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Abstract
Parametric high-fidelity simulations are of interest for a wide range of applications. But the

restriction of computational resources renders such models to be inapplicable in a real-time context
or in multi-query scenarios. Model order reduction (MOR) is used to tackle this issue. Recently,
MOR is extended to preserve specific structures of the model throughout the reduction, e.g.
structure-preserving MOR for Hamiltonian systems. This is referred to as symplectic MOR. It is
based on the classical projection-based MOR and uses a symplectic reduced order basis (ROB). Such
a ROB can be derived in a data-driven manner with the Proper Symplectic Decomposition (PSD)
in the form of a minimization problem. Due to the strong nonlinearity of the minimization problem,
it is unclear how to efficiently find a global optimum. In our paper, we show that current solution
procedures almost exclusively yield suboptimal solutions by restricting to orthonormal ROBs.
As new methodological contribution, we propose a new method which eliminates this restriction
by generating non-orthonormal ROBs. In the numerical experiments, we examine the different
techniques for a classical linear elasticity problem and observe that the non-orthonormal technique
proposed in this paper shows superior results with respect to the error introduced by the reduction.

Keywords— Symplectic model order reduction, proper symplectic decomposition (PSD), structure preser-
vation of symplecticity, Hamiltonian system

1 Introduction

Simulations enable researchers of all fields to run virtual experiments that are too expensive or impossible
to be carried out in the real world. In many contexts, high-fidelity models are indispensable to represent
the simulated process accurately. These high-fidelity simulations typically come with the burden of large
computational cost such that an application in real-time or an evaluation for many different parameters
is impossible respecting the given restrictions of computational resources at hand. Model order reduction
(MOR) techniques can be used to reduce the computational cost of evaluations of the high-fidelity model by
approximating these with a surrogate reduced-order model (ROM) [4].

One class of high-fidelity models are systems of ordinary differential equations (ODEs) with a high order, i.e.
a high dimension in the unknown variable. Such models typically arise from fine discretizations of time-dependent
partial differential equations (PDEs). Since each point in the discretization requires one or multiple unknowns,
fine discretizations with many discretization points yield a system of ODEs with a high order. In some cases,
the ODE system takes the form of a finite-dimensional Hamiltonian system. Examples are linear elastic models
[6] or gyro systems [20].

Symplectic MOR [19] allows to derive a ROM for high-dimensional Hamiltonian systems by lowering the
order of the system while maintaining the Hamiltonian structure. Thus, it is also referred to as structure-
preserving MOR for Hamiltonian systems [15]. Technically speaking, a Petrov–Galerkin projection is used in
combination with a symplectic reduced-order basis (ROB).
∗{patrick.buchfink,haasdonk}@ians.uni-stuttgart.de
†ashishbhatt@iitism.ac.in
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For a data-driven generation of the ROB, the conventional methods e.g. the Proper Orthogonal Decomposition
(POD) [4] are not suited since they do not necessarily compute a symplectic ROB. To this end, the referenced
works introduce the Proper Symplectic Decomposition (PSD) which is a data-driven basis generation technique
for symplectic ROBs. Due to the high nonlineariy of the optimization problem, an efficient solution strategy is
yet unknown for the PSD. The existing PSD methods (Cotangent Lift, Complex SVD, a nonlinear programming
approach [19] and a greedy procedure introduced in [15]) each restrict to a specific subset of symplectic ROBs
from which they select optimal solutions which might be globally suboptimal.

The present paper classifies the existing symplectic basis generation techniques in two classes of methods
which either generate orthonormal or non-orthonormal bases. To this end, we show that the existing basis
generation techniques for symplectic bases almost exclusively restrict to orthonormal bases. Furthermore, we
prove that Complex SVD is the optimal solution of the PSD on the set of orthonormal, symplectic bases. During
the proof, an alternative formulation of the Complex SVD for symplectic matrices is introduced. To leave the
class of orthonormal, symplectic bases, we propose a new basis generation technique, namely the PSD SVD-like
decomposition. It is based on an SVD-like decomposition of arbitrary matrices B ∈ Rn×2m introduced in [21].

This paper is organized in the following way: Section 2 is devoted to the structure-preserving MOR for
autonomous and non-autonomous, parametric Hamiltonian systems and thus, introduces symplectic geometry,
Hamiltonian systems and symplectic MOR successively. The data-driven generation of a symplectic ROB with
PSD is discussed in Section 3. The numerical results are presented and elaborated in Section 4 exemplified by a
Lamé–Navier type elasticity model which we introduce at the beginning of that section together with a short
comment on the software that is used for the experiments. The paper is summarized and concluded in Section 5.

2 Symplectic model reduction

Symplectic MOR for autonomous Hamiltonian systems is introduced in [19]. We repeat the essentials for the
sake of completeness and to provide a deeper understanding of the methods used. In the following µ ∈ P ⊂ Rp
describe p ∈ N parameters of the system from the parameter set P. We might skip the explicit dependence on
the parameter vector µ if it is not relevant in this specific context.

2.1 Symplectic geometry in finite dimensions
Definition 1 (Symplectic form over R). Let V be a finite-dimensional vector space over R. We consider a
skew-symmetric and non-degenerate bilinear form ω : V× V→ R , i.e. for all v1,v2 ∈ V, it holds

ω (v1, v2) = −ω (v2, v1) and ω (v2, v3) = 0 ∀v3 ∈ V =⇒ v3 = 0.

The bilinear form ω is called symplectic form on V and the pair (V, ω) is called symplectic vector space.

It can be shown that V is necessarily of even dimension [8]. Thus, V is isomorphic to R2n which is
why we restrict to V = R2n and write ω2n instead of ω in the following. In context of the theory of
Hamiltonians, R2n refers to the phase space which consists, in the context of classical mechanics, of position
states q = [q1, . . . , qn]T ∈ Rn of the configuration space and momentum states p = [p1, . . . , pn]T ∈ Rn which
form together the state x = [q1, . . . , qn, p1, . . . , pn]T ∈ R2n.

It is guaranteed [8] that there exists a basis {e1, . . . , en,f1, . . . ,fn} ⊂ R2n such that the symplectic form
takes the canonical structure

ω2n (v1, v2) = vT
1 J2nv2 ∀v1,v2 ∈ R2n, J2n :=

[
0n In
−In 0n

]
, (1)

where In ∈ Rn×n is the identity matrix, 0n ∈ Rn×n is the matrix of all zeros and J2n is called Poisson matrix.
Thus, we restrict to symplectic forms of the canonical structure in the following. For the Poisson matrix, it
holds for any v ∈ R2n

J2nJT
2n = I2n, J2nJ2n = JT

2nJT
2n = −I2n, vTJ2nv = 0. (2)

These properties are intuitively understandable as the Poisson matrix is a 2n-dimensional, 90◦ rotation matrix
and the matrix −I2n can be interpreted as a rotation by 180◦ in this context.

Definition 2 (Symplectic map). Let A : R2m → R2n, y 7→ Ay, A ∈ R2n×2m be a linear mapping for n,m ∈ N
and m ≤ n. We call A a linear symplectic map and A a symplectic matrix with respect to ω2n and ω2m if

ATJ2nA = J2m. (3)

where ω2m is the canonical symplectic form on R2m (and is equal to ω2n if n = m).
Let U ⊂ R2m be an open set and g : U → R2n a differentiable map on U . We call g a symplectic map if the

Jacobian matrix d
dy
g(y) ∈ R2n×2m is a symplectic matrix for every y ∈ U .
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For a linear map, it is easy to check that the condition (3) is equivalent to the preservation of the symplectic
form, i.e. for all v1,v2 ∈ R2m

ω2n (Av1, Av2) = vT
1A

TJ2nAv2 = vT
1 J2mv2 = ω2m (v1, v2) .

Now we give the definition of the so-called symplectic inverse which will be used in Section 2.3.

Definition 3 (Symplectic inverse). For each symplectic matrix A ∈ R2n×2m, we define the symplectic inverse

A+ = JT
2mA

TJ2n ∈ R2m×2n. (4)

The symplectic inverse A+ exists for every symplectic matrix and it holds the following inverse relation

A+A = JT
2mA

TJ2nA = JT
2mJ2m = I2m.

2.2 Finite-dimensional, autonomous Hamiltonian systems
To begin with, we introduce the Hamiltonian system in a finite-dimensional, autonomous setting.

Definition 4 (Finite-dimensional, autonomous Hamiltonian system). Let H : R2n × P → R be a scalar-valued
function that we require to be continuously differentiable in the first argument and which we call Hamiltonian
(function). Hamilton’s equation is an initial value problem with the prescribed initial data t0 ∈ R, x0(µ) ∈ R2n

which describes the evolution of the solution x(t,µ) ∈ R2n for all t ∈ [t0, tend], µ ∈ P with

d

dt
x(t,µ) = J2n∇xH(x(t,µ),µ) =: XH(x(t,µ),µ), x(t0,µ) = x0(µ) (5)

where XH(•,µ) is called Hamiltonian vector field. The triple (V, ω2n,H) is referred to as Hamiltonian system.
We denote the flow of a Hamiltonian system as the mapping ϕt : R2n × P → R2n that evolves the initial state
x0(µ) ∈ R2n to the corresponding solution x(t,µ; t0,x0(µ)) of Hamilton’s equation

ϕt(x0,µ) := x(t,µ; t0,x0(µ)),

where x(t,µ; t0,x0(µ)) indicates that it is the solution with the initial data t0,x0(µ).

The two characteristic properties of Hamiltonian systems are (a) the preservation of the Hamiltonian
function and (b) the symplecticity of the flow.

Proposition 1 (Preservation of the Hamiltonian). The flow of Hamilton’s equation ϕt preserves the Hamiltonian
function H.

Proof. We prove the assertion by showing that the evolution over time is constant for any x ∈ R2n due to

d

dt
H(ϕt(x)) = (∇xH(ϕt(x)))T d

dt
ϕt(x)

(5)
= (∇xH(ϕt(x)))T J2n∇xH(ϕt(x))

(2)
= 0.

Proposition 2 (Symplecticity of the flow). Let the Hamiltonian function be twice continuously differentiable
in the first argument. Then, the flow ϕt(•,µ) : R2n → R2n of a Hamiltonian system is a symplectic map.

Proof. See [11, Chapter VI, Theorem 2.4].

2.3 Symplectic model order reduction for autonomous Hamiltonian sys-
tems

The goal of MOR [4] is to reduce the order, i.e. the dimension, of high dimensional systems. To this end, we
approximate the high-dimensional state x(t) ∈ R2n with

x(t,µ) ≈ xrc(t,µ) = V xr(t,µ), V = colspan (V )

with the reduced state xr(t) ∈ R2k, the reduced-order basis (ROB) V ∈ R2n×2k, the reconstructed state
xrc(t) ∈ V and the reduced space V ⊂ R2n. The restriction to even-dimensional spaces R2n and R2k is
not necessary for MOR in general but is required for the symplectic MOR in the following. To achieve a
computational advantage with MOR, the approximation should introduce a clear reduction of the order, i.e.
2k � 2n.

For Petrov–Galerkin projection-based MOR techniques, the ROB V is accompanied by a projection matrix
W ∈ R2n×2k which is chosen to be biorthogonal to V , i.e. W TV = I2k. The reduced-order model (ROM) is
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derived with the requirement that the residual r(t,µ) vanishes in the space spanned by the columns of the
projection matrix, i.e. in our case

r(t,µ) =
d

dt
xrc(t,µ)−XH(xrc(t,µ),µ) ∈ R2n, W Tr(t,µ) = 02k×1, (6)

where 02k×1 ∈ R2k is the vector of all zeros. Due to the biorthogonality, this is equivalent to

d

dt
xr(t,µ) = W TXH(xrc(t,µ),µ) = W TJ2n∇xH(xrc(t,µ),µ), xr(t0,µ) = W Tx0(µ). (7)

In the context of symplectic MOR, the ROB is chosen to be a symplectic matrix (3) which we call a
symplectic ROB. Additionally, the transposed projection matrix is the symplectic inverse W T = V + and the
projection in (7) is called a symplectic projection or symplectic Galerkin projection [19]. The (possibly oblique)
projection reads

P = V
(
W TV

)-1
W T = V

(
V +V

)-1
V + = V V +.

In combination, this choice of V andW guarantees that the Hamiltonian structure is preserved by the reduction
which is shown in the following proposition.

Proposition 3 (Reduced autonomous Hamiltonian system). Let V be a symplectic ROB with the projection
matrixW T = V +. Then, the ROM (7) of a high-dimensional Hamiltonian system (R2n, ω2n,H) is a Hamiltonian
system (R2k, ω2k,Hr) on R2k with the canonical symplectic form ω2k and the reduced Hamiltonian function
Hr(xr,µ) = H(V xr,µ) for all xr ∈ R2k.

Proof. First, we remark that the symplectic inverse is a valid biorthogonal projection matrix since it fulfils
W TV = V +V = I2k. To derive the Hamiltonian form of the ROM in (7), we use the identity

W TJ2n = V +J2n
(4)
= JT

2kV
TJ2nJ2n = −JT

2kV
T = J2kV T, (8)

which makes use of the properties (2) of the Poisson matrix. It follows with (5), (7) and (8)

d

dt
xr(t) = W TJ2n∇xH(xrc(t)) = J2kV T∇xH(xrc(t)) = J2k∇xrHr(xr(t))

where the last step follows from the chain rule. Thus, the evolution of the reduced state takes the form of
Hamilton’s equation and the resultant ROM is equal to the Hamiltonian system (R2k, ω2k,Hr).

Corollary 1 (Linear Hamiltonian system). Hamilton’s equation is a linear system in the case of a quadratic
Hamiltonian H(x,µ) = 1/2 xTH(µ)x+ xTh(µ) with H(µ) ∈ R2n×2n symmetric and h(µ) ∈ R2n

d

dt
x(t,µ) = A(µ)x(t,µ) + b(µ), A(µ) = J2nH(µ), b(µ) = J2nh(µ). (9)

The evolution of the reduced Hamiltonian system reads

d

dt
xr(t,µ) = Ar(µ)xr(t,µ) + br(µ),

Ar(µ) = J2kHr(µ)
(8)
= W TA(µ)V ,

br(µ) = J2khr(µ)
(8)
= W Tb(µ)V ,

Hr(µ) = V TH(µ)V ,

hr(µ) = V Th(µ).

with the reduced Hamiltonian function Hr(xr,µ) = 1/2 xT
rHr(µ)xr + xT

r hr(µ).

Remark 1. We emphasise that the reduction of linear Hamiltonian systems follows the pattern of the classical
projection-based MOR approaches [10] to derive the reduced model with Ar = W TAV and br = W Tb which
allows a straightforward implementation in existing frameworks.

Since the ROM is a Hamiltonian system, it preserves its Hamiltonian. Thus, it can be shown that the error
in the Hamiltonian eH(t,µ) = H(x(t,µ),µ)−Hr(xr(t,µ),µ) is constant [19]. Furthermore, there are a couple
of results for the preservation of stability [15, Theorem 18], [19, Section 3.4.] under certain assumptions on the
Hamiltonian function.

Remark 2 (Offline/online decomposition). A central concept in the field of MOR for parametric systems is
the so-called offline/online decomposition. The idea is to split the procedure in a possibly costly offline phase
and a cheap online phase where the terms costly and cheap refer to the computational cost. In the offline phase,
the ROM is constructed. The online phase is supposed to evaluate the ROM fast. The ultimate goal is to avoid
any computations that depend on the high dimension 2n in the online phase.

For a linear system, the offline/online decomposition can be achieved if A(µ), b(µ) and x0(µ) allow a
parameter-separability condition [10].

For systems with non-linear parts, multiple approaches [3, 9] exist to enable an offline/online decomposition
by introducing an approximation of the non-linear terms. This allows an online-efficient MOR of non-linear
systems. For symplectic MOR, the symplectic discrete empirical interpolation method (SDEIM) was introduced
[19, Section 5.2.] to preserve the symplectic structure throughout the approximation of the non-linear terms.
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2.4 Finite-dimensional, non-autonomous Hamiltonian systems
Non-autonomous Hamiltonian systems can be redirected to the case of autonomous systems if differentiability

with respect to the time is assumed for the Hamiltonian function. The concept of the extended phase space is
used. We briefly introduce the approach and explain the link to the symplectic MOR.

Definition 5 (Finite-dimensional, non-autonomous Hamiltonian system). Let H : R × R2n × P → R be a
scalar-valued function function that is continuously differentiable in the second argument. A non-autonomous
(or time-dependent) Hamiltonian system (R2n, ω2n,H) is of the form

x(t,µ) = J2n∇xH(t,x(t,µ),µ). (10)

We therefore call H(t,x) a time-dependent Hamiltonian function.

A problem for non-autonomous Hamiltonian systems occurs as the explicit time dependence of the Hamilto-
nian function introduces an additional variable, the time, and the carrier manifold becomes odd-dimensional.
As mentioned in Section 2.1, symplectic vector spaces are always even-dimensional which is why a symplectic
description is no longer possible. Different approaches are available to circumvent this issue.

As suggested in [16, Section 4.3], we use the methodology of the so-called symplectic extended phase space
[12, Chap. VI, Sec. 10] to redirect the non-autonomous system to an autonomous system. The formulation is
based on the extended Hamiltonian function He : R2n+2 → R with

He(xe) = H(qe,x) + pe, xe = (qe q pe p)T ∈ R2n+2, x = (q p)T ∈ R2n, qe, pe ∈ R. (11)

Technically, the time is added to the extended state xe with qe = t and the corresponding momentum
pe = −H(t,x(t)) is chosen such that the extended system is an autonomous Hamiltonian system.

This procedure requires the time-dependent Hamiltonian function to be differentiable in the time variable.
Thus, it does for example not allow for the description of loads that are not differentiable in time in the context
of mechanical systems. This might, e.g., exclude systems that model mechanical contact since loads that are
not differentiable in time are required.

2.5 Symplectic model order reduction of non-autonomous Hamiltonian sys-
tems

For the MOR of the, now autonomous, extended system, only the original phase space variable x ∈ R2n

is reduced. The time and the corresponding conjugate momentum qe, pe are not reduced. To preserve the
Hamiltonian structure, a symplectic ROB V ∈ R2n×2k is used for the reduction of x ∈ R2n analogous to the
autonomous case. The result is a reduced extended system which again can be written as a non-autonomous
Hamiltonian system (R2k, ω2k,Hr) with the time-dependent Hamiltonian Hr(t,xr,µ) = H(t,V xr,µ) for all
(t,xr) ∈ [t0, tend]× R2k.

An unpleasant side effect of the extended formulation is that the linear dependency on the additional state
variable pe (see (11)) implies that the Hamiltonian cannot have strict extrema. Thus, the stability results
listed in [19] and [15] do not apply if there is a true time-dependence in the Hamiltonian H(t,x). Nevertheless,
symplectic MOR in combination with a non-autonomous Hamiltonian system shows stable results in the
numerical experiments.

Furthermore, it is important to note that only the extended Hamiltonian He is preserved throughout the
reduction. The time-dependent Hamiltonian H(·, t) is not necessarily preserved throughout the reduction, i.e.
He(xe(t)) = He

r(x
e
r(t)) but potentially H(x(t), t) 6= Hr(x(t), t).

3 Symplectic basis generation with the Proper Symplectic De-
composition (PSD)

We yet require a symplectic ROB for symplectic MOR. In the following, we pursue the approach of a ROB
generated from a set of snapshots of the system. A snapshot is an element of the so-called solution manifold S
that is approximated with a low-dimensional surrogate ŜVW

S :=
{
x(t,µ)

∣∣ t ∈ [t0, tend], µ ∈ P
}
⊂ R2n, ŜVW :=

{
V xr(t,µ)

∣∣ t ∈ [t0, tend], µ ∈ P
}
≈ S.

In [19], the Proper Symplectic Decomposition (PSD) is proposed as a snapshot-based basis generation technique
for symplectic ROBs. The idea is to derive the ROB from a minimization problem which is suggested in analogy
to the very well established Proper Orthogonal Decomposition (POD, also Principal Component Analysis) [4].
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Classically, the POD chooses the ROB VPOD to minimize the sum over squared norms of all ns ∈ N residuals
(I2n − VPODV

T
POD)xs

i of the orthogonal projection VPODV
T
PODx

s
i of the 1 ≤ i ≤ ns single snapshots xs

i ∈ S
measured in the 2-norm ‖•‖2 with the constraint that the ROB VPOD is orthogonal, i.e.

minimize
VPOD∈R2n×2k

ns∑

i=1

∥∥∥
(
I2n − VPODV

T
POD

)
xs
i

∥∥∥
2

2
subject to V T

PODVPOD = I2k. (12)

In contrast, the PSD requires the ROB to be symplectic instead of orthogonal which is expressed in the
reformulated constraint. Furthermore, the orthogonal projection is replaced by the symplectic projection
V V +xs

i which results in

minimize
V ∈R2n×2k

ns∑

i=1

∥∥(I2n − V V +)xs
i

∥∥2
2

subject to V TJ2nV = J2k. (13)

We summarize this in a more compact (matrix-based) formulation in the following definition.

Definition 6 (Proper Symplectic Decomposition (PSD)). Given ns snapshots xs
1, . . . ,x

s
ns
∈ S, we denote the

snapshot matrix as Xs = [xs
1, . . . ,x

s
ns

] ∈ R2n×ns . Find a symplectic ROB V ∈ R2n×2k which minimizes

minimize
V ∈R2n×2k

∥∥(I2n − V V +)Xs

∥∥2
F

subject to V TJ2nV = J2k, (14)

We denote the minimization problem (14) in the following as PSD(Xs), where Xs is the given snapshot matrix.

The constraint in (14) ensures that the ROB V is symplectic and thus, guarantees the existence of the
symplectic inverse V +. Furthermore, the matrix-based formulation (14) is equivalent to the vector-based
formulation presented in (13) due to the properties of the Frobenius norm ‖•‖F.

3.1 Symplectic, orthonormal basis generation
The foremost problem of the PSD is that there is no explicit solution procedure known so far due to the

high nonlinearity and possibly multiple local optima. This is an essential difference to the POD as the POD
allows to find a global minimum by solving an eigenvalue problem [4].

Current solution procedures for the PSD restrict to a certain subset of symplectic matrices and derive an
optimal solution for this subset which might be suboptimal in the class of symplectic matrices. In the following,
we show that this subclass almost exclusively restricts to symplectic, orthonormal ROBs.

Definition 7 (Symplectic, orthonormal ROB). We call a ROB V ∈ R2n×2k symplectic, orthonormal (also
orthosymplectic, e.g. in [15]) if it is symplectic w.r.t. ω2n and ω2k and is orthonormal, i.e. the matrix V has
orthonormal columns

V TJ2nV = J2k and V TV = I2k.

In the following, we show an alternative characterization of a symplectic and orthonormal ROB. Therefore,
we extend the results given e.g. in [18] for square matrices Q ∈ R2n×2n in the following Proposition 4 to the
case of rectangular matrices V ∈ R2n×2k. This was also partially addressed in [19, Lemma 4.3.].

Proposition 4 (Characterization of a symplectic matrix with orthonormal columns). The following statements
are equivalent for any matrix V ∈ R2n×2k

(i) V is symplectic with orthonormal columns,

(ii) V is of the form

V =
[
E JT

2nE
]

=: VE ∈ R2n×2k, E ∈ R2n×k, ETE = Ik, ETJ2nE = 0k, (15)

(iii) V is symplectic and it holds V T = V +.

We remark that these matrices are characterized in [19] to be elements in Sp(2k,R2n) ∩ Vk(R2n) where
Sp(2k,R2n) is the symplectic Stiefel manifold and Vk(R2n) is the Stiefel manifold.

Proof. “(i) =⇒ (ii)”: Let V ∈ R2n×2k be a symplectic matrix with orthonormal columns. We rename the
columns to V = [E F ] with E = [e1, . . . , ek] and F = [f1, . . . ,fk]. The symplecticity of the matrix written
in terms of E and F reads

V TJ2nV =

[
ETJ2nE ETJ2nF
F TJ2nE F TJ2nF

]
=

[
0k Ik
−Ik 0k

]
⇐⇒

ETJ2nE = F TJ2nF = 0k,

−F TJ2nE = ETJ2nF = Ik.
(16)
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Expressed in terms of the columns ei,fi of the matrices E, F , this condition reads for any 1 ≤ i, j ≤ k

eT
i J2nej = 0, eT

i J2nfj = δij , fT
i J2nej = −δij , fT

i J2nfj = 0,

and the orthonormality of the columns of V implies

eT
i ej = δij , fT

i fj = δij .

For a fixed i ∈ {1, . . . , k}, it is easy to show with JT
2nJ2n = I2n that J2nfi is of unit length

1 = δii = fT
i fi = fT

i JT
2nJ2nfi = ‖J2nfi‖22 .

Thus, ei and J2nfi are both unit vectors which fulfill eT
i J2nfi = 〈ei, J2nfi〉R2n = 1. By the Cauchy-Schwarz

inequality, it holds 〈ei, J2nfi〉 = ‖ei‖ ‖J2nfi‖ if and only if the vectors are parallel. Thus, we infer ei = J2nfi
which is equivalent to fi = JT

2nei. Since this holds for all i ∈ {1, . . . , k}, we conclude that V is of the form
proposed in (15).

“(ii) =⇒ (iii)”: Let V be of the form (15). Direct calculation yields

V TJ2nV =

[
ET

ETJ2n

]
J2n

[
E JT

2nE
]

=

[
ETJ2nE ETE

−ETE ETJ2nE

]
(15)
=

[
0k Ik
−Ik 0k

]
= J2k

which shows that V is symplectic. Thus, the symplectic inverse V + exists. The following calculation shows
that it equals the transposed V T

V + = JT
2kV

TJ2n = JT
2k

[
ET

ETJ2n

]
J2n =

[
−ETJ2n
ET

]
J2n =

[
−ETJ2nJ2n
ETJ2n

]
=

[
ET

ETJ2n

]
= V T.

“(iii) =⇒ (i)”: Let V be symplectic with V T = V +. Then, we know that V has orthonormal columns since

Ik = V +V = V TV .

Proposition 4 essentially limits the symplectic, orthonormal ROB V to be of the form (15). Later in the
current section, we see how to solve the PSD for ROBs of this type. In Section 3.2, we are interested in ridding
the ROB V of this requirement to explore further solution methods of the PSD.

As mentioned before, the current solution procedures for the PSD almost exclusively restrict to the class of
symplectic, orthonormal ROBs introduced in Proposition 4. This includes the Cotangent Lift [19], the Complex
SVD [19], partly the non-linear programming algorithm from [19] and the greedy procedure presented in [15].
We briefly review these approaches in the following proposition.

Proposition 5 (Symplectic, orthonormal basis generation). The Cotangent Lift (CT), Complex SVD (cSVD)
and the greedy procedure for symplectic basis generation all derive a symplectic and orthonormal ROB. The
non-linear programming (NLP) admits a symplectic, orthonormal ROB if the coefficient matrix C in [19,
Algorithm 3] is symplectic and has orthonormal columns, i.e. it is of the form CG = [G JT

2kG]. The methods
can be rewritten with VE = [E JT

2nE], where the different formulations of E read

ECT =

[
ΦCT

0n×k

]
EcSVD =

[
ΦcSVD

ΨcSVD

]
, Egreedy = [e1, . . . , ek], ENLP = ṼEG

where

(i) ΦCT,ΦcSVD,ΨcSVD ∈ Rn×k are matrices that fulfil

ΦT
CTΦCT = Ik, ΦT

cSVDΦcSVD + ΨT
cSVDΨcSVD = Ik, ΦT

cSVDΨcSVD = ΨT
cSVDΦcSVD,

which is technically equivalent to ETE = Ik and ETJ2nE = 0k (see (15)) for ECT and EcSVD,

(ii) e1, . . . , ek ∈ R2n are the basis vectors selected by the greedy algorithm,

(iii) ṼE ∈ R2n×2k is a ROB computed from CT or cSVD and G ∈ R2k×r, r ≤ k, stems from the coefficient
matrix CG = [G JT

2kG] computed by the NLP algorithm.

Proof. All of the listed methods derive a symplectic ROB of the form VE = [E JT
2nE] which satisfies (15). By

Proposition 4, these ROBs are each a symplectic, orthonormal ROB.
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In the following, we show that PSD Complex SVD is the solution of the PSD in the subset of symplectic,
orthonormal ROBs. This was partly shown in [19] which yet lacked the final step that, restricting to orthonormal,
symplectic ROBs, a solution of PSD([Xs − J2nXs]) solves PSD(Xs) and vice versa. This proves that the PSD
Complex SVD is not only near optimal in this set but indeed optimal. Furthermore, the proof we show is
alternative to the original and naturally motivates an alternative formulation of the PSD Complex SVD which
we call the POD of Ys in the following. To begin with, we reproduce the definition of PSD Complex SVD from
[19].

Definition 8 (PSD Complex SVD). We define the complex snapshot matrix

Cs = [qs
1 + ips

1, . . . , q
s
ns

+ ips
ns

] ∈ Cn×ns , xs
j =

[
qj
pj

]
for all 1 ≤ j ≤ ns (17)

which is derived with the imaginary unit i. The PSD Complex SVD is a basis generation technique that requires
the auxiliary complex matrix UCs ∈ Cn×k to fulfil

minimize
UCs∈Cn×k

‖Cs −UCs (UCs)∗Cs‖2F subject to (UCs)∗UCs = Ik (18)

and builds the actual ROB VE ∈ R2n×2k with

VE = [E JT
2nE], E =

[
Re (UCs)
Im (UCs)

]
.

The solution of (18) is known to be based on the left-singular vectors of Cs which can be explicitly computed
with a complex version of the SVD.

We emphasize that we denote this basis generation procedure as PSD Complex SVD in the following to
avoid confusions with the usual complex SVD algorithm.

Proposition 6 (Minimizing PSD in the set of symplectic, orthonormal ROBs). Given the snapshot matrix
Xs ∈ R2n×ns we augment this with “rotated” snapshots to Ys = [Xs J2nXs]. We assume that 2k is such that
we obtain a gap in the singular values of Ys, i.e. σ2k(Ys) > σ2k+1(Ys). Then, minimizing the PSD in the set of
symplectic, orthonormal ROBs is equivalent to the following minimization problem

minimize
V ∈R2n×2k

∥∥∥(I2n − V V T)
[
Xs J2nXs

]∥∥∥
2

F
subject to V TV = I2k. (19)

Clearly, this is equivalent to the POD (12) applied to the snapshot matrix Ys. We, thus, call this procedure the
POD of Ys in the following. A minimizer can be derived with the SVD as it is common for POD [4].

Proof. The proof proceeds in three steps: we show

(i) that (u,v) is a pair of left- and right-singular vectors of Ys to the singular value σ if and only if
(JT

2nu, JT
2ns
v) also is a pair of left- and right-singular vectors of Ys to the same singular value σ,

(ii) that a solution of the POD of Ys is a symplectic, orthonormal ROB, i.e. V = VE = [E JT
2nE],

(iii) that the POD of Ys is equivalent to the PSD for symplectic, orthonormal ROBs.

We start with the first step (i). Let (u,v) be a pair of left- and right-singular vectors of Ys to the singular value
σ. We use that the left-singular (or right-singular) vectors of Ys are a set of orthonormal eigenvectors of YsY

T
s

(or Y T
s Ys). To begin with, we compute

JT
2nYsY

T
s J2n = JT

2n(XsX
T
s + J2nXsX

T
s JT

2n)J2n = JT
2nXsX

T
s J2n +XsX

T
s = YsY

T
s ,

JT
2ns
Y T

s YsJ2ns = JT
2ns

[
XT

s Xs XT
s J2nXs

XT
s JT

2nXs XT
s Xs

]
J2ns =

[
XT

s Xs −XT
s JT

2nXs

−XT
s J2nXs XT

s Xs

]
= Y T

s Ys

(20)

where we use JT
2ns

= −J2ns . Thus, we can reformulate the eigenvalue problems of YsY
T
s and, respectively, Y T

s Ys

as

σu = YsY
T
s u = J2nJT

2nYsY
T
s J2nJT

2nu
JT2n·|⇐⇒ σJT

2nu = JT
2nYsY

T
s J2nJT

2nu
(20)
= YsY

T
s JT

2nu

σv = Y T
s Ysv = J2nsJ

T
2ns
Y T

s YsJ2nsJ
T
2ns
v

JT2ns
·|

⇐⇒ σJT
2ns
v = JT

2ns
Y T

s YsJ2nsJ
T
2ns
v

(20)
= Y T

s YsJT
2ns
v.

Thus, (JT
2nu, JT

2ns
v) is necessarily another pair of left- and right-singular vectors of Ys with the same singular

value σ. We infer that the left-singular vectors ui, 1 ≤ i ≤ 2n, ordered by the magnitude of the singular values
in a descending order can be written as

U = [u1 JT
2nu1 u2 JT

2nu2 . . .un JT
2nun] ∈ R2n×2n. (21)
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For the second step (ii), we remark that the solution of the POD is explicitly known to be any matrix which
stacks in its columns 2k left-singular vectors of the snapshot matrix Ys with the highest singular value [4]. Due
to the special structure (21) of the singular vectors for the snapshot matrix Ys, a minimizer of the POD of Ys

necessarily adopts this structure. We are allowed to rearrange the order of the columns in this matrix and thus,
the result of the POD of Ys can always be rearranged to the form

VE = [E JT
2nE], E = [u1 u2 . . . uk], JT

2nE = [JT
2nu1 JT

2nu2 . . . J2nuk].

Note that it automatically holds that ETE = Ik and ET(J2nE) = 0k since, in both products, we use the
left-singular vectors from the columns of the matrix U from (21) which is known to be orthogonal from
properties of the SVD. Thus, (15) holds and we infer from Proposition 4 that the POD of Ys indeed is solved
by a symplectic, orthonormal ROB.

For the final step (iii), we define the orthogonal projection operators

PVE = VE (VE)T = EET + JT
2nEE

TJ2n, P⊥VE
= I2n − PVE .

Both are idempotent and symmetric, thus
(
P⊥VE

)T
P⊥VE

= P⊥VE
P⊥VE

= P⊥VE
. Due to J2nJT

2n = I2n, it further
holds

J2n
(
P⊥VE

)T
P⊥VE

JT
2n = J2nP⊥VE

JT
2n = J2nJT

2n − J2nEETJT
2n − J2nJT

2nEE
TJ2nJT

2n = P⊥VE
=
(
P⊥VE

)T
P⊥VE

.

Thus, it follows
∥∥∥P⊥VE

Xs

∥∥∥
2

F
= trace

(
XT

s

(
P⊥VE

)T
P⊥VE

Xs

)
= trace

(
XT

s J2n
(
P⊥VE

)T
P⊥VE

JT
2nXs

)
=
∥∥∥P⊥VE

JT
2nXs

∥∥∥
2

F

and with Ys = [Xs JT
2nXs]

2
∥∥∥P⊥VE

Xs

∥∥∥
2

F
=
∥∥∥P⊥VE

Xs

∥∥∥
2

F
+
∥∥∥P⊥VE

JT
2nXs

∥∥∥
2

F
=
∥∥∥P⊥VE

[Xs JT
2nXs]

∥∥∥
2

F
=
∥∥∥P⊥VE

Ys

∥∥∥
2

F
,

where we use in the last step that for two matrices A ∈ R2n×u, B ∈ R2n×v for u, v ∈ N, it holds ‖A‖2F +‖B‖2F =
‖[A B]‖2F for the Frobenius norm ‖•‖F.

Since it is equivalent to minimize a function f : R2n×2k → R or a multiple cf of it for any positive constant
c ∈ R>0, minimizing

∥∥P⊥VE
Xs

∥∥2
F
is equivalent to minimizing 2

∥∥P⊥VE
Xs

∥∥2
F

=
∥∥P⊥VE

Ys

∥∥2
F
. Additionally, for a

ROB of the form VE = [E JT
2nE] the constraint of orthonormal columns is equivalent to the requirements in

(15). Thus, to minimize the PSD in the class of symplectic, orthonormal ROBs is equivalent to the POD of Ys

(19).

Remark 3. We remark that in the same fashion as the proof of step (iii) in Proposition 6, it can be shown
that, restricting to symplectic, orthonormal ROBs, a solution of PSD([Xs J2nXs]) is a solution of PSD(Xs) and
vice versa, which is one detail that was missing in [19] to show the optimality of PSD Complex SVD in the set
of symplectic, orthonormal ROBs.

We next prove that PSD Complex SVD is equivalent to POD of Ys from (19) and thus, also minimizes the
PSD in the set of symplectic, orthonormal bases. To this end, we repeat the optimality result from [19] and
extend it with the results of the present paper.

Proposition 7 (Optimality of PSD Complex SVD). Let M2 ⊂ R2n×2k denote the set of symplectic bases with
the structure VE = [E JT

2nE]. The PSD Complex SVD solves PSD([Xs − J2nXs]) in M2.

Proof. See [19, Theorem 4.5.].

Proposition 8 (Equivalence of POD of Ys and PSD Complex SVD). PSD Complex SVD is equivalent to the
POD of Ys. Thus, PSD Complex SVD yields a minimizer of the PSD for symplectic, orthonormal ROBs.

Proof. By Proposition 7, PSD Complex SVD minimizes (19) in the set M2 of symplectic bases with the structure
VE = [E JT

2nE]. Thus, (16) holds with F = JT
2nE which is equivalent to the conditions on E required in (15).

By Proposition 4, we infer that M2 equals the set of symplectic, orthonormal bases.
Furthermore, we can show that, in the set M2, a solution of PSD([Xs − J2nXs]) is a solution of PSD(Xs)

and vice versa (see Remark 3). Thus, PSD Complex SVD minimizes the PSD for the snapshot matrix Xs

in the set of orthonormal, symplectic matrices and PSD Complex SVD and the POD of Ys solve the same
minimization problem.

We emphasize that the computation of a minimizer of (19) via PSD Complex SVD requires less memory
storage than the computation via POD of Ys. The reason is that the complex formulation uses the complex
snapshot matrix Cs ∈ Cn×ns which equals 2 · n · ns floating point numbers while the solution with the POD of
Ys method artificially enlarges the snapshot matrix to Ys ∈ R2n×2ns which are 4 · n · ns floating point numbers.
Still, the POD of Ys might be computationally more efficient since it is a purely real formulation and thereby
does not require complex arithmetic operations.
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3.2 Symplectic, non-orthonormal basis generation
In the next step, we want to give an idea how to leave the class of symplectic, orthonormal ROBs. We call a

basis generation technique symplectic, non-orthonormal if it is able to compute a symplectic, non-orthonormal
basis.

In Proposition 5, we briefly showed that most existing symplectic basis generation techniques generate a
symplectic, orthonormal ROB. The only exception is the NLP algorithm suggested in [19]. It is able to compute
a non-orthonormal, symplectic ROB. The algorithm is based on a given initial guess V0 ∈ R2n×2k which is a
symplectic ROB e.g. computed with PSD Cotangent Lift or PSD Complex SVD. Nonlinear programming is
used to leave the class of symplectic, orthonormal ROBs and derive an optimized symplectic ROB V = V0C
with the symplectic coefficient matrix C ∈ R2k×2r for some r ≤ k. Since this procedure searches a solution
spanned by the columns of V0, it is not suited to compute a global optimum of the PSD which we are interested
in the scope of this paper.

In the following, we present a new basis generation technique that is based on an SVD-like decomposition
for matrices B ∈ R2n×m presented in [21]. To this end, we introduce this decomposition in the following.

Proposition 9 (SVD-like decomposition [21]). Any real matrix B ∈ R2n×m can be decomposed as the product
of a symplectic matrix S ∈ R2n×2n, a sparse and potentially non-diagonal matrix D ∈ R2n×m and an orthogonal
matrix Q ∈ Rm×m with

B = SDQ, D =

p q p m−2p−q






Σs 0 0 0 p

0 I 0 0 q

0 0 0 0 n−p−q
0 0 Σs 0 p

0 0 0 0 q

0 0 0 0 n−p−q

,
Σs = diag(σs

1, . . . , σ
s
p) ∈ Rp×p,

σs
i > 0 for 1 ≤ i ≤ p.

(22)

with p, q ∈ N and rank(B) = 2p + q and where we indicate the block row and column dimensions in D by
small letters. The diagonal entries σs

i , 1 ≤ i ≤ p, of the matrix Σs are related to the pairs of purely imaginary
eigenvalues λj(M), λp+j(M) ∈ C of M = BTJ2nB ∈ Rm×m with

λj(M) = −(σs
j)

2i, λp+j(M) = (σs
j)

2i, 1 ≤ j ≤ p.

Remark 4 (Singular values). We call the diagonal entries σs
i , 1 ≤ i ≤ p, of the matrix Σs from Proposition 9

in the following the symplectic singular values. The reason is the following analogy to the classical SVD.
The classical SVD decomposes B ∈ R2n×m as B = UΣV T where U ∈ R2n×2n, V ∈ Rm×m are each

orthogonal matrices and Σ ∈ R2n×m is a diagonal matrix with the singular values σi on its diagonal diag(Σ) =
[σ1, . . . , σr, 0, . . . , 0] ∈ Rmin(2n,m), r = rank(B). The singular values are linked to the real eigenvalues of
N = BTB with λi(N) = σ2

i . Furthermore, for the SVD, it holds due to the orthogonality of U and V ,
respectively, BTB = V TΣ2V and BBT = UTΣ2U .

A similar relation can be derived for an SVD-like decomposition from Proposition 9. Due to the structure of
the decomposition (22) and the symplecticity of S, it holds

BTJ2nB = QTDT

=J2n︷ ︸︸ ︷
STJ2nSDQ

= QTDTJ2nDQ,

DTJ2nD =

p q p m−2p−q





0 0 Σ2
s 0 p

0 0 0 0 q

−Σ2
s 0 0 0 p

0 0 0 0 m−2p−q

. (23)

This analogy is why we call the diagonal entries σs
i , 1 ≤ i ≤ p, of the matrix Σs symplectic singular values.

The idea for the basis generation now is to select k ∈ N pairs of columns of S in order to compute a
symplectic ROB. The selection should be based on the importance of these pairs which we characterize by the
following proposition by linking the Frobenius norm of a matrix with the symplectic singular values.

Proposition 10. Let B ∈ R2n×m with an SVD-like decomposition B = SDQ with p, q ∈ N from Proposition 9.
The Frobenius norm of B can be rewritten as

‖B‖2F =

p+q∑

i=1

(ws
i)

2, ws
i =

{
σs
i

√
‖si‖22 + ‖sn+i‖22, 1 ≤ i ≤ p,

‖si‖2 , p+ 1 ≤ i ≤ p+ q
(24)

where si ∈ R2n is the i-th column of S for 1 ≤ i ≤ 2n. In the following, we refer to each ws
i as the weighted

symplectic singular value.
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Proof. We insert the SVD-like decomposition B = SDQ and use the orthogonality of Q to reformulate

‖B‖2F = ‖SDQ‖2F = ‖SD‖2F = trace(DTSTSD) =

p∑

i=1

(σs
i)

2sT
i si +

p∑

i=1

(σs
i)

2sT
n+isn+i +

q∑

i=1

sT
p+isp+i

=

p∑

i=1

(σs
i)

2 (‖si‖22 + ‖sn+i‖22
)

+

q∑

i=1

‖sp+i‖22

which is equivalent to (24).

It proves true in the following Proposition 11 that we can delete single addends ws
i in (24) with the symplectic

projection used in the PSD if we include the corresponding pair of columns in the ROB. This will be our
selection criterion in the new basis generation technique that we denote PSD SVD-like decomposition.

Definition 9 (PSD SVD-like decomposition). We compute an SVD-like decomposition (22) as Xs = SDQ of
the snapshot matrix Xs ∈ R2n×ns and define p, q ∈ N as in Proposition 9. In order to compute a ROB V with
2k columns, find the k indices i ∈ IPSD = {i1, . . . , ik} ⊂ {1, . . . , p + q} which have large contributions ws

i in
(24) with

IPSD = argmax
I⊂{1,...,p+q}
|I|=k

(∑

i∈I
(ws

i)
2

)
. (25)

To construct the ROB, we choose the k pairs of columns si ∈ R2n from S corresponding to the selected indices
IPSD such that

V = [si1 , . . . , sik , sn+i1 , . . . , sn+ik ] ∈ R2n×2k.

The special choice of the ROB is motivated by the following theoretical result which is very analogous to
the results known for the classical POD in the framework of orthogonal projections.

Proposition 11 (Projection error by neglegted weighted symplectic singular values). Let V ∈ R2n×2k be a
ROB constructed with the procedure described in Definition 9 to the index set IPSD ⊂ {1, . . . , p+q} with p, q ∈ N
from Proposition 9. The PSD functional can be calculated by

∥∥(I2n − V V +)Xs

∥∥2
F

=
∑

i∈{1,...,p+q}\IPSD

(ws
i)

2 , (26)

which is the cumulative sum of the squares of the neglected weighted symplectic singular values.

Proof. Let V ∈ R2n×2k be a ROB constructed from an SVD-like decomposition Xs = SDQ of the snapshot
matrix Xs ∈ R2n×2k with the procedure described in Definition 9. Let p, q ∈ N be defined as in Proposition 9
and IPSD = {i1, . . . , ik} ⊂ {1, . . . , p+ q} be the set of indices selected with (25).

For the proof, we introduce a slightly different notation of the ROB V . The selection of the columns si of
S is denoted with the selection matrix II2kPSD

∈ R2n×2k based on

(IIPSD)α,β =

{
1, α = iβ ∈ IPSD

0, else
for

1 ≤ α ≤ 2n,

1 ≤ β ≤ k, II2kPSD
= [IIPSD , J

T
2nIIPSD ].

which allows us to write the ROB as the matrix–matrix product V = SII2kPSD
. Furthermore, we can select the

neglected entries with I2n − II2kPSD

(
II2kPSD

)T
.

We insert the SVD-like decomposition and the representation of the ROB introduced in the previous
paragraph in the PSD which reads

∥∥(I2n − V V +)Xs

∥∥2
F

=
∥∥∥(I2n − SII2kPSD

JT
2kI

T
I2kPSD

STJ2n)SDQ
∥∥∥
2

F
=
∥∥∥S(I2n − II2kPSD

JT
2kI

T
I2kPSD

=J2n︷ ︸︸ ︷
STJ2nS)D

∥∥∥
2

F

where we use the orthogonality of Q and the symplecticity of S in the last step. We can reformulate the product
of Poisson matrices and the selection matrix as

JT
2kI

T
I2kPSD

J2n = JT
2k

[
IT
IPSD

IT
IPSDJ2n

]
J2n =

[
0k −Ik
Ik 0k

] [
IT
IPSDJ2n
−IT
IPSD

]
= IT
I2kPSD

.
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Thus, we can further reformulate the PSD as

∥∥(I2n − V V +)Xs

∥∥2
F

=

∥∥∥∥S
(
I2n − II2kPSD

(
II2kPSD

)T
)
D

∥∥∥∥
2

F

=
∑

i∈{1,...,p+q}\IPSD

(ws
i)

2

where ws
i are the weighted symplectic singular values from (24). In the last step, we use that the resultant

diagonal matrix in the braces sets all rows of D with indices i, n+ i to zero for i ∈ IPSD. Thus, the last step
can be concluded analogously to the proof of Proposition 10.

A direct consequence of Proposition 11 is that the decay of the PSD functional is proportional to the decay
of the sum over the neglected weighted symplectic singular values ws

i from (24). In the numerical example
Section 4.2.1, we observe an exponential decrease of this quantities which induces an exponential decay of the
PSD functional.

Remark 5 (Computation of the SVD-like decomposition). To compute an SVD-like decompostion (22) of B,
several approaches exist. The original paper [21] derives a decomposition based on the product BTJ2nB which
is not good for a numerical computation since errors can arise from cancellation. In [20], an implicit version
is presented that does not require the computation of the full product BTJ2nB but derives the decomposition
implicitly by transforming B. Furthermore, [1] introduces an iterative approach to compute an SVD-like
decomposition which computes parts of an SVD-like decomposition with a block-power iterative method. In the
present case, we use the implicit approach [20].

3.3 Interplay of non-orthonormal and orthonormal ROBs
We give further results on the interplay of non-orthonormal and orthonormal ROBs. The fundamental

statement in the current section is the Orthogonal SR decomposition [7, 21].

Proposition 12 (Orthogonal SR decomposition). For each matrix B ∈ R2n×m with m ≤ n, there exists
a symplectic, orthogonal matrix S ∈ R2n×2n, an upper triangular matrix R11 ∈ Rm×m and a strictly upper
triangular matrix R21 ∈ Rm×m such that

B = S




R11

0(n−m)×m
R21

0(n−m)×m


 = [Sm JT

2nSm]

[
R11

R21

]
,

Si = [s1, . . . , si], 1 ≤ i ≤ n,
S = [s1, . . . , sn, JT

2ns1, . . . , JT
2nsn].

We remark that a similar result can be derived for the case m > n [21] but it is not introduced since we do
not need it in the following.

Proof. Let B ∈ R2n×m with m ≤ n. We consider the QR decomposition

B = Q

[
R

0(2n−m)×m

]

where Q ∈ R2n×2n is an orthogonal matrix and R ∈ R2n×m is upper triangular. The original Orthogonal
SR decomposition [7, Corollary 4.5.] for the square matrix states that we can decompose Q ∈ R2n×2n as a
symplectic, orthogonal matrix S ∈ R2n×2n, an upper triangular matrix R̃11 ∈ Rn×n, a strictly upper triangular
matrix R̃21 ∈ Rn×n and two (possibly) full matrices R̃12, R̃22 ∈ Rn×n

Q = S

[
R̃11 R̃12

R̃21 R̃22

]
and thus B = S

[
R̃11 R̃12

R̃21 R̃22

] [
R

0(2n−m)×m

]
= S

[
R̃11

R̃21

][
R

0(n−m)×m

]
.

Since R is upper triangular, it does preserve the (strictly) upper triangular pattern in R̃11 and R̃21 and we
obtain the (strictly) upper triangular matrices R11,R21 ∈ Rm×m from




R11

0(n−m)×m
R21

0(n−m)×m


 =

[
R̃11

R̃21

][
R

0(n−m)×m

]
.

Based on the Orthogonal SR decomposition, the following two propositions prove bounds for the projection
errors of PSD which allows an estimate for the quality of the respective method. In both cases we require the
basis size to satisfy k ≤ n or 2k ≤ n, respectively. This restriction is not limiting in the context of symplectic
MOR as in all application cases k � n.
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Proposition 13. Let V ∈ R2n×k be a minimizer of POD with k ≤ n basis vectors and VE ∈ R2n×2k be
a minimizer of the PSD in the class of orthonormal, symplectic matrices with 2k basis vectors. Then, the
orthogonal projection errors of VE and V satisfy

∥∥∥(I2n − VEV T
E )Xs

∥∥∥
2

F
≤
∥∥∥
(
I2n − V V T

)
Xs

∥∥∥
2

F
.

Proof. The Orthogonal SR decomposition (see Proposition 12) guarantees that a symplectic, orthogonal
matrix S ∈ R2n×2k and R ∈ R2k×k exist with V = SR. Since both matrices V and S are orthogonal and
img(V ) ⊂ img(S), we can show that S yields a lower projection error than V with

∥∥∥
(
I2n − SST

)
Xs

∥∥∥
2

F
=
∥∥∥
(
I2n − SST

)(
I2n − V V T

)
Xs

∥∥∥
2

F
=

ns∑

i=1

∥∥∥
(
I2n − SST

)(
I2n − V V T

)
xs
i

∥∥∥
2

2

≤
∥∥∥I2n − SST

∥∥∥
2

2︸ ︷︷ ︸
≤1

ns∑

i=1

∥∥∥
(
I2n − V V T

)
xs
i

∥∥∥
2

2
≤
∥∥∥
(
I2n − V V T

)
Xs

∥∥∥
2

F

Let VE ∈ R2n×2k be a minimizer of the PSD in the class of symplectic, orthonormal ROBs. By definition of
VE , it yields a lower projection error than S. Since both ROBs are symplectic, orthonormal, we can exchange
the symplectic inverse with the transposition (see Proposition 4, (iii)). This proves the assertion with

∥∥∥
(
I2n − V V T

)
Xs

∥∥∥
2

F
≥
∥∥∥
(
I2n − SST

)
Xs

∥∥∥
2

F
≥
∥∥∥
(
I2n − VEV T

E

)
Xs

∥∥∥
2

F
.

Proposition 13 proves that we require at most twice the number of basis vectors to generate a symplectic,
orthonormal basis with an orthogonal projection error at least as small as the one of the classical POD. An
analogous result can be derived in the framework of a symplectic projection which is proven in the following
proposition.

Proposition 14. Assume there exists a minimizer V ∈ R2n×2k of the general PSD for a basis size 2k ≤ n with
potentially non-orthonormal columns. Let VE ∈ R2n×4k be a minimizer of the PSD in the class of symplectic,
orthogonal bases of size 4k. Then, we know that the symplectic projection error of VE is less than or equal to
the one of V , i.e.

∥∥(I2n − VEV +
E )Xs

∥∥2
F
≤
∥∥(I2n − V V +)Xs

∥∥2
F
.

Proof. Let V ∈ R2n×2k be a minimizer of PSD with 2k ≤ n. By Proposition 12, we can determine a symplectic,
orthogonal matrix S ∈ R2n×4k and R ∈ R4k×2k with V = SR. Similar to the proof of Proposition 13, we can
bound the projection errors. We require the identity

(I2n − SS+)(I2n − V V +) = I2n − SS+ − V V + + S

=I4k︷ ︸︸ ︷
S+SR︸ ︷︷ ︸
=V

JT
2kR

TSTJ2n︸ ︷︷ ︸
=V +

= I2n − SS+.

With this identity, we proceed analogously to the proof of Proposition 13 and derive for a minimizer VE ∈ R2n×4k

of PSD in the class of symplectic, orthonormal ROBs
∥∥(I2n − VEV +

E )Xs

∥∥2
F
≤
∥∥(I2n − SS+)Xs

∥∥2
F

=
∥∥(I2n − SS+)(I2n − V V +)Xs

∥∥2
F

≤
∥∥(I2n − SS+)

∥∥2
2︸ ︷︷ ︸

≤1

∥∥(I2n − V V +)Xs

∥∥2
F
≤
∥∥(I2n − V V +)Xs

∥∥2
F
.

Proposition 14 proves that we require at most twice the number of basis vectors to generate a symplectic,
orthonormal basis with a symplectic projection error at least as small as the one of a (potentially non-orthonormal)
minimizer of PSD.
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4 Numerical results

The numerical experiments in the present paper are based on a two-dimensional plane strain linear elasticity
model which is described by a Lamé–Navier equation

ρ0
∂2

∂2t2
u(ξ, t,µ)− µL ∆ξu(ξ, t,µ) + (λL + µL)∇ξ (divξ (u(ξ, t,µ))) = ρ0 g(ξ, t).

for ξ ∈ Ω ⊂ R2 and t ∈ [t0, tend] with the density ρ0 ∈ R>0, the Lamé constants µ = (λL, µL) ∈ R2
>0, the

external force g : Ω × [t0, tend] → R2 and Dirichlet boundary conditions on Γu ⊂ Γ := ∂Ω and Neumann
boundary conditions on Γt ⊂ Γ . We apply non-dimensionalization (e.g. [13, Chapter 4.1]), apply the Finite
Element Method (FEM) with first-order Lagrangian elements on a triangular mesh and rewrite the system as
first-order system to arrive at the parametric linear system (9) with

x(t,µ) =

[
q(t,µ)
p(t,µ)

]
, H(µ) =

[
K(µ) 0n

0n M -1

]
, h(t) =

[
−f(t)
0n×1

]
(27)

where q(t,µ) ∈ Rn is the vector of displacement DOFs, p(t,µ) ∈ Rn is the vector of linear momentum DOFs,
K(µ) ∈ Rn×n is the stiffness matrix, M -1 ∈ Rn×n is the inverse of the mass matrix and f(t,µ) is the vector of
external forces.

We remark that a Hamiltonian formulation with the velocity DOFs v(t) = d
dt
x(t) ∈ Rn instead of the

linear momentum DOFs p(t) is possible if a non-canonical symplectic structure is used. Nevertheless, in [19,
Remark 3.8.] it is suggested to switch to a formulation with a canonical symplectic structure for the MOR of
Hamiltonian systems.

In order to solve the system (27) numerically with a time-discrete approximation xi(µ) ≈ x(ti,µ) for each
of nt ∈ N time steps ti ∈ [t0, tend], 1 ≤ i ≤ nt, a numerical integrator is required. The preservation of the
symplectic structure in the time-discrete system requires a so-called symplectic integrator [11, 5]. In the context
of our work, the implicit midpoint scheme is used in all cases.

Remark 6 (Modified Hamiltonian). We remark that, even though the symplectic structure is preserved by
symplectic integrators, the Hamiltonian may be modified in the time-discrete system compared to the original
Hamiltonian. In the case of a quadratic Hamiltonian (see Corollary 1) and a symplectic Runge-Kutta integrator,
the modified Hamiltonian equals the original Hamiltonian since these integrators preserve quadratic first integrals.
For further details, we refer to [11, Chapter IX.] or [14, Section 5.1.2 and 5.2].

The model parameters are the first and second Lamé constants with µ = (λL, µL) ∈ P = [35 · 109, 125 ·
109] N/m2 × [35 · 109, 83 · 109] N/m2 which varies between cast iron and steel with approx. 12% chromium [17,
App. E 1 Table 1]. The density is set to ρ0 = 7856 kg/m3. The non-dimensionalization constants are set to
λc

L = µc
L = 81 · 109 N/m2, ξc = 1 m, gc = 9.81 m/s2. The geometry is a simple cantilever beam clamped on the

left side with a force applied to the right boundary. The time interval is chosen to be t ∈ [t0, tend] with t0 = 0 s
and tend = 7.2 · 10−2 s which is one oscillation of the beam. For the numerical integration nt = 151 time steps
are used.

2 4 6 8

−2

2

ξ1

ξ2

Figure 1: an exaggerated illustration of the displacements q(t,µ) of the non-autonomous beam model
(a) at the time with the maximum displacement (gray) and (b) at the final time (blue).

The symplectic MOR techniques examined are PSD Complex SVD (Definition 8), the greedy procedure
[15] and the newly introduced PSD SVD-like decomposition (Definition 9). The MOR techniques that do
not necessarily derive a symplectic ROB are called non-symplectic MOR techniques in the following. The
non-symplectic MOR techniques investigated in the scope of our numerical results are the POD applied to the
full state x(t,µ) (POD full state) and a POD applied to the displacement q(t,µ) and linear momentum states

14



method solution solution procedure ortho- sympl.
norm.

POD full Vk = U(:, 1 : k) U = SVD(Xs) 3 7

POD separate
Vk =


Up(:, 1 : k)

Uq(:, 1 : k)


 Up = SVD ([p1, . . . ,pns

]) 3 7

Uq = SVD ([q1, . . . , qns
])

PSD cSVD V2k = [E(:, 1 : k) JT
2nE(:, 1 : k)] E =


Φ
Ψ


 ,Φ+ iΨ = cSVD (Cs) 3 3

Cs = [p1 + iq1, . . . ,pns
+ iqns

]

PSD greedy V2k = [E(:, 1 : k) JT
2nE(:, 1 : k)] E from greedy algorithm 3 3

PSD SVD-like V2k = [si1 , . . . , sik , sn+i1 , . . . , sn+ik ] S = [s1, . . . , s2n] from (22), 7 3

IPSD = {i1, . . . , ik} from (25)

Table 1: Basis generation methods used in the numerical experiments in summary, where we use the
MATLAB R© notation to denote the selection of the first k columns of a matrix e.g. in U(:, 1 : k).

p(t,µ) separately (POD separate states). To summarize the basis generation methods, let us enlist them in
Table 1 where SVD(•) and cSVD(•) denote the SVD and the complex SVD, respectively.

All presented experiments are generalization experiments, i.e. we choose 9 different training parameter
vectors µ ∈ P on a regular grid to generate the snapshots and evaluate the reduced models for 16 random
parameter vectors that are distinct from the 9 training parameter vectors. Thus, the number of snapshots is
ns = 9 · 151 = 1359. The size 2k of the ROB V is varied in steps of 20 with 2k ∈ {20, 40, . . . , 280, 300}.

The software used for the numerical experiments is RBmatlab1 which is an open-source library based on
the proprietary software package MATLABR© and contains several reduced simulation approaches. An add-on
to RBmatlab is provided2 which includes all the additional code to reproduce the results of the present paper.
The versions used in the present paper are RBmatlab 1.16.09 and MATLABR© 2017a.

4.1 Autonomous beam model
In the first model, we load the beam on the free end (far right) with a constant force which induces an

oscillation. Due to the constant force, the discretized system can be formulated as an autonomous Hamiltonian
system. Thus, the Hamiltonian is constant and its preservation in the reduced models can be analysed. All
other reduction results are very similar to the non-autonomous case and thus, are exclusively presented for the
non-autonomous case in the following Section 4.2.

4.1.1 Preservation over time of the modified Hamiltonian in the reduced model

In the following, we investigate the preservation of the Hamiltonian of our reduced models. With respect to
Remark 6, we mean the preservation over time of the modified Hamiltonian. Since the Hamiltonian is quadratic
in our example and the implicit midpoint is a symplectic Runge-Kutta integrator, the modified Hamiltonian
equals the original which is why we speak of “the Hamiltonian” in the following.

We present in Fig. 2 the count of the total 240 simulations which show a preservation (over time) of the
reduced Hamiltonian in the reduced model. The solution xr of a reduced simulation preserves the reduced
Hamiltonian over time if (Hr(xr(ti),µ)−Hr(xr(t0),µ))/Hrel(µ) < 10−10 for all discrete times ti ∈ [t0, tend],
1 ≤ i ≤ nt where Hrel(µ) > 0 is a parameter-dependent normalization factor. The heat map shows that no
simulation in the non-symplectic case preserves the Hamiltonian whereas the symplectic methods all preserve
the Hamiltonian which is what was expected from theory.

1https://www.morepas.org/software/rbmatlab/
2https://doi.org/10.5281/zenodo.2578078
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In Fig. 3, we exemplify the non-constant evolution of the reduced Hamiltonian for three non-symplectic
bases generated by POD separate states with different basis sizes and one selected test parameter (λ, µ) ∈ P. It
shows that in all three cases, the Hamiltonian starts to grow exponentially.

0/240

0/240

240/240

240/240

240/240

POD full state

POD separate states

PSD complex SVD

PSD greedy

PSD SVD-like

Figure 2: Heat map which shows the preservation
of the reduced Hamiltonian in the reduced model
in x of y cases (x/y).
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Figure 3: Evolution of the reduced Hamiltonian
for POD separate states for a selected parameter
(λ, µ) ∈ P.

4.2 Non-autonomous beam model
The second model is similar to the first one. The only difference is that the force on the free (right) end of

the beam is loaded with a time-varying force. The force is chosen to act in phase with the beam. The time
dependence of the force necessarily requires a non-autonomous formulation which requires in the framework of
the Hamiltonian formulation a time-dependent Hamiltonian function which we introduced in Section 2.4.

We use the model to investigate the quality of the reduction for the considered MOR techniques. To this
end, we investigate the projection error, i.e. the error on the training data, the orthogonality and symplecticity
of the ROB and the error in the reduced model for the test parameters.

4.2.1 Projection error of the snapshots and singular values

The projection error is the error on the training data collected in the snapshot matrix Xs, i.e.

el2(2k) =
∥∥∥(I2n − VW T)Xs

∥∥∥
2

F
,

POD : W T = V T,

PSD : W T = V +(= V Tfor orthosymplectic ROBs, Proposition 4).

It is a measure for the approximation qualities of the ROB based on the training data. Fig. 4 (left) shows
this quantity for the considered MOR techniques and different ROB sizes 2k. All basis generation techniques
show an exponential decay. As expected from theory, POD full state minimizes the projection error for the
orthonormal basis generation techniques (see Table 1). PSD SVD-like decomposition shows a lower projection
error than the other PSD methods for 2k ≥ 80 and yields a similar projection error for k ≤ 60. Concluding this
experiment, one might expect the full-state POD to yield decent results or even the best results. The following
experiments prove this expectation to be wrong.

The decay of (a) the classical singular values σi, (b) the symplectic singular values σs
i (see Remark 4) and

(c) the weighted symplectic singular values ws
i (see (24)) sorted by the magnitude of the symplectic singular

values is displayed in Fig. 4 (right). All show an exponential decrease. The weighting introduced in (24) for ws
i

does not influence the exponential decay rate of σs
i . The decrease in the classical singular values is directly

linked to the exponential decrease of the projection error of POD full state due to properties of the Frobenius
norm (see [4]). A similar result was deduced in the scope of the present paper for PSD SVD-like decomposition
and the PSD functional (see Proposition 11).

4.2.2 Orthonormality and symplecticity of the bases

To verify the orthonormality and the symplecticity numerically, we consider the two functions

oV (2k) =
∥∥∥V TV − I2k

∥∥∥
F
, sV (2k) =

∥∥∥JT
2kV

TJ2nV − I2k
∥∥∥
F

(28)

which are zero / numerically zero if and only if the basis is orthonormal or symplectic, respectively. In Fig. 5,
we show both values for the considered basis generation techniques and RB sizes.
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Figure 4: Projection error (left) and decay of the singular values from Remark 4 and (24) (right).

The orthonormality of the bases is in accordance with the theory. All procedures compute symplectic
bases except for PSD SVD like-decomposition. PSD greedy shows minor loss in the orthonormality which is a
known issue for the J2n-orthogonalization method used (modified symplectic Gram-Schmidt procedure with
re-orthogonalization [2]). But no major impact on the reduction results could be attributed to this deficiency in
the scope of this paper.

Also the symplecticity (or J2n-orthogonality) of the bases behaves as expected. All PSD methods generate
symplectic bases whereas the POD methods do not. A minor loss of symplecticity is recorded for PSD
SVD-like decomposition which is objected to the computational method that is used to compute an SVD-like
decomposition. Further research on algorithms for the computation of an SVD-like decomposition should
improve this result. Nevertheless, no major impact on the reduction results could be attributed to this deficiency
in the scope of this paper.
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PSD cSVD
PSD greedy
PSD SVD-like

size 2k of the ROB V

Figure 5: The orthonormality (left) and the J2n-orthogonality (right) from (28).

4.2.3 Relative error in the reduced model

We investigate the error introduced by MOR in the reduced model. The error is measured in the relative
∞-norm ‖•‖∞ in time and space

e(2k,µ) :=

max
i∈{1,...,nt}

‖x(ti,µ)− V xr(ti,µ)‖∞
max

i∈{1,...,nt}
‖x(ti,µ)‖∞

, (29)

where 2k indicates the size of the ROB V ∈ R2n×2k and µ ∈ P is one of the test parameters. To display the
results for all 16 test parameters at once, we use box plots in Fig. 6. The box represents the 25%-quartile, the
median and the 75%-quartile. The whiskers indicate the range of data points which lay within 1.5 times the
interquartile range (IQR). The crosses show outliers. For the sake of a better overview, we truncated relative
errors above 100 = 100%.
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The experiments show that the non-symplectic MOR techniques show a strongly non-monotonic behaviour for
an increasing basis size. For many of the basis sizes, there exists a parameter which shows crude approximation
results which lay above 100% relative error. The POD full state is unable to produce results with a relative
error below 2%.

On the other hand, the symplectic MOR techniques show an exponentially decreasing relative error.
Furthermore, the IQRs are much lower than for the non-symplectic methods. We stress that the logarithmic
scale of the y axis distorts the comparison of the IQRs – but only in favour of the non-symplectic methods. The
low IQRs for the symplectic methods show that the symplectic MOR techniques derive a reliable reduced model
that yields good results for any of the 16 randomly chosen test parameters. Furthermore, none of the systems
shows an error above 0.19% – for PSD SVD-like decomposition this bound is 0.018%, i.e. one magnitude lower.

In the set of the considered symplectic, orthogonal MOR techniques, PSD greedy shows the best result for
most of the considered ROB sizes. This superior behaviour of PSD greedy in comparison to PSD complex SVD
is unexpected since PSD greedy showed inferior results for the projection error in Section 4.2.1. This was also
observed in [15].

Within the set of investigated symplectic MOR techniques, PSD SVD-like decomposition shows the best
results followed by PSD greedy and PSD complex SVD. While the two orthonormal procedures show comparable
results, PSD SVD like-decomposition shows an improvement in the relative error. Comparing the best result of
either PSD greedy or PSD complex SVD with the worst result of PSD SVD-like decomposition considering the
16 different test parameters for a fixed basis size – which is pretty much in favour of the orthonormal basis
generation techniques –, the improvement of PSD SVD-like decomposition ranges from factor 3.3 to 11.3 with a
mean of 6.7.
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0 100 200 300
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Figure 6: Relative error in the reduced model.

5 Summary and conclusions

We gave an overview of autonomous and non-autonomous Hamiltonian systems and the structure-preserving
model order reduction (MOR) techniques for these kinds of systems [19, 15, 16]. Furthermore, we classified the
techniques in orthonormal and non-orthonormal procedures based on the capability to compute a symplectic,
(non-)orthonormal reduced order basis (ROB). To this end, we introduced a characterization of rectangular,
symplectic matrices with orthonormal columns. Based thereon, an alternative formulation of the PSD Complex
SVD [19] was derived which we used to prove the optimality with respect to the PSD functional in the set of
orthonormal, symplectic ROBs. As a new method, we presented a symplectic, non-orthonormal basis generation
procedure that is based on an SVD-like decomposition [21]. First theoretical results show that the quality of
approximation can be linked to a quantity we referred to as weighted symplectic singular values.

The numerical examples show advantages for the considered linear elasticity model for symplectic MOR if a
symplectic integrator is used. We were able to reduce the error introduced by the reduction with the newly
introduced non-orthonormal method.

We conclude that non-orthonormal methods are able to derive bases with a lower error for both, the training
and the test data. Yet, it is still unclear if the newly introduced method computes the global optimum of the
PSD functional. Further work should investigate if a global optimum of the PSD functional can be computed
with an SVD-like decomposition.
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