed the main emphasis on ensuring that the
commercial solvers and all of our own implementations were run under the
same conditions. In particular, they were all restricted to use only one of 32
available cores, which was realized by the Linux kernel feature cgroups.

Pairing any two of the 10 images in each of the 10 classes gives 45 transport
problems (“instances”) per class, yielding 450 instances in total. These were
all solved at resolutions 32× 32 and 64× 64 by each of the described methods
using the squared Euclidean metric as cost function. All optimal transport
costs returned were checked for correctness. The AHA method is the only
procedure, where we cannot expect precisely correct results due to the errors
described in Section 3.3. These errors are reported in Subsection 3.4.2. All
other errors were zero.

3.4.1 Runtimes

The runtimes of the tests are listed in Table 3.2 for 32× 32 and Table 3.3 for
64× 64, respectively, averaged over all 45 instances in one class. The average
over all classes can be found in the bottom row under ’Overall’. The fastest
algorithm for each class is highlighted in bold. Additionally, boxplots for four
selected methods are given in Figure 3.4.

As the numbers show, the shielding neighborhood method is clearly the
fastest algorithm for 32× 32 instances among the methods tested. It takes
hardly more than half the time on average compared to the transportation
simplex, the shortlist method and the AHA method. The default solvers of
CPLEX and Gurobi perform particularly badly. It is remarkable, however,
that the network simplex solver of CPLEX outperforms the default solvers
and the Gurobi dual simplex by a huge margin. The performance is still

CHAPTER 3. DOTMARK 45

Class TPS SHL Shielding AHA CPLEX Gurobi
CPX TPS Def NWS Def DS

WhNoise 1.58 1.38 0.67 1.3 3.28 29.8 5.76 8.1 50.5
GRFrgh 2.16 1.98 1.08 2.3 3.19 43.0 5.94 9.0 50.7
GRFmod 3.45 3.80 1.86 6.5 3.17 77.3 6.14 21.1 49.8
GRFsmth 4.23 5.46 2.66 10.0 4.39 101.9 6.15 36.0 50.4
LogGRF 5.18 6.40 3.00 10.8 6.80 119.9 6.23 49.5 51.7

LogitGRF 4.50 5.26 2.40 7.9 8.49 98.4 6.33 31.0 51.7
Cauchy 4.46 6.06 3.62 12.7 3.76 140.4 6.09 54.1 49.3
Shapes 1.06 1.07 0.92 8.9 1.27 8.9 1.22 5.2 9.1
Classic 3.33 3.26 1.58 5.2 2.01 68.5 6.05 18.0 49.6
Micro 2.34 3.02 1.66 9.4 3.14 35.2 2.74 20.7 22.1

Overall 3.23 3.77 1.94 7.5 3.95 72.3 5.26 25.3 43.5

Table 3.2: Average runtimes on 32× 32 instances in seconds. The columns
represent the methods tested: transportation simplex (TPS), shortlist method
(SHL), shielding neighborhood method with CPLEX (CPX) and TPS as
internal solvers, AHA method, CPLEX with default (Def) parameters and
the network simplex solver (NWS), as well as Gurobi with default parameters
and the dual simplex solver (DS).

somewhat worse than our implementations of the transportation simplex and
the shortlist method.

At resolution 64× 64 we see a similar picture with some exceptions. The
shielding method (with CPLEX as internal solver) is even further ahead
of most other algorithms, but at the same time the AHA method, which
seems to be scaling much better than the linear programming approaches,
has gained even more and in fact shows the best times now for many of the
classes. However, keep in mind that the results of this method are not exactly
correct and the timing varies according to the stopping criterion one applies
(see the next subsection).

The CPLEX network solver is with the exception of the classes WhiteNoise
and GRFrough quite a bit faster at resolution 64×64 than our implementations
of the transportation simplex and the shortlist methods. In the two classes
Shapes and Microscopy, which have many zeros in the images, it is even
competitive with the shielding and AHA methods. Overall, it shows the most

46 3.4. COMPUTATIONAL RESULTS

0
2

4
6

8

Tr
an

sp
or

ta
tio

n
S

im
pl

ex
32 x 32

0
20

0
40

0
60

0
80

0
10

00

64 x 64
1

2
3

4
5

6
7

S
hi

el
di

ng
−

C
P

X

50
10

0
15

0

0
5

10
15

20

A
H

A

0
50

10
0

15
0

W
hi

te
N

oi
se

G
R

F
ro

ug
h

G
R

F
m

od
er

at
e

G
R

F
sm

oo
th

Lo
gG

R
F

Lo
gi

tG
R

F

C
au

ch
yD

en
si

ty

S
ha

pe
s

C
la

ss
ic

Im
ag

es

M
ic

ro
sc

op
yI

m
ag

es

1
2

3
4

5
6

7

C
P

LE
X

−
N

W
S

W
hi

te
N

oi
se

G
R

F
ro

ug
h

G
R

F
m

od
er

at
e

G
R

F
sm

oo
th

Lo
gG

R
F

Lo
gi

tG
R

F

C
au

ch
yD

en
si

ty

S
ha

pe
s

C
la

ss
ic

Im
ag

es

M
ic

ro
sc

op
yI

m
ag

es

0
50

10
0

15
0

20
0

Figure 3.4: Boxplots of the runtimes of selected methods in seconds. Every
box represents 45 computed instances. Left: 32× 32. Right: 64× 64.

CHAPTER 3. DOTMARK 47

Class TPS SHL Shielding AHA CPLEX Gurobi
CPX TPS Def NWS Def DS

WhNoise 74 56 13 65 36 2057 174 311 1657
GRFrgh 153 110 24 153 20 3216 174 473 1659
GRFmod 261 306 51 469 23 4592 190 1971 1634
GRFsmth 306 468 80 778 57 5621 195 3723 1590
LogGRF 439 531 79 756 59 7156 198 4628 1687

LogitGRF 333 362 69 552 77 6024 198 2294 1637
Cauchy 245 397 97 968 30 6336 195 4461 1435
Shapes 73 73 25 893 12 885 40 302 219
Classic 218 246 41 418 18 6298 189 1551 1546
Micro 28 37 26 824 24 352 18 179 114

Overall 213 258 51 588 36 4254 157 1989 1318

Table 3.3: Average runtimes on 64× 64 instances in seconds. See the caption
above for details.

consistent performance both across the various benchmark classes (if effective
size of the problem is taken into account) and within each class; see the last
row in Figure 3.4.

In contrast, the other methods show a much stronger sensitivity with
respect to the class considered. Especially for classes 4–7 and to some extent
also for class 3, we see higher average computation times and in particular a
much wider spread of times including several outliers in Figure 3.4.

3.4.2 Errors of the AHA Method

As described in Section 3.3, the AHA method does not solve the problems we
consider here with full accuracy, but makes a blurring error by interpreting
pixel values of the source measure µ as uniformly distributed over small
squares and a precision error by tackling a continuous minimization problem
which for numerical reasons cannot be solved exactly.

In Table 3.4 we report the precision error (PE) in terms of the mass in
the probability measure µ that is wrongly allocated, as well as the relative

48 3.4. COMPUTATIONAL RESULTS

Wasserstein error (RWE) made with the AHA method, i.e.

WAHA
2 (µ, ν̃)−WTSP

2 (µ, ν)
WTSP

2 (µ, ν) ,

where AHA and TSP denote the methods used and ν̃ denotes the second
marginal of the transference plan returned by AHA.

We can see that the precision error is reasonably small. What is more, if
we assume that we would have to reroute the wrongly allocated mass roughly
by a distance that corresponds to the true Wasserstein distance between µ
and ν (this is reasonable in the sense that it is roughly the same order of
magnitude as relevant distances measured in the image), we can compare the
precision errors to the relative Wasserstein errors and see that the former
play only a minor role. Consequently, the RWE is mainly due to the blurring
effect. This is corroborated further by the fact that the RWE for the 64× 64
resolution is considerably smaller than for 32× 32.

Instance Class PE 32 PE 64 RWE 32 RWE 64
WhiteNoise 0.3098e-05 0.3400e-05 0.031224 0.027232
GRFrough 0.4261e-05 0.6327e-05 0.018957 0.008058

GRFmoderate 0.9840e-05 1.8471e-05 0.003965 0.001075
GRFsmooth 2.4910e-05 4.0698e-05 0.001303 0.000349

LogGRF 4.6378e-05 5.6221e-05 0.000556 0.000230
LogitGRF 1.6833e-05 3.7144e-05 0.002008 0.000682

CauchyDensity 3.9273e-05 8.2546e-05 0.000988 0.000289
Shapes 1.3435e-05 3.3610e-05 0.003192 0.000994

ClassicImages 0.7797e-05 1.8311e-05 0.005119 0.001512
Microscopy 2.7111e-05 6.1215e-05 0.001243 0.000412

Overall 1.9294e-05 3.5794e-05 0.006855 0.004083

Table 3.4: Average precision error (PE) and relative Wasserstein error (RWE)
over the ten classes. See text for details.

3.4.3 Iterations of the Shielding Method

The shielding method solves the optimal transport problem via a sequence of
restricted instances. Here we have a look on how many iterations of these

CHAPTER 3. DOTMARK 49

instances are necessary.
On the scale 32× 32 the average number of iterations varies between 3.9

for WhiteNoise and 16.6 for CauchyDensity. The numbers for scale 64× 64
are higher (4.6 through 28.5), but show similar behavior otherwise. Figure
3.5 presents scatterplots of the runtime against the number of iterations.

For most classes (green points) we observe a linear scaling of the runtime
with the number of iterations. This means that the runtime in each iteration
is roughly the same over these classes and we may conclude, since CPLEX
has runtimes that scale consistently with model size, that the neighborhood
sizes remain more or less constant as well. The only exceptions are the

5 10 15 20 25 30 35

1
2

3
4

5
6

7

Iterations

R
un

tim
e

(s
)

Shapes

Microscopy

Other

32 x 32

10 20 30 40

50
10

0
15

0

Iterations

64 x 64

Figure 3.5: Scatterplots for Shielding-CPX showing the runtimes against the
number of iterations for the classes Shapes (blue), Microscopy (red) and the
other classes combined (green). Every data point represents one of the 450
computed instances. Left: 32× 32. Right: 64× 64.

classes Shapes (blue) and Microscopy (red), where the runtimes are lower
than expected from the number of iterations. This can be attributed to the
internal solver, which benefits from the lower effective dimension that comes
from the zero mass pixels occurring in these two classes. The difference is
not as significant as for the global CPLEX network simplex runtimes, since
the dimension has already been reduced by the construction of the shielding
neighborhoods.

50 3.5. DISCUSSION

3.5 Discussion

If we look at the different classes, we note that the solvers perform much
better on the classes where the number of pixels with mass zero is large
(Microscopy and Shapes). This is because they seem to benefit particularly
from the reduction of the effective dimension of the problem. The runtimes
are very consistent across the other classes, which allows the conclusion that
the solvers can only exploit the mathematical structure of the model, but are
unable to use geometric features of the input data to their advantage.

Other linear programming methods benefit from the lower effective di-
mension as well, although the difference is not as significant. However, these
methods seem to be comparatively faster on classes where most of the trans-
ports are rather short (rough structure, such as GRFrough or WhiteNoise),
and slower on classes with longer transports (smooth structure, such as GRF-
smooth or LogGRF). This can be explained by the initial solution routine,
which is shared across many of the tested methods. The greedily selected
initial transport plan, which favors short transports, is more likely to be close
to optimal in short range classes than in long range classes. The shortlist
method, which performs another greedy step in addition when searching for
new basis variables within the shortlists, benefits particularly from short trans-
ports in the solutions, but not as much as in the sparse examples considered
in [39] with the Euclidean metric as cost function.

The runtimes of the AHA method are relatively consistent. They are only
considerably shorter for the class Shapes. This may be due to the fact that
in these instances there are only a few different mass values in the images
and the mass is uniformly distributed over large areas.

Interestingly, a comparison of the transportation simplex and the CPLEX
network simplex reveals that the performance of the transportation simplex
is better on 32 × 32 instances, while at resolution 64 × 64 the opposite is
the case. This can be explained by looking at the two methods at hand.
Although details of the CPLEX network simplex solver are not known, it is
safe to assume that the simplex steps are implemented very efficiently. On
the other hand, the transportation simplex has the advantage of an easily

CHAPTER 3. DOTMARK 51

obtainable good initial solution, whereas in the network simplex a preceding
simplex phase is necessary. This makes the TPS perform better on smaller
instances. On the higher resolution our results suggest that the advantage of
a strong initial solution is not as influential as the efficient simplex steps.

Considering the small disparity between the transportation simplex and
the CPLEX network simplex runtimes, the difference in performance between
the two internal solvers for the shielding neighborhood method is surprisingly
large. This is due to the fact that initial solutions to the interior models are
available in the shielding method and thus the first phase of the network
simplex is not necessary. This is why the initial advantage of the transportation
simplex disappears and hence using CPLEX as the internal solver yields much
lower runtimes.

Another observation worth mentioning is that the runtimes, and therefore
numbers of iterations, of the shielding method for the randomly created classes
1–6 agree very well with the ranges of dependence within the data of the
classes. The class with the lowest runtimes, WhiteNoise, has no dependence
at all, whereas the classes with long range dependences, GRFsmooth and
LogGRF, belong to the more difficult classes for the shielding method to
solve. That seems to indicate that constructing small shielding neighborhoods
prevents larger updates to the current solution per iteration, which might be
required in these instances. This may also contribute to the comparatively
long and inconsistent runtimes on the class CauchyDensity.

Based on this first comparison of singlescale methods, we give the following
recommendations for large discrete transport problems (on grids):

1. If you have to be precise and have access to the IBM CPLEX software,
use the shielding method in combination with CPLEX.

2. If you have to be reasonably precise but can afford a small controllable
error, use the AHA method. This is especially advisable if you require
a very high resolution for the mass distribution at the source, as this
comes for the AHA method at virtually no extra cost.

52 3.6. OUTLOOK

3. Both methods are not widely available nor typically very efficient for
costs other than the squared Euclidean metric. So, for other costs direct
use of a conventional simplex algorithm or the shortlist method may be
preferable.

4. If you use a solver directly, be very careful which one you use and that
you call the most appropriate function. Especially when using CPLEX,
make sure that you use the network simplex solver and that you set up
the input as a network structure. If you can, solve the model with a
warm start.

We emphasize again that the absolute runtimes given in Tables 3.2 and
3.3 should not be taken at face value and that actual computations on
modern CPUs are typically much faster. While the relative comparison
presented here is justified to the best of our knowledge, it allows only limited
conclusions about the performance of multiscale variants and multithreaded
implementations of the different methods.

3.6 Outlook

By providing this benchmark we hope to improve the comparability of different
methods for solving discrete optimal transport problems. Contributions or
suggestions for extending the benchmark are welcome. In particular we plan to
include data sets concentrated on more general grid structures and especially
with irregular support points if there is enough public interest.

The R package transport [80] offers user-friendly implementations that
are mostly written in C of three of the methods presented here (transportation
simplex, shortlist and the AHA method). It will be updated in the near
future to include additional state-of-the-art methods.

Solving transport problems exactly for larger images (e.g. with 128, 256
or 512 pixels in each dimension) is still computationally very demanding,
even for state-of-the-art methods. Efficient solutions of such large problems
could pave the way for a new class of algorithms in image processing. In

CHAPTER 3. DOTMARK 53

the area of computer vision and image processing, important applications
include image enhancement, denoising, inpainting, feature extraction and
compression. In one subdomain of image processing, these challenges are
approached by decomposing images into two or three parts [93], e.g. a cartoon
component, which contains piecewise constant or piecewise smooth parts, a
texture component, which captures oscillating patterns, and a noise compo-
nent, which contains small scale objects (corresponding to high frequency
parts in the Fourier domain). After the decomposition step, the texture com-
ponent can be utilized for applications such as fingerprint segmentation [94].
Image decompositions are obtained by formulating and solving minimization
problems that impose suitable norms on the respective components. The
total variation (TV) norm is commonly used for the cartoon component and
the G-norm [58] for the texture component. Recent works by Brauer and
Lorenz [17] and by Lellmann et al. [52] connect the G-norm to solutions of
transport problems. Typically, the minimization problems described above
are solved iteratively and are computationally expensive. It is conceivable to
formulate transport norms for image decomposition, which would require to
solve a large transport problem in each iteration. Thus, efficient algorithms
for optimal transport are a prerequisite for future research in this direction.

54 3.6. OUTLOOK

Chapter 4

Probabilistic Approximation
with Exact Solvers

Except for minor adjustments, this chapter is identical to the publication
Optimal Transport: Fast Probabilistic Approximation with Exact Solvers [90],
which is joint work with Max Sommerfeld, Yoav Zemel and Axel Munk, and
many parts of this paper also appear in Max Sommerfeld’s doctoral thesis
[88]. The proofs of the theoretical results in Section 4.3 are omitted here.
They can be found in the appendix of the paper [90].

4.1 Introduction

Optimal transport distances compare probability measures by incorporating
a suitable ground distance on the underlying space, typically driven by the
specific application, e.g. Euclidean distance. This often makes it preferable
to competing distances such as total-variation or χ2-distances, which are
oblivious to any metric or similarity structure on the ground space. Note
that total variation is the Wasserstein distance with respect to the trivial
metric, which usually does not carry the geometry of the underlying ground
space. In this setting, optimal transport distances have a clear and intuitive
interpretation as the amount of ‘work’ required to transport one probability
distribution onto the other. This notion is typically well-aligned with human

56 4.1. INTRODUCTION

●

●

●

●

●

1%

10%

100%

10−5 10−4 10−3 10−2 10−1 100

Relative Runtime

R
el

at
iv

e
E

rr
or

Problem
Size
● 32x32

64x64
128x128

Figure 4.1: Relative error and relative runtime compared to the exact compu-
tation of the proposed scheme. Optimal transport distances and its approxi-
mations were computed between images of different sizes (32× 32, 64× 64,
128× 128). Each point represents a specific parameter choice in the scheme
and is a mean over different problem instances, solvers and cost exponents.
For the relative runtimes the geometric mean is reported. For details on the
parameters see Figure 4.2.

perception of similarity [71].

4.1.1 Computation

The outstanding theoretical and practical performance of optimal transport
distances is contrasted by its excessive computational cost. For example,
optimal transport distances can be computed with an auction algorithm [10].
For two probability measures supported onN points this algorithm has a worst-
case run time of O(N3 logN). Other methods like the transportation simplex
have sub-cubic empirical average runtime (compare [39]), but exponential
worst-case runtimes.

Therefore, many attempts have been made to design improved algorithms.
We give some selective references: Ling and Okada [53] proposed a specialized
algorithm for L1-ground distance and X a regular grid and report an empirical
runtime of O(N2). Gottschlich and Schuhmacher [39] improved existing
general purpose algorithms by initializing with a greedy heuristic. Their

CHAPTER 4. PROBABILISTIC APPROXIMATION 57

Shortlist algorithm achieves an empirical average runtime of the orderO(N5/2).
Schmitzer [76] solves the optimal transport problem by solving a sequence
of sparse problems. The theoretical runtime of his algorithm is not known,
but it exhibits excellent performance on two-dimensional grids (see [78] or
Chapter 3).

Despite these efforts, many practically relevant problems remain well
outside the scope of available algorithms. See [78] or Chaper 3 for an overview
and a numerical comparison of state-of-the-art algorithms for discrete optimal
transport. This is true in particular for two- or three-dimensional images
and spatio temporal imaging, which constitute an important area of potential
applications. Here, N is the number of pixels or voxels and is typically of size
105 to 107. Naturally, this problem is aggravated when many distances have
to be computed as is the case for Wasserstein barycenters [1, 21], which have
become an important use case.

To bypass the computational bottleneck, many surrogates for optimal
transport distances that are more amenable to fast computation have been
proposed. Shirdhonkar and Jacobs [84] proposed to use an equivalent distance
based on wavelets that can be computed in linear time but cannot be calibrated
to approximate the Wasserstein distance with arbitrary accuracy. Pele and
Werman [64] threshold the ground distance to reduce the complexity of the
underlying linear program, obtaining a lower bound for the exact distance.
Cuturi [20] altered the optimization problem by adding an entropic penalty
term in order to use faster and more stable algorithms, see also [2]. Bonneel
and others [14] consider the 1-D Wasserstein distances of radial projections of
the original measures, exploiting the fact that, in one dimension, computing
the Wasserstein distance amounts to sorting the point masses and hence has
quasi-linear computation time.

4.1.2 Contribution

We do not propose a new algorithm to solve the optimal transport problem.
Instead, we propose a simple probabilistic scheme as a meta-algorithm that
can use any algorithm (e.g. those mentioned above) solving finitely supported

58 4.2. PROBLEM AND ALGORITHM

optimal transport problems as a black-box back-end and gives a random but
fast approximation of the exact distance. This scheme

a) is extremely easy to implement, to parallelize and to tune towards higher
accuracy or shorter computation time as desired;

b) can be used with any algorithm for transportation problems as a back-end,
including general LP solvers, specialized network solvers and algorithms
using entropic penalization [20];

c) comes with theoretical non-asymptotic guarantees for the approximation
error of the Wasserstein distance — in particular, this error is independent
of the size of the original problem in many important cases, including
images;

d) works well in practice. For example, the Wasserstein distance between
two 1282-pixel images can typically be approximated with a relative error
of less than 5% in only 1% of the time required for exact computation.

4.2 Problem and Algorithm

Although our meta-algorithm is applicable to exact solvers for any optimal
transport distance between probability measures, for example the Sinkhorn
distance [20], the theory we present here concerns the Kantorovich transport
distance [46], often also denoted as Wasserstein distance.

Wasserstein Distance Consider a fixed finite space X = {x1, . . . , xN}
with a metric d : X × X → [0,∞). Every probability measure on X is given
by a vector r in

PX =
{

r = (rx)x∈X ∈ RX≥0 :
∑
x∈X

rx = 1
}
,

via Pr({x}) = rx. We will not distinguish between the vector r and the
measure it defines. For p ≥ 1, the p-th Wasserstein distance between two

CHAPTER 4. PROBABILISTIC APPROXIMATION 59

probability measures r, s ∈ PX is defined as

Wp(r, s) =
 min

w∈Π(r,s)

∑
x,x′∈X

dp(x, x′)wx,x′
1/p

, (4.1)

where Π(r, s) is the set of all probability measures on X × X with marginal
distributions r and s, respectively. The minimization in (4.1) can be written
as a linear program

min
∑

x,x′∈X
wx,x′d

p(x, x′) s.t.
∑
x′∈X

wx,x′ = rx,
∑
x∈X

wx,x′ = sx′ , wx,x′ ≥ 0,

(4.2)
with N2 variables wx,x′ and 2N constraints, where the weights dp(x, x′) are
known and have been precalculated.

Approximating the Wasserstein Distance The idea of the proposed
algorithm is to replace a probability measure r ∈ P(X) with an empirical
measure r̂S based on i.i.d. picks X1, . . . , XS ∼ r for some integer S:

r̂S,x = 1
S

{k : Xk = x} , x ∈ X . (4.3)

Likewise, replace s with ŝS. Then, use the empirical optimal transport distance
(EOT) Wp(r̂S, ŝS) as a random approximation of Wp(r, s).

Algorithm 1: Statistical approximation of Wp(r, s)
1: Input: Probability measures r, s ∈ PX , sample size S and number of

repetitions B
2: for i = 1 . . . B do
3: Sample i.i.d. X1, . . . , XS ∼ r and independently Y1, . . . , YS ∼ s

4: r̂S,x ← # {k : Xk = x} /S for all x ∈ X
5: ŝS,x ← # {k : Yk = x} /S for all x ∈ X
6: Compute Ŵ (i) ← Wp(r̂S, ŝS)
7: end for
8: Return: Ŵ (S)

p (r, s)← B−1∑B
i=1 Ŵ

(i)

In each of the B iterations in Algorithm 1, the Wasserstein distance

60 4.3. THEORETICAL RESULTS

between two sets of S point masses has to be computed. For the exact
Wasserstein distance, two measures on N points need to be compared. If we
take for example the super-cubic runtime of the auction algorithm as a basis,
Algorithm 1 has worst-case runtime

O(BS3 logS)

compared to O(N3 logN) for the exact distance. This means a dramatic
reduction of computation time if S (and B) are small compared to N .

The application of Algorithm 1 to other optimal transport distances is
straightforward. One can simply replace Wp(r̂S, ŝS) with the desired distance,
e.g. the Sinkhorn distance [20], see also our numerical experiments below.
Further, the algorithm can be applied to non-discrete instances as long as we
can sample from the measures. However, the theoretical results below only
apply to the EOT on a finite ground space X .

4.3 Theoretical Results

We give general non-asymptotic guarantees for the quality of the approx-
imation Ŵ (S)

p (r, s) = B−1∑B
i=1Wp(rS,i, sS,i) (where rS,i are independent

empirical measures of size S from r; see Algorithm 1) in terms of the expected
L1-error. That is, we give bounds of the form

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ g(S,X , p), (4.4)

for some function g. We are particularly interested in the dependence of
the bound on the size N of X and on the sample size S as this determines
how the number of sampling points S (and hence the computational effort
of Algorithm 1) must be increased for increasing problem size N in order
to retain (on average) a certain approximation quality. In a second step,
we obtain deviation inequalities for Ŵ (S)(r, s) via concentration of measure
techniques.

CHAPTER 4. PROBABILISTIC APPROXIMATION 61

Related Work The question of the convergence of empirical measures to
the true measure in expected Wasserstein distance has been considered in
detail by Boissard and Le Gouic[13] and Fournier and Guillin [28]. The
case of the underlying measures being different (that is, the convergence of
EWp(r̂S, ŝS) to Wp(r, s) when r 6= s) has not been considered to the best
of our knowledge. Theorem 4.3.1 is reminiscent of the main result of [13].
However, we give a result here, which is explicitly tailored to finite spaces
and makes explicit the dependence of the constants on the size N of the
underlying set X . In fact, when we consider finite spaces X which are subsets
of RD later in Theorem 4.3.4, we will see that in contrast to the results of
[13], the rate of convergence (in S) does not change when the dimension gets
large, but rather the dependence of the constants on N changes. This is a
valuable insight as our main concern here is how the subsample size S (driving
the computational cost) must be chosen when N grows in order to retain a
certain approximation quality.

4.3.1 Expected Absolute Error

Recall that, for δ > 0 the covering number N (X , δ) of X is defined as the
minimal number of closed balls with radius δ and centers in X that is needed
to cover X . Note that in contrast to continuous spaces, N (X , δ) is bounded
by N for all δ > 0.

Theorem 4.3.1. Let r̂S be the empirical measure obtained from i.i.d. samples
X1, . . . , XS ∼ r, then

E
[
W p
p (r̂S, r)

]
≤ Eq/

√
S, (4.5)

where the constant Eq := Eq(X , p) is given by

Eq = 2p−1q2p(diam(X))p
q−(lmax+1)p

√
N +

lmax∑
l=0

q−lp
√
N (X , q−l diam(X))

(4.6)

for any 2 ≤ q ∈ N and lmax ∈ N.

62 4.3. THEORETICAL RESULTS

Remark 4.3.2. Since Theorem 4.3.1 holds for any integer q ≥ 2 and lmax ∈ N,
they can be chosen freely to minimize the constant Eq. In the proof they appear
as the branching number and depth of a spanning tree that is constructed on
X (see appendix).

Based on Theorem 4.3.1, we can formulate a bound for the mean approxi-
mation error of Algorithm 1. A mean squared error version is given below, in
Theorem 4.3.8.

Theorem 4.3.3. Let Ŵ (S)
p (r, s) be as in Algorithm 1 for any choice of B ∈ N.

Then for every integer q ≥ 2

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ 2E1/p

q S−1/(2p). (4.7)

Proof. The statement is an immediate consequence of the reverse triangle
inequality for the Wasserstein distance, Jensen’s inequality and Theorem
4.3.1,

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ E [Wp(r̂S, r) +Wp(ŝS, s)]

≤ E
[
W p
p (r̂S, r)

]1/p
+ E

[
W p
p (ŝS, s)

]1/p
≤ 2E1/p

q /S1/(2p).

Measures on Euclidean Space While the constant Eq in Theorem 4.3.1
may be difficult to compute or estimate in general, we give explicit bounds
in the case when X is a finite subset of a Euclidean space. They exhibit
the dependence of the approximation error on N = |X |. In particular, it
comprises the case when the measures represent two- or more dimensional
images.

Theorem 4.3.4. Let X be a finite subset of RD with the usual Euclidean
metric. Then,

E2 ≤ min(2D/2, 2p) min(2D/2DD/4, Dp/2)23p(diam(X))p · CD,p(N),

CHAPTER 4. PROBABILISTIC APPROXIMATION 63

where N = |X | and

CD,p(N) =

3 if D/2− p < 0,

1 + 1
2p log2N if D/2− p = 0,

1 + 2N 1
2 (1− 2p

D
) if D/2− p > 0.

(4.8)

One can obtain bounds for Eq, q > 2 (see the proof), but the choice q = 2
leads to the smallest bound. In particular, we have for the most important
cases p = 1, 2:

Corollary 4.3.5. Under the conditions of Theorem 4.3.4,

p = 1 =⇒ E2 ≤ 8D1/2 diam(X) ·

3 · 2D/2 if D < 2,

2 + log2N if D = 2,

2 + 4N 1
2 (1− 2

D
) if D > 2.

p = 2 =⇒ E2 ≤ 64D(diam(X))2 ·

3 · 2D/2 if D < 4,

4 + log2N if D = 4,

4 + 8N 1
2 (1− 4

D
) if D > 4.

Theorem 4.3.4 gives control over the error made by the approximation
Ŵ (S)
p (r, s) of Wp(r, s). Of particular interest is the behavior of this error as

N gets large (e.g. for high resolution images). We distinguish three cases. In
the low-dimensional case p′ = D/2 − p < 0, we have CD,p(N) = O(1) and
the approximation error is O(S−

1
2p) independent of the size of the image. In

the critical case p′ = 0 the approximation error is no longer independent of
N but is of order O

(
log(N)S−

1
2p
)
. Finally, in the high-dimensional case the

dependence on N becomes stronger with an approximation error of order

O

N (1− 2p

D
)

S

 1
2p
 .

In all cases one can choose S = o(N) while still guaranteeing vanishing
approximation error for N →∞. In practice, this means that S can typically

64 4.3. THEORETICAL RESULTS

be chosen (much) smaller than N to obtain a good approximation of the
Wasserstein distance. In particular, this implies that for low-dimensional
applications with two or three dimensional histograms (for example greyscale
images, where N corresponds to the number of pixels / voxels and r, s corre-
spond to the grey value distribution after normalization), the approximation
error is essentially not affected by the size of the problem when p is not too
small, e.g. p = 2.

While the three cases in Theorem 4.3.4 resemble those given by Boissard
and Le Gouic [13], the rate of convergence in S as seen in Theorem 4.3.1
is O(S−1/2), regardless of the dimension of the underlying space X . The
constant depends on D, however, roughly at the polynomial rate Dp/2 and
through CD,p(N). It is also worth mentioning that by considering the dual
transport problem, one can invoke the framework of Shalev-Shwartz and
others [82], particularly Theorem 7. However, the dependence on S and N
and the constants are not easily accessible from that paper.

Remark 4.3.6. The results presented here extend to the case where X is
a bounded, countable subset of RD. However, Eq can only be bounded in
the low-dimensional case (D/2− p < 0) due to Theorem 4.3.4 and is infinite
otherwise.

4.3.2 Concentration Bounds

Based on the bounds for the expected approximation error we now give non-
asymptotic guarantees for the approximation error in the form of deviation
bounds using standard concentration of measure techniques.

Theorem 4.3.7. If Ŵ (S)
p (r, s) is obtained from Algorithm 1, then for every

z ≥ 0

P

[
|Ŵ (S)

p (r, s)−Wp(r, s)| ≥ z +
2E1/p

q

S1/2p

]
≤ 2 exp

(
− SBz2p

8 diam(X)2p

)
. (4.9)

Note that while the mean approximation quality 2E1/p
q /S1/(2p) only depends

on the subsample size S, the stochastic variability (see the right-hand side

CHAPTER 4. PROBABILISTIC APPROXIMATION 65

term in (4.9)) depends on the product SB. This means that the repetition
number B cannot decrease the expected error, but it decreases the magnitude
of fluctuation around it.

From these concentration bounds we can obtain a mean squared error
version of Theorem 4.3.3:

Theorem 4.3.8. Let Ŵ (S)
p (r, s) be as in Algorithm 1 for any choice of B ∈ N.

Then for every integer q ≥ 2 the mean squared error of the EOT can be bounded
as

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣2] ≤ 18E2/p

q S−1/p = O(S−1/p).

Remark 4.3.9. The power 2 can be replaced by any α ≤ 2p with rate
S−α/(2p), as can be seen from a straightforward modification of the first lines
of the proof.

For example, in view of Theorem 4.3.4, when X is a finite subset of a RD

with the (optimal) choice q = 2, we obtain

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣2] ≤ 3229DC

2/p
D,p(N)[diam(X)]2S−1/p.

with the constant CD,p(N) given in (4.8). Thus, we qualitatively observe the
same dependence on N as in Theorem 4.3.4, e.g. the mean squared error is
independent of N when D < 2p.

4.4 Simulations

This section covers the numerical findings of the simulations. Runtimes
and returned values of Algorithm 1 for each back-end solver are reported in
relation to the results of that solver on the original problem. Four different
solvers were tested.

4.4.1 Simulation Setup

The setup of our simulations is identical to that of [78] and Chapter 3. One
single core of a Linux server (AMD Opteron Processor 6140 from 2011 with

66 4.4. SIMULATIONS

2.6 GHz) was used. The original and subsampled instances were run under
the same conditions.

Three of the four methods featured in this simulation are exact linear
programming solvers. The transportation simplex is a modified version of
the network simplex solver tailored towards optimal transport problems.
Details can be found for example in [54]. The shortlist method [39] is a
modification of the transportation simplex, that performs an additional
greedy step to quickly find a good initial solution. The parameters were
chosen as the default parameters described in that paper. The third method
is the network simplex solver of CPLEX (www.ibm.com/software/commerce/
optimization/cplex-optimizer/). For the transportation simplex and the
shortlist method the implementations provided in the R package transport
[80] were used. The models for the CPLEX solver were created and solved
via the R package Rcplex [18].

Additionally, the Sinkhorn scaling algorithm [20] was tested in our sim-
ulation. This method computes an entropy regularized optimal transport
distance. The regularization parameter was chosen according to the heuristic
in [20]. Note that the Sinkhorn distance is not covered by the theoretical
results from Section 4.3. The errors reported for the Sinkhorn scaling are
relative to the values returned by the algorithm on the full problems, which
themselves differ from the actual Wasserstein distances.

The instances of optimal transport considered here are discrete instances
of two different types: regular grids in two dimensions, that means images in
various resolutions, as well as point clouds in [0, 1]D with dimensions D = 2,
3 and 4. For the image case, from the DOTmark, which contains images of
various types intended to be used as optimal transport instances in the form
of two-dimensional histograms, three instances were chosen: two images of
each of the classes White Noise, Cauchy Density, and Classic Images, which
are then treated in the three resolutions 32 × 32, 64 × 64 and 128 × 128.
Images are interpreted as finitely supported measures. The mass of a pixel
is given by the greyscale value and the support of the measure is the grid
{1, . . . , R} × {1, . . . , R} for an image with resolution R×R.

In the White Noise class the greyscale values of the pixels are independent

www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ibm.com/software/commerce/optimization/cplex-optimizer/

CHAPTER 4. PROBABILISTIC APPROXIMATION 67

of each other, the Cauchy Density images show bivariate Cauchy densities
with random centers and varying scale ellipses, while Classic Images contains
greyscale test images. See [78] or Chapter 3 for further details on the different
image classes and example images. The instances were chosen to cover
different types of images, while still allowing for the simulation of a large
variety of parameters for subsampling.

The point cloud type instances were created as follows: The support
points of the measures are independently, uniformly distributed on [0, 1]D.
The number of points N was chosen 322, 642 and 1282 in order to match the
size of the grid-based instances. For each choice of D and N , three instances
were generated with regards to the three images types used in the grid based
case. Two measures on the points are drawn from the Dirichlet distribution
with all parameters equal to one. That means, the masses on different points
are independent of each other, similar to the white noise images. To create
point cloud versions of the Cauchy Density and Classic Images classes the
greyscale values of the same images were used to get the mass values for
the support points. In three and four dimensions, the product measure of
the images with their sum of columns and with themselves, respectively, was
used.

All original instances were solved by each back-end solver in each resolution
for the values p = 1, p = 2, and p = 3 in order to be compared to the
approximative results for the subsamples in terms of runtime and accuracy,
except for CPLEX, where the 128× 128 instances could not be solved due
to memory limitations. Algorithm 1 was applied to each of these instances
with parameters S ∈ {100, 500, 1000, 2000, 4000} and B ∈ {1, 2, 5}. For every
combination of instance and parameters, the subsampling algorithm was run
5 times in order to mitigate the randomness of the results.

Since the linear programming solvers had a very similar performance on
the grid-based instances (see below), only one of them - the transportation
simplex - was tested on the point cloud instances.

68 4.4. SIMULATIONS

32x32 64x64 128x128

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

1%

10%

100%

10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100

Relative Runtime

R
el

at
iv

e
E

rr
or B ● 1 2 5

S ●

●

●

●

●100
500

1000
2000

4000

Figure 4.2: Relative errors |Ŵ (S)
p (r, s) − Wp(r, s)|/Wp(r, s) vs. relative

runtimes t̂/t for different parameters S and B and different problem sizes for
images. t̂ is the runtime of Algorithm 1 and t is the runtime of the respective
back-end solver without subsampling.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

32x32 64x64 128x128

10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100

1%

10%

100%

Relative Runtime

R
el

at
iv

e
E

rr
or

B ● 1 2 5

S ●

●

●

●

●100
500

1000
2000

4000

Figure 4.3: Relative errors vs. relative runtimes for different parameters S
and B and different problem sizes for point clouds. The number of support
points matches the number of pixels in the images.

CHAPTER 4. PROBABILISTIC APPROXIMATION 69

4.4.2 Computational Results

As mentioned before, all results of Algorithm 1 are relative to the results of
the methods applied to the original problems. We are mainly interested in the
reduction in runtime and accuracy of the returned values. Many important
results can be observed in Figure 4.2 and 4.3. The points in the diagram
represent averages over the different methods, instances, and multiple tries,
but are separated in resolution and choices of the parameters S and B in
Algorithm 1.

For images we observe a decrease in relative runtimes with higher resolu-
tion, while the average relative error is independent of the image resolution.
In the point cloud case, however, the relative error increases slightly with the
instance size. The number S of sampled points seems to considerably affect
the relative error. An increase of the number of points results in more accurate
values, with average relative errors as low as about 3% for S = 4000, while
still maintaining a speedup of two orders of magnitude on 128× 128 images.
Lower sample sizes yield higher average errors, but also lower runtimes. With
S = 500 the runtime is reduced by over four orders of magnitude with an
average relative error of less than 10%. As to be expected, runtime increases
linearly with the number of repetitions B. However, the impact on the relative
errors is rather inconsistent. This is due to the fact, that the costs returned
by the subsampling algorithm are often overestimated, therefore averaging
over multiple tries does not yield improvements (see Figure 4.4). This means
that in order to increase the accuracy of the algorithm it is advisable to keep
B = 1 and instead increase the sample size S. However, increasing B can be
useful to lower the variability of the results.

On the contrary, there is a big difference in accuracy between the image
classes. While Algorithm 1 has consistently low relative errors on the Cauchy
Density images, the exact optimal costs for White Noise images cannot be
approximated as reliably. The relative errors fluctuate more and are generally
much higher, as one can see from Figure 4.5 (left). In images with smooth
structures and regular features the subsamples are able to capture that
structure and therefore deliver a more precise representation of the images

70 4.4. SIMULATIONS

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●
●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●●

●
●

●●
●●● ●

●●

● ●●

●●●●

●

●●

●

●
●

●●
●●
●

●
●

●

●

●

●

●●

●

●●
●
●●●

●
●

●

●
●

●

●

●

●

●●

● ●
●

●

●
● ●

●
●
●

●●
●

●●

●●
●

●
●●

●
● ●
●

●●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●

●

●●

●

● ●●●

●● ●

●
●●●●● ●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●●

●
●

●
●●

●

●
●

● ●●●

●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●●●● ●
●●

●

●

●

●
●●

●
●●

●
●

●●

●
●

●

●

●●●
●

●
●

● ●

●
●

●
●●

●●
●

●

●

●
●

●●
● ●

●

●

●

●●
●
●

●

●●

●

●
●

●

●

●

●●●

●

● ●●
●

●

●
●

●

●

●●●

●

●
●●

●
● ●●●
●
●

●

●
●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●
●
●

●

●

●
●●

●

●
●

●

●

● ●●
●
●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●● ●●
●

●●
●

●

●
●

●
●●●

●●

●

●
●

●●●

●

●●

●
●
●●

●
●●
●
●●

●

●●●
●

●

●
●

●●●
●
●

●●●●
●

●

●

●

●
●
●●●●

●●●●
●

●

●
●
●

●
● ●●

●

● ●●
●

●
●●
●

●
●

●
●●●●

●
●
●

●
●

●

●
●

●

●●
●

●
●
●

● ●●●
●
●

●

●●
●●

●

●

●
●

●

●
● ●

● ●

●●

●

●
●

●●●
●

●

●●
●

●

●●
●
● ●● ●●

●

●●

●

●
●

●●●

●
●
●●●●

●

●●
●●●

●●

●

●●●
●

●

●
●

●

●●●●●

●

●
●

●
●

●
●

●●
●●●●●

●

●

●
●
●●
●

● ●

●●●
●
●
●●

●

●

●
●

●
● ●●●
●

●

●
●●● ●●

●

●

●●
●●●

●
●

●
●

●
●

●
● ●

●●
●● ●

●
●●

●●●
●

●
●

●●

●

●

●

●●
●●●
●

●

●
●

●
●

●●●●●
●●●●●●●
●
●

●
●
●

●●

●●

●

●
●●

●

●

●
●

●
●

●● ●

●●●●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

● ●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●●

●

●

●●

●●●●
●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●●
●●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●●●●
●●
●
●

●
● ●
●

●

●

●
● ●●

●
●●

●
●
●

●
●
●●
●

●●●
●●

●●
●

●
●
●
●
●

●● ●●● ●●
●

●
●
●

●

●●
●

●●
●●●

●●

●

● ●
●

●
●
●●●

●●●●●
●
●

●●
●●●

●●
●●●●●●●●●●●
●

● ●
●●
●

●
●●●

●
●

●●●●
●

● ●
●
●● ●

●
●●

●
●
●●● ●

●●

●● ●●
●
●

●

● ●●● ●●●
●
●

● ●
●

●●
●●

●●
● ●●●

●
●

●
●

●
●

●

●●●●●

●●

●
●

●
●

●
●
●●

●
●●● ●●●●

●●
●●

●
●●

●
●

●
●●●

●
● ●
● ●●
●

●
●●

●
● ●

●
●●

●●
●
●●
●

●●
●

● ●
●

●
●

●
●
●●

●●
● ●

●

●
●●

●

●
●

●

●
●●

●
●●

●

●
●
●

●
●●●●●
●

●

●●●
●

●●●
●

●

●
●●●● ●

●

●
●●●● ●●

●
●
●●●
● ●●

●
●
●

●

●●
●
●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●

●

●●

●●

●●

●

●
●

●●

●●

●

●
●●
●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●
●●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●
●●●

●

●
●

●

●

●● ●

●
●

●

●
●

●

●
●●

●
●
●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●
●

●

●
●● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●●●●
●●
●●

●●
●

●
●●
●●● ●

●
●●●● ●●●●

●

●●
●

●
●●
●●●●●●

●●●
●

●
●●
●●

●
●●●

●●●
●●●●

●
● ●
● ●

●
●

●
●●●●

●

●●● ●● ●●●●●●
●●●
●●●●●
●

●● ●●
●●●●●●
●●

●
●●● ●●

●
●●
●●

●
●
●
● ●●
●●
●●●●●

●
●●

●●●
●●
●● ●●
●●●

●
●●

● ●
●● ●● ●●●●●●
●●●●●
●●●
●

●
●

●
●●●●●●

●●●
●

●●●●●● ●● ●●
●

●●
●

●
●●

●
●

●
●

●
●●

●

●●
●●●

●
●●●

●●
●●●

●●●● ●
●

●●●
●

●●●●●
●

●
●●●●
● ●●
●●

●●●● ●
●

●●
●
●●●

●
●

●
●●●●

●●●
●

●●●
●● ●●
●

●
●

●
●

●●
●●●●●

●● ●●●
●
●

● ●
●●● ●●

●
●
●

●
●
●

●

●
●
●
●

●● ●●
●●●

●
●● ●● ●

●
● ● ●

●●

●

●

●

●
●

●

●

●
●●

●

●
●●●

●●
●●

●

●

●
●
●●
●●

●
●

●

●●

● ●●
●
●

●
●

●
●●

●

●
●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●
●●

●
●
●●

● ●

●

●

●

●
●

●●

●

●

●
●

●

●●●
●

●●

●

●●

●●●

●
●●●

●

●

● ●●

●●

●

●

●
●

●

●
●

●●●
●

●

●
●

●
●●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●●●

●

●
●
●

●
●●

●

●

●

●
●

●

●●

●
●

●

●

●●●

●

●●
●

●

●
●

●

●

●

●

●●
●●●●●

●

●

●

●

●

●

● ●●
●

●
●
●

●

●
●

●●●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●
●

●● ●
●

●●
●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●●
●●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●●●

●

●●

●
●

●

●●

●

●
●●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●●
●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●●
●
●

●●
●
●
●

●●

●●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●●●

●●

●

●
●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●
●

●

●●

●

●

●●
●●
●
●

●

●
●

●

0%

50%

100%

150%

100 500 1000 2000 4000
S

S
ig

ne
d

R
el

at
iv

e
 E

rr
or

●

●

●

32x32
64x64
128x128

Figure 4.4: The signed relative approximation errors(
Ŵ (S)
p (r, s)−Wp(r, s)

)
/Wp(r, s) show that the approximation over-

estimates the exact distance for small S but the bias vanishes for larger S.

and a more precise value. This is not possible in images that are very irregular
or noisy, such as the White Noise images, which have no structure to begin
with. The Classic Images contain both regular structures and more irregular
regions. Therefore, their relative errors are slightly higher than in the Cauchy
Density cases. The algorithm has a similar performance on the point cloud
instances, that are modelled after the Cauchy Density and Classic Images
classes, while the Dirichlet instances have a more desirable accuracy compared
to the White Noise images, as seen in Figure 4.5 (right).

There are no significant differences in performance between the different
back-end solvers for the Wasserstein distance. As Figure 4.6 shows, accuracy
seems to be better for the Sinkhorn distance compared to the other three
solvers which report the exact Wasserstein distance.

In the results of the point cloud instances we can observe the influence of
the value p′ = (D/2)− p on the scaling of the relative error with the instance
size N for constant sample size (S = 4000). This is shown in Figure 4.7. We
observe an increase of the relative error with p′, as expected from the theory.
However, we are not able to clearly distinguish between the three cases p′ < 0,
p′ = 0 and p′ > 0. This might be due to the relatively small instance sizes

CHAPTER 4. PROBABILISTIC APPROXIMATION 71

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

● ●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●●

● ●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●
●

●
●

●●●●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●● ●

●

●
●

●
●●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●●
●
●●
●

●

●

●

●
●
●

●
●

●

●
●●●

●
●
●

●

●
●
●

●
●
● ●

●

●●
●

●
●

●

●

●
●

●
●●●
●●

●

●
●

●
●
●

●●

●
●

●
●

●

●●
●

●●

●
●

●

●

●●
●

●●
●

●●

●

●
●

●

●

●
●
●

●
●●

●

●

●

●

●●●●●

●

●
●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

● ●
●

●●●●

●●
●

●

●●
●
● ●

●●
●

●
●●

●

●
●
●

●

●

●
●●

●
●
●

●

●
●

●
●

●●
●

●

●
●

●
●

●● ●●

●

●●

●

●
● ●●
●●

●●
●●

●
●

●

●

●●

●●●●●
●●●

●
●

●●

●
●●●●

●

●

●

●

●●
●

● ●●
●

●●
●
●
●

●●●

●

●
●
●

●

●
●●

●

●
●●●

●

●

●
● ●

●
●

●
●●

●●

●

●

●

●

●
●●●●
●

●

●

●
●●

●●

●

●

●
●

●●
● ●

●

●
●

●
●

●
●● ●
●

●
●●

●

●

● ●
●

●●

●

●●

●

●
●● ●

●
●

●

●
●

●
●

●

●
●●●●

●
●● ●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

● ●
●
●●

●●

●

●
●

●

●●
●

●

●
●

●
●●

●
●

●
●

●

●
●
●●

●

●

●●

●

●
●

●●
●

●●
●
●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●
●

●

●●
●

●●

●
●
●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●● ●
●

●

●●

●

●

● ●
●●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●
●

●●

●

●

●

●
●

●●
●

●
●

●

●
●
●●

●●

●

●
●
●
●●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●●

●
●
●

●
●

●
●

●

●
●●●●

●●
●● ●

●

●
●

●●●
●●

●
●

●
●

●
●

●
● ●●●● ●

● ●●
●

●
●●●●

●●
●●●

●
●

●
●
●●

●

●

●
●●●
●
●●

●
● ●
●
●

●●●

●

●●

●
● ●

●
●

●●
●

●

●●
●

●
●●

●

●
●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●●

●

●
●

●
●
●

●●●● ●●●
●

●
●
●

●
●

●
●● ●
●●

●
●

●
●

●
●●●● ●

●

●●●

●

●
●
●●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●● ●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●

●●

●

●● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●
●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●●
●
●

●

●
●●●●

●

●
●

●

●
●●

●●
●
●

●
●●●
●

●●

●
●

●
●●●●●
●

●
●

●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●●●

●

●●
●

●
●

● ●●
●

●●●

●

●

●●

●
●

●
●

●

●

●●

●
●

●
●

●

● ●
●

●●

●
●●
●
●● ●

●●●
●●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

● ●
●●
●

●

●

●
●●●

●
●

●●

●

●
●

●
●

●

●
●

●

●●

●
●●●●

●
●

●●

●
●

●

●●●●
●

●
●

●

●

●
●

●

●

●
●●

●

●●●●
●

●

●

●
●●

●

●●●
●

●

●
●●●●

●

●

●

●● ●
●
●●

●●
●

●

●

●●
●

●
●
●

●●●

●
●

●●

●

●

● ●
●

●
●

●
●

●

● ●
●

●●

●
●

● ●
● ●

●
●

● ●
●
●●

●
●

●

●

●●

●

●

●
●

●

●●
●
●

●

●
●
● ●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●●●

●

●

●

●●●
● ●

●

●

●

●

●●
●

●●
●

●

●

●
●

●

●●

●●

●
●

●●●

●

●●
●
●

●

● ●
●● ●
●●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●
●●
●
●●
●●

●

●

●

●
●
●

●

●●
●
●

●

●

●●

●

●●

●●●●● ●
●
●●● ●

●

●
●

●●●●
●

●●
●

●
●●

●
●

●
●●

●●
●

●●
●

●

●●

●●
●

●●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●

●●●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
● ●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●● ●●

●

●

●

●●

●
●

●

●

●
●
●

●●●●●
●
●●
●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●●●●

●

●
●

●●●●
●

●● ●●
●

●
●
●

●
● ●●● ●

●

●
●

● ●●●

●

●
● ●

●
●

●●
●●

●

●●
●

●●
●●●

●

●
●

●

●●

●

●●

●●

●

●
●

●
●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●●

●

● ●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●
●

●

●
●●

●
● ●●
●

●

●●●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

● ●
●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●
● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●● ●
●

●

●●
●

●●

●

●

●

●
●

●
●
●

●

●

●●

●

●
●

●

●

●
●●●●●
●

●
●●●

●

●●
●

●●●

●●
●

●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●
●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●
●

●
●

●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●●

●
● ●●

●

●

●
●
●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●
●

●

●

●

●
●

●
●

●

●
●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●

●
●

●

●
●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●
●●

●
●●

●
●

● ●
●

●

●

●● ●

●

●
●●

●
●

●

●

●
●●

●
●

●

●

●
●

●●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●

●●

●

●
●
●●

●

●
●
●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●●
●

●

●

●●

●

●

●
●●

●●

●

●

●
●

●●
●●

●●
●
●●

●

●●

●

●
●●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●

●

●●
●

●
●●●
●●●

●

●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●●
●
●●●●●
●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●●
●

●

●
●
●
●
●●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●

●
●
●
●
●●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

0.01%

0.1%

1%

10%

100%

1000%

100 500 1000 2000 4000
S

R
el

at
iv

e
E

rr
or

●

●

●

CauchyDensity
ClassicImages
WhiteNoise

●

●

●
●

●●●
●●

●
● ●●●●

●●
● ●●●●
● ●

●
●●
●●●
●●●●●●
●
●●
●●●●●●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●
● ●●●

●
●

●
●

●
●

●
●●
●

●●●
●●●●●
●●●●●●
●

●

● ●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●●
●

●
●

●

●
●●

●

●
●●●
●

●●●
●

●●●
●

●

●

●●

●

●

●●●●
●

●●●●

●●
●

●●
●

●

●●
●●●●

●●

●●●
●●● ●●●● ●●●

● ●

●●
●●

●

●●●

●
●
●●●

●
●

●●
●
●●

●
●●● ●

●
●●

●
●

● ●● ●● ●
●
●●●●●●●
●

● ●

●

●●●
●●●
●

●●●
●●

● ●●●
●

●
●
●

●
●●●

●●
●

●●●●●●●●●●●●
●

●●

●

●
●
●

●

●

●

●
●

● ●
●

●

●
●

●
●

●

●
●
●●

●

●

●
●●●● ●

●●

●

●
● ●●●●● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●●●●
●

●●
●

●
●

●
●

●
●

●●●●●●● ●
●

●

●
●
●

● ●●●

●

●●

●

●

●

●
●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●●●
●

●

● ●● ●

●

●
●●●

●●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●
●
●
●●

●

●
●
●

●
●

●●
●

●

●●●●●
●●

●

●●
●
●●●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●
●●●

●
●● ●

●

●●●●● ●
●

● ●
●●●

●

●●

●●

●

●

●
●
●
●

●

●

●
●●●
●

●●
●●

●●●

●● ●●●●

●
●

●

●
●
●

●
●●●●

●●
●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●
●
●●

●
●
●
●

●● ●●
● ●
●● ●●●

●●● ●●● ●●●
●
●●●
●

●

●
●

●●

●
●

●
●●

●

●

●

●

●
●●

●●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●
● ●●

●●●●
●
●
●
●

●

●
●

●●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

● ●●●

●

●●
●

●

●●
●●●●●

●●
●

●

●
● ●●
●

●

●●
●

●

●

●
●

●●
●

●

●●
●

●

●
●

●

●
●●

●
●●●●●●●
●

●●
●

●●●●●●● ●● ●●●

●●
●●
●●

●

●●
●
●

●

●●
●

●

●

●●
●●●●●

●●●●●
●

● ●●●●●
●

●
●

●●●●●●

●
●

●
●●●●
●

●

●
● ●

●
●●

●
●

●
●

●●
●

●

●

●●
●

●

●
●

●●
●●●●●●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●
●●●
●
●

●●●

●

●

●

●
●

●
● ●

●
●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●
●

●

●●
●●●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●
●
●

●● ●

●

●

●●
●

●

●

●

●

●
●
●●●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●
●
●

●
●

●●
●●●
●
●●● ●
●
●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

● ●●●

●●
●

●
●

●
●

●

●● ●●
●

●
●

●●
●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●

●

●●●

●

●
●● ●
●●

●
●●
●●
●

●

●
● ●● ●●

●
●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●
● ●
●

●● ●●●
●

●●

●●
●

●

●

●

●

●
● ●●

●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●
●●
●
●

●

●

●

●

●

●●
● ●●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
● ●

●
●

●●●
●

●

●

●

●●● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

● ●●●
●

●●
●

●

●●

●
●
●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

● ●

●

●●

●●●●
●

●●●

●
●

●

●
●

●
●

●

●

● ●
●

●

●●
●●

●

●

●
●

●

●
●

●

●●
●●●

●
●

●

●

●
●

● ●

●

●

●●
●●

●●●

●
●

●● ●●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●
●

●
●

●
●
●

●

●
●●●

●

●
●●

●

●
●

●
●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

● ●
●

●● ●●

●
●●●

●

●
●

●

●

●●●●

●
●

●

●
●● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●●

●●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

● ●
●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●●
●
●●

●●

● ●
●

●●
●●

●

●●
●
●

●
●
●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●●
●

●

●

●●

●

●●
●

●●●●
●●●

●●

●
●

●●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●●

●

●
● ●
●● ●

●
●

●

●

●● ●
●

●●●
●
●

●●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●● ●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●●

●

● ●
●

●
●●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●
●

●
●

●●

●
●●●

●●●●●
●
● ●

●
●● ●

●●●●●● ●
●●●● ●●
●

●

●

●

●
●
●

●
●●

●●
●

●

●●

●●

●

●

●
●

● ●●

●
●
●

●
●

●

●

●●●●
●●●● ●●●●● ●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●●●

●
●
●

●●

●

●

●●
●

●
●
●●
●

●

●
●

●

●
● ●

●●●
●

●
●●
●

●●●
●●

●●

●
●●●●●● ●● ●●●

●
●
●

●●● ●●
●

●● ●●●●●●
●

●
●●
●

●●
●

●

●

●
●●●

●

●

●

●●●
●●
●
●

●
●● ●● ●●

●
● ●

●●●● ●●●● ●
● ●●

●

●
●
●

●

●

●
●

●●●

●

●
●●

●●●
●●●●
●●●

● ●●
●●

●●●●●●●●●
●●● ●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●
●

●
●

●
●
●

●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●●

●
●

●
●
●● ●

● ●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●

●●

● ●●

●

●
●

●

●

●
●

●

●

●●●
● ●
●
●

●

●
● ●

●

●●●
●●

●

●

●

●

●

●

● ●●●
●
●

●
●●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●●
●

●●
●
●

●
●

●●
●

●●●●●
●●

●●
●

●

●●●
●

●
●
●●●

●

●
●

●

●

●
●●

●

●

●●

●

●

●
●

●

●
●

●

● ●●●
●
●

●

●

●

●●
●●●●

●
● ●

●
●

● ●●

●

●

●

●
●

●●

●●

●

●●●

●
●

●
● ●

●

●
●

●
●●
●

●●●
●

●
●

●●

●

●●
●●●●●●● ●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●●●●●
●

●
●●●

●
●
● ●●●

●
●
●
●
●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●
●

●●●
●●

●

●

●

●
●●

●

●

●

●
●●●
●

●●●

●
●

●
●●

●●
●

●

●

●

●●
●

●●

●

●

●

●

●
●●●●

●●
●●

●
●●

●●
●

●
●●●
●
●●●●
●● ●● ●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●
●●●●

●

●●
●

●●
● ●

●●● ●●●
●●●●
●

●
●●●

●

●
●

●

●

●

●

●●
●

●●
●

●
●

●●● ●●
●●●
●
●
●
●
●

●●

● ●●●●●●●●●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●
●

●
●

●
●

●

●
●

●
●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

● ●
●●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●●

●
●

●●

●●

●

●
●

●

● ●●●

●
●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●
●

●
●

●

●

●●
●

●
●
●●

●
●

●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●

●

● ●
●●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●
●

●●

●

●
●

●●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●
●

● ●

●

●
●

●
●
●
●

●

●

●

●●
●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●

●

●●

●
●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●●●
●

●●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●●
●●

●
●

●●
●●

● ●
●

●●

●

●

●

●

●

●
●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●
●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●
●

● ●
●
●
●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●
●●

●

●●●●●
●●●

●●
● ●●●
● ●

●
●●● ●●●●●●●● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●●

●●●
●

●
●
●● ●
●●●
●

●●●
●●

●
●

●

●●●● ●●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●
●● ●

● ●

●●
●

●

●●
●

●

●

●●●●●
●

●
●●● ●

● ●●●●●●●
●●

●●●●●●●●
●●●●●●●

●●
●●
●

●
●

●
●

●

●
●

●

●

●

●●● ●
●
●●●●●●
●

●
●

●
●●● ●●● ●●●●

●●●●●

●
●

●●● ●●●●●

●

●●●

●

●
●●●

●
●●

●●
●●
●●●●

●●●●●●●●●●●●●
● ●

●

●

●

●

●

●●●
●●
●

●
●

●

●

●
●

●
●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●● ●

●
●

●

●
●●

●

●

●

●

●
●

●
●
●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●
●

●

●●● ●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●●

●

●
●●

●
●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●●
●

●
●
● ●●

●

● ●
●●

●●
●●●

●● ●● ●
●●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●●●
●●

●●●●

●●●

●

●

●
●
●●
●● ●
●
●● ●
●

●●
●●

●
●
●

●
●●

●●

●

●
●

●
●

●●
●

●

●
●●●

●
●

●
●

●
●●●

●
●
●

●

●

●

●
●●
●

●
●

●●

●

●

●

●

●●●●

●

●

●
●

●
●●

●

●
●

●
●● ●●

●
●●

●
●

●●●●

●
●

●●
● ●●

●●
●●

● ●●●

●

●

●

●●
●

●●
●

●
●

●

●●
●

●●
●

●
●

● ●●●
●●

●●●
●

●●●●●●
●●●

●
●●●●●

●

●
●

●
●●

●
●

●

●

●

●
●
●●●●

●●
●

●●
●

●●

●
● ●●

●

●●●
●●

●●●●●●
●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●●
●

●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●
●

●

●

●●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
● ●

●

●●
●

●

●
●

●

●

●
●

●●●
●●●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●● ●

●

●
●

●

●
●
●

●

●●

●

●●●

● ●●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●●

●
●●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

● ●
●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●●
●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●●

●

●
●

●

●

●

●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●
●●●

●
●●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●●
●

●●
●●●

●

●

● ●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●●

●

●

●
●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●
●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●●● ●

●

●

●

●●
● ●
●●●●

●
●● ●

●●
●●●

●●●● ●●●● ●●●●●●●●

●
●

●
●●

●

●

●
●

●

●●

●●

●
●

● ●

●
●
●

●

●●●●

●
●●●

●
●

●
●●

●
●

●
●●● ●●●

●

●
●

●●

●

●

●
●

●

●

●
●
●
●

●

●

●
●

●
●

●

●

●
●●

●●●●
●

●

● ●
●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●●●
●

●

●●

●
●

●
● ●●●● ●●●●

●●●
●●

●●
●●●●● ●●●●●●

●●

●●●

●
●

●●

●

●

●

●
●●

●
●

●●●●● ●
● ●●●
●
●●●●
●●●●●●●●●●●●●●●

●

●●●●
●

●

●

●

●

●
●●
●●

●
●●

●●●● ●●●●●● ●●

●●● ●●●●● ●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●
●●

● ●

●
●

●●

●

●

●
●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
● ●
●

●
●●

●

●●●
●

●

●●

●
●

●
●

●

●
●

●

●
●●

●

●

●●
●

●●

●

●

●

●

●●

●
●●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

● ●
●●

●

●●
●●● ●●●●●● ●●●● ●●

●●●●●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●● ●
●

●
●

●●
●
●

●
●

●●

●●

●
●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●● ●

●

●

●●

●●
●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●
●

●●●●●●●
●

●
●
●
●

●

●

●●
●

●

●
●

●●

●
● ●●●●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●●

●●
●
●●●●●●●
●

●●
●

●●
●●
●
● ●●●●●
●

●

●

●

●

●

●
●

●

●
●● ●

●●
●

●●
●
●
●●●●
●●

●
●●

●●

●
●●
●

●

●
●● ●●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●
●●
●●

●
●

●

●
●

●
●

●●●
●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●
● ●

●●
●

●

●

●

●●
●●
●

●●●

●●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●●

●

●

●●
●

●

● ●●
●●

●

●● ●
●

●
●
●

●

●

●

●

●●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

●
●●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●●

●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●●●●●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●
●

●●

●●

●●●

●

●
●●●●●●● ●●

●
●●●●●● ●●●●●●●●●●● ●●●●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●
●

●

●●●
●

●●●

●●

●●●

●

●
●●●

●
●
●

●
●●

●
●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

● ●
●

●

●

●
●●

●
●

●●

●
●

●
●●●

●●

●

●

●
●
●●

● ●●
●●

●●
●
●

●

●●●
● ●

●●●
●●

●
●
●

●●
● ●●●●●●●●● ●●●●●

●

●

●●●●
●

●

●
●

●

●●

●

●

●●●● ●
●●●

●●●●
●

●
●

●● ●● ●●●●●●●●● ●●

●
●●●●●
●

●

●●●●●

●

● ●
●

●●●
●
●●●

●
●●●●●
●●● ●●●●●●●●●● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●

●●

● ●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●●

● ●
●

●

●●●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●
● ●●●

●

●

●●
●

● ●

●
●●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●●
●

●
●

●

●

●

●
●

●●●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●●

●●
●

●
●● ●

●

●

●

●
● ●●●

●●

●
●●●●●●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●●
●
●

●
●●

●

●
●
●

●
●●●●●
●

●

●
●●

●

●●
●●●●

●

●

●

●
●

●
●

● ●

●●●●

●

●

●

●●

●

●
●●

●

●

●
●●●●

●
●
●
●●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●
●
●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●●●

●

●●
●

●

●
●

●

●
●

●
●

●

●●●
●

●

●

●

●

●
●

●

●

●

●●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●●
●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●●
●
●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●0.01%

0.1%

1%

10%

100%

1000%

100 500 1000 2000 4000

S

R
el

at
iv

e
E

rr
or

●

●

●

CauchyDensity
ClassicImages
Dirichlet

Figure 4.5: A comparison of the relative errors for different image classes
(left) and point cloud instance classes (right).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●

● ●
●

●
●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

0.01%

0.1%

1%

10%

100%

100 500 1000 2000 4000
S

R
el

at
iv

e
E

rr
or

●

●

Wasserstein
Sinkhorn

Figure 4.6: A comparison between the approximations of the Wasserstein and
Sinkhorn distances.

72 4.5. DISCUSSION

●

●

● ●

● ●

●

1%

2%

3%

4%

5%

−2 −1 0 1

D 2 − p

R
el

at
iv

e
E

rr
or

Problem
Size
● 32x32

64x64
128x128

Figure 4.7: A comparison of the mean relative errors in the point cloud
instances with sample size S = 4000 for different values of p′ = (D/2)− p.

N in the experiments. While we see that the relative errors are independent
of N in the image case (compare Figure 4.2), for the point clouds N has an
influence on the accuracy that depends on p′.

4.5 Discussion

As our simulations demonstrate, subsampling is a simple, yet powerful tool
to obtain good approximations to Wasserstein distances with only a small
fraction of required runtime and memory. It is especially remarkable that
in the case of two-dimensional images for a fixed amount of subsampled
points, and therefore a fixed amount of time and memory, the relative error is
independent of the resolution/size of the images. Based on these results, we
expect the subsampling algorithm to return similarly precise results with even
higher resolutions of the images it is applied to, while the effort to obtain
them stays the same. Even in point cloud instances the relative error only
scales mildly with the original input size N and is dependent on the value p′.

The numerical results (Figure 4.2) show an inverse polynomial decrease of
the approximation error with S, in accordance with the theoretical results.
As we see little dependence on the cost exponent p we speculate that the rate

CHAPTER 4. PROBABILISTIC APPROXIMATION 73

O(S−1/2p) might be improved upon. In fact, recent results on the asymptotic
distribution of the empirical Wasserstein distance would suggest an O(S−1/2)
rate [89].

When applying the algorithm, it is important to note that the quality of
the returned values depends on the structure of the data. In very irregular
instances it is necessary to increase the sample size in order to obtain similarly
precise results, while in regular structures a small sample size suffices.

Our scheme allows the parameters to be easily tuned towards faster
runtimes or more precise results, as desired. Increases and decreases of
the sample size S are recommended to influence the performance in either
direction, while the parameter B should only be increased if a particularly low
variability of the estimate is required or if the repetitions can be computed in
parallel. Otherwise, the higher runtime should be spent with a higher sample
size (compare Figure 4.2).

The scheme presented here can readily be applied to other optimal trans-
port distances, as long as a solver is available, as we demonstrated with the
Sinkhorn distance [20]. Empirically, we can report good performance in this
case, suggesting that entropically regularized distances might be even more
amenable to subsampling approximation than the Wasserstein distance itself.
Extending the theoretical results to this case would require an analysis of
the mean speed of convergence of empirical Sinkhorn distances, which is an
interesting task for future research.

All in all, subsampling proves to be a general, powerful and versatile tool
that can be used with virtually any optimal transport solver as back-end
and has both theoretical approximation error guarantees, and a convincing
performance in practice. It is a challenge to extend this method in a way
which is specifically tailored to the geometry of the underlying space X , which
may result in further improvements.

74 4.5. DISCUSSION

Chapter 5

Cost-Based Clustering: A
General Multiscale Approach
to Discrete Optimal Transport

5.1 Introduction

As previously discussed, discrete optimal transport problems are considered in
many applications (see Section 1.2 for an overview). Despite the availability
of general purpose algorithms, such as the transportation simplex, due to
large-scale instances more modern and efficient methods are required. Several,
sometimes very recently introduced algorithms are described in Chapter 2.
We summarize a number of strategies employed by these methods to push
the boundaries of viability of large-scale optimal transport:

• Performance optimization: Through code optimization, parallelization
or simply the usage of more modern hardware, the runtimes of methods
can be lowered. Commercial solvers are more and more efficient and
performance enhancing variations, such as the shortlist method [39]
compared to the transportation simplex, have been introduced.

• Exploitation of geometric structures: The transportation simplex and
similar algorithms only make use of values of the cost function as

76 5.1. INTRODUCTION

coefficients, but are oblivious of any underlying geometric structure. For
Wasserstein distance computation in Euclidean spaces in particular, this
means missed potential. Methods making use of the geometry include
the shielding method [76], the AHA method [57] and others.

• Approximative methods: If it is not necessary to compute an exact solu-
tion or the exact optimal transport cost, approximative methods can be
applied. Options include primal or dual heuristics [81], the entropically
regularized optimal transport [20] or randomized approximation via
subsampling [90] (see Chapter 4).

• Multiscale methods: These are approaches to reduce the size of the
problem (coarsening), solve the smaller instance more quickly and derive
from this a solution to the original problem (propagation). There are
different strategies for the coarsening, the propagation and refinement of
solutions. See Section 2.4 including the references for a more thorough
introduction to multiscale methods.

Despite these advancements, some exceedingly difficult problems remain.
If approximations are not an option, the instance at hand does not have an
exploitable geometric structure and standard methods – however optimized
– are still too time- or memory-consuming, the last option to rely on are
multiscale approaches. We give the following prototypical example of such a
problem:

Example 5.1.1. In economics, optimal transport problems arise in matching
models, such as labor market matching. Workers with different properties
must be matched with jobs with different requirements, such that the weighted
total benefit is maximized. Each pair of worker and job carries a benefit
value, similar to cost values between sources and sinks in the regular optimal
transport problems. However, workers and jobs cannot easily be embedded
into a metric space in a way that expresses the benefit values in terms of the
distances. This makes it impossible to apply many of the best performing
strategies. Labor market and other matching problems are brought up for
example in [32].

CHAPTER 5. COST-BASED CLUSTERING 77

Adapting multiscale methods to cases like this, however, is not an easy
task. The main problem is that many coarsening strategies rely on geometric
structure as well, for example, a grid. Popular clustering methods, which can
be considered for coarsening, such as k-means clustering and similar, also
require point clouds in a Euclidean space. Therefore, it is not guaranteed that
these algorithms can be applied in general. We introduce a clustering method
in this chapter that has no requirements on the cost function in order to
achieve the highest level of generality and make multiscale methods available
for any optimal transport problem. We name the new method cost-based
clustering. While it is driven by available data instead of geometry, this
approach also offers advantages in some Euclidean situations, particularly in
high dimensions, and we highlight examples in Section 5.5.

Discrete Optimal Transport In this chapter we focus on discrete optimal
transport. The problem statement is the same as given in Section 1.1. We
identify measures µ on X = {x1, . . . xN} and ν on Y = {y1, . . . yM} with mass
vectors, say µi = µ(xi) for all i = 1, . . . , N and νj = ν(yj) for all j = 1, . . . ,M .
Similarly, we identify the cost function c : X × Y → R+ with a cost matrix
C = (ci,j) 1≤i≤N

1≤j≤M
∈ RN×M

+ with ci,j = c(xi, yj) for all i, j and view couplings π
as matrices π ∈ RN×M

+ as well.
We consider the following linear program with variables πi,j:

(DOT) min 〈C,π〉

subject to
M∑
j=1

πi,j = µi ∀i = 1, . . . , N

N∑
i=1

πi,j = νj ∀j = 1, . . . ,M

πi,j ≥ 0

Here, 〈·,·〉 between matrices stands for the Frobenius inner product. In
what follows, inequalities between matrices are interpreted as componentwise
inequalities. Although the notation is mostly identical to the setup in Sec-

78 5.2. THE COST-BASED CLUSTERING PROBLEM

tion 1.1, note that the numbers of elements in X and Y are denoted with
capital letters N and M here. An instance of DOT is entirely characterized
by µ, ν and C. It is feasible if and only if µ(X) = ν(Y) and we always assume
that this is the case.

We introduce a multiscale approach to this general setting. See Section 2.4
and references therein for a description of the main ideas behind multiscale
methods. In what follows, the focus lies on cost-based clustering as a way
to make a coarsening method available in general. We also introduce a
propagation algorithm which makes use of the way the instance was coarsened.
While multiscale methods usually operate on more than two scales, we only
consider one coarsening step here, since the coarsening and propagation
techniques can be iterated. This means, we need to find partitions for the
sets X and Y , as well as a meaningful cost matrix on the subsets.

5.2 The Cost-Based Clustering Problem

Finding partitions of X and Y that permit a good representation of the
original problem in the multiscale scheme in the general setting is not an
easy task in general, because we might not have a geometrical structure or a
metric space; and therefore, classical clustering algorithms cannot be applied.
In fact, we need to find clusterings based only on the measures µ and ν, as
well as the cost matrix C.

However, for a given clustering we can show bounds on the absolute
deviation of the optimal transport cost of the clustered problem from the
original if a suitable cost matrix between clusters is chosen. Based on this
result, we can define the cost-based clustering problem as follows: Find the
clusterings of X and Y into n and m subsets, respectively, which minimize
a suitable cost deviation bound. We state the problem first and prove the
bounds afterwards.

Definition 5.2.1. Let X = {x1, . . . , xN} and Y = {y1, . . . , yM}, µ and ν be
measures on X and Y , respectively, and C a cost matrix. For n,m ∈ N and
partitions X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} of X and Y into n and

CHAPTER 5. COST-BASED CLUSTERING 79

m subsets, respectively, we define

• the minimum cost matrix Cmin(X ,Y) ∈ Rn×m
+ by

cmink,l (X ,Y) := min
xi∈Xk
yj∈Yl

ci,j for all k = 1, . . . , n and l = 1, . . . ,m,

• the maximum cost matrix Cmax(X ,Y) ∈ Rn×m
+ by

cmaxk,l (X ,Y) := max
xi∈Xk
yj∈Yl

ci,j for all k = 1, . . . , n and l = 1, . . . ,m,

• and the gap matrix G(X ,Y) := Cmax(X ,Y)− Cmin(X ,Y) with entries
gk,l(X ,Y).

With this we define four gap objective functions:

Grow(X ,Y) :=
n∑
k=1

(
µ(Xk) · max

l=1,...,m
gk,l(X ,Y)

)
,

Gcol(X ,Y) :=
m∑
l=1

(
ν(Yl) · max

k=1,...,n
gk,l(X ,Y)

)
,

Gmin(X ,Y) :=
n∑
k=1

m∑
l=1

min{µ(Xk), ν(Yl)} · gk,l(X ,Y),

Gprod(X ,Y) :=
n∑
k=1

m∑
l=1

µ(Xk) · ν(Yl) · gk,l(X ,Y).

When they are clear from the context, we leave out the arguments (X ,Y)
of the matrices and functions above. We can now define the cost-based
clustering problem.

Definition 5.2.2. Let X and Y be finite sets with measures µ and ν and
a cost matrix C as above and let n,m ∈ N. The cost-based clustering
problem (CBC) with respect to G∗ is to find clusterings X for X and Y for
Y minimizing G∗(X ,Y), where G∗ stands for one of the above gap objective
functions Grow, Gcol, Gmin and Gprod.

80 5.2. THE COST-BASED CLUSTERING PROBLEM

Usually, clusterings are meant to convey the similarity of points or elements
in the same subset in some sense. Since we have no direct notion of similarity or
dissimilarity between points in X in this general setting of optimal transport,
we need to measure similarity with respect to the costs to the points in
Y . Given two clusters Xk and Yl, the gap matrix entry gk,l represents how
different the points in Xk are with respect to the costs to the points in Yl and
vice versa. Therefore, we generally prefer small entries in the gap matrix.

The four objective functions are different weightings of the gap matrix.
Grow, Gcol and Gmin have an additional meaning as deviation bounds, whereas
Gprod can lead to interesting clusterings in practice (see Section 5.4.2 for
results). Every function defines one version of CBC. Unfortunately, finding
the optimal clustering for any of the objective functions is hard.

Theorem 5.2.3. CBC is NP-hard for any G∗ ∈ {Grow, Gcol, Gmin, Gprod}.

We postpone the proof of this theorem to Section 5.7.

5.2.1 Deviation Bounds of Clusterings

As mentioned, three of the gap objective values for a clustering, and hence
their minimum, serve as a bound for the absolute deviation of the optimal
cost value on the clusters from the desired optimal cost value if the cost
matrix between clusters is chosen suitably.

Theorem 5.2.4. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} be clusterings
of X and Y , respectively. Let C̄ ∈ Rn×m

+ , such that

Cmin(X ,Y) ≤ C̄ ≤ Cmax(X ,Y).

Let c̄∗ be the optimal objective value of the optimal transport problem on the
clusters defined by X , Y and C̄ and let c∗ be the optimal cost value of the
original problem. Then

|c̄∗ − c∗| ≤ min{Grow(X ,Y), Gcol(X ,Y), Gmin(X ,Y)}.

CHAPTER 5. COST-BASED CLUSTERING 81

Before we go into the proof, we introduce some notation. Let π∗ be an
optimal coupling for the original problem and let π̄∗ and π∗min be optimal
couplings on the clusters with respect to C̄ and Cmin, respectively. We
define C̃min ∈ RN×M

+ by c̃mini,j := cmink,l for the k and l, such that xi ∈ Xk and
yj ∈ Yl. Analogously, we define C̃max ∈ RN×M

+ . Since cmink,l ≤ ci,j ≤ cmaxk,l for
all xi ∈ Xk, yj ∈ Yl, we have C̃min ≤ C ≤ C̃max. We denote an optimal
coupling for the original problem, with respect to C̃min instead of C as π̃∗min.
Then we have the following lower and upper bounds on c∗ and c̄∗:

Lemma 5.2.5. In the situation of Theorem 5.2.4 we have

i) c∗min ≤ c∗ ≤ 〈Cmax,π∗min〉 and

ii) c∗min ≤ c̄∗ ≤ 〈Cmax,π∗min〉,

where c∗min is the optimal cost value of the clustered problem with respect to
Cmin.

Proof. The optimal transport instance on the clusters with respect to Cmin

is equivalent to the instance on X and Y with respect to C̃min in the sense
that every feasible (and hence every optimal) solution to the former can be
trivially propagated to a feasible (or optimal) solution to the latter with the
same cost value. Vice versa, through aggregating transports according to the
clustering every solution on the finer scale has a natural counterpart solution
on the clusters with the same cost. Therefore, 〈Cmin,π∗min〉 = 〈C̃min,π̃∗min〉
and similarly 〈C̃max,π̃∗min〉 = 〈Cmax,π∗min〉. Since the problem with respect to
C̃min is a relaxation of the original problem,

c∗min = 〈Cmin,π∗min〉 = 〈C̃min,π̃∗min〉 ≤ 〈C̃min,π∗〉 ≤ 〈C,π∗〉 = c∗

= 〈C,π∗〉 ≤ 〈C,π̃∗min〉 ≤ 〈C̃max,π̃∗min〉 = 〈Cmax,π∗min〉.

The bounds on c̄∗ follow from

c∗min = 〈Cmin,π∗min〉 ≤ 〈Cmin,π̄∗〉 ≤ 〈C̄,π̄∗〉 = c̄∗ ≤ 〈C̄,π∗min〉 ≤ 〈Cmax,π∗min〉.

82 5.2. THE COST-BASED CLUSTERING PROBLEM

Proof of Theorem 5.2.4. It follows immediately from Lemma 5.2.5 that

|c̄∗ − c∗| ≤ 〈Cmax,π∗min〉 − c∗min = 〈Cmax − Cmin,π∗min〉 = 〈G,π∗min〉.

We denote the components of π∗min as π∗k,l for k = 1, . . . , n and l = 1, . . . ,m.
Then we have

〈G,π∗min〉 =
n∑
k=1

m∑
l=1

gk,lπ
∗
k,l ≤

n∑
k=1

max
l=1,...,m

gk,l ·
m∑
l=1

π∗k,l

=
n∑
k=1

µ(Xk) · max
l=1,...,m

gk,l = Grow,

〈G,π∗min〉 =
m∑
l=1

n∑
k=1

gk,lπ
∗
k,l ≤

m∑
l=1

max
k=1,...,n

gk,l ·
n∑
k=1

π∗k,l

=
m∑
l=1

ν(Yl) · max
k=1,...,n

gk,l = Gcol,

〈G,π∗min〉 =
n∑
k=1

m∑
l=1

gk,lπ
∗
k,l ≤

n∑
k=1

m∑
l=1

min{µ(Xk), ν(Yl)} · gk,l = Gmin

and hence
|c̄∗ − c∗| ≤ min{Grow, Gcol, Gmin}.

Theorem 5.2.4 gives us rigorous bounds for the deviation of a clustered
solution with respect to a suitable cost matrix C̄ from the original for a given
clustering. The same is true for Lemma 5.2.5, since it gives us concrete upper
and lower bounds on c∗. However, in order to obtain these, π∗min has to be
known, that means an additional optimal transport instance on the clusters
has to be solved to optimality. This makes the bounds from Lemma 5.2.5
impractical to use as an objective funciton for the clustering process.

When a clustering is given and c̄∗ is computed for some C̄ between Cmin

and Cmax we can give an interval of possible values for c∗, namely

c∗ ∈ [c̄∗ − γ, c̄∗ + γ] ,

CHAPTER 5. COST-BASED CLUSTERING 83

where γ = min{Grow, Gcol, Gmin} for the clustering at hand. If in addition we
solve the instance on the clusters with respect to Cmin and have access to
π∗min we can compute the lower and upper bounds in Lemma 5.2.5 directly
and obtain the interval

c∗ ∈ [c∗min, 〈Cmax,π∗min〉] ,

which has a length of 〈G,π∗min〉 ≤ γ instead of 2γ. This means there is always
the option to cut the interval of potential cost values in half by computing
π∗min. Another option is to choose C̄ = Cmin, which accomplishes both at the
same time. However, the approximation c̄∗, which is then a lower bound, will
probably be less precise. Compare Section 5.4.2 for how the choice of C̄ has
an influence on the difference between c̄∗ and c∗.

Another important aspect is that if the cost-based clustering is used as
a setup for a multiscale scheme and a feasible solution for the finer scale
(here on X and Y) is constructed via the propagation method presented in
Section 5.3.3, we obtain an additional upper bound, which can in practice be
significantly tighter than the upper bounds provided here (compare Section
5.4.2). Therefore, in that case the value of additionally computing π∗min might
be diminished.

5.2.2 Comparison to Other Clustering Objectives and
Deviation Bounds

As mentioned already, the main difference between the cost-based clustering
and other clustering problems is that we operate on two sets X and Y with a
cost function c : X × Y → R+ instead of a distance function d : X ×X → R+

on only one space X. However, even if the optimal transport instance at
hand takes place in RD for D ∈ N and c(x, y) = ‖x−y‖p as cost function, the
objective functions are different to other clustering problems, such as k-means
clustering. This means while there are established algorithms computing
clusterings, they might not yield clusterings well suited for our purpose of
minimizing the error bounds.

84 5.2. THE COST-BASED CLUSTERING PROBLEM

For example, most clustering algorithms aggregate points, which are close
together. While closeby points likely have similar distances to points in the
other set, the same might be true for points which are far from each other.
The following example illustrates an extreme case of this effect achieved by
symmetry.

Example 5.2.6. Suppose we have two sets with four points each as shown in
Figure 5.1, left, both equipped with uniform distributions, and c(xi, yj) =
‖xi − yj‖2 for all xi, yj. Now suppose we want to find two clusters for X,
while the trivial clustering Y = {{y1}, {y2}, {y3}, {y4}} of Y is fixed. Most
proximity-based clustering algorithms find the clusters {x1, x2} and {x3, x4},
as indicated by the ellipses in Figure 5.1, right, which we would agree with
judging by geometric intuition. However, because of the symmetry, the cost
matrix

C =

2 1 2 5
5 2 1 2
2 1 2 5
5 2 1 2

has two pairs of identical rows, the first and third, as well as the second and
forth row. This means the clustering {x1, x3} and {x2, x4} has a gap matrix
with only zero entries, which makes it the optimal clustering with respect to
the objective functions in the cost-based clustering problem. In fact, since
the objective value is zero, the optimal transport instance on the clusters has
the same optimal cost as the original instance, since no information is lost
due to the clustering.

Of course, this is a small example only constructed for the purpose
of showing this effect and it is reliant on some kind of (approximative)
symmetry. Usually, geometric clustering algorithms produce clusterings,
which are reasonable in terms of their objective values of the gap functions
in CBC. There are some situations, however, in which a symmetry effect is
in place. For example, if X and Y are concentrated on lower dimensional
affine subspaces A and B of RD, which are orthogonal to each other, optimal
clusterings have concentric spherical clusters around the intersection point

CHAPTER 5. COST-BASED CLUSTERING 85

x1

x2

x3

x4

y1

y2

y3

y4

Figure 5.1: This example illustrates that aggregating close points can lead
to a suboptimal clustering with respect to the objective functions of the
cost-based clustering problem.

between A and B. Such clusterings are typically not found by traditional
geometric clustering algorithms. This is discussed further in Section 5.5.

A different error bound is given by the Wasserstein metric, if we assume
we have a metric space (X, d) with probability measures µ and ν with finite
support in X and c(x, y) = dp(x, y). The optimal transport cost c∗ between
µ and ν is the p-th power of the Wasserstein distance between µ and ν,

c∗ = W p
p (µ, ν).

Any clusterings of the supports of µ and ν together with representatives in
X for each cluster define approximative probability measures µ̂ and ν̂ with

c̄∗ = W p
p (µ̂, ν̂).

Due to the Wasserstein metric triangle inequality, we have

|Wp(µ, ν)−Wp(µ̂, ν̂)| ≤ Wp(µ, µ̂) +Wp(ν, ν̂),

and hence
|c∗

1
p − c̄∗

1
p | ≤ Wp(µ, µ̂) +Wp(ν, ν̂).

The distances Wp(µ, µ̂) are often easily computed. Let, for example,

86 5.2. THE COST-BASED CLUSTERING PROBLEM

supp(µ) = {x1, . . . , xN} ⊆ X with clusters X1, . . . , Xn and representatives
x̂1, . . . x̂n ∈ X. If each point xi is contained in the cluster Xk with the closest
representative with respect to d, then

W p
p (µ, µ̂) =

n∑
k=1

∑
xi∈Xk

µ(xi)dp(xi, x̂k),

which is the case for the k-means algorithm or the standard grid-based
aggregation for multiscale schemes on images. Note that this is an error
bound between the p-th roots of the two optimal objective values, while the
gap value given by the cost-based clustering provides an error bound on the
absolute deviation of the optimal cost values. The next example shows a
comparison of the two bounds in the grid-based case.

Example 5.2.7. Let X = Y = {1, . . . , R}2 ⊆ R2 for some even number R ∈ 2N
with d(x, y) = ‖x − y‖ and consider the clustering X = {X1, . . . , Xn} with
n = R2/4, where four adjoining points are aggregated and the representatives
x̂k of the clusters are the centers of the four clustered points. This defines µ̂
and ν̂ on X for probability measures µ and ν on X as detailed in Section 2.4
under the paragraph Coarsening. Since dp(xi, x̂k) = 2− p2 for all Xk and
xi ∈ Xk, we have

|c∗
1
p − c̄∗

1
p | ≤ Wp(µ, µ̂) +Wp(ν, ν̂) = 2 ·

(
2−

p
2
) 1
p =
√

2.

The error bounds of the cost-based clustering are more difficult to compute
and often depend on µ and ν, since the values in the gap matrix range between
dp((1, 1), (2, 2)) = 2 p

2 and

dp((1, 1), (R,R))− dp((2, 2), (R− 1, R− 1))

=
(
(R− 1)

√
2
)p
−
(
(R− 3)

√
2
)p

= 2
p
2 · ((R− 1)p − (R− 3)p) .

For p = 1, however, we can compute Grow and Gcol directly. For every cluster
Xk there exists another cluster Xl, which is diagonally aligned (assuming
R ≥ 4), such that the difference between the maximal and the minimal
distances is precisely twice the diameter of the clusters, thus gk,l = 2

√
2.

CHAPTER 5. COST-BASED CLUSTERING 87

This is in line with the more general maximal gap matrix entry given above.
Therefore,

Grow = Gcol = 2
√

2.

Gmin depends on µ and ν with the best case being
√

2 and the worst case
being 2

√
2, depending on how the masses of µ and ν are distributed. In any

case,
|c∗ − c̄∗| ≤ W1(µ, µ̂) +W1(ν, ν̂) ≤ Gmin ≤ Grow = Gcol,

meaning that the Wasserstein bound is the tightest of the bounds, Grow

and Gcol are the least tight and Gmin is in between depending on µ and ν.
For p > 1 these bounds cannot be compared directly, since the Wasserstein
bound applies to |c∗

1
p − c̄∗

1
p |, whereas the deviation bound from the cost-based

clustering applies to |c∗ − c̄∗|.

5.3 Clustering Algorithms

Despite being an NP-hard problem, there are some fast polynomial algorithms
producing clusterings that are maybe not optimal with respect to the objective
function, but reasonable approximate solutions to the cost-based clustering
problem. The same is true for most clustering problems, since they are
typically NP-hard and tackled via heuristic methods, such as k-means, k-
center and similar geometric algorithms, via hierarchical clusterings, such as
agglomerative and divisive clustering, and via other methods.

When adapting established clustering methods to our problem, we need
to pay attention to a couple of features in particular:

• We cannot rely on a metric or distance function between elements in X,
since we only have a function measuring the costs between elements in
X and Y . This immediately rules out a lot of the geometric methods
like k-means clustering. While there are of course optimal transport
instances in metric or Euclidean spaces that can be handled with these
clustering methods, this work is focused on the general case.

• Even in the case of optimal transport in a Euclidean space it is not

88 5.3. CLUSTERING ALGORITHMS

ensured that geometric clustering methods such as k-means lead to
clusterings, which are preferable with respect to the objective functions
of the cost-based clustering problem. This is highlighted in Example
5.2.6 and more examples can be found in Section 5.5.

• Runtime has to be a major focus of the clustering methods. Since the
general discrete optimal transport problem on N elements can be solved
in O(N3 log(N)) time with the auction algorithm [10] and sub-cubic
empirical runtimes are possible with a specialized transportation simplex
method [39], it is important to keep the clustering runtimes low, as
cost-based clustering is meant to accelerate the solution process in a
multiscale scheme.

5.3.1 Agglomerative Clustering

One of the heuristic clustering methods that can be adapted to the cost-
based clustering problem is the agglomerative clustering. It is a hierarchical
bottom-up clustering approach, where every element starts as one cluster
and in each step two current clusters are selected to be merged until the
desired number of clusters is reached. The selection happens greedily with
respect to a linkage criterion, that is usually tied to an objective function or
a dissimilarity function between the elements.

Agglomerative clustering methods go back to Florek et al. in 1951 [27],
who suggested a nearest-neighbor rule, which is now known as single-linkage.
Later, more efficient clustering algorithms for single-linkage [85] and complete-
linkage [22] were developed in 1973 and 1977, respectively. The distance
between clusters is evaluated by the shortest distance between elements in
single-linkage, and by the farthest distance between elements in complete-
linkage.

Unfortunately, those and many other linkage criteria require a distance or
dissimilarity function d : X ×X → R+, also called dissimilarity coefficient,
whereas we only have access to a cost (or dissimilarity) function c : X×Y → R+

between elements inX and Y . This is why we suggest linkage criteria based on
the objective functions of the cost-based clustering problem Grow, Gcol, Gmin

CHAPTER 5. COST-BASED CLUSTERING 89

and Gprod.
Starting with X = {{x1}, . . . , {xN}} and Y = {{y1}, . . . , {yM}}, the gap

matrix is the zero matrix. Whenever we fuse two clusters of X (or Y) we
eliminate one row (column) of the gap matrix and another row (column)
increases its values. This leads to an increase of the gap objective function
values, that depends on the choice G∗ ∈ {Grow, Gcol, Gmin, Gprod}. We can
compute this increase in advance in order to choose the two clusters to fuse,
which lead to the least increase of the function. This process is iterated until
the desired number of clusters is reached. The two sets X and Y are clustered
in succession. Since this linkage criterion depends on the choice of G∗, it has
to be chosen beforehand.

In each step of clustering X (and likewise when clustering Y with different
notation), assuming N current clusters, the fusion matrix is an RN×N

+ matrix
F , such that fk,l is the increase in the chosen objective function if Xk and
Xl are fused. Since it is symmetric with diagonal zero, we only need to keep
track of the upper triangular part. In most of the cases, if we fuse two clusters
Xk and Xl, the other entries do not change, and we only have to compute
the entries for the new cluster Xk ∪ Xl. This leads to Algorithm 2 below.
However, if we cluster X with respect to Gcol or Y with respect to Grow,
due to the column-wise (or row-wise) maximum of the gap matrix in the
objective function, all of the values in the fusion matrix might change after
the aggregation of two clusters. This means we either have to recalculate
the entire fusion matrix after each step (Algorithm 3) or accept that the
remaining values in the matrix are inaccurate (Algorithm 2). Another option
is to recalculate the matrix, whenever the number of clusters is halved, or
similar. This leads to variants of Algorithms 2 and 3.

Some details on the implementation:

• In addition to G we always keep track of Cmin and Cmax during the
clustering. The reason is simply that they are needed to compute
the fusion values fi,j and it would be inefficient to recalculate the
required values each time. For Grow (Gcol) we also keep track of the
row-wise (column-wise) maximum of G, that is, Gk,· = maxl gk,l or
G·,l = maxk gk,l.

90 5.3. CLUSTERING ALGORITHMS

Algorithm 2: Agglomerative cost-based clustering
Input :X, Y, µ, ν, C, n,m,G∗
Output :Clusterings X ,Y with gap matrix G
Initialize
X ← {{x1}, . . . {xN}},Y ← {{y1}, . . . {yM}}, G← 0 ∈ RN×M

Initialize F (N ×N fusion matrix for X) by computing fi,j for
i = 1, . . . , N − 1, j = i+ 1, . . . , N with respect to G∗, for other (i, j):
fi,j ←∞
while |X | > n do

(k′, l′)← argmink,l fk,l
Xk′ ← Xk′ ∪Xl′

Xl′ ← ∅ (remove from X)
Update G, µ and F

end
Initialize F (M ×M fusion matrix for Y)
while |Y| > m do

(k′, l′)← argmink,l fk,l
Yk′ ← Yk′ ∪ Yl′
Yl′ ← ∅ (remove from Y)
Update G, ν and F

end

CHAPTER 5. COST-BASED CLUSTERING 91

Algorithm 3: Agglomerative cost-based clustering with recalcula-
tion of the fusion matrix (only relevant for Grow and Gcol)
Input :X, Y, µ, ν, C, n,m,G∗
Output :Clusterings X ,Y with gap matrix G
if G∗ = Gcol then

Perform this algorithm for Y,X, ν, µ, Ct,m, n,Grow

end
else

Initialize
X ← {{x1}, . . . {xN}},Y ← {{y1}, . . . {yM}}, G← 0 ∈ RN×M

Fuse the clusters of X as in Algorithm 2
for K = M, . . . ,m+ 1 do

Calculate the K ×K fusion matrix F for Y
(k′, l′)← argmink,l fk,l
Yk′ ← Yk′ ∪ Yl′
Yl′ ← ∅ (remove from Y)
Update G and ν

end
end

• When updating F in Algorithm 2 after the fusion of Xi and Xj, we
remove rows and columns i and j from F , then add a new row and
column for the new cluster Xi ∪Xj.

• We compute fi,j for two clusters Xi, Xj depending on G∗ as follows

– for Grow:

fi,j := µ(Xi ∪Xj) · max
l=1,...,M

{
max{cmaxi,l , cmaxj,l } −min{cmini,l , c

min
j,l }

}
− µ(Xi) ·Gi,· − µ(Xj) ·Gj,·

– for Gcol:

fi,j :=
M∑
l=1

ν(Yl) ·
(

max
{

max{cmaxi,l , cmaxj,l } −min{cmini,l , c
min
j,l }, G·,l

}
−G·,l

)

92 5.3. CLUSTERING ALGORITHMS

– for Gmin:

fi,j :=
M∑
l=1

(
min{µ(Xi ∪Xj), ν(Yl)}

·
(
max{cmaxi,l , cmaxj,l } −min{cmini,l , c

min
j,l }

)
−min{µ(Xi), ν(Yl)} · gi,l −min{µ(Xj), ν(Yl)} · gj,l

)

– for Gprod:

fi,j :=
M∑
l=1

(
ν(Yl)·(
µ(Xi ∪Xj) ·

(
max{cmaxi,l , cmaxj,l } −min{cmini,l , c

min
j,l }

)
− µ(Xi) · gi,l − µ(Xj) · gj,l

))

• In the update steps of G, when Xi and Xj (with i < j) are fused, we
remove row j and update row i of G. The same for columns in the
clustering process of Y .

• We update µ by µi := µi + µj and remove entry j. The same for ν.

• Usually, Algorithm 2 is used for clustering. For the linkage criteria
Grow and Gcol a Boolean option accel indicates, whether Algorithm 2
(accel = true) or Algorithm 3 (accel = false) is used.

• The clustering for (X, Y , µ, ν, C, n, m, Grow) via the agglomerative
clustering method is the same as the clustering for (Y , X, ν, µ, Ct,
m, n, Gcol). This allows us to always do the unproblematic clustering
first in Algorithm 3, so that the clustering where the entire matrix is
recalculated in each step is performed with an already reduced number
of clusters for the other set. For G∗ ∈ {Gmin, Gprod} the clustering for
(X, Y , µ, ν, C, n, m, G∗) is the same as the clustering for (Y , X, ν, µ,
Ct, m, n, G∗), since Gmin and Gprod are both symmetric in X and Y .

In order to analyze the runtime of the agglomerative clustering method,
we focus on the clustering of X first and observe that each computation of

CHAPTER 5. COST-BASED CLUSTERING 93

fi,j is done in O(M) time, independent from the choice of G∗. In Algorithm
2 the fusion matrix F is initialized with N2 computations of fi,j . That means
the initialization step is done in O(MN2) time. Within the while loop, for
K = |X |, choosing the argmin is done in O(K2) time and in the update of F ,
one row is computed, which are K computations of fi,j . The other operations
are insignificant in runtime. The values of K range from N to n+ 1, hence
the runtime of the while loop, and consequentially of the whole clustering of
X, is ∑N

K=n+1(K2 +MK) = O(N3 +MN2).
The clustering of Y has only one difference, namely the computation of

one value fi,j takes O(n) instead of O(N) time, since |X | has previously been
reduced to n. The rest still holds with N and M interchanged, thus the
runtime of the clustering of Y is O(M3 +nM2). As a whole, Algorithm 2 has
an O(N3 +MN2 + nM2 +M3) runtime, thus is cubic in max{M,N}.

For Algorithm 3 let us fix the linkage criterion Grow (for Gcol we obtain
the same with X and Y exchanged). The first clustering (i.e. of X) is
the same as before, thus done in O(N3 + MN2) time. The clustering of
Y requires the fusion matrix F to be computed within the loop, so the
runtime is ∑M

K=m+1K
2n = O(M3n), which yields O(N3 + MN2 + nM3)

in total. For N = M and n = m, for example, this is O(N3n), which is
already prohibitively slow for the cost-based clustering as a multiscale method
for optimal transport, since the original problem can already be solved in
O(N3 log(N)) time in the worst case and in order to remain under this order,
one would have to choose n = o(log(N)). Thankfully, it is not necessary at
all to use Algorithm 3 for Gmin and Gprod and there are alternatives to it for
Grow and Gcol as well, albeit with less accurate fusion matrices.

5.3.2 Clustering with Random Representatives

As the name suggests, clustering with random representatives is a probabilistic
clustering method, which combines the idea of subsampling to get sparse
subsets of X and Y with the idea of cluster representatives, which are present
for instance in the k-means clustering algorithm.

Generally, this approach has a focus on shorter runtimes compared to the

94 5.3. CLUSTERING ALGORITHMS

agglomerative clustering. The aim here is to get a clustering by only looking
at each element once and deciding which cluster would be the best fit for that
element instead of evaluating the outcomes of all potential cluster fusions.
This also means we do not minimize with respect to one of the gap objective
functions, but instead try to cluster elements with similar row or columns in
the cost matrix. This assignment criterion generally leads to smaller entries of
the gap matrix and consequently to smaller gap objective values. Algorithm 4
shows the details of this method, which works as follows:

• First, we sample n elements {x̂1, . . . , x̂n} of X from the distribution µ
and in the same way m elements {ŷ1, . . . , ŷm} of Y from ν. These act
as representatives for the n and m clusters, respectively.

• Then, we look at each element xi ∈ X and decide which cluster this
element should be assigned to. To that end, with the parameter q ≥ 1
we compute the q-th power of the ν-weighted lq-distances from the i-th
row in the cost matrix to each of the representatives’ rows (compare
Algorithm 4). The cluster whose representative has the lowest value is
chosen for this element. The same is then repeated with each element
yi ∈ Y and the columns of the cost matrix.

• Since the sampling of the representatives is random, the clustering
outcome varies if we run the algorithm several times. In order to mitigate
the randomness one can repeat this clustering process and then pick
the clustering with the least gap value (that is, min{Grow, Gcol, Gprod}).
This is done via a parameter K ∈ N, which indicates K repetitions.

• In each assignment step of an element in X to a cluster we compute
n values, which are sums of M summands each. In order to further
decrease the run time, we add the option to only evaluate the differences
of rows of the cost matrix with respect to the columns belonging to
the representatives ŷ1, . . . , ŷm. This decreases the number of summands
from M to m, which can mean a significant speedup, if m is small
compared to M . However, since a large portion of the cost matrix is
effectively ignored, this can lead to less precise results depending on

CHAPTER 5. COST-BASED CLUSTERING 95

the initial sampling of representatives. This option is included via a
Boolean parameter accel.

As long as we insist on incorporating the gap matrix into the assignment
criterion, there is not much room to further decrease the runtime of the
accelerated version of this method. One option would be to choose the subset
of S elements in Y (or the subset of representatives of Y) with the largest
mass with respect to ν and only take the entries of these columns, when
assigning points of X to their clusters. This would change the effort to
compute one value aj in Algorithm 4 from O(M) or O(m) to O(S), which is
an improvement, if S is small enough. Similarly, if we do have access to a
distance function d on X, that is computable in O(1) time, we can use this by
choosing aj = d(xi, x̂j). However, if d is not connected to c in any way, this
does not necessarily yield good clusterings with respect to the gap matrix.

In the general non-accelerated case, Algorithm 4 has a runtime of

O(KNM ·max{n,m}),

while the accelerated version has a runtime of

O(Knm ·max{N,M}).

If K is fixed and N = M , both are at most cubic in N and hence below the
order O(N3 log(N)) of the original problem, since n = O(N) and m = O(M).
Moreover, if for example n = m = O(

√
N), the accelerated algorithm has a

quadratic runtime in N , while the non-accelerated algorithm terminates in
O(N 5

2) time.

5.3.3 Propagation

We propose a general propagation technique, which takes a feasible coarse
coupling π̄ on X and Y and outputs a feasible coupling π to the original
problem. It works in the general discrete optimal transport setting, does
not rely on any structure of the cost matrix and is independent of how the

96 5.3. CLUSTERING ALGORITHMS

Algorithm 4: Cost-based clustering with random representatives
Input :X, Y, µ, ν, C, n,m,K, q, accel
Output :Clusterings X ,Y with gap matrix G
for k = 1, . . . , K do

Initialize X (k) ← {X(k)
1 , . . . X(k)

n },Y(k) ← {Y (k)
1 , . . . Y (k)

m }, with
X

(k)
i = Y

(k)
j = ∅

Sample {x̂1, . . . x̂n} ⊆ X from µ without replacement
Sample {ŷ1, . . . ŷm} ⊆ Y from ν without replacement
for i = 1, . . . , N do

for j = 1, . . . , n do
if accel then

aj ←
∑m
t=1 ν(ŷt) · |c(xi, ŷt)− c(x̂j, ŷt)|q

else
aj ←

∑M
t=1 ν(yt) · |c(xi, yt)− c(x̂j, yt)|q

end
end
l← argminj aj
X

(k)
l ← X

(k)
l ∪ {xi}

end
for i = 1, . . . ,M do

for j = 1, . . . ,m do
if accel then

aj ←
∑n
t=1 µ(x̂t) · |c(x̂t, yi)− c(x̂t, ŷj)|q

else
aj ←

∑N
t=1 µ(xt) · |c(xt, yi)− c(xt, ŷj)|q

end
end
l← argminj aj
Y

(k)
l ← Y

(k)
l ∪ {yi}

end
end
(X ,Y)← argmin(X (1),Y(1)),...,(X (K),Y(K)) min{Grow, Gcol, Gmin}
G← gap matrix with respect to X and Y

CHAPTER 5. COST-BASED CLUSTERING 97

clustering was obtained. The only necessary input are the original instance,
the coupling π̄ and the clustering itself with the gap matrix.

At its core this method is a greedy algorithm akin to the construction of
feasible solutions of the transportation simplex method. The mass of every
active transport of π̄ is distributed among the elements in the respective
clusters. This allows us to only look at isolated submatrices of the cost matrix
in order to keep the runtime low. Within the submatrices the mass is propa-
gated by a submatrix-minimum-rule which each time chooses the available
transport with the least cost. The details can be found in Algorithm 5.

Algorithm 5: Propagation algorithm for the construction of a fea-
sible solution to the original problem based on a solution on the
clusters
Input :X ,Y , µ, ν, C,G, π̄
Output : π
L← list of transport indices {(k, l) : π̄k,l > 0} in descending order of
values gk,l
for (k, l) ∈ L in order do

while π̄k,l > 0 do
(i′, j′)← argmin(i,j) {ci,j : xi ∈ Xk, yj ∈ Yl, µi > 0, νj > 0}
γ ← min{µi′ , νj′ , π̄k,l}
πi′,j′ ← γ
π̄k,l ← π̄k,l − γ, µi′ ← µi′ − γ, νj′ ← νj′ − γ

end
end

The reason why the non-zero transports are sorted by the values in the
gap matrix is the following: If we look at one particular transport π̄k,l > 0
between clusters and fix the coupling π between the elements in these clusters,
this might limit the options when propagating other active transports on
the same clusters, that is, π̄k,l′ for some l′ 6= l or π̄k′,l for some k′ 6= k, since
some of the sources (µi with xi ∈ Xk) or sinks (νj with yj ∈ Yl) might
already be exhausted. In order to mitigate this limitation, we propagate those
active transports first where the difference between the best possible choice
(i.e., cmink,l) and the worst possible choice (i.e., cmaxk,l) is the largest, hence the
non-zero transports with the largest gap matrix entries.

98 5.4. SIMULATIONS

It is apparent that Algorithm 5 outputs a feasible coupling π if the initial
coupling π̄ was feasible on the clusters. The quality of π with respect to
the original optimal transport problem, however, is highly dependent on the
quality of π̄, as well as the quality of the clustering itself. For example, if X
and Y constitute a perfect clustering, that is, all entries of the gap matrix are
zero, and π̄ is an optimal solution to the optimal transport problem on the
clusters with C̄ = Cmin = Cmax, then π is automatically an optimal coupling.
This is not guaranteed in any other case, however.

Note that while the solution is always feasible, it might not be a basic
feasible solution, since we look at non-zero transports on the clusters separately,
and that means we might not deplete a source or sink when depleting π̄k,l (in
Algorithm 5 this is the case γ < µi′ and γ < νj′ in the while-loop). If it is
necessary to obtain a basic solution in order to apply a refinement strategy,
for example a simplex method, the algorithm can be extended to account
for that. If there are cycles in the matrix π they include one of the elements
where neither source nor sink is depleted, therefore by keeping track of all of
these entries, all cycles can easily be detected and eliminated.

5.4 Simulations

The clustering algorithms described in the previous section have been im-
plemented in R and tested for their performance in runtime and quality
of the resulting clusterings measured by the gap objective functions. The
propagation algorithm was implemented as well and used to compare the
resulting feasible solutions to the original problems of the different clusterings
through the original cost function. In this section, we describe in detail under
which conditions and on which instances these tests were conducted and their
results.

5.4.1 Simulation Setup

In order to be able to test many combinations of parameters of the clustering
algorithms, we restricted ourselves to three instances of optimal transport.

CHAPTER 5. COST-BASED CLUSTERING 99

The three instances were taken from the DOTmark: images 1 and 2 from
the three classes Cauchy Density, Classic Images and Shapes, respectively, in
32× 32 resolution, that is, X = Y = {1, . . . , 32}2 with c(xi, yj) = ‖xi − yj‖2.
Descriptions of the different classes and the DOTmark altogether can be
found in [78] and Chapter 3.

This choice allows us to look at instances with structually different mea-
sures µ and ν, while they are still supported on a grid, so that we can compare
the results of the clustering methods above to the standard coarsening of
images used in classic multiscale methods. The runtimes are the main reason
why we only conduct the test on 32× 32 instances. Of course, finding cluster-
ings via the methods described above is possible in larger instances. However,
especially Algorithm 3 already takes a long time on 64× 64 instances, which
is why we decided against testing all combinations of parameters on larger
instances in this simulation study.

For the agglomerative clustering, Algorithm 2 was executed when G∗ was
chosen as either Gmin or Gprod. For Grow and Gcol the option accel indicates,
whether Algorithm 2 (accel = true) or Algorithm 3 was used (accel =
false). The number of clusters n was chosen as 16, 64 or 264 in order to
match the number of clusters we get through the grid-based coarsening and
we always set m = n.

The same instances and numbers of clusters were used for clustering with
random representatives. Additionally, Algorithm 4 was tested both with
accel = true and accel = false. The power parameter q was chosen as 1,
2 and 3, while the number of repetitions K was either 1, 2 or 5.

Independent of the clustering method, the optimal transport problem
on the clusters was solved by the transportation simplex provided by the R
package transport [80], since this is a robust and well-understood method,
whose performance does not depend on geometric structure. For the cost
matrix C̄, we tried three different options, all of which satisfy Cmin ≤ C̄ ≤
Cmax:

• min: C̄ := Cmin

• median: c̄k,l is defined as the median of the set {ci,j : xi ∈ Xk, yj ∈ Yl}

100 5.4. SIMULATIONS

• center : C̄ := 1/2 · (Cmax − Cmin)

All computations were run on a Linux laptop, on a single kernel of an
Intel Core i5-5300 CPU with 2.3 GHz.

5.4.2 Computational Results

Before we compare the clustering methods, we analyze the effect of the pa-
rameter choices on the runtime and quality of the resulting clusterings both
for the agglomerative clustering and the clustering with random representa-
tives. Since the computed instances are images from the DOTmark, we can
also compare our results to the standard multiscale procedure of coarsening
images and observe the deviation bounds, as well as the quality of the feasible
solutions obtained by the propagation algorithm described in Section 5.3.3.

Since the instances are computed on the grid {1, . . . , 32}2 with high total
mass values µ(X) and ν(Y), the optimal cost values of the original instances
are roughly of order 109. Accordingly, the deviation bounds shown in this
section also have very high values.

Parameter Choices for the Agglomerative Clustering First, we look
at the different linkage criteria in the agglomerative clustering, that is, the
choice of G∗ ∈ {Grow, Gcol, Gmin, Gprod} in Figures 5.2 and 5.3. In Figure 5.2
we observe the clustering runtime of Algorithm 2 dependent on the linkage
criterion and the number of clusters. The runtimes with respect to Gmin are
far higher than for any other linkage criterion. The other linkage criteria show
similar runtimes. While Grow appears to have slightly higher runtimes than
Gcol, this can only be attributed to the order of X and Y in the computed
instances, since the clustering of (X, Y) with respect to Grow is the same as
the clustering of (Y,X) with respect to Gcol.

One can also observe, that the runtime slightly increases with the number
of clusters n. This is surprising at first glance, as more fusion steps are
necessary to achieve a smaller number of clusters. However, the two sets X
and Y are clustered in succession, which means that for a smaller n, although
the first clustering takes slightly longer, the second clustering is performed

CHAPTER 5. COST-BASED CLUSTERING 101

150

175

200

225

250

16 64 256

n

C
lu

st
er

in
g

R
un

tim
e

(s
)

Linkage Criterion

G_col

G_min

G_prod

G_row

Figure 5.2: Boxplot for the runtime of the agglomerative clustering (Algo-
rithm 2) depending on the number of clusters n and the linkage criterion

102 5.4. SIMULATIONS

1e+11

1e+12

col min prod row

Linkage Criterion

G
ap

 V
al

ue

Gap Objective

G_col

G_min

G_row

Figure 5.3: This plot shows the mean values of the objective functions
Grow, Gcol, Gmin over multiple clusterings for n = 256 on a logarithmic scale.
They have been computed with respect to the linkage criterion indicated in
the legend.

with respect to fewer clusters, which results in a more significant speedup.
This effect is in line with the runtime analysis in Section 5.3.1.

Next, we look at the values of the different gap objective functions relative
to the linkage criterion for n = 256 (Figure 5.3). Note that Gprod is not
presented in this figure, since it is not a deviation bound. As expected, if we
try to minimize Grow or Gcol in the algorithm, this function has the smallest
value and the other one is higher. Gmin, however, behaves very differently. As
a linkage criterion it leads to clusterings that have moderately high gap values
with respect to all of the three functions, while none of them, and therefore
neither their minimum, are small enough to compete with the other linkage
criteria. Also, the function values of Gmin of the clusterings obtained by the
other linkage criteria are much higher (by about one order of magnitude). This
means, neither does Gmin work well as a linkage criterion in the agglomerative
clustering, nor are the function values indicative of the quality of a given

CHAPTER 5. COST-BASED CLUSTERING 103

0.0e+00

2.5e+10

5.0e+10

7.5e+10

1.0e+11

100 1000 10000

Clustering Runtime (s)

G
ap

Accelerated

True

False

n

16

64

256

Figure 5.4: Runtime and gap value results for the agglomerative clustering
method comparing the accelerated Algorithm 2 with the non-accelerated
Algorithm 3 for the linkage criteria Grow and Gcol and various choices for n.
Gap denotes the deviation bound min{Grow, Gcol, Gmin}. The runtimes are
shown on a log-scale.

clustering with respect to the deviation bound γ = min{Grow, Gcol, Gmin}.
The linkage criterion Gprod on the other hand has a similar performance in
both runtime and gap values compared to Grow and Gcol. Although the values
for Gcol are smaller than for Grow for this criterion, this can only be a result of
the order of the two images in the instances, as well as the order of clustering,
since Gprod is a symmetric function in X and Y .

Figure 5.4 shows the effect of choosing between the accelerated Algorithm
2 and the slower Algorithm 3, when constructing a clustering for the criteria
Grow and Gcol. Recall that this only makes a difference for the clustering of
the second set (X with respect to Gcol or Y with respect to Grow). However,
this has an enormous impact on the runtime in practice. Algorithm 2 runs

104 5.4. SIMULATIONS

3.5e+10

4.0e+10

4.5e+10

5.0e+10

165 170 175 180

Clustering Runtime (s)

G
ap

Accelerated

True

n

64

256

Figure 5.5: A check of the accelerated agglomerative clustering applied to the
image classes GRFmoderate, LogitGRF and White Noise shows results which
are more in line with the expectation that a higher number of clusters leads
to lower objective values.

between 150 and 200 seconds, where a larger number of clusters n has a small
increasing effect on the time, but Algorithm 3 needs about 4000 seconds for
n = 16 and up to almost 7500 seconds for n = 256. This does not only show
the large impact of having to recalculate the matrix in each step, but also the
increased dependence on the number of clusters, since the calculation time of
F increases with n.

Despite this disparity in runtime, choosing Algorithm 3 does have its
benefits, especially when considering the resulting deviation bounds, since
those decrease as expected with a higher number of clusters. We observe an
increasing factor of about three, between n = 256 and n = 64 and another
factor of two between n = 64 and n = 16. This does not apply to the
accelerated Algorithm 2. While the results for n = 16 are in line with the
slower algorithm, the gap values do not decrease as strongly and consistently
as for Algorithm 3. For the computed instances we even see values for n = 64
that are lower than the average for n = 256.

This is a very surprising result, since fusing clusters can only increase the

CHAPTER 5. COST-BASED CLUSTERING 105

values in the gap matrix and therefore in the objective functions. Since the
first clustering is the same in both algorithms, it seems that the inaccuracy
introduced by not recalculating the fusion matrix for the second clustering is
more severe for larger n. Since the second clustering depends on the first one
and thus on n, a better result with fewer clusters is mathematically – and, as
the numerical experiments show, also practically – possible. The instances
we chose play another role, since the same algorithms applied to different
instances show the expected behaviour, that is, lower gap values for a higher
number of clusters (compare Figure 5.5).

To summarize, for small n both algorithms show consistent performances
and the runtime is in favor of Algorithm 2. For larger n this runtime benefit in-
creases, but comes at the cost of a less consistent and predictable performance
in terms of gap value quality.

Parameter Choices for the Random Clustering Next, we analyze the
effect of the different parameters of the clustering with random representatives,
Algorithm 4. In Figure 5.6 we can see the runtimes (top) and gap values
(bottom) of this method for various choices of q and K, while n = 256 and
accel = true. As expected, the runtime depends linearly on K. For q the
lowest runtimes appear for q = 2, with q = 1 being only slightly higher,
whereas the increase for q = 3 is much higher. This is due to the effort
necessary to compute the power of q and depends on how this is handled
in detail in R. Nevertheless, it is still remarkable that computing the third
power increases the runtime by a factor of more than two.

The quality of the clusterings does not seem to depend on the power q,
therefore it is safe to recommend choosing q = 1 or q = 2 for runtime reasons.
A higher number of repetitions K does yield a small improvement in general,
but because of the random nature of the algorithm this is not guaranteed.
Because of the linearly increasing runtime, it is mostly preferable to choose
K = 1, although if consistency is a concern the number can also be increased
in order to avoid bad outliers. The results for the non-accelerated version are
not shown, but they are qualitatively very similar.

If we compare the accelerated with the non-accelerated variant (Figure 5.7)

106 5.4. SIMULATIONS

40

80

120

160

1 2 3

q

C
lu

st
er

in
g

R
un

tim
e

(s
)

K

1

2

5

2e+10

3e+10

4e+10

5e+10

1 2 3

q

G
ap

K

1

2

5

Figure 5.6: Runtime and gap value results for the clustering with random
representatives depending on the parameters q and K for n = 256 and accel
= true. Gap denotes the deviation bound min{Grow, Gcol, Gmin}. The results
of the non-accelerated version look qualitatively very similar.

CHAPTER 5. COST-BASED CLUSTERING 107

5e+10

1e+11

0 30 60 90

Clustering Runtime (s)

G
ap

Accelerated

True

False

n

16

64

256

Figure 5.7: Runtime and gap value results for the clustering with random
representatives comparing the accelerated with the non-accelerated Algo-
rithm 4 with various choices for n. Gap denotes the deviation bound
min{Grow, Gcol, Gmin}. Results are shown for K = 1, but include all val-
ues of q. The outliers in terms of runtime for both options of accel can be
explained by the choice q = 3 (compare Figure 5.6).

108 5.4. SIMULATIONS

5.0e+10

1.0e+11

1.5e+11

0 50 100 150 200 250

Clustering Runtime

G
ap

Clustering Method

Agglomerative

Random

n

16

64

256

Figure 5.8: Runtime and gap value results compairing the accelerated versions
of both clustering methods. For the agglomerative clustering the results of
Algorithm 2 are reported for all linkage criteria.

we see a large influence in runtime. It is not as severe as for the agglomerative
clustering, but on average the slower version takes about three times as
long. What is more, the quality of the resulting clusterings is apparently not
dependent on the version of the algorithm, as the mean gap values of the
two options are comparable. This means assigning points to clusters only
with respect to the costs of the representatives instead of all cost matrix
entries comes with virtually no disadvantage and choosing accel = true in
Algorithm 4 is universally the better option.

Comparing Both Clustering Methods Finally, we have a look at how
the two clustering methods compare to each other. To that end, we look at

CHAPTER 5. COST-BASED CLUSTERING 109

CauchyDensity ClassicImages Shapes

1e+09

1e+10

1e+11

Image Class

Value
2*Gap
Pi Min

n
16
64
256

Figure 5.9: Comparing the interval lengths 2γ = 2 · min{Grow, Gcol, Gmin}
given by the gap values, denoted 2·Gap, with the interval lengths 〈G,π∗min〉
after computing π∗min, denoted Pi Min, for the three instances. Data for
different replicates of clusterings with random representatives is scattered
across the x-axis. The original optimal cost values c∗ are depicted by the
horizontal lines for comparison. The values are shown on a log-scale.

the results for both accelerated versions in Figure 5.8. Of course, the runtimes
of the clustering with random representatives are much shorter across the
board even if we include the results for higher values of K and q.

For the deviation bounds we observe that the random clustering shows
a higher dependence of the quality of clusterings on the number of clusters,
as the decrease in the bounds with an increase in n is much more noticable
compared to the effect on the agglomerative clustering. More importantly,
the random clustering does not result in worse clusterings in general. While
the error bounds are larger for few clusters (n = 16) and very similar for
n = 64, the random clustering outperforms the agglomerative clustering on
average in both runtime and bound quality for large n. However, we should
note that results for all linkage criteria are shown for the agglomerative
clustering and this includes the criterion Gmin, which has been shown to
have a particularly poor performance with respect to min{Grow, Gcol, Gmin}
in Figure 5.3 and hence is responsible for some outliers here. On the other
hand, the agglomerative clustering is designed to minimize gap values directly,
the random clustering only indirectly.

110 5.4. SIMULATIONS

Bound Quality and Multiscale Potential In Section 5.2.1 we discuss the
interval of possible cost values of length 2γ, where γ = min{Grow, Gcol, Gmin}
and the option to decrease the length of this interval by computing π∗min,
which decreases the length from 2γ to 〈G,π∗min〉. In Figure 5.9 we look at
how these values compare in practice. While we know that 〈G,π∗min〉 ≤ γ it is
noteworthy that in the experiments the former is smaller by far. Especially for
n = 256 they differ by more than one order of magnitude. When comparing
to the true value c∗ the deviation bounds γ are too large to give a meaningful
approximation interval, even for large n. This is much better for 〈G,π∗min〉,
but even then, the best results show an interval length, which is about as
large as the true value itself. This limits the usefulness of the solution on the
clusters as an approximation and π∗min needs to be computed in order for it
to be viable. However, this is not surprising considering that the deviation
bounds hold for any choice C̄ between Cmin and Cmax and we can therefore
not expect very tight bounds.

Despite these bad new there are also positive results. In particular, the
feasible solutions obtained by the propagation method (Algorithm 5) from
optimal solutions on the clusters with respect to the median cost matrix C̄
have cost values which are much closer to the original optimal cost values
than the deviation bounds might indicate. Figure 5.10 gives an in-depth look
at the various bounds and values. We compare the accellerated clutering
with random representatives with the grid-based coarsening, that is, 4, 16 or
64 pixels that form a square are aggregated, which results in 256, 64 and 16
clusters, respectively. Figure 5.11 shows a subset of this data.

We can infer from the plot that both the optimal cost values of the clustered
instances and the cost values of the propagated solutions are significantly
closer to the original optimal cost than the lower and upper bounds for all
of the observed clusterings. Recall that the values of 〈G,π∗min〉 from Figure
5.9 are exactly the difference between the lower and upper bounds reported
here. Although this gives further indication that these bounds are not tight,
they are rigorous and can thus still be useful. Furthermore, the clustered and
refined cost values are a reliable source for approximations (see Figure 5.11).

The comparison between the random clustering with the grid-based coars-

CHAPTER 5. COST-BASED CLUSTERING 111

C
au

ch
yD

en
si

ty
C

la
ss

ic
Im

ag
es

S
ha

pe
s

0.
0e

+
00

2.
5e

+
09

5.
0e

+
09

7.
5e

+
09

1.
0e

+
10

Im
ag

e
C

la
ss

V
al

ue
s

R
ef

in
ed

 C
os

t
C

lu
st

er
ed

 O
pt

im
al

 C
os

t
O

rig
in

al
 O

pt
im

al
 C

os
t

Lo
w

er
 B

ou
nd

U
pp

er
 B

ou
nd

M
et

ho
d

G
rid

R
an

do
m

n
16 64 25

6

Fi
gu

re
5.
10

:
D
iff
er
en
t
bo

un
ds

fo
r

5
re
pl
ic
at
es

of
cl
us
te
rin

gs
w
ith

ra
nd

om
re
pr
es
en
ta
tiv

es
(a
cc
el
er
at
ed

,K
=

1,
q

=
2)

ar
e
co
m
pa

re
d
to

bo
un

ds
ob

ta
in
ed

fro
m

th
e
gr
id
-b
as
ed

co
ar
se
ni
ng

of
im

ag
es

(h
ig
hl
ig
ht
ed

w
ith

a
bl
ue

ba
ck
gr
ou

nd
).

T
he

x
-a
xi
s
sh
ow

s
th
e
th
re
e
di
ffe

re
nt

in
st
an

ce
s.

C
lu
st
er
in
gs

ar
e
so
rt
ed

in
as
ce
nd

in
g
or
de
r
of

th
e
re
fin

ed
co
st

va
lu
e

w
ith

in
ea
ch

in
st
an

ce
.
O
n
th
e
y
-a
xi
s
we

ha
ve

th
e
va
lu
es

of
th
e
fo
llo

w
in
g
qu

an
tit

ie
s,

w
hi
ch

ar
e
ve
rt
ic
al
ly

al
ig
ne
d
fo
r

ea
ch

cl
us
te
rin

g:
Lo

we
r
Bo

un
d
an

d
U
pp
er

Bo
un

d
ar
e
th
e
bo

un
ds
c∗ m

in
an

d
〈C

m
a
x
,π
∗ m
in
〉
fro

m
Le

m
m
a
5.
2.
5,

C
lu
st
er
ed

O
pt
im

al
Co

st
is
th
e
op

tim
al

ob
je
ct
iv
e
va
lu
e
c̄∗

on
th
e
clu

st
er
sw

ith
re
sp
ec
tt

o
th
e
co
st

m
at
rix

C̄
,w

ho
se

en
tr
ies

ar
e
th
e

m
ed
ia
ns

of
th
e
va
lu
es

in
th
e
re
sp
ec
tiv

e
su
bm

at
ric

es
of

th
e
or
ig
in
al

co
st

m
at
rix

C
(c
om

pa
re

Se
ct
io
n
5.
4.
1)
.
Re

fin
ed

C
os
t
is

th
e
co
st

va
lu
e
of

th
e
fe
as
ib
le

so
lu
tio

n
af
te
r
th
e
so
lu
tio

n
on

th
e
cl
us
te
rs

ha
s
be

en
pr
op

ag
at
ed

vi
a
A
lg
or
ith

m
5

an
d
th
e
O
ri
gi
na

lC
os
tV

al
ue

fo
r
ea
ch

in
st
an

ce
is

pl
ot
te
d
as

a
ho

riz
on

ta
ll
in
e.

112 5.5. A GENERAL VIEW ON COST-BASED CLUSTERING

CauchyDensity ClassicImages Shapes

2.40e+09

2.45e+09

2.50e+09

2.55e+09

2.60e+09

2.65e+09

6.5e+08

7.0e+08

7.5e+08

8.0e+08

1.8e+09

1.9e+09

2.0e+09

2.1e+09

Image Class

Method
Grid
Random

Values

__

Refined Cost
Clustered Optimal Cost
Original Optimal Cost

Figure 5.11: A subset of the same data as in Figure 5.10 limited to n = 256
for better visibility.

ening is, unsurprisingly, in favor of the coarsening, as aggregating nearby
pixels seems to also work well in the context of cost-based clustering and the
resulting cost values of the propagated solution are closest to the original
optimal costs. In the Cauchy Density instance, the results for n = 16 are
even better than the results of the clustering with random representatives
for n = 64. This is further evidence that the standard aggregation of pixels
works well in a multiscale scheme.

However, the results for the random clustering are not far off. In Figure 5.11
we see that the approximation quality of the grid-based coarsening is slightly
better in the Cauchy Density and Classic Images instances, but this difference
is negligible in the Shapes class. It is not surprising that the grid-based
coarsening is the superior clustering method in grid-based instances, but the
random clustering, a vastly more general method, replicates the performance
reasonably well without relying on geometric information and shows promise
to deliver a similar performance on instances without a metric. This opens
up multiscale approaches to general optimal transport problems.

5.5 A General View on Cost-Based Cluster-
ing

As mentioned before, clustering methods usually consider only one set X with
some distance function d, whereas we look at a cost function c : X × Y → R+

CHAPTER 5. COST-BASED CLUSTERING 113

between two sets X and Y . This is a generalization, since one can choose
X = Y and c = d, and a very flexible framework that can cater to different
objectives. The gap objective functions we define in Section 5.2 are examples
of different weightings of the entries of the gap matrix, but any other weighting
can be used as an objective function for the cost-based clustering problem.
Moreover, the gap matrix can be replaced by a different notion of quality of
clusters. Instead of the difference between the maximum and minimum entry
of a submatrix one could use, for example, the mean absolute deviation of
the values in the submatrix or other options.

Generalizations of the Clustering Algorithms The agglomerative clus-
tering method is a general principle and can be applied to a wide range of
clustering objectives. Algorithms 2 and 3 can be used as stated for other
functions, provided they translate well into linkage criteria. In order to
calculate the fusion matrix F we need to be able to compute increases in
the objective functions for the fusion of any two clusters. It depends on the
function, whether or not all of the entries in the fusion matrix change after
agglomerating two clusters and to what extent. If this is the case, it might
be necessary or helpful to use the slower Algorithm 3 instead of Algorithm 2.

The clustering method with random representatives can even more easily
be generalized to other weightings of the gap matrix. Since Algorithm 4
generally constructs clusterings with small gap matrix entries instead of a
concrete objective function, this algorithm can be directly applied. It can
also be used for different cluster quality criteria, as long as small differences
of costs in the same clusters are preferred, since this difference is the most
important factor in the assignment decision. Otherwise, one has to adjust
the decision step with respect to the quality criterion.

Examples of Geometric Clusterings Although cost-based clustering
methods are not necessarily designed for Euclidean spaces, they can still
be applied and yield interesting results other clustering methods would not
find. The following examples are based on the Euclidean distance in RD for
various D and show that clusterings of X are not limited to points that are

114 5.5. A GENERAL VIEW ON COST-BASED CLUSTERING

−4 −2 0 2 4

−
4

−
2

0
2

4

xxxxxxxxxxxxxxxxxxxx

Figure 5.12: A geometric example for cost-based clustering in three dimensions.
The set Y consists of twenty points evenly spread on the line segment [−2, 2]×
{0}×{0} ⊆ R3, while X consists of 200 samples from a standard multivariate
normal distribution in R3. X is clustered into twenty subsets by the clustering
algorithm with random representatives using c(xi, yj) = ‖xi−yj‖2

2. The figure
shows a projection on the (x2, x3)-plane. The projection of Y is {(0, 0)}, shown
by a cross at the origin, and for X we only show clusters that contain points
with a positive and a negative x1-component as colored circles.

spatially close, but include features like spherical shapes or separated cluster
parts. Consider the extreme case, where Y = {y} is a singleton. Then, X
is clustered based on the distances of its points to y, which means that the
clusters roughly form concentric spheres around y. Similarly, if Y is (roughly)
supported on an affine subspace, X is divided into slices that are orthogonal
to this subspace, and each slice has the same spherical features as in the
singleton case.

This can be observed in Figure 5.12. Although it seems like the men-
tioned example in R2 where Y is a singleton, this example is actually three-
dimensional, and the figure shows the projection onto the second and third

CHAPTER 5. COST-BASED CLUSTERING 115

component. The set X contains samples from a standard multivariate normal
distribution. In the clustering it is divided into multiple layers of clusters in
x1-direction. Figure 5.12 shows one layer around the (x2, x3)-plane, that is,
all clusters containing both points with a positive x1-value and points with a
negative x1-value. The points in this layer are roughly divided with respect to
their distance to the origin, since the entries in the cost matrix of the points
in X only depend on their x1-coordinate as well as the distance to the origin
in the (x2, x3)-plane.

In the example shown in Figure 5.13, Y is supported on a line in R2

and the set X consists of samples of a bivariate normal distribution, roughly
distributed on a second line orthogonal to the first (top left panel). After a
rotation of the set X around the origin we observe different cluster shapes,
as relation between X and Y changes (other panels). In the orthogonal case
we see a division of X into slices near the origin, whereas clusters further
away are divided into two parts each: one above and one below Y in a
somewhat symmetrical fashion. For these points, similarity of rows in the
cost matrix depends mainly on the distrance to the line. This effect decreases
at different angles. At 60 degrees (top right) there still are non-connected
clusters, whereas for 30 degrees and parallel lines (bottom panels) the clusters
are mostly slice-structured.

5.6 Summary and Discussion

In this chapter, we introduced the cost-based clustering problem as a way to
generalize multiscale approaches, which are used to great effect in reducing
runtimes for grid-based or other Euclidean optimal transport problems, to
more general and abstract instances of optimal transport including matching
problems in economics. Our clusterings come with rigorous deviation bounds
for the solutions on the clusters and while finding the optimal clustering is
an NP-hard problem, it is possible to generate clusterings of good quality
in reasonable time with the algorithms presented above. Moreover, we
present a well-working propagation algorithm, which can be applied to any
multiscale scheme and is compatible with refinement techniques, such as the

116 5.6. SUMMARY AND DISCUSSION

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

xxxxxxxxxxxxxxxxxxxx

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

xxxxxxxxxxxxxxxxxxxx

−6 −4 −2 0 2 4 6
−

4
−

2
0

2
4

xxxxxxxxxxxxxxxxxxxx

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

xxxxxxxxxxxxxxxxxxxx

Figure 5.13: A simple example for cost-based clustering on R2. The set Y is
fixed in all panels and consists of twenty points evenly spread across the line
segment {(x,−x) ∈ R2 : − 2 ≤ x ≤ 2} (black crosses). The set X (colored
circles) consists of 1000 samples from a bivariate normal distribution with
mean vector zero and a covariance matrix with ones on the diagonal and
off-diagonal entries 0.9 in the upper left panel. The same set is turned by
π/6 (upper right panel), π/3 (lower left panel) and π/2 (lower right panel)
around the origin. The agglomerative clustering was used in all cases with
c(xi, yj) = ‖xi − yj‖2

2, n = 10 and linkage criterion Gprod. The ten clusters
are indicated by the ten different colors.

CHAPTER 5. COST-BASED CLUSTERING 117

transportation simplex.
In experiments on the DOTmark we explored the performances of the

proposed clustering algorithms and analyzed parameter choices. To sum-
marize these results, it seems that in most circumstances trying to receive
higher quality clusters is not worth the additional time investment. For
example, the clustering with random representatives can lead to better or
worse clusterings (depending on the number of clusters) compared to the
agglomerative clustering, but is much faster. Similarly, running multiple tries
(K > 1) does not seem to make much of a difference and the same applies to
the choice of the non-accelerated over the accelerated version.

This suggests the random representatives clustering algorithm as a prime
candidate for applications in multiscale settings, although the agglomerative
clustering has its merits in that it can easily be tuned towards constructing
a hierarchical clustering, which is not as straight forward for the random
clustering. Unfortunately, the theoretical and practical runtime analyses of
the agglomerative clustering show that in the context of multiscale methods
for optimal transport it is prohibitively slow.

The comparison between the rigorous deviation bounds of the clusterings
to the optimal original cost shows that the the intervals of potential cost
values is generally rather large. However, the numerical experiments also
suggest that the cost values of the clustered solutions are typically much closer
to the original cost values and the propagated solutions provide significantly
tighter upper bounds. What is more, there seems to be a correlation between
the quality of the clustering in terms of the deviation bound and the quality
of the propagated solution. That means, even if the bounds given by gap
objective values themselves are not highly relevant, using them as quality
measures for clusterings may still be useful.

Although we do not have clear evidence of a substantial advantage of
using cost-based clustering in a non-Euclidean multiscale scheme for optimal
transport at this time, the results of the clustering and propagation algorithms
we gathered from the simulations on the DOTmark are promising. In these
grid-based instances the coarsening, which is usually used for multiscale
purposes, does outperform the cost-based clustering approach as expected,

118 5.7. NP-HARDNESS PROOF

but only by small margins when comparing the cost values of the propagated
solutions (compare Figure 5.11). Since there is – to the best of my knowledge
– no suitable general multiscale approach for optimal transport problems
without a metric context and since multiscale approaches generally lead to
a considerable speedup in the grid-based case, it is a reasonable endeavor
to pursue a cost-based clustering approach in cases where other multiscale
approaches fail even if we do not expect quite as significant speedups.

On top of all of that, we show that the two-sided clustering approach
serves as a generalization of the usual one-sided case and allows for clusterings
to be constructed with respect to relations of the elements in one set to
the other, instead of relations only within the set itself. The algorithms we
present are adaptable beyond the context of optimal transport and we show
some interesting examples where the relation between the two sets play an
important role and the resulting clusterings show remarkable features that
conventional clustering methods would not be able to find.

5.7 NP-Hardness Proof

This section is dedicated to the proof of Theorem 5.2.3. This proof is done via
a chain of reductions from 3-satisfiability (3-SAT) over a simplified geometric
version of the cost-based clustering problem and a one-sided version to the
original clustering problem. This section and the overall proof are structured
as follows:

First, we introduce two simplifications of the cost-based clustering problem,
the one-sided cost-based clustering problem (1-CBC) and the geometric
clustering problem (GC). Both have four different objective functions in
correspondence to the four functions of the original clustering problem. We
show that GC can be reduced to 1-CBC and this can be reduced to CBC.
These reductions are done for the four different functions in parallel.

Secondly, we explain the general idea and geometric construction behind
the reductions from 3-SAT to GC. The reduction scheme was introduced in
[56] and we describe the features of their construction we adopt and add some
aspects, which are necessary for the proof in this section.

CHAPTER 5. COST-BASED CLUSTERING 119

Thirdly, we go into the details and prove the NP-hardness of GC directly.
We need to perform the reduction twice as each of the two constructions
covers two of the four objective functions in GC. Lastly, we prove two auxiliary
lemmas, that are needed in the reduction proofs.

Overall, we prove the following chain of reductions,

3-SAT ≤p GC ≤p 1-CBC ≤p CBC,

where A ≤p B means that problem A is polynomially reducible to problem
B.

5.7.1 Geometric Clustering Simplification

We define two simplifications of the cost-based clustering problem and prove
that they can be reduced to CBC.

Definition 5.7.1. Following the notation of CBC, the one-sided cost-based
clustering problem (1-CBC) is to minimize the selected objective function
G∗ ∈ {Grow, Gcol, Gmin, Gprod} over all possible clusterings X for X into n
subsets, while the clustering Y = {Y1, . . . , Ym} is fixed.

Proposition 5.7.2. 1-CBC ≤p CBC.

Proof. We show this reduction simultaneously for the four objective functions.
Technically, these are four separate reductions, but the constructions and
arguments are identical. This means that everything in this proof holds for
each objective function, unless stated otherwise. We handle the objective
functions separately, where necessary.

From a given instance of 1-CBC we create an instance of CBC, which
has the same optimal objective value and its optimal clustering contains the
optimal clustering for 1-CBC. Let an instance of 1-CBC be given as X, Y, µ, ν
and a cost matrix C with a fixed clustering Y = {Y1, . . . , Ym}, as well as
the desired number of clusters n ∈ N for X. Let without loss of generality
Y1 = {y1, . . . , yk1}, Y2 = {yk1+1, . . . , yk2}, . . . , Ym = {ykm−1+1, . . . , yM}.

We construct an instance for CBC with sets X̄, Ȳ , measures µ̄, ν̄, cost
matrix C̄ and the numbers of desired clusters n̄ and m̄ as follows:

120 5.7. NP-HARDNESS PROOF

• X̄ := X ∪ {x̄1, . . . , x̄m}. One element is added for each cluster of Y .

• Ȳ := Y ∪ {ȳ}.

• µ̄(xi) := µi for all xi ∈ X and µ̄(x̄i) := µ(X) for i = 1, . . . ,m.

• ν̄(yj) := νj for all yj ∈ Y and ν̄(ȳ) := m · µ(X). Note that with these
definitions µ̄(X̄) = (m+ 1) · µ(X) = ν(Y) + ν̄(ȳ) = ν̄(Ȳ).

• C̄ is defined as the cost matrix for the cost function c̄ : X̄ × Ȳ → R+

with

– c̄(xi, yj) = ci,j for all xi ∈ X, yj ∈ Y ,

– c̄(x̄k, yj) =

A, if yj ∈ Yk
0, else

for all k = 1, . . . ,m, yj ∈ Y , where

A := µ(X)
minj νj

·
(

max
i,j

ci,j −min
i,j

ci,j

)
+ max

i,j
ci,j,

– c̄(x, ȳ) = 0 for all x ∈ X̄.

The structure of C̄ is shown below. Note that A <∞, since minj νj > 0.

• n̄ := n+m and m̄ := m+ 1.

C̄ =

Y1 Y2 ··· Ym ȳ

0
X C

...
0

x̄1 A · · · A 0
x̄2 A · · · A 0 0
... 0
x̄m A · · · A 0

CHAPTER 5. COST-BASED CLUSTERING 121

Now we show that this instance of CBC has the same optimal objective
value Ḡ∗ as the original instance for 1-CBC (G∗). Let X ∗ = {X∗1 , . . . , X∗n} be
an optimal clustering of X for 1-CBC. Then an optimal solution to the CBC
instance is given by the clusterings X̄ ∗ = X ∗ ∪ {{x̄1}, . . . , {x̄m}} of X̄ into n̄
subsets and Ȳ∗ = Y ∪ {{ȳ}} of Ȳ into m̄ subsets. The gap matrix for these
clusterings has the form

ḡ∗ =
g∗ 0

0 0

 ∈ R(n+m)×(m+1),

where g∗ ∈ Rn×m is the gap matrix of the optimal clustering for 1-CBC. Thus,
the gap objective value of ḡ∗ is the same as that for g∗, which is G∗. This
holds for each of the four objective functions.

It remains to be shown that this is indeed an optimal clustering for CBC.
To that end, let X̄ = {X̄1, . . . , X̄n̄} and Ȳ = {Ȳ1, . . . , Ȳm̄} be a clustering
with gap objective value Ḡ < G∗. We show that this is impossible for each of
the four objective functions. Note that

G∗ ≤ µ(X) ·
(

max
i,j

ci,j −min
i,j

ci,j

)

for the objective functions Grow, Gcol and Gmin and

G∗prod ≤ µ(X)2 ·
(

max
i,j

ci,j −min
i,j

ci,j

)
,

since these are the values of the trivial clustering for n = m = 1.
We show that the following two statements hold:

i) {{x̄1}, . . . , {x̄m}} ⊆ X̄ .

ii) Ȳ = Ȳ∗

Assume that one of these is violated. Due to the structure of the cost matrix
C̄ there are k′, l′ with an entry ḡk′,l′ of the gap matrix of the clusterings X̄ , Ȳ ,
such that

ḡk′,l′ ≥ A−max
i,j

ci,j ≥
µ(X)

minj νj
·
(

max
i,j

ci,j −min
i,j

ci,j

)
.

122 5.7. NP-HARDNESS PROOF

The corresponding cluster X̄k′ ∈ X̄ has an element x̄i ∈ X̄k′ ∩ (X̄ \ X),
thus µ̄(X̄k′) ≥ µ(X) and the corresponding cluster Ȳl′ ∈ Ȳ has ν̄(Ȳl′) ≥
minj=1,...,m νj. Therefore, we have

Ḡrow =
n̄∑
k=1

µ̄(X̄k) max
l=1,...,m̄

ḡk,l

≥ µ̄(X̄k′) ·
µ(X)

minj νj
·
(

max
i,j

ci,j −min
i,j

ci,j

)
≥ µ(X) ·

(
max
i,j

ci,j −min
i,j

ci,j

)
≥ G∗row,

Ḡcol =
m̄∑
l=1

ν̄(Ȳl) max
k=1,...,n̄

ḡk,l

≥ ν̄(Ȳl′) ·
µ(X)

minj νj
·
(

max
i,j

ci,j −min
i,j

ci,j

)
≥ µ(X)

(
max
i,j

ci,j −min
i,j

ci,j

)
≥ G∗col,

Ḡmin =
n̄∑
k=1

m̄∑
l=1

min{µ̄(X̄k), ν̄(Ȳl)} · ḡk,l

≥ ν̄(Ȳl′) ·
µ(X)

minj νj
·
(

max
i,j

ci,j −min
i,j

ci,j

)
≥ G∗min,

Ḡprod =
n̄∑
k=1

m̄∑
l=1

µ̄(X̄k) · ν̄(Ȳl) · ḡk,l

≥ µ(X) · ν(Ȳl′) ·
µ(X)

minj νj
·
(

max
i,j

ci,j −min
i,j

ci,j

)
≥ µ(X)2 ·

(
max
i,j

ci,j −min
i,j

ci,j

)
≥ G∗prod,

which is a contradiction to Ḡ < G∗ for each of the gap objective functions.
Thus, the statements i) and ii) above are satisfied.

The remaining n̄−m = n clusters, X̄ \{{x̄1}, . . . , {x̄m}}, form a clustering
for X, so a feasible clustering for the original instance of 1-CBC. The gap

CHAPTER 5. COST-BASED CLUSTERING 123

objective value for this clustering is Ĝ ≤ Ḡ, since it is a part of the clustering
for CBC, thus Ĝ < G∗. Since Ȳ = Ȳ∗ = Y ∪ {{ȳ}}, this is a contradiction to
the assumption that G∗ is the optimal objective value of 1-CBC.

We conclude that the constructed instance of CBC has the same optimal
objective value G∗ as the original instance of 1-CBC and its optimal clustering
contains an optimal clustering to the original problem.

Definition 5.7.3. Let B = {b1, . . . , bN} ⊆ R2 with bi = (bi,1, bi,2) for i =
1, . . . , N and n ∈ N. The geometric clustering problem (GC) with respect
to G∗ ∈ {Gsq, Gr1, Gr2, Gr3} is to find a partition B of B into n subsets,
B = {B1, . . . , Bn}, such that G∗(B) is minimized. The four functions are
defined as follows:

Gsq(B) :=
n∑
k=1

(
|Bk| · max

bi,bj∈Bk
‖bi − bj‖∞

)
=

n∑
k=1

(
|Bk| ·max{s1(Bk), s2(Bk)}

)

Gr1(B) := N

2 ·
(

max
k=1,...,n

s1(Bk) + max
k=1,...,n

s2(Bk)
)
,

Gr2(B) :=
n∑
k=1

min
{
|Bk|,

N

2

}
· s(Bk),

Gr3(B) := N

2 ·
n∑
k=1
|Bk| · s(Bk),

where we define
s1(Bk) :=

(
max
bi∈Bk

bi,1 − min
bi∈Bk

bi,1

)
,

s2(Bk) :=
(

max
bi∈Bk

bi,2 − min
bi∈Bk

bi,2

)
and

s(Bk) := s1(Bk) + s2(Bk)

as the extension of cluster Bk in x1-direction, x2-direction and their sum,
respectively. These four objective functions correspond to the four functions
in CBC and 1-CBC.

Each objective function defines one version of the problem. The first
objective Gsq is the sum over all clusters of the amount of points in that

124 5.7. NP-HARDNESS PROOF

cluster multiplied by the side length of the smallest axis-parallel square that
covers all points in the cluster. Gr1 is N/2 times the sum of the largest
extension of any cluster in x1-direction and the largest extension of any
cluster in x2-direction, in other words, it is N/4 times the perimeter of
the smallest axis-parallel rectangle that can cover any of the clusters when
properly translated. Gr2 and Gr3 are different weightings of the rectangular
extensions of the clusters.

Note that this problem is solely defined to connect CBC with 3-SAT and
has no purpose beyond that.

Proposition 5.7.4. GC ≤p 1-CBC, that is, Gsq, Gr1, Gr2 and Gr3 can be
reduced to Grow, Gcol, Gmin and Gprod, respectively.

Proof. Again, these are technically four reductions, which we show simulta-
neously. From an instance of GC we construct an instance of 1-CBC with a
fixed clustering for Y .

Let without loss of generality B = {b1, . . . , bN} ⊆ R2
+. Set X = B and

Y = {y1, y2} with µi = 1 for all i = 1, . . . , N and ν1 = ν2 = N/2. Fix the
partition Y = {{y1}, {y2}}. Define the cost matrix C ∈ RN×2

+ by ci,j = bi,j

for all i = 1, . . . , N , j = 1, 2.

Now any partition of X for 1-CBC is a partition of B for GC. It remains to
be shown that the objective values for the two problems of a given clustering
coincide. We show that Grow = Gsq, Gcol = Gr1, Gmin = Gr2 and Gprod = Gr3.
Let X = {X1, . . . , Xn} be a partition. Since

gk,l = max
xi∈Xk

ci,l − min
xi∈Xk

ci,l = sl(Xk)

for k ∈ {1, . . . , n} and l ∈ {1, 2}, we have

CHAPTER 5. COST-BASED CLUSTERING 125

Grow =
n∑
k=1

(
µ(Xk) ·max

l=1,2
gk,l

)

=
n∑
k=1

(
|Xk| ·max

l=1,2

(
max
xi∈Xk

ci,l − min
xi∈Xk

ci,l

))

=
n∑
k=1

(|Xk| ·max{s1(Xk), s2(Xk)}) = Gsq,

Gcol =
2∑
l=1

(
ν(Yl) · max

k=1,...,n
gk,l

)

= N

2 · max
k=1,...,n

gk,1 + N

2 · max
k=1,...,n

gk,2

= N

2 ·
(

max
k=1,...,n

s1(Xk) + max
k=1,...,n

s2(Xk)
)

= Gr1,

Gmin =
n∑
k=1

2∑
l=1

min{µ(Xk), ν(Yl)} · gk,l

=
n∑
k=1

min
{
|Xk|,

N

2

}
· (gk,1 + gk,2)

=
n∑
k=1

min
{
|Xk|,

N

2

}
· s(Xk) = Gr2

and

Gprod =
n∑
k=1

2∑
l=1

µ(Xk) · ν(Yl) · gk,l

= N

2 ·
n∑
k=1
|Xk| · (gk,1 + gk,2)

= N

2 ·
n∑
k=1
|Xk| · s(Xk) = Gr3.

126 5.7. NP-HARDNESS PROOF

5.7.2 Geometric Reduction Concept

The main part is to show that GC is NP-hard with respect to its four objective
functions. This proof is done via a reduction from 3-satisfiability. In [56]
Megiddo and Supowit reduce the 3-satisfiability problem to four geometric
location problems proving their NP-hardness. While the reduction idea can be
adapted to our geometric clustering problem, some additions and adjustments
are necessary, since the details of the construction depend strongly on the
type of problem and the objective function at hand.

We do this reduction proof twice. The first reduction proves the NP-
hardness of GC with respect to Gsq and Gr1, while the second reduction
handles Gr2 and Gr3. In this section we sketch the idea behind the reduction
proofs as introduced in [56], while pointing out the key similarities and
differences, before we delve into the details of the proofs in the next section.
We start by stating the definition of 3-SAT as given for example in [56]:

Definition 5.7.5. Let {u1, . . . , ur} be the set of (Boolean) variables and
let E be a Boolean expression in 3-conjunctive normal form (3-CNF), that
is, E = E1 ∧ E2 ∧ · · · ∧ ES and for all j = 1, . . . , s we have a clause Ej =
xj∨yj∨zj with {xj, yj, zj} ⊆ {u1, ū1, u2, ū2, . . . , ur, ūr}. The decision problem
3-satisfiability (3-SAT) is to decide, whether or not there exists a variable
assignment, such that E is satisfied.

Each reduction proof from 3-SAT to GC entails constructing an instance
of the decision version of GC from a given instance of 3-SAT, that is, a given
3-CNF E. This means we need to define a suitable finite set B ⊆ R2, n ∈ N
and a threshold value R ∈ R. Then we need to show that with this definition
E is satisfiable if and only if there exists a clustering B of B into n subsets
with an objective value G∗(B) ≤ R with respect to the objective function
G∗ ∈ {Gsq, Gr1, Gr2, Gr3}.

The constructions of B in the proofs inherit the following features from
[56], which are common for all objective functions:

• For each variable ui in E we construct a circuit of points, which are
arranged such that there are exactly two optimal clusterings - one

CHAPTER 5. COST-BASED CLUSTERING 127

representing the state true and the other representing the state false
of the variable (see Figure 5.15 for an example). The circuits in [56]
consist of different objects, such as circles, squares and points, whereas
the circuits in our proofs only consist of points. The circuits differ based
on the objective function and are specified in more detail in the proofs.

• The circuits may intersect. The junctions between two circuits are
handled in a way that does not interfere with the variable assignments
(see Figure 5.16 or Figure 5.21).

• For each clause Ej we add a point representing the clause in a location,
where the three circuits for the variables appearing in the clause meet
(see Figure 5.17 or Figure 5.22). This meeting point is referred to
as clause configuration. It is constructed in a way such that if the
represented clause is satisfied the additional point can be efficiently
included in one of the clusters of the circuits. If not, it forces an
inefficient clustering, whose objective function value inevitably exceeds
the threshold value R.

In the proofs below we show that with suitable construction details we obtain
the equivalence of the satisfiability of E and the existence of a clustering
with objective value smaller than or equal to R. A schematic example for the
whole construction is shown in Figure 5.14.

For the proof of Proposition 5.7.6 it is necessary to add the following
features to the construction, both of which are related to the objective
functions Gsq and Gr1 and are not present in any of the proofs in [56]:

• To ensure that the optimal clustering for a circuit represents the same
variable state before and after a clause configuration we have to add a
consistency check configuration for each clause configuration the circuit
belongs to by adding two points, which can be included in suitable
clusters of the circuit (see Figure 5.18).

• An additional diamond-shaped circuit is added, which is large enough
to prevent an optimal clustering formed by non-square rectangles (see

128 5.7. NP-HARDNESS PROOF

u1 u2 u3 u4

E1

E2

Figure 5.14: Schematic example of the whole construction with four circuits
representing the variables u1, u2, u3, u4 and two clauses E1 and E2. The
triangles represent the clause configurations and, if necessary, the consistency
check configurations are located in the places indicated by the circles. The
details of the construction depend on the objective function. The construction
can easily be extended to an arbitrary number of variables and clauses, since
additional variables can be added horizontally and additional clauses can be
added vertically.

CHAPTER 5. COST-BASED CLUSTERING 129

Figure 5.20). This ensures that the reduction works for both Gsq and
Gr1 simultaneously.

Lastly, for each of the proofs we make use of one lemma and both lemmas
are proved in Section 5.7.4.

5.7.3 Geometric Reduction Proofs

Proposition 5.7.6. GC with respect to Gsq and Gr1 is NP-hard.

Proof. First, we show this for the objective function Gsq. Then, with the
addition of a diamond-shaped circuit, we can enforce that Gsq ≤ R and
Gr1 ≤ R are equivalent, which proves the NP-hardness with respect to both
functions. For a given 3-CNF E the details of the construction are as follows:

For each variable ui we have a circuit Pi containing an even number of
points, that is, Pi = {p(i)

1 , . . . , p
(i)
2mi} ⊆ R2 with the following properties:

i) For all k = 1, . . . , 2mi − 1: ‖p(i)
k − p

(i)
k+1‖∞ = 1 and ‖p(i)

2mi − p
(i)
1 ‖∞ = 1.

ii) For all k, l not affected by i): ‖p(i)
k − p

(i)
l ‖∞ ≥ 2.

Given a circuit P = {p1, . . . , p2m} there are exactly two clusterings of P
into m clusters, namely P = {p1, p2} ∪ · · · ∪ {p2m−1, p2m} and P = {p2, p3} ∪
· · · ∪ {p2m−2, p2m−1} ∪ {p2m, p1}, that have an objective value of Gsq = |P | =
2m. These represent the two assignments true and false for the variable ui
and we assign labels t and f to edges between subsequent points in the circuit
to illustrate this. An example for a circuit is shown in Figure 5.15.

Pairs of points (p, q) from different circuits have to satisfy ‖p− q‖∞ ≥ 2,
unless they are part of the same junction or clause configuration. Figure 5.14
indicates that this is achievable, as the spaces between the circuits can be
extended. Note that condition ii) may be violated in clause configurations
and consistency check configurations (details below).

Since the same variable may appear in many clauses, junctions between
circuits are necessary and set up as shown in Figure 5.16. The circuits have a
common point at the junction and for any of the four combinations of variable

130 5.7. NP-HARDNESS PROOF

p1

p2 p3

p4

p5p6

t
f

t

f
t

f

Figure 5.15: Example of a circuit (left) with the two optimal clusterings
shown as square covers (middle) and the resulting labels t and f for the edges
between subsequent points (right).

assignments it is possible to cover the common point together with one of
each circuit saving one cluster in total. That means for r circuits with J

junctions there is exactly one clustering into n = ∑r
i=1mi − J clusters with

Gsq = |
r⋃
i=1

Pi| =
r∑
i=1

2mi − J

for every possible variable assignment.
We demand that the indices of the common points in junctions (for

example, k and l in Figure 5.16) are all odd. This ensures that there is always
an odd number of points between two consecutive junctions in a circuit. This
is necessary for the proof that any clustering B with G∗(B) represents a
consistent variable assignment. We follow the argument in [56] for this.

Now we add one point qj for each clause Ej in E, such that qj can be
covered by one of the clusters for the circuits of variables in Ej with no further
cost other than adding the point (that is, the diameter of the cluster does not
increase) if and only if Ej is satisfied. This is achieved by the precise point
placement in clause configurations as shown in Figure 5.17. We require the
following conditions:

i) For each variable ui that appears in Ej, there is a ki,j ∈ {1, . . . , 2mi},
such that ‖qj − p(i)

ki,j
‖∞ = ‖qj − p(i)

ki,j+1‖∞ = 1.

ii) The label on the edge between p(i)
ki,j

and p(i)
ki,j+1 is t if variable ui appears

as a positive literal in Ej and f if it appears as a negative literal (ūi) in
Ej.

CHAPTER 5. COST-BASED CLUSTERING 131

p
(i)
k−2 p

(i)
k−1 p

(i)
k+1 p

(i)
k+2

p
(j)
l−2

p
(j)
l−1

p
(j)
l+1

p
(j)
l+2

p
(i)
k = p

(j)
l

Pi

Pj

t f t f

t

f

t

f

Figure 5.16: A junction between circuits Pi and Pj with a common point
(left) and an optimal clustering shown as square cover (right) representing
the variable assignment ui = true and uj = false with one cluster including
three points.

P1

P2

P3

qj
t f
f t

t tf

Figure 5.17: A clause configuration representing the clause Ej = ū1 ∨ ū2 ∨ u3
(left). The optimal clustering shown as square cover representing the variable
assignment u1 = true, u2 = true and u3 = true (right). Since it satisfies Ej
the point qj can be included in one of the clusters in P3.

132 5.7. NP-HARDNESS PROOF

f t f
t

f

t

f
t

ft

qj
P1q′1,j q′′1,j

qj

Figure 5.18: Example of a consistency check configuration with two additional
points (left). This setup ensures that the two points can be included in the
clusters with no further cost if and only if the variable assignment is the
same before and after the clause configuration (point qj). The clustering
representing the state false of the variable and satisfying clause Ej (right).

These conditions ensure that if a variable assignment satisfies a clause Ej ,
its point qj can be included in the corresponding clustering in at least one of
the circuits of the variables in Ej. Conversely, if a variable assignment does
not satisfy a clause Ej either one of the clusters has to be enlarged, leading
to a higher optimal objective value of Gsq in GC, or qj is in a cluster with
two points from different circuits (see Figure 5.19, left).

The latter changes the variable state represented by the affected circuits.
We prevent this by adding a consistency check configuration to each circuit
in each clause, which ensures that before and after each clause (and therefore
in the whole circuit) the same Boolean value is represented, and a clustering
that compromises the representation always has a higher objective value. This
is achieved by adding two additional points, q′i,j and q′′i,j for circuit Pi and
clause Ej , that can be covered without enlarging any cluster if and only if the
variable state represented before and after a clause in a circuit is the same
(see Figure 5.18).

We now define the set B for the instance of GC as the set of all points in
the construction, that is,

B :=
r⋃
i=1

Pi ∪
S⋃
j=1

(
{qj} ∪

{
q′i,j, q

′′
i,j : ui appears in Ej

})
.

Since the circuits have one common point for each junction and we add 7

CHAPTER 5. COST-BASED CLUSTERING 133

qj

qj

Figure 5.19: A different clustering for the clause is possible, where qj is
coupled with two points from two different circuits (left). This can be
prevented through the consistency check configurations. If the clustering does
not represent the same variable assignment before and after the clause one of
the additional points cannot be included in any cluster without additional
cost (right). This prevents an optimal clustering where one cluster contains
points of different circuits.

points for each clause, the total number of points is

N := |B| =
r∑
i=1

2mi − J + 7S.

We define the number of clusters n as

n := N − 7S − J
2 =

r∑
i=1

mi − J

and the threshold value as R := N . We need to show that E is satisfiable if
and only if there is a clustering B of B into n subsets with Gsq(B) ≤ R.

To that end, assume that E is satisfiable. This means there is a variable
assignment satisfying all clauses simultaneously. Therefore, the clustering of
the circuits into n subsets, which represents this variable assignment can also
cover all additional points in the clause configurations and consistency check
configurations, as is shown in Figures 5.17 (right) and 5.18 (right). Since all
clusters Bk ∈ B have max{s1(Bk), s2(Bk)} = 1, it follows that

Gsq(B) =
n∑
k=1

(
|Bk| ·max{s1(Bk), s2(Bk)}

)
=

n∑
k=1
|Bk| = |B| = N.

134 5.7. NP-HARDNESS PROOF

Conversely, let B = {B1, . . . , Bn} be a clustering of B with Gsq(B) ≤ N .
We define a map σ : {1, . . . , N} → R+ by

σ(k) :=

min

{
max{s1(B̄), s2(B̄)} : B̄ ⊆ B, |B̄| = k

}
, k = 1, k = 2, k ≥ 5,

3
2 , k = 3,

2, k = 4,

which is the minimum side length of a square that can cover k points of B for
all k other than three and four, while for those numbers it is defined as the
second smallest possible side length. It is easy to see that σ(1) = 0, σ(2) = 1
and σ(k) ≥ 2 > 2− 2/k for k ≥ 5.

For k = 3 the smallest possible side length is 1. However, these clusters
are only possible if they include either the common point of two circuits in
a junction, the additional point qj of a clause configuration or at least one
of the additional points q′i,j, q′′i,j in a consistency check configuration. Apart
from these options the smallest side length of a square covering three points
is σ(3) = 3/2.

Four points can be covered by a square of side length 3/2, if they either
include a clause configuration point qj or both points q′i,j and q′′i,j in one
consistency check configuration. Otherwise, the minimum side length of a
square covering four or more points is σ(4) = 2.

We define the following quantities:

• ak :=
∣∣∣{B̄ ∈ B : |B̄| = k

}∣∣∣ for k = 1, . . . , N , k 6= 3, 4

• bk :=
∣∣∣{B̄ ∈ B : |B̄| = k, qj ∈ B̄ for some j

}∣∣∣ for k = 3, 4

• ck :=
∣∣∣{B̄ ∈ B : |B̄| = k,max{s1(B̄), s2(B̄)} < σ(k), qj 6∈ B̄ for all j

}∣∣∣
for k = 3, 4

• ak :=
∣∣∣{B̄ ∈ B : |B̄| = k

}∣∣∣− bk − ck for k = 3, 4

For k other than three and four, ak indicates the number of clusters in B
containing exactly k points. For k = 3, 4 we separate the clusters into three
groups: clusters in clause configuratons (b3 and b4), small clusters apart from
clause configurations (c3 and c4) and other clusters (a3 and a4).

CHAPTER 5. COST-BASED CLUSTERING 135

From this definition follows directly that b3 + b4 ≤ S. Since small clusters
apart from clause configurations with three points contain a junction point
or a point in a consistency check configuration and small clusters with four
points have to contain both points in a consistency check configuration,
c3 + 2c4 ≤ 6S + J .

Moreover, since we have n clusters covering N points, the following
equations are satisfied:

b3 + c3 + b4 + c4 +
N∑
k=1

ak = n

3(b3 + c3) + 4(b4 + c4) +
N∑
k=1

k · ak = N

All the clusters counted by b3 and c3 have a side length of at least 1,
the clusters counted by b4 and c4 have a side length of at least 3/2 and
the remaining clusters (counted by ak) have a side length of at least σ(k).
Therefore,

N ≥ Gsq =
n∑
l=1
|Bl| ·max{s1(Bl), s2(Bl)}

=
N∑
k=1

n∑
l=1
|Bl|=k

k ·max{s1(Bl), s2(Bl)}

≥ 3 (1 · (b3 + c3) + σ(3) · a3)

+ 4
(3

2 · (b4 + c4) + σ(4) · a4

)

+
N∑
k=1
k 6=3,4

σ(k)
n∑
l=1
|Bl|=k

k

= 3(b3 + c3) + 6(b4 + c4) +
N∑
k=1

k · σ(k) · ak.

This means the system of linear inequalities in Lemma 5.7.9 as well as all

136 5.7. NP-HARDNESS PROOF

assumptions are satisfied. Thus, applying this lemma we can conclude that
the only non-zero quantities are a2 = n− 7S − J, b3 = S and c3 = 6S + J . It
follows that each cluster in B is covered by a square of at least side length
1, hence Gsq(B) = N and hence the side lengths all have to be exactly 1.
Moreover, the clusters containing three points have to be located at clause
and consistency check configurations (7S clusters) and junctions (J clusters).

Now with the same argument as in [56] we show that this clustering
represents a variable assignment. We divide the points in the circuits into
junctions (we consider the common point and the four surrounding points as
belonging to the junction) and segments between junctions (maximal subsets
of consecutive points in the same circuit not belonging to junctions). Since
the indices of the common points are all odd, each segment contains an odd
number of points and since each segment is adjacent to two junctions and each
junction is adjacent to four segments, there are 2J segments. The segments
contain

r∑
i=1

2mi − 6J

points in total, not accounting for additional points in consistency check or
clause configurations. Since they each have an odd amount of points and
clusters have at most a side length of 1, we need

1
2 ·
(

r∑
i=1

2mi − 6J − 2J
)

+ 2J =
r∑
i=1

mi − 2J = n− J

clusters in order to cover all of them, while one point in each segment takes
up one cluster of its own (we call them singletons). Note that the clusters
containing three points in consistency check and clause configurations are also
used for this and thus only the J clusters for junctions remain. This means
three of the five points in each junction are covered by these clusters and the
two remaining points have to be assigned to the singletons in the segments.
This is precisely possible, since there are exactly 2J of these singletons and
2J extra points in junctions, but it requires that each singleton is either the
first or last point in its segment.

In each segment the clustering represents a variable assignment. This also

CHAPTER 5. COST-BASED CLUSTERING 137

holds for segments involved in clause configurations, as all of the additional
points in the consistency check configurations are contained in separate
clusters with three points as shown in Figure 5.18 (right). Along one circuit,
if the first point in a segment is the singleton, the first point in the next
junction has to belong to the junction cluster, which means the third point in
the junction does not. Thus, the first point of the next segment of the circuit
again has to be the singleton. It follows that the singletons in the segments
of a circuit are either always the first or always the last point, which means
that the clustering represents either the value true or false of the variable
represented by the circuit. Therefore, the clustering represents a consistent
variable assignment for all Boolean variables ui. Since all of the points qj in
the clause configurations are contained in clusters with side lengths 1, this
variable assignment satisfies all clauses Ej and we can conclude that E is
satisfiable.

This finishes the proof with respect to Gsq. Now we show that with the
addition of a diamond-shaped circuit Pr+1 (see Figure 5.20) to the construction
with 4Q points, where

Q =
r∑
i=1
|Pi|

we can enforce that Gr1 ≤ N is equivalent to Gsq ≤ N . This circuit has no
meaning for E and is disconnected from the other circuits, thus the above
arguments also hold for Gr1.

We first show that Gr1 ≤ N implies Gsq ≤ N . Recall that

Gr1 = N

2 ·
(

max
k=1,...,n

s1(Bk) + max
k=1,...,n

s2(Bk)
)
,

so if Gr1 ≤ N then there exists an axis-parallel rectangle with side lengths a
and b, such that a+ b ≤ 2 and each cluster can be covered by a translated
version of this rectangle. If 0 < a < 1 or 0 < b < 1 then there are no two
points in Pr+1, which share a cluster. Thus, there are at least 4Q clusters,
but 4Q > N/2 > n. Similarly, if a = 0 or b = 0 at least 4Q− 2 clusters are
necessary and still 4Q − 2 > n (compare Figure 5.20). Hence, a = b = 1.
That means every cluster can be covered by a square with side length 1 and

138 5.7. NP-HARDNESS PROOF

Figure 5.20: The diamond-shaped circuit Pr+1 for Q = 3. A non-squared
rectangle with side lengths a + b = 2 can never cover more than one point
(left rectangle), unless a = 0 or b = 0 (right rectangle), in which case only
two clusters of two points each can exist.

thus Gsq ≤ N .
Conversely, if Gsq ≤ N , the optimal clustering we constructed above

consists of squares with side length 1, therefore all of the clusters can be
covered by a translated rectangle with side length a = b = 1, so Gr1 ≤
N/2 · (1 + 1) = N .

Remark 5.7.7. Since Gsq ≤ N and Gr1 ≤ N are equivalent in the above con-
struction, the proof also holds for the problem version, where min{Gsq, Gr1}
is the objective function and thus the minimization of min{Grow, Gcol} in
CBC is NP-hard as well.

Proposition 5.7.8. GC with respect to Gr2 and Gr3 is NP-hard.

Proof. We reduce 3-SAT to GC in a similar way as before. Circuits represent
variables and clause configurations are constructed such that there exists an
optimal clustering with a certain objective value R ∈ R if and only if the
given 3-CNF E is satisfiable. The objective function we consider in this proof
is

Grec :=
n∑
k=1
|Bk| · s(Bk).

CHAPTER 5. COST-BASED CLUSTERING 139

Since it is a multiple of Gr2 this shows the NP-hardness of GC with respect
to Gr2. Later, we show that with this construction Grec ≤ R if and only if
Gr3 ≤ R, since there is no optimal clustering with any cluster Bk, such that
|Bk| ≥ N/2, which proves the NP-hardness of GC with respect to Gr3.

The construction here has a few differences compared to the one in the
previous proof:

• Both the junctions and the clause configurations force clusters with three
points each that also have a larger size s(Bk) and therefore contribution
to the objective value of the clustering. Those are the least possible
increases compared to different clusterings and hence the only options
for a clustering with a value below R.

• The additional consistency check configurations are not necessary, since
any clustering changing the variable assignment in a clause configuration
cannot be optimal due to the specific construction. The diamond-shaped
circuit is not necessary, as the reduction for Grec implies the NP-hardness
for both Gr2 and Gr3.

Each circuit is a set of an even amount of points Pi = {p(i)
1 , . . . , p

(i)
2mi} ⊆ R2

representing the Boolean variable ui such that

i) for all k = 1, . . . , 2mi − 1: ‖p(i)
k − p

(i)
k+1‖1 = 1 and ‖p(i)

2mi − p
(i)
1 ‖1 = 1.

ii) for all k, l not affected by i): ‖p(i)
k − p

(i)
l ‖1 ≥ 2.

This is the same as above, but the distance is measured in the 1-norm instead
of the maximum norm. We allow condition i) to be violated in junctions and
condition ii) to be violated in clause configurations, since these have a specific
point placement. Again, there are two optimal clusterings of the points in one
circuit into mi clusters with objective value Grec = 2mi, since a cluster Bk

has s(Bk) = 1, if it contains two consecutive points and s(Bk) ≥ 2 otherwise.
We can label the edges between consecutive points alternatingly with t and f
for true and false, respectively (compare Figure 5.15). Moreover, it is required
that pairs of points (p, q) from different circuits have ‖p − q‖1 ≥ 2, unless
they are part of the same junction or clause configuration.

140 5.7. NP-HARDNESS PROOF

p
(i)
k−2

p
(i)
k−1

p
(i)
k+1

p
(i)
k+2

p
(j)
l+2

p
(j)
l+1

p
(j)
l−1

p
(j)
l−2

p
(i)
k = p

(j)
l t

f

t

ff

t

f

t

1
2

1
2

5
9

10
9

Figure 5.21: A diagonal junction between circuits Pi and Pj with a common
point (left) and an optimal clustering shown as rectangle cover (middle)
representing the variable assignment ui = true and uj = false with one
cluster including three points with the exact distances indicated. A suboptimal
cluster containing five points is shown on the right.

We require that two circuits cross diagonally in junctions such that the
l1-distance of the central point to each of the four surrounding points is 10/9,
which violates condition i) above. This is shown in Figure 5.21. There are
exactly four different ways a cluster Bk with s(Bk) = 5/3 can contain three
points of the junction - one for every combination of variable assignments of
the variables represented by the circuits.

As before, one point qj is added for each clause Ej . The precise placement
of the points in a clause configuration can be seen in Figure 5.22. We have
to make sure that the Boolean labels on the edges of the circuits are aligned
such that the edge of circuit Pi facing towards qj has the label t if clause
Ej contains ui and f if Ej contains ūi. This way, if a variable assignment
satisfies Ej the point qj can be included in one of the blue clusters in Figure
5.22. Those clusters have s(Bk) = 5/3. Other clusters with three points (for
example the red clusters in Figure 5.22, right) have s(Bk) > 5/3.

Note, that there are two non-subsequent points in the left circuit (and
similarly two in the right circuit) of the clause configuration, that violate
circuit condition ii). However, aggregating the two points with the circuit
point between them leads to another cluster Bk with s(Bk) = 11/6 > 5/3.

Let B be the set of all points in the construction, J be the number of

CHAPTER 5. COST-BASED CLUSTERING 141

qj

5
8

5
6

2
3

1

1
2

3
8

11
24

5
4

5
6

Figure 5.22: Clause configuration with the exact placements of points. One
point qj, which represents the clause Ej, is added. If Ej is satisfied by a
variable assignment the point qj can be added to one of the clusters of the
circuits yielding one of the three blue clusters on the left. The right side shows
three examples of clusters with three points each, two of which belong to
different circuits. Since they have a larger extension s, clusterings containing
one of these clusters are suboptimal.

junctions and S be the number of clauses in E. The number of points is

N :=
r∑
i=1

2mi − J + S

and the number of clusters

n :=
r∑
i=1

mi − J.

Furthermore, we define T := J + S = N − 2n and R := N + 2T . Then E
is satisfiable if and only if there exists a clustering of the N points into n
clusters, B = {B1, . . . , Bn}, such that Grec(B) ≤ R.

To prove this, we first assume E is satisfiable. Then there is a variable
assignment that satisfies all of the clauses Ej in E simultaneously. Therefore,
there is a clustering representing this variable assignment, such that the points
qj can be included in one of the blue clusters of Figure 5.22 for each clause

142 5.7. NP-HARDNESS PROOF

Ej . This clustering has a cluster with three points for each junction and each
clause, hence T clusters with three points, each of which have an extension
of s(Bk) = 5/3. The remaining n− T clusters have two points each and an
extension of s(Bk) = 1. It follows

Grec =
n∑
k=1
|Bk| · s(Bk)

= T · 3 · 5
3 + (n− T) · 2 · 1

= 2n+ 3T = N + 2T

= R.

For the reverse direction assume we have a clustering B = {B1, . . . , Bn}
of B with Grec(B) ≤ R and show that this implies E is satisfiable. We define
a map σ : {1, . . . , N} → R+ by

σ(k) := min
{
s(B̄) : B̄ ⊆ B, |B̄| = k

}
,

which is the smallest possible extension a cluster containing k points can have
in the whole construction. The values of σ for small k can be seen in Table
5.7.3.

k 1 2 3 4 5 6 7

σ(k) 0 1 5
3

25
12

20
9

17
6

19
6

Table 5.1: Values of σ for small k.

The smallest clusters for k = 4, 6, 7 can be found in the clause configura-
tions, while the smallest cluster for k = 5 is the center cluster in junctions
(red cluster in Figure 5.21). This is assuming there are no smaller clusters
aside from junctions and clause configurations, but they are easily avoidable
in the construction. Since σ is non-decreasing in k, we have σ(k) ≥ σ(7) > 3
for k ≥ 7. Thus, σ satisfies

σ(k) > 3− 4
k
∀ k ≥ 4.

CHAPTER 5. COST-BASED CLUSTERING 143

Furthermore, for k = 1, . . . , N we define

ak :=
∣∣∣{B̄ ∈ B : |B̄| = k

}∣∣∣
as the number of clusters in the clustering B containing exactly k points.
Since we have n clusters covering N points,

N∑
k=1

ak = n

and
N∑
k=1

k · ak = N

and since s(B̄) ≥ σ(|B̄|) for all B̄ ∈ B,

N∑
k=1

k · σ(k) · ak =
N∑
k=1

σ(k)
n∑
l=1
|Bl|=k

|Bl|

≤
N∑
k=1

n∑
l=1
|Bl|=k

|Bl| · s(Bl)

=
n∑
l=1
|Bl| · s(Bl)

= Grec ≤ R = N + 2T.

With ak ≥ 0 for all k = 1, . . . , N and n−T ≥ 0, this is the system of linear
inequalities in Lemma 5.7.10 (see Section 5.7.4) and all of the assumptions
are satisfied. Therefore, for our clustering a1 = 0, a2 = n − T , a3 = T and
ak = 0 for k ≥ 4. Since

N∑
k=1

k · σ(k) · ak = T · 3 · 5
3 + (n− T) · 2 · 1 = N + 2T = R

is satisfied with equality, it follows that s(B̄) = σ(|B̄|) for all k = 1, . . . , n.
Hence, the clustering consists of n − T clusters with two points each and
s(B̄) = 1 and T clusters with three points each and s(B̄) = 5/3.

144 5.7. NP-HARDNESS PROOF

The only places in the construction where a cluster with three points and
an extension of 5/3 is possible are junctions and clause configurations with
at most one cluster each. Since we have T = J + S of these clusters there is
one such cluster in each junction and clause configuration. Since all clusters
with two points have an extension of 1, we can apply the same argument
as in the last proof and conclude that the clustering represents a variable
assignment and since each clause configuration has a cluster of extension 5/3,
the variable assignment satisfies the clause Ej (compare Figure 5.22). Hence,
it satisfies all clauses simultaneously and therefore also E.

This proves the NP-hardness of GC with respect to Grec, but since all
clusters B̄ ∈ B have |B̄| ≤ 3 < N/2, all arguments hold for Gr3 as well.

Proof of Theorem 5.2.3. This follows directly from the chain of reductions in
the Propositions 5.7.2, 5.7.4, 5.7.6 and 5.7.8.

5.7.4 Auxiliary Lemmas

Lemma 5.7.9. Let r, J, S ∈ N and mi ∈ N for i = 1, . . . , r, such that

r∑
i=1

mi − 2J − 7S ≥ 0.

Define

N :=
r∑
i=1

2mi − J + 7S ≥ 0

and
n :=

r∑
i=1

mi − J.

Let σ : {1, . . . , N} → R+ be a map, such that σ(1) = 0, σ(2) = 1 and

σ(k) > 2− 2
k
∀ k ≥ 3. (5.1)

CHAPTER 5. COST-BASED CLUSTERING 145

Then the following system of linear inequalities consisting of the variables
ak, k = 1, . . . , N, b3, b4, c3 and c4,

b3 + c3 + b4 + c4 +
N∑
k=1

ak = n (5.2)

3(b3 + c3) + 4(b4 + c4) +
N∑
k=1

k · ak = N (5.3)

3(b3 + c3) + 6(b4 + c4) +
N∑
k=1

k · σ(k) · ak ≤ N (5.4)

b3 + b4 ≤ S (5.5)

c3 + 2c4 ≤ 6S + J (5.6)

b3, b4, c3, c4, ak ≥ 0 ∀ k = 1, . . . , N (5.7)

has the unique solution a1 = 0, a2 = n− 7S − J, ak = 0 for k = 3, . . . , N, b3 =
S, b4 = 0, c3 = 6S + J and c4 = 0.

Proof. Assume we have a solution a1, . . . , aN , b3, b4, c3, c4 to the system (5.2)
through (5.7). If we substract (5.2) from (5.3) we get

a2 = N − n− 2(b3 + c3)− 3(b4 + c4)−
N∑
k=3

(k − 1)ak. (5.8)

Inserting this into (5.4) yields

N ≥ 2a2 + 3(b3 + c3) + 6(b4 + c4) +
N∑
k=3

k · σ(k) · ak

= 2N − 2n− (b3 + c3) +
N∑
k=3

(k · σ(k)− 2(k − 1)) · ak

= N + 7S + J − (b3 + c3) +
N∑
k=3

(k · σ(k)− 2(k − 1)) · ak.

(5.9)

Since k · σ(k)− 2(k − 1) > 0 for k ≥ 3 due to (5.1), it follows from the above

146 5.7. NP-HARDNESS PROOF

inequality, (5.5), (5.6) and (5.7) that

0 ≤
N∑
k=3

(k · σ(k)− 2(k − 1)) · ak

≤ b3 + c3 − 7S − J

≤ S − b4 + 6S + J − 2c4 − 7S − J

= −(b4 + 2c4) ≤ 0.

Hence, b4 = c4 = 0 and ak = 0 for k = 3, . . . , N . This reduces the inequality
(5.9) to

b3 + c3 ≥ 7S + J,

which, together with (5.5) and (5.6), implies b3 = S and c3 = 6S + J . Solving
(5.2) and (5.3) for a1 and a2 yields a1 = 0 and a2 = n− 7S − J . Since

a2 =
r∑
i=1

mi − 2J − 7S ≥ 0

by assumption, this is indeed the unique solution to the system.

Lemma 5.7.10. Let r, J, S ∈ N and mi ∈ N for i = 1, . . . , r, such that

r∑
i=1

mi − 2J − S ≥ 0.

Define

N :=
r∑
i=1

2mi − J + S,

n :=
r∑
i=1

mi − J

and T := J +S = N − 2n. Moreover, let σ : {1, . . . , N} → R+ be a map, such
that σ(1) = 0, σ(2) = 1, σ(3) = 5/3 and

σ(k) > 3− 4
k
∀ k ≥ 4. (5.10)

CHAPTER 5. COST-BASED CLUSTERING 147

Then the following system of linear inequalities,

N∑
k=1

ak = n (5.11)

N∑
k=1

k · ak = N (5.12)

N∑
k=1

k · σ(k) · ak ≤ N + 2T (5.13)

ak ≥ 0 ∀ k = 1, . . . , N (5.14)

has the unique solution a1 = 0, a2 = n− T, a3 = T and ak = 0 for all k ≥ 4.

Proof. Assume we have a solution a1, . . . , aN to the system (5.11) through
(5.14). If we substract (5.11) from (5.12) we get

a2 = N − n− 2a3 −
N∑
k=4

(k − 1) · ak. (5.15)

Inserting this into (5.13) yields

N + 2T ≥ 2a2 + 5a3 +
N∑
k=4

k · σ(k) · ak

= 2N − 2n+ a3 +
N∑
k=4

(k · σ(k)− 2(k − 1)) · ak

= a3 +N + T +
N∑
k=4

(k · σ(k)− 2(k − 1)) · ak

and therefore
a3 ≤ T +

N∑
k=4

(2(k − 1)− k · σ(k)) · ak. (5.16)

148 5.7. NP-HARDNESS PROOF

Now we combine (5.11), (5.14), (5.15) and (5.16) to get

0 ≤ a1 = n− a2 − a3 −
N∑
k=4

ak

= 2n−N + a3 +
N∑
k=4

(k − 2) · ak

≤ −T + T +
N∑
k=4

(k − 2 + 2(k − 1)− k · σ(k)) · ak

=
N∑
k=4

(3k − 4− k · σ(k)) · ak.

(5.17)

We know from (5.10) that 3k− 4− k · σ(k) < 0 for all k = 4, . . . , N . Thus, in
order for (5.17) to be satisfied, we need ak = 0 for all k = 4, . . . , N . It follows
immediately that a1 = 0. Solving (5.11) and (5.12) for a2 and a3 leads to
a2 = n− T and a3 = T . This satisfies

a2 = n− T =
r∑
i=1

mi − 2J − S ≥ 0

and (5.13), hence it is the unique solution to the above inequation system.

Bibliography

[1] Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J.
Math. Anal. 43(2), 904–924 (2011)

[2] Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approxima-
tion algorithms for optimal transport via Sinkhorn iteration. CoRR
abs/1705.09634 (2017). URL http://arxiv.org/abs/1705.09634

[3] Arjovski, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). URL
https://arxiv.org/abs/1701.07875

[4] Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-Type Theorems
and Least-Squares Clustering. Algorithmica 20(1), 61–76 (1998)

[5] Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and
Network Flows, fouth edn. Wiley (2009)

[6] Becker, G.: A Theory of Marriage: Part I. Journal of Political Economy
81(4), 813–46 (1973). URL https://EconPapers.repec.org/RePEc:
ucp:jpolec:v:81:y:1973:i:4:p:813-46

[7] Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative
Bregman Projections for Regularized Transportation Problems. SIAM J.
Sci. Comput. 37(2), A1111–A1138 (2015)

[8] Benamou, J.D., Froese, B.D., Oberman, A.M.: Numerical solution of
the Optimal Transportation problem using the Monge-Ampère equation.
J. Comput. Phys. 260, 107–126 (2014)

http://arxiv.org/abs/1705.09634
https://arxiv.org/abs/1701.07875
https://EconPapers.repec.org/RePEc:ucp:jpolec:v:81:y:1973:i:4:p:813-46
https://EconPapers.repec.org/RePEc:ucp:jpolec:v:81:y:1973:i:4:p:813-46

150 BIBLIOGRAPHY

[9] Bertsekas, D.P.: A new algorithm for the assignment problem. Mathe-
matical Programming 21(1), 152–171 (1981). DOI 10.1007/BF01584237

[10] Bertsekas, D.P.: Auction Algorithms for Network Flow Problems: A
Tutorial Introduction. Computational Optimization and Applications
1(1), 7–66 (1992)

[11] Bertsekas, D.P., Castanon, D.A.: The auction algorithm for the trans-
portation problem. Annals of Operations Research 20(1), 67–96 (1989).
DOI 10.1007/BF02216923

[12] Bickel, P.J., Freedman, D.A.: Some Asymptotic Theory for the Bootstrap.
Ann. Statist. 9(6), 1196–1217 (1981)

[13] Boissard, E., Le Gouic, T.: On the mean speed of convergence of empirical
and occupation measures in Wasserstein distance. Ann. Inst. H. Poincaré
Probab. Statist. 50(2), 539–563 (2014)

[14] Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and Radon Wasser-
stein Barycenters of Measures. Journal of Mathematical Imaging and
Vision 51(1), 22–45 (2015)

[15] Bosc, D.: Numerical Approximation of Optimal Transport Maps. ERN:
Optimization Techniques; Programming Models; Dynamic Analysis
(Topic) (2010). DOI 10.2139/ssrn.1730684

[16] Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C.J., Schoelkopf,
B.: From optimal transport to generative modeling: the VEGAN cook-
book (2017). URL http://arxiv.org/abs/1705.09634

[17] Brauer, C., Lorenz, D.: Cartoon-Texture-Noise Decomposition with
Transport Norms. In: Proc. SSVM, pp. 142–153. Lege-Cap Ferret,
France (2015)

[18] Bravo, H.C., Theussl, S.: Rcplex: R Interface to CPLEX (2016). URL
https://CRAN.R-project.org/package=Rcplex. R package version
0.3-3

http://arxiv.org/abs/1705.09634
https://CRAN.R-project.org/package=Rcplex

BIBLIOGRAPHY 151

[19] Ciscato, E., Galichon, A., Goussé, M.: Like Attract Like? A Struc-
tural Comparison of Homogamy Across Same-Sex and Different-Sex
Households. SSRN Electronic Journal (2014). DOI 10.2139/ssrn.2530724

[20] Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal
Transport. In: Proc. NIPS, pp. 2292–2300 (2013)

[21] Cuturi, M., Doucet, A.: Fast Computation of Wasserstein Barycenters. In:
Proceedings of The 31st International Conference on Machine Learning,
pp. 685–693 (2014)

[22] Defays, D.: An efficient algorithm for a complete link method. The
Computer Journal 20(4), 364–366 (1977). DOI 10.1093/comjnl/20.4.364.
URL http://dx.doi.org/10.1093/comjnl/20.4.364

[23] Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust
hedging in continuous time. Probability Theory and Related Fields
160(1), 391–427 (2014)

[24] Dorea, C.C.Y., Ferreira, D.B.: Conditions for equivalence between Mal-
lows distance and convergence to stable laws. Acta Math Hung 134(1-2),
1–11 (2012)

[25] Dupuy, A., Galichon, A., Jaffe, S., Duke Kominers, S.: Taxation in
Matching Markets. SSRN Electronic Journal (2017). DOI 10.2139/ssrn.
3060746

[26] Flamary, R., Févotte, C., Courty, N., Emiya, V.: Optimal spectral
transportation with application to music transcription. In: Proceedings
of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, pp. 703–711. Curran Associates Inc., USA (2016).
URL http://dl.acm.org/citation.cfm?id=3157096.3157175

[27] Florek, K., Lukaszewicz, J., Perkal, J., Steinhaus, H., Zubrzycki, S.:
Sur la liaison et la division des points d’un ensemble fini. Colloquium
Mathematicae 2(3-4), 282–285 (1951). URL http://eudml.org/doc/
209969

http://dx.doi.org/10.1093/comjnl/20.4.364
http://dl.acm.org/citation.cfm?id=3157096.3157175
http://eudml.org/doc/209969
http://eudml.org/doc/209969

152 BIBLIOGRAPHY

[28] Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein
distance of the empirical measure. Probab. Theory Relat. Fields 162(3-4),
707–738 (2015)

[29] Freitag, G., Munk, A.: On Hadamard differentiability in k-sample semi-
parametric models—with applications to the assessment of structural
relationships. Journal of Multivariate Analysis 94(1), 123–158 (2005)

[30] Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M., Poggio, T.: Learn-
ing with a Wasserstein Loss. In: Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume 2,
NIPS’15, pp. 2053–2061. MIT Press, Cambridge, MA, USA (2015). URL
http://dl.acm.org/citation.cfm?id=2969442.2969469

[31] Fu, A., Wenyin, L., Deng, X.: Detecting Phishing Web Pages with Visual
Similarity Assessment Based on Earth Mover’s Distance (EMD). IEEE
Transactions on Dependable and Secure Computing 3(4), 301–311 (2006)

[32] Galichon, A.: Optimal Transport Methods in Economics. Princeton
University Press (2016)

[33] Galichon, A., Salanie, B.: Cupid’s Invisible Hand: Social Surplus and
Identification in Matching Models. SSRN Electronic Journal (2012)

[34] Gangbo, W., McCann, R.J.: Shape recognition via Wasserstein distance.
Quarterly of Applied Mathematics LVIII(4), 705–737 (2000)

[35] Gerber, S., Maggioni, M.: Multiscale Strategies for Computing Optimal
Transport. Journal of Machine Learning Research 18(72), 1–32 (2017).
URL http://jmlr.org/papers/v18/16-108.html

[36] Gneiting, T., Guttorp, P.: Continuous Parameter Spatio-Temporal Pro-
cesses. In: Handbook of spatial statistics, Chapman & Hall/CRC Handb.
Mod. Stat. Methods, pp. 427–436. CRC Press, Boca Raton, FL (2010)

[37] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Nets. In:

http://dl.acm.org/citation.cfm?id=2969442.2969469
http://jmlr.org/papers/v18/16-108.html

BIBLIOGRAPHY 153

Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger
(eds.) Advances in Neural Information Processing Systems 27, pp. 2672–
2680. Curran Associates, Inc. (2014). URL http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf

[38] Gottschlich, C., Huckemann, S.: Separating the Real from the Synthetic:
Minutiae Histograms as Fingerprints of Fingerprints. IET Biometrics
3(4), 291–301 (2014)

[39] Gottschlich, C., Schuhmacher, D.: The Shortlist Method for Fast Com-
putation of the Earth Mover’s Distance and Finding Optimal Solutions
to Transportation Problems. PLoS ONE 9(10), e110,214 (2014)

[40] Grauman, K., Darrell, T.: Fast Contour Matching Using Approximate
Earth Mover’s Distance. In: Proc. CVPR, pp. 220 –227. Washington,
DC, USA (2004)

[41] Hartmann, V., Schuhmacher, D.: Semi-discrete optimal transport - the
case p=1 (2017). URL https://arxiv.org/abs/1706.07650

[42] Hug, R., Maitre, E., Papadakis, N.: Multi-physics optimal transporta-
tion and image interpolation. ESAIM: M2AN 49(6), 1671–1692 (2015).
DOI 10.1051/m2an/2015038. URL https://doi.org/10.1051/m2an/
2015038

[43] Ilgen, P., Stoldt, S., Conradi, L.C., Wurm, C., Rüschoff, J., Ghadimi, B.,
Liersch, T., Jakobs, S.: STED Super-Resolution Microscopy of Clinical
Paraffin-Embedded Human Rectal Cancer Tissue. PLoS ONE 9(7),
e101,563 (2014)

[44] Jans, D., Wurm, C., Riedel, D., Wenzel, D., Stagge, F., Deckers, M.,
Rehling, P., Jakobs, S.: STED super-resolution microscopy reveals an
array of MINOS clusters along human mitochondria. PNAS 110(22),
8936–8941 (2013)

[45] Johnson, O., Samworth, R.: Central limit theorem and convergence to
stable laws in Mallows distance. Bernoulli 11(5), 829–845 (2005)

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/1706.07650
https://doi.org/10.1051/m2an/2015038
https://doi.org/10.1051/m2an/2015038

154 BIBLIOGRAPHY

[46] Kantorovich, L.V.: On the translocation of masses. (Dokl.) Acad. Sci.
URSS 37 3, 199–201 (1942)

[47] Kantorovich, L.V., Rubinstein, G.S.: On a space of completely additive
functions. Vestnik Leningrad. Univ 13(7), 52–59 (1958)

[48] Kendal, D., Hauser, C., Garrard, G., Jellinek, S., Giljohann, K., Moore,
J.: Quantifying Plant Colour and Colour Difference as Perceived by
Humans Using Digital Images. PLoS ONE 8(8), e72,296 (2013)

[49] Kitagawa, J., Mérigot, Q., Thibert, B.: Convergence of a Newton
algorithm for semi-discrete optimal transport (2017). URL https:
//arxiv.org/abs/1603.05579

[50] Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location
of Economic Activities. Econometrica 25(1), 53–76 (1957). URL http:
//www.jstor.org/stable/1907742

[51] Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment
problem. Naval Res. Logist. Quart pp. 83–97 (1955)

[52] Lellmann, J., Lorenz, D., Schönlieb, C.B., Valkonen, T.: Imaging with
Kantorovich–Rubinstein discrepancy. SIAM Journal on Imaging Sciences
7(4), 2833–2859 (2014)

[53] Ling, H., Okada, K.: An Efficient Earth Mover’s Distance Algorithm for
Robust Histogram Comparison. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29(5), 840–853 (2007)

[54] Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, third
edn. International Series in Operations Research & Management Science,
116. Springer, New York (2008)

[55] Mallows, C.L.: A Note on Asymptotic Joint Normality. Ann. Math.
Statist. 43(2), 508–515 (1972)

https://arxiv.org/abs/1603.05579
https://arxiv.org/abs/1603.05579
http://www.jstor.org/stable/1907742
http://www.jstor.org/stable/1907742

BIBLIOGRAPHY 155

[56] Megiddo, N., Supowit, K.: On the complexity of some common geometric
location problems. SIAM J. Comput. 13(1), 182–196 (1984). DOI
10.1137/0213014. URL https://doi.org/10.1137/0213014

[57] Mérigot, Q.: A multiscale approach to optimal transport. Comput.
Graph. Forum 30(5), 1583–1592 (2011)

[58] Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear
Evolution Equations. American Mathematical Society, Boston, MA,
USA (2001)

[59] Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire
de l’Académie Royale des Sciences pp. 666–704 (1781)

[60] Munk, A., Czado, C.: Nonparametric Validation of Similar Distributions
and Assessment of Goodness of Fit. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 60(1), 223–241 (1998)

[61] Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local Histogram Based
Segmentation Using the Wasserstein Distance. International Journal of
Computer Vision 84(1), 97–111 (2009)

[62] Oberman, A., Ruan, Y.: An efficient linear programming method for
Optimal Transportation. Preprint (2015). URL http://arxiv.org/
abs/1509.03668

[63] Papadakis, N.: Optimal Transport for Image Processing. Habilitation
à diriger des recherches, Université de Bordeaux (2015). URL https:
//hal.archives-ouvertes.fr/tel-01246096

[64] Pele, O., Werman, M.: Fast and Robust Earth Mover’s Distances. In:
ICCV (2009)

[65] Peyré, G., Cuturi, M.: Computational Optimal Transport (2018). URL
https://arxiv.org/abs/1803.00567

https://doi.org/10.1137/0213014
http://arxiv.org/abs/1509.03668
http://arxiv.org/abs/1509.03668
https://hal.archives-ouvertes.fr/tel-01246096
https://hal.archives-ouvertes.fr/tel-01246096
https://arxiv.org/abs/1803.00567

156 BIBLIOGRAPHY

[66] R Core Team: R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria (2016). URL
https://www.R-project.org/. Version 3.3.0

[67] Rabin, J., Ferradans, S., Papadakis, N.: Adaptive color transfer with
relaxed optimal transport. In: 2014 IEEE International Conference on
Image Processing (ICIP), pp. 4852–4856 (2014). DOI 10.1109/ICIP.2014.
7025983

[68] Rabin, J., Papadakis, N.: Convex Color Image Segmentation with
Optimal Transport Distances. CoRR abs/1503.01986 (2015). URL
http://arxiv.org/abs/1503.01986

[69] Rachev, S.T., Stoyanov, S.V., Fabozzi, F.J.: A Probability Metrics
Approach to Financial Risk Measures. Wiley-Blackwell (2011)

[70] Rolet, A., Cuturi, M., Peyré, G.: Fast Dictionary Learning with a
Smoothed Wasserstein Loss. In: A. Gretton, C.C. Robert (eds.) Pro-
ceedings of the 19th International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Research, vol. 51, pp.
630–638. PMLR, Cadiz, Spain (2016). URL http://proceedings.mlr.
press/v51/rolet16.html

[71] Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a
Metric for Image Retrieval. International Journal of Computer Vision
40(2), 99–121 (2000)

[72] Rudolf, D., Schweizer, N.: Perturbation theory for Markov chains via
Wasserstein distance. Bernoulli 24(4A), 2610–2639 (2018)

[73] Ruttenberg, B.E., Luna, G., Lewis, G.P., Fisher, S.K., Singh, A.K.: Quan-
tifying spatial relationships from whole retinal images. Bioinformatics
29(7), 940–946 (2013)

[74] Santambrogio, F.: Optimal Transport for Applied Mathematicians.
Birkhäuser Basel (2015)

https://www.R-project.org/
http://arxiv.org/abs/1503.01986
http://proceedings.mlr.press/v51/rolet16.html
http://proceedings.mlr.press/v51/rolet16.html

BIBLIOGRAPHY 157

[75] Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., En-
gelke, S., Martini, J., Ballani, F., Moreva, O.: RandomFields: Simulation
and Analysis of Random Fields (2016). URL https://cran.r-project.
org/web/packages/RandomFields/. R package version 3.1.12

[76] Schmitzer, B.: A Sparse Multiscale Algorithm for Dense Optimal Trans-
port. J Math Imaging Vis 56(2), 238–259 (2016)

[77] Schmitzer, B.: Stabilized Sparse Scaling Algorithms for Entropy Regular-
ized Transport Problems (2016). URL https://arxiv.org/abs/1610.
06519

[78] Schrieber, J., Schuhmacher, D., Gottschlich, C.: DOTmark – A Bench-
mark for Discrete Optimal Transport. IEEE Access 5, 271–282 (2016)

[79] Schuhmacher, D.: Stein’s method and Poisson process approximation for
a class of Wasserstein metrics. Bernoulli 15(2), 550–568 (2009). URL
http://www.jstor.org/stable/20680164

[80] Schuhmacher, D., Bähre, B., Gottschlich, C.: transport: Optimal Trans-
port in Various Forms (2016). URL https://cran.r-project.org/
web/packages/transport/. R package version 0.7-4

[81] Schwinn, J., Werner, R.: On the effectiveness of primal and dual heuristics
for the transportation problem. IMA Journal of Management Mathemat-
ics (2017)

[82] Shalev-Shwartz, S., Shamir, O., Srebro, N., Sridharan, K.: Learnabil-
ity, Stability and Uniform Convergence. Journal of Machine Learning
Research 11(Oct), 2635–2670 (2010)

[83] Shimer, R.: The Assignment of Workers to Jobs In an Economy with
Coordination Frictions. Working Paper 8501, National Bureau of Eco-
nomic Research (2001). DOI 10.3386/w8501. URL http://www.nber.
org/papers/w8501

https://cran.r-project.org/web/packages/RandomFields/
https://cran.r-project.org/web/packages/RandomFields/
https://arxiv.org/abs/1610.06519
https://arxiv.org/abs/1610.06519
http://www.jstor.org/stable/20680164
https://cran.r-project.org/web/packages/transport/
https://cran.r-project.org/web/packages/transport/
http://www.nber.org/papers/w8501
http://www.nber.org/papers/w8501

158 BIBLIOGRAPHY

[84] Shirdhonkar, S., Jacobs, D.W.: Approximate earth mover’s distance
in linear time. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8 (2008)

[85] Sibson, R.: Slink: An optimally efficient algorithm for the single-link
cluster method. Comput. J. 16(1), 30–34 (1973)

[86] Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly
stochastic matrices. Pacific J. Math. 21(2), 343–348 (1967)

[87] Solomon, J., de Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen,
A., Du, T., Guibas, L.: Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains. ACM Trans. Graph.
34(4), 66:1–66:11 (2015)

[88] Sommerfeld, M.: Wasserstein Distance on Finite Spaces: Statistical In-
ference and Algorithms (2017). URL https://ediss.uni-goettingen.
de/handle/11858/00-1735-0000-0023-3FA1-C

[89] Sommerfeld, M., Munk, A.: Inference for empirical Wasserstein distances
on finite spaces. J. R. Stat. Soc. B 80(1), 219–238 (2018)

[90] Sommerfeld, M., Schrieber, J., Zemel, Y., Munk, A.: Optimal Transport:
Fast Probabilistic Approximation with Exact Solvers (2018). URL https:
//arxiv.org/abs/1802.05570

[91] Srivastava, S., Li, C., Dunson, D.B.: Scalable Bayes via Barycenter in
Wasserstein Space. arXiv:1508.05880 (2015)

[92] Tameling, C., Sommerfeld, M., Munk, A.: Empirical optimal transport on
countable metric spaces: Distributional limits and statistical applications
(2018). URL https://arxiv.org/abs/1707.00973

[93] Thai, D., Gottschlich, C.: Directional global three-part image decom-
position. EURASIP Journal on Image and Video Processing 2016(12),
1–20 (2016)

https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0023-3FA1-C
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0023-3FA1-C
https://arxiv.org/abs/1802.05570
https://arxiv.org/abs/1802.05570
https://arxiv.org/abs/1707.00973

BIBLIOGRAPHY 159

[94] Thai, D., Gottschlich, C.: Global variational method for fingerprint
segmentation by three-part decomposition. IET Biometrics 5(2), 120–
130 (2016)

[95] Vasershtein, L.N.: Markov processes over denumerable products of spaces
describing large system of automata. Problemy Peredači Informacii 5(3),
64–72 (1969)

[96] Villani, C.: Optimal transport, old and new, Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 338. Springer-Verlag, Berlin (2009)

[97] Wilson, A.G.: The Use of Entropy Maximising Models, in the Theory
of Trip Distribution, Mode Split and Route Split. Journal of Transport
Economics and Policy 3(1), 108–126 (1969)

[98] Wurm, C., Neumann, D., Lauterbach, M., Harke, B., Egner, A., Hell,
S., Jakobs, S.: Nanoscale distribution of mitochondrial import receptor
Tom20 is adjusted to cellular conditions and exhibits an inner-cellular
gradient. PNAS 108(33), 13,546–13,551 (2011)

[99] Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local Features
and Kernels for Classification of Texture and Object Categories: A
Comprehensive Study. Int J Comput Vision 73(2), 213–238 (2007)

Curriculum Vitae

Jörn Schrieber

Born 5th November 1989 in Hamburg

Annastr. 5, 37075 Göttingen

joern.schrieber-1@mathematik.uni-goettingen.de

Education

since 2015 Ph.D. student and research assistant,

Institute for Mathematical Stochastics,

Georg-August-Universität Göttingen

2015 M.Sc. in Mathematics, Georg-August-Universität Göttingen

Thesis: Recovery to Feasibility for Integer Programs

2013 B.Sc. in Mathematics, Georg-August-Universität Göttingen

Thesis: Das injektive Spektrum von Ringen

2009 Abitur, Albert-Einstein-Gymnasium, Buchholz i.d.N.

Publications

• J. Schrieber, D. Schuhmacher, C. Gottschlich: DOTmark – A Bench-

mark for Discrete Optimal Transport. IEEE Access, Volume 5, 271–282

(2016)

• M. Sommerfeld, J. Schrieber, Y. Zemel, A. Munk: Optimal Trans-

port: Fast Probabilistic Approximation with Exact Solvers, submitted.

https://arxiv.org/abs/1802.05570 (2018)

	Introduction
	Mathematical Setup
	Applications
	Motivation and Organization of this Work

	Algorithms for Optimal Transport
	Linear Programming
	AHA Method
	Entropically Regularized Optimal Transport
	Multiscale Methods

	DOTmark: A Benchmark for Discrete Optimal Transport
	Brief Theoretical Background
	Benchmark
	Tested Methods
	Computational Results
	Runtimes
	Errors of the AHA Method
	Iterations of the Shielding Method

	Discussion
	Outlook

	Probabilistic Approximation with Exact Solvers
	Introduction
	Computation
	Contribution

	Problem and Algorithm
	Theoretical Results
	Expected Absolute Error
	Concentration Bounds

	Simulations
	Simulation Setup
	Computational Results

	Discussion

	Cost-Based Clustering: A General Multiscale Approach to Discrete Optimal Transport
	Introduction
	The Cost-Based Clustering Problem
	Deviation Bounds of Clusterings
	Comparison to Other Clustering Objectives and Deviation Bounds

	Clustering Algorithms
	Agglomerative Clustering
	Clustering with Random Representatives
	Propagation

	Simulations
	Simulation Setup
	Computational Results

	A General View on Cost-Based Clustering
	Summary and Discussion
	NP-Hardness Proof
	Geometric Clustering Simplification
	Geometric Reduction Concept
	Geometric Reduction Proofs
	Auxiliary Lemmas

