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Abstract
A computational approach that couples the Finite Element Method and the Smoothed Particle Hydrodynamics 
method may be advantageous for simulating the response of complex, physical systems involving large 
deformations. However, comparisons of this modeling technique against field-scale test data are remarkably 
sparse in literature. This study presents three field-scale tests involving vehicular impact into three landscape 
vehicular anti-ram barriers. Each barrier consisted of a single boulder embedded in compacted American 
Association of State Highway and Transportation Officials soil and physical testing resulted in one of the 
following outcomes: minimal boulder/soil movement (Test 1), moderate boulder/soil movement (Test 2), 
and severe boulder/soil movement and vehicle override (Test 3). For each test, two LS-DYNA models 
were developed: a model using a traditional finite element method approach for the entire soil region along 
with a model using a hybrid finite element method-smoothed particle hydrodynamics approach where the 
near-field soil region was simulated using smoothed particle hydrodynamics. For Tests 1 and 2, both 
the traditional finite element method approach and the hybrid finite element method-smoothed particle 
hydrodynamics approach were able to accurately match data collected from the field tests. However, for 
Test 3, the finite element method-only approach was not able to accurately predict the global response of 
the system under vehicular impact. On the other hand, the hybrid finite element method-smoothed particle 
hydrodynamics approach was able to capture global response of the system including boulder rotation, soil 
upheaval, and vehicle override.
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Introduction

Large deformation in geomaterials has been modeled using advanced elasto-plastic constitutive 
models and numerical techniques such as the finite element method (FEM) (Finn et al., 1986) and 
finite difference method (FDM) (Bathurst and Simac, 1994). Numerical models have the ability to 
capture the initiation and subsequent progressive deformation of geomaterials; however, the ability 
of these models to capture post-failure large deformation remains to be a critical issue. Since FEM 
and FDM are grid-based numerical methods, they generally have difficulty modeling large deforma-
tion of geomaterials. In FEM, each node of the computational mesh follows the assigned material 
during its motion. External surfaces and contact interfaces are easily tracked. Due to the fact that 
contact algorithms for the standard FEM are well-defined, this method has been the predominate 
one used for modeling geomaterials. The method fails when excessive distortions in elements cause 
spurious behaviors. Adaptive remeshing (Khoei and Lewis, 1999) and the Arbitrary Lagrangian-
Eulerian (ALE) method (Hughes et al., 1981) have been used to model large deformations in FEM. 
These remeshing techniques, however, are problematic when addressing highly distorted meshes, 
particularly when the material behavior is highly nonlinear (Belytschko et al., 2000). Particle-based, 
mesh-free methods were subsequently developed to handle these issues as a means of tracking mate-
rials using a set of interacting particles. Among these methods, the Smoothed Particle Hydrodynamics 
(SPH) method (Gingold and Monaghan, 1977; Lucy, 1977) has been shown to be a relatively 
mature and reliable method for accurately predicting large deformations of geomaterials.

SPH, a mesh-free method, is capable of handling large deformation without severe element  
distortion problems and has been used to model geomaterials post-failure (Bui et al., 2008; Chen 
and Qiu, 2012, 2014). Several researchers have successfully employed SPH to study the dynamic 
response of structures under high-velocity impact loads (Aktay et al., 2005; Jackson and Fuchs, 
2008; Jankowiak and Lodygowski, 2013; Liu and Liu, 2003; Schwer, 2009; Swaddiwudhipong 
et al., 2010). This method is, however, usually less computationally efficient when compared  
to FEM and suffers from certain instability problems (Mohotti et al., 2015). Combining both 
approaches, using SPH to model the regions where large deformation is expected and using FEM 
elsewhere seems to be a logical application to address high-velocity impact with large soil deforma-
tions. Xu and Wang (2014) introduced different interactions methods available within LS-DYNA 
(Hallquist, 2013; Livermore Software Technology Company (LSTC), 2006) for SPH formulations 
and numerous researchers have incorporated a combined model of SPH and Langrangian formula-
tions (Jankowiak and Lodygowski, 2013; Swaddiwudhipong et al., 2010; Thiyahuddin et al., 2012).

Landscape Vehicular Anti-Ram (LVAR) barriers play a crucial role in the protection of critical 
assets against terroristic threats. These barriers are designed to stop vehicular threats based on 
American Society for Testing and Materials (ASTM) F2656: Standard Test Method for Vehicle 
Crash Testing of Perimeter Barriers (ASTM, 2007) with a design criterion of P1 rating. P1 criterion 
indicates that the front edge of the truck bed cannot pass beyond 1 meter behind the inside edge of 
the barrier during an impact event. Because these barriers often comprise a single boulder embedded 
in compacted soil, the optimization of the boulder is an important aspect to keep the barrier eco-
nomically feasible and installation procedures relatively simple. All of these barriers are designed 
and optimized using LS-DYNA before any full-scale testing commences, so it is imperative that 
the boulder and soil are modeled as accurately as possible to predict the translation and rotation of 
the boulder and the displacement of the soil during a vehicular impact. Inaccurately modeling the 
soil can lead to a false confidence in the barrier performance and result in failure to obtain a P1 
rating of the barrier.

Several full-scale tests of single barriers embedded in soil with comparison to FEM have been 
published but lack to incorporate advanced modeling techniques like the addition of coupled 
FEM-SPH simulations. Asadollahi Pajouh et al. conducted full-scale tests and corresponding 
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LS-DYNA simulations on a group of piles embedded in loose sand with no compaction. The full-
scale test resulted in large soil deformations and the simulation over-predicted the pile deformation 
using traditional FEM analysis (Asadollahi Pajouh et al., 2014). Ren and Vesenjak investigated a 
crash analysis of road safety barriers using LS-DYNA and compared to a full-scale test. The 
LS-DYNA numerical model consisted of traditional FEM and used springs to represent the stiff-
ness of the soil. From the analysis of the full-scale test, the posts embedded in soil showed large 
deformation as well as soil upheaval. However, analyzing the soil as spring elements does not 
allow the user to see the soil deformation post impact (Ren and Vesenjak, 2005). Wu and Thomson 
conducted full-scale tests and numerical simulations on a guardrail post and studied the interaction 
between the post and soil during quasi-static and dynamic loading. The guardrail was embedded  
in gravel and the authors used two different soil material models to represent the granular material. 
Simulations were conducted on quasi-static and dynamic loading conditions and both show severe 
element distortion in the soil elements near the guardrail. The authors also failed to show the 
comparison between full-scale tests and numerical analyses to assess the accuracy of the numerical 
models (Wu and Thomson, 2007).

Published comparisons between traditional FEM and coupled FEM-SPH simulations for soil-
structure interaction involving large soil deformation are remarkably sparse in literature, particu-
larly when this comparison is validated using instrumented, field-scale tests (Reese et al., 2012, 
2014; Zhou et al., this issue). Keske et al. investigated a low-order modeling technique of vehicle 
impacts upon boulders embedded in cohesionless soil. The authors were able to predict the response 
of a large boulder with little soil movement using their low-order model compared to data collected 
from an instrumented field-scale test. However, a barrier system that exhibited large boulder trans-
lation and rotation as well as large soil deformation could not be accurately predicted using their 
low-order model (Keske et al., 2015). The need to use higher-order modeling techniques is required.

Research conducted at the Larson Transportation Institute, affiliated with The Pennsylvania 
State University, on the design and performance of three LVAR systems all consisting of a single 
boulder embedded in compacted fill will be summarized herein. Three field-scale tests were con-
ducted and used to rate the performance of the barrier systems against M30 (vehicular speed of 
48.3 km/hr (30 mph)] impacts. Using high-speed cameras and field surveys, boulder movement 
was obtained from each test and was used to compare with model simulations. Each field-scale test 
was simulated using two LS-DYNA models. For the first model, the entire soil domain was modeled 
using traditional FEM formulation. For the second model, a coupled FEM-SPH formulation was 
used to model the soil domain, where SPH was used for the region near impact (large deformation 
was expected) and FEM was used to model regions beyond the impact zone. The optimal size of 
the SPH zone for accurate prediction of boulder translational and rotational movement (i.e. global 
response) was determined. A sensitivity study of SPH particle spacing was also conducted. In the 
following sections, the field-scale tests are first described followed by descriptions of the LS-DYNA 
models and selection of model parameters and formulations. Lastly, results and discussions on the 
capability of the LS-DYNA models for capturing global response of the LVAR systems are presented. 
This article focuses on the numerical predictions, including the use of FEM and coupled FEM-SPH 
formulations, and measured performance of LVAR systems in the field-scale tests. These results, 
therefore, provide a useful basis for evaluating predictive capabilities and limitations of the FEM and 
coupled FEM-SPH formulations in LS-DYNA when applied to LVAR barrier design.

Field-scale testing

Vehicular impact tests were completed according to ASTM F2656-07: Standard Test Method  
for Vehicle Crash Testing of Perimeter Barriers (ASTM, 2007), which establishes a penetration 
rating (desired P1) for perimeter barriers subjected to a vehicle impact (M30 designation). The test 
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facility uses a rigid rail to provide vehicle guidance, a reverse towing system to accelerate the test 
vehicle to the required speed, and a release mechanism that disconnects the tow cable and steering 
guidance prior to impact. For a detailed description of the system, please refer to Reese et al. (2012, 
2014).

LVAR barriers

Three different full-scale field tests were conducted for this research. Test 1 consisted of a Rockville 
White (RW) granite boulder approximately 1.98 m wide (W) × 1.68 m long (L) × 3.43 m high (H). 
The total embedment depth (D) was 2.03 m. The approximate weight of the boulder was 27,200 kg. 
Based on the information provided by the quarry that supplied the boulder, its bulk density and 
compressive strength were approximately 2696 kg/m3 and 142 MPa, respectively (Coldspring 
Quarry, 2014). Test 2 consisted of an American Black (AB) granite boulder approximately 0.98 m 
(W) × 1.05 m (L) × 3.0 m (H). The total embedment depth (D) was 1.95 m. The approximate weight 
was 9770 kg. The bulk density and compressive strength of the boulder were approximately 
3165 kg/m3 and 300 MPa, respectively (Rock of Ages Quarry, 2015). Test 3 consisted of a different 
AB granite boulder approximately 1.19 m (W) × 0.78 m (L) × 2.44 m (H). The total embedment 
depth (D) was 1.38 m. The approximate weight was 5580 kg. Figure 1 summarizes the general 
dimensions for each of the tests described above. No natural fissures or joints were observed on the 
outer faces of the boulders. Along with material information provided from each quarry, small-scale 
testing, including uniaxial compression, split tension, Chevron bend, split Hopkinson pressure bar 
tests were completed to confirm supplied material property values (International Society for Rock 
Mechanics (ISRM), 2007; Reese et al., 2014; Xia et al., 2011). Table 1 summarizes the material 
properties of each of the granites used in the tests. Based on the tests conducted, an initial shear 
modulus of 9480 MPa was determined, which is consistent with typical properties of granite published 
in literature (Gere and Timoshenko, 1984; Wyllie and Mah, 2004). Reese et al. conducted a single 
variant analysis to determine the sensitivity of the numerical simulation to the initial shear modulus 
(G) of the Rockville White granite boulder, which demonstrated that the boulder displacement was 
relatively insensitive to the change of boulder stiffness (Reese et al., 2014).

According to ASTM F2656-07 standards, during the installation of each barrier, excavation 
should extend along the horizontal direction behind the boulder to a distance equal to 1.5 times the 
boulder embedment depth or 0.6 m, whichever is greater up to a maximum of 1.8 m (ASTM, 2007). 

Figure 1. General layout of boulder embedment: (a) plan view; and (b) elevation view (Dimension of 
excavated pit to scale, Dimension of boulder not to scale).
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As shown in Figure 1, this criterion is satisfied. Prior to each test, the extent of excavation was 
surveyed. Prior to boulder placement, an American Association of State Highway and Transportation 
Officials (AASHTO) uniformly graded coarse aggregate soil was placed into the excavated pit to 
the desired elevation in lifts of approximately 0.2 m and compacted using a tamping compactor to 
a density of not less than 90% maximum dry density in accordance with Test Method D6938-15 
(ASTM, 2015). The aggregate used was 2B gravel with a density of approximately 2100 kg/m3, a 
porosity of approximately 0.35, an elastic shear modulus of approximately 20 MPa, and a gradation 
in general accordance with AASHTO M147-65 specifications. The boulder was then lowered into 
the pit and centered for impact. Similar procedures were followed to backfill the pit with com-
pacted aggregates.

Test results

High-speed cameras were implemented during testing to record pertinent information, such as 
boulder translation, displacement and rotation, and global response of the system, which included 
truck behavior. Figure 2 shows where the high-speed cameras were located to record the motions 
of the truck and boulder immediately prior to and after the impact. Camera 1 was positioned at a 
90° angle to the center of the test article to measure dynamic penetration. Camera 2 was positioned 
at a 90° angle above the center of the test article to capture enough surface area prior to and after 
impact to determine impact speed, impact angle, exit angle, and debris field. Camera 3 was posi-
tioned behind the test article centered along the guidance rail to record the approach of the test 
vehicle to track its alignment with the center of the test article during impact. The distance from 
each camera to the center of the test article is summarized in Table 2. Each distance was used to 
calculate critical information from field-scale tests, including impact speed, angle of approach, 
truck dynamic penetration, and truck offset at impact.

Test 1 resulted in minimal movement (both translation and rotation) of the RW granite boulder. 
The front end of the truck rebounded after impact. Based on analysis of the high-speed video, the 
approach speed of the truck at impact was 52.3 km/h. Analysis of data from Camera 3 determined 
the centerline of the truck impacted the test article 14 cm to the left (to the side of Camera 1) of the 
critical impact point that was defined as the centerline of the boulder. Test 2 resulted in moderate 
boulder translation and rotation as well as soil upheaval behind the boulder during impact. From 
high-speed video analysis, the approach speed of the truck was 48.3 km/h and the center of the 
truck impacted 6.57 cm to the right of the center of the AB boulder. During Test 3 vehicle impact, 
the AB granite boulder translated and rotated out of the ground upon impact. The truck ramped 
over the flipped boulder and landed with the back axle sitting on top of the boulder. During this 
test, a malfunction of the high-speed video trigger resulted in recording post-test data and not the 
actual impact. Based on the stationary radar system (Stalker Speed Sensor (S3)), the approach 
speed at impact was 54.7 km/h. This system determines the test vehicle speed during the towing 
process using a stationary Doppler radar speed sensor operating at a frequency of 34.7 GHz and 
communicating through a RS-232 port (Stalker Traffic Technologies, 2014). Inspection after each 

Table 1. Summary of small-scale material testing on boulders.

Granite type Compressive 
strength (MPa)

Tensile 
strength (MPa)

Fracture toughness 
(MN/m1.5)

Split Hopkinson 
pressure bar (MPa)

Rockville White  45.2 ± 17.8  7.4 ± 0.8 1.5 ± 0.2 133.1
American Black 168.2 ± 38.6 13.8 ± 1.0 2.5 ± 0.3 180.0
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impact showed that none of the boulders showed any signs of fracture or cracking. Figure 3 shows 
the final position of the boulder and truck for each completed test. In particular, Figure 3(c) shows 
the truck override and boulder displacement due to the vehicle impact.

LS-DYNA model

The LS-DYNA research/commercial code (Hallquist, 2013; LSTC, 2006) was utilized to perform 
simulations to model the vehicular impact tests. In this section, the numerical model is first discussed, 
including a detailed description of SPH formulation as well as the constitutive model used, followed 
by a description of contact algorithms used within LS-DYNA to connect SPH particles to FEM 
segments.

Numerical model

Two numerical models of each field-scale test were created to compare their performance at 
capturing global response of the LVAR system when varying magnitudes of soil deformation 
occurred. The first model consisted solely of finite elements for the LVAR barrier and soil 
domain as shown in Figure 4(a), whereas the second model used a hybrid approach for modeling 
soil. In the near-field soil region, SPH particles were used, while solid finite elements were used 
in the far-field, as seen in Figure 4(b), to take advantage of SPH’s capabilities in modeling large 
deformations and FEM’s computational efficiency. Each model consisted of two parts:  
(1) medium-duty truck and (2) LVAR barrier consisting of a boulder embedded in soil.

The truck model used for the simulations was modified from a model readily available in the 
National Crash Analysis Center (NCAC) database (Mohan et al., 2003; National Crash Analysis 
Center (NCAC), 2008). The NCAC truck model was developed to ensure that the load transfer 

Figure 2. Location of high-speed video cameras in field-scale tests (not to scale).

Table 2. Distance from center of test article to each camera.

Camera 1 (m) Camera 2 (m) Camera 3 (m)

Test 1 20.55 15.94 32.31
Test 2 25.04  6.76 23.06
Test 3 20.57 15.77 30.56
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between the truck and hardware, the deformation of the truck, and the overall behavior of the truck 
during impact simulations would be as accurate as feasible, given model computational require-
ments. Based on requirements from ASTM F2656-07, the modified truck model consisted of 1606 

Figure 3. Final position of boulder and truck after impact for: (a) Test 1, (b) Test 2, and (c) Test 3.

Figure 4. LS-DYNA models: (a) FEM-only model and (b) hybrid FEM-SPH model.
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eight-node constant-stress solid elements, 20,333 four-node Belytschko-Tsay shell elements, and 
377 Hughes-Liu beam elements with cross-section integration. The truck model was validated as 
reported in Reese et al. (2014) using checks of equilibrium, conservation of energy principles, and 
the amount of energy absorption that occurred through plastic deformation of truck components 
when hitting a rigid wall.

Each LVAR device comprised of a single boulder embedded in compacted AASHTO soil as 
shown in Figure 4. Eight-node constant-stress cubic solid elements were used for the boulder in 
both of the models. The solid element size was 100 mm based on Reese et al. (2014). The soil 
domain, representing an AASHTO uniformly graded coarse aggregate, was modeled using two 
different approaches. In the FEM-only model, eight-node constant-stress solid elements were 
used and varied in size from 75 mm near the boulder to 250 mm at the exterior of the soil domain. 
A mesh convergence study was conducted in Reese et al. (2014) for the FEM-only model by 
changing the mesh size nearest the boulder and transitioning to the exterior the soil domain. The 
mesh distribution described previously resulted in convergence of the mesh (Reese et al., 2014). 
The hybrid approach used a combination of SPH particles near the boulder connected to eight-
node constant-stress solid elements in the far-field as seen in Figure 4(b). Based on SPH model 
parameters discussed in the subsequent sections, the size of the FEM elements (for the hybrid 
approach) were constant at 150 mm. Detailed discussion of SPH formulation and model param-
eters of the hybrid approach are presented in subsequent sections. The extent of the soil domain, 
based on embedment depth of the boulder, remained the same between models and can be seen 
in Figure 1 (Reese et al., 2014).

The size of the soil domain was selected to negate any boundary effects from reflected com-
pression waves that would interfere with the impact response. Normal translation of the exterior 
and bottom boundaries of the soil domain were the only constrained degrees of freedom. An 
investigation of the size of the soil domain, to negate any boundary effects, was conducted by 
changing the size of the soil domain (based on the embedment depth) and compares the barrier 
response for Test 1. Four domain sizes were investigated: 2D—½ embedment depth in the front 
and sides of the boulder and two times the embedment depth behind the boulder; 3D—one embed-
ment depth in the front and sides and three times the embedment depth behind the boulder; 4D—3/2 
embedment depth in the front and sides and four times the embedment depth behind the boulder; 
and 5D—two times the embedment depth on the sides and front of boulder and five times behind 
the boulder. The translational displacement of the top corner (furthest point from impact) of the 
boulder was monitored for convergence of the soil domain. Figure 5 shows displacement of the 
boulder while varying the soil domain. There was a 5.3 percent change when expanding the soil 
domain from 2D to 3D, a 6.4 percent change when expanding from 3D to 4D, and a 1.6 percent 
change when expanding from 4D to 5D. Therefore, based on this analysis, a soil domain of 3/2 
times the embedment depth around the front and sides of the boulder and four times the embed-
ment depth behind the boulder is used for all subsequent analyses.

SPH formulations for soil

SPH is a mesh-free, Langrangian, particle-based method developed by Lucy (1977) and Gingold 
and Monaghan (1977). In SPH simulations, the computational domain is discretized into a finite 
number of particles, each representing a certain volume and mass of the material (fluid or solid) 
and carrying field variables such as velocity, acceleration, density, and pressure/stress. Therefore, 
the SPH method is a continuum-scale numerical method. The material properties, Πh f x( ) , at any 
point x in the simulation domain are then calculated according to an interpolation process over its 
neighboring particles that are within its influence domain Ω through
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Figure 5. Effect of soil domain size on simulated boulder displacement for Test 1.

 Π
Ω

h f x f y W x y h dy( ) = ( ) −( )∫ ,  (1)

where W  is the smoothing kernel function, which is a weighting function and h  is the smoothing 
length that is a unit measure of the sub-domain of influence of function W . Figure 6 illustrates the 
underlying principle behind the interpolation process.

The kernel function W  is defined using a function θ  by the relation

 W x h
h x

x
d

,( ) =
( )

( )1
θ  (2)

where d is the number of space dimensions. It should be noted that W x h( , )  should be a centrally 
peaked function. The most common smoothing kernel is the cubic B-spline which is defined as
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where C is a constant of normalization that depends on the number of space dimensions.
LS-DYNA computes the initial smoothing length, h0 , for each SPH part by taking the maximum 

of the minimum distance between every particle. Every particle has its own smoothing length which 
varies in time according to the following equation

 
d

dt
h t h t( )  = ( )∇ ⋅υ  (4)

where h t( )  is the smoothing length and ∇⋅υ  is the divergence of flow. The smoothing length 
increases when particles separate from each other and reduces when the concentration of particles 

⩽

⩽ ⩽
⩾
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increases. It varies to keep the same number of particles in the neighborhood. The smoothing 
length varies between the minimum and maximum values

 HMIN h h t HMAX h× < ( ) < ×0 0  (5)

where HMIN  and HMAX  are scale factors for the smoothing length. The smoothing length has 
significant impacts on the overall numerical behavior (e.g. accuracy and efficiency). SPH particles 
interact with each other only if they are within each other’s influence domain; otherwise, they are 
independent from each other as shown in Figure 6. Therefore, larger smoothing length (i.e. larger 
influence domain) generally results in smoother or more continuous behavior as the SPH particles  
are more interdependent; whereas smaller smoothing length generally yields more discrete behaviors as 
the SPH particles are more independent from each other. Since the smoothing length is a function of 
the individual particle and time, the constant applied (i.e. κ  in Figure 6) to the smoothing length is 
an important parameter. Sakakibara et al. (2008) recommends using a smoothing constant of 1.05 
instead of the recommended value of 1.2 from LS-DYNA. This research compared FEM and SPH 
simulation of the same model and varied several different SPH parameters, including particle spacing, 
smoothing length constant, and effect of renormalization in an attempt to determine the most efficient 
and accurate combination of SPH parameters. These studies will be discussed later in this article.

Material properties
The LS-DYNA Material Type 173, “Mohr-Coulomb (M-C)” (Hallquist, 2013) was utilized to 
model the boulder and soil behavior in all the simulations. The M-C model was used to represent 
the soil and boulder due to its ability to effectively and simplistically capture impact conditions 
present in the field testing (Reese et al., 2014). The Mohr-Coulomb model characterizes failure of 
a material based on its cohesion, friction angle, and normal and shear stresses at a point as follows 
(Hallquist, 2013; LSTC, 2006)

 τ σ φmax tan= + ( )c n  (6)

where τmax  is the shear strength on any plane, σ n  is the normal stress on that plane, C is cohesion, 
and φ  is the friction angle. Model parameters for the boulder and soil were calibrated and validated 

Figure 6. Particle approximation based on kernel function W in influence domain Ω with radius kh.
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in Reese et al. (2014) and material properties are summarized in Table 3. Although different 
boulders were used in these three tests, the boulders behaved essentially as a rigid mass and, hence, 
the same boulder properties were used for all numerical simulations. This approach is justified by 
Reese et al. (2014).

FEM-SPH coupling

Both SPH and FEM formulations in LS-DYNA are based on the Lagrangian approach. Therefore, 
it is possible to link both methods at an interface. The interface ensures continuous coupling of the 
two methods. At the interface, the SPH particles are constrained and move with the elements. The 
influence domain of the particles at/near the interface zone, such as that of the particle i (see Figure 7), 
covers both the FE mesh and SPH particles and certain considerations are required in the computation. 
For strain and strain rate calculation of each particle, only those from the SPH particles within the 
influence domain are considered, whereas the contributions from both SPH particles and elements 
inside the influence domain are included to calculate forces (Johnson, 1994; LSTC, 2006).

LS-DYNA allows mesh-based and mesh-free techniques, such as SPH, to exist and interact in 
one simulation, thereby allowing users to take advantage of both procedures. The interaction or 
coupling between SPH particles and FEM elements can be defined using traditional tied- or penalty-
based contact definitions (Beal et al., 2013). Since there is no mesh connectivity for the SPH particles, 
it is imperative that only “nodes_to_surface” contact definitions are utilized in which SPH is always 
defined to be the slave node (ns) and finite elements are defined to be the master surface.

Tied-based contact consists of “tying” SPH slave nodes to FEM surfaces to connect the  
two domains. LS-DYNA ties translational degrees of freedom of nodes to a specified surface.  
The constraints are only imposed on the slave nodes, so the more coarsely meshed side of the 
interface should be the master surfaces (i.e. FEM) (LSTC, 2006). Ideally, each master node should 
coincide with a slave node to ensure complete displacement compatibility along the interface, but 
this is difficult, if not impossible, to achieve.

Penalty-based contact consists of placing normal interface springs, stiffness factor equal to ki , 
between all penetrating nodes and the contact surface. Standard penalty formulation was utilized 
for this study. In standard penalty formulation, the interface stiffness is chosen to be approximately 
the same order of magnitude as the stiffness of the interface element normal to the interface particle. 
In applying the penalty method, each slave node is checked for penetration through the master 
surface. If the slave node does not penetrate, contact force is not applied. If it does penetrate, the 
contact force is calculated based on the amount of penetration and contact stiffness, which is then 
applied to the slave node and contact point (LSTC, 2006).

The stiffness factor, ki , is determined in several ways including: the minimum of the master 
segment and slave node stiffness, the master segment stiffness, the slave node stiffness, or the 
area-/mass-weighted slave node value. Since the boundary between SPH particles and solid FEM 
segments is the same material with identical stiffness, a minimum of the master segment and slave 
node stiffness was used.

Table 3. Summary of boulder and soil parameters used in simulations.

Density  
(ton/mm3)

Elastic shear 
modulus (MPa)

Poisson’s 
ratio

Friction angle 
(degrees)

Cohesion 
(MPa)

Dilation angle 
(degrees)

Boulder 3.056 × 10−9 9480 0.25 37.8 18.3  0
Soil 2.1 × 10−9   20 0.25 45  0.0048 15
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Penalty-based automatic “nodes-to-surface” contact was used for each interface with SPH parti-
cles including: boulder and FEM soil domain. The contact between the boulder and SPH soil domain 
used a static and dynamic coefficient of friction of 0.414 determined by the friction angle of the 
AASHTO soil. The static and dynamic coefficient of friction for the SPH and FEM soil domain was 
1.0. Figure 7 displays the contact between the SPH nodes and the surface of the FE model. The SPH 
nodes are always the slave while the finite elements are always the master surface.

Model parameters

Several parameters affect the overall response of the near-field soil region simulated using SPH 
particles, including particle spacing, type of formulation, smoothing length, and size of the region. 
Small-scale SPH simulations were conducted to determine the particle spacing. The formulation 
type and smoothing length were determined from literature and discussed below. These small-scale 
SPH simulations were then compared to a model comprising Lagrangian finite elements to deter-
mine the accuracy of the SPH model. Lastly, Test 3 was used to determine the appropriate extent 
of the near-field SPH soil region needed to accurately predict the behavior resulting from large soil 
deformations exhibited in the field-scale test.

SPH particle spacing

Particle spacing plays an integral role in accurately predicting the overall response of the system 
as well as enhancing model computational efficiency. An increase in particle spacing decreases 
computational time but decreases model accuracy. It is generally recommended for a model to 
have densely packed SPH particles with a constant initial distance between them in all directions 
(Bojanowski, 2014; Bojanowski and Kulak, 2010; Kulak and Schwer, 2012). It is also recom-
mended for stability of the calculations to have at least four SPH particles per face of the 
Lagrangian element in contact with those SPH particles.

A small-scale numerical study was conducted to investigate the optimal SPH spacing for con-
tact between SPH and FEM domains. This small-scale study consisted of a confined compression 

Figure 7. Connection between SPH nodes and Lagrangian FE mesh.
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test of soil as shown in Figure 8. The test was simulated using two formulations: a FEM-only 
model where the top loading ram, confinement cylinder, base and soil were modeled using tradi-
tional FEM formulations, and a coupled FEM-SPH model where the soil was modeled using SPH 
formulations. Soil properties were from Reese et al. (2014). In the numerical simulations, the 
loading ram moved vertically and the displacement and reaction force from the soil were tracked. 
Element sizes of 18.4 and 25.4 mm were used for the FEM models and showed convergence as 
seen in Figure 9. Based on the larger element size, the SPH model was created using four SPH 
nodes per element side (a four-by-four configuration) as seen in Figure 8(b) and five nodes per 
element side (a five-by-five configuration) as shown in Figure 8(c). The simulated force versus 
displacement curves from the SPH is shown in Figure 9 for the four-by-four and five-by-five SPH 
arrangements. There is a good agreement and convergence between the FEM and the five-by-five 
SPH arrangement. The four-by-four arrangement did not converge with the FEM model, mostly 
likely due to the insufficient number of particles per FEM mesh. From this comparative analysis, 
a grid of five-by-five SPH particles was used where SPH particles were in contact with a FEM 
domain.

Figure 8. Plan and elevation view of small-scale confined compression test using: (a) finite elements: 
25.4 mm; (b) SPH particles: 4 × 4 configuration; and (c) SPH particles: 5 × 5 configuration.
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Figure 9. Force versus displacement for FEM and FEM-SPH models.

Formulation and smoothing length

There are several types of SPH formulations within LS-DYNA that determine particle approxima-
tion, including a default formulation and a renormalization approximation. Sakakibara et al. (2008) 
conducted analyses of the effects of changing formulation type while keeping the smoothing length 
constant. Based on the analysis using the default formulation, the particles at the boundary edge 
had lower stress due to a truncated boundary and reduced number of particles within each edge 
particle’s influence domain. To account for the issue of the FEM mesh truncating the influence 
domain of SPH particles in the vicinity of a FEM-SPH boundary, the renormalization technique 
readily available in LS-DYNA proved to correct the stress inaccuracies. Therefore, renormaliza-
tion approximation (FORM 1) was used for all SPH analyses in this study.

Smoothing length is another SPH parameter that directly affects the influence domain of the 
particles. The smoothing length constant can be varied between recommended values of 1.05 and 
1.3 within LS-DYNA. Comparisons of four different SPH models with increasing particle density 
were analyzed to see the effects of varying the smoothing length constant. Three smoothing lengths 
(1.05, 1.2 (default), and 1.3) were examined (Sakakibara et al., 2008). A smoothing length constant 
of 1.05 was found to be the most accurate in all models regardless of the particle density. In all 
cases, a higher smoothing length caused a weaker response of the model and material was less stiff. 
Based on this analysis, a smoothing length constant of 1.05 was used in all subsequent analyses.

Near-field SPH soil region

Based on the above parameters, the extent of the near-field SPH soil region was determined as a 
function of the embedment depth of the barrier based on observations seen for Test 3 and shown in 
Figure 3(c). Using an entire soil domain consisting of SPH would not be computationally efficient 
and Reese et al. (2014) showed regions of little soil disturbance could be accurately predicted using 
traditional FEM formulations. Therefore, three different near-field SPH soil domains, based on 
Test 3 as described in a previous section, were constructed based on a proportion of the embedment 
depth of the barrier (¼, ½, and ¾) as shown in Figure 10(a) to (c). The SPH regions were located 
around the boulder where large soil deformation was expected. Each model was compared to the 
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final boulder/truck position (Figure 3(c)) to determine the extent of the near-field SPH soil region 
that most accurately predicted the response. Figure 10(d) shows the final resting position of the 
truck and boulder for a SPH region extending ¼ of the embedment depth of the boulder. The com-
putational time for this analysis was 3 h 42 min. Figure 10(e) shows the corresponding plot for a 
SPH region equal to ½ of the embedment depth away from the boulder and its computational time 
was 5 h 44 min. Figure 10(f) shows the corresponding plot for a SPH region equal to ¾ of the 
embedment depth away from the boulder and its computational time was 12 h 8 min. Analyzing the 
distance the truck traveled past the boulder was used as a basis to determine which SPH soil 
domain size to use. By visual inspection, the ¼ embedment depth model does not accurately pre-
dict the final position of the truck ramping over the boulder. The boulder sticks to the bottom of the 
truck and digs into the FEM soil domain causing the truck to stop short of ramping entirely over 
the boulder. In the ½ embedment depth model, the truck traveled 2210 mm farther than the ¼ 
embedment depth model and more accurately predicts the final position of the truck. The ¾ embed-
ment depth model shows the truck traveled approximately 540 mm farther than the ½ embedment 
model. Both the ½ and ¾ embedment depth models capture the overall behavior of Test 3 with little 
quantitative difference in results, but a dramatic difference in computational efficiency. The ¾ 
embedment depth model takes over two times the computational time for little difference in results. 
Therefore, the ½ embedment depth model is used to represent the near-field SPH soil region.

Results and discussion

The final position of the truck after impact from Tests 1, 2, and 3 and snapshots of their respective 
LS-DYNA simulations using FEM-only and hybrid FEM-SPH formulations are shown in 

Figure 10. Extent of near-field SPH soil domain for Test 3: (a) ¼ embedment depth; (b) ½ embedment 
depth; (c) ¾ embedment depth; post impact condition for: (d) ¼ embedment depth; (e) ½ embedment 
depth; and (f) ¾ embedment depth.
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Figure 11. From this qualitative comparison, Test 1 showed a good agreement between the field-
scale test and both of the LS-DYNA models. Test 2 showed a similarly good agreement between 
the field-scale test and the LS-DYNA models, but the hybrid model showed slight truck ramping 
that was not present in the FEM model or the field-scale test. The largest qualitative difference 
between LS-DYNA models was for Test 3, shown in Figure 11(h) and (i). The traditional FEM 
model did not predict the overturn of the boulder and truck override while the hybrid model did 
predict the override, results that could lead to false confidence in a barrier meeting P1 (a penetra-
tion distance of less than 1 m) rating for a M30 impact based on FEM model prediction.

Figure 12 presents comparison between simulated boulder translational displacement (FEM and 
hybrid) versus time against test data taken from fiducial tracking of the boulder for Test 1. Figure 13 
shows the corresponding plot for boulder rotation. Both plots show a good agreement between the 
test and simulations. Figure 13 shows the FEM model accurately predicts boulder rotation; how-
ever, the hybrid model over-predicts the rotation in the late stages of impact. Nevertheless, Figures 12 
and 13 demonstrate that LS-DYNA adequately captured overall dynamic response of Test 1 with 
minimal boulder and soil movement using two different modeling techniques embedded within the 
program.

Figure 14 presents comparisons of boulder translation parallel to the impact direction for Test 2 
tracking fiducials from the field-scale test. Test 2 had moderate boulder and soil movement but the 
comparison of the FEM and hybrid simulations to the field data shows a good agreement. Both of 
the simulations over-predicted boulder translation. This may be due to using soil material properties 
taken from Test 1 even though this installation may have produced slightly different compaction 

Figure 11. Comparison of final impact condition of field-scale tests and LS-DYNA simulations: (a) Test 1, 
(b) FEM Test 1, (c) hybrid Test 1, (d) Test 2, (e) FEM Test 2, (f) hybrid Test 2, (g) Test 3, (h) FEM Test 3, 
and (i) hybrid Test 3.
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Figure 12. Center of gravity displacement for Test 1: field data, FEM, and hybrid model.

levels for the AASHTO soil. Figure 15 shows the corresponding plot for boulder rotation. The 
FEM simulation was able to capture boulder rotation during impact. The hybrid simulation was 
able to capture the boulder rotation up to a certain point and then predicts a larger final rotation of 
the system. Regardless of minor installation differences that could have influenced material prop-
erties for the compacted AASHTO fill, both LS-DYNA simulations were able to adequately cap-
ture overall dynamic response under vehicular impact.

Figure 13. Center of gravity rotation for Test 1: field data, FEM, and hybrid model.
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For Test 3, the high-speed cameras were not triggered prior to impact and, hence, high-speed 
video analysis was not available for boulder translation and rotation data. Instead, a qualitative 
analysis using images captured from a digital camera is presented as well as a comparison of the 
truck velocity from a low-resolution camera was used to compare Test 3 to FEM and hybrid 
numerical analyses. Figure 16 shows the qualitative comparison of the still images captured dur-
ing Test 3 compared to the two LS-DYNA simulations. From Figure 16(b), it can be seen that the 
FEM simulation under-predicted boulder translation and rotation, as well as truck ramping. This 
is most likely due to FEM being a grid-based formulation that has difficultly simulating large 

Figure 14. Center of gravity displacement for Test 2: field data, FEM, and hybrid model.

Figure 15. Center of gravity rotation for Test 2: field data, FEM, and hybrid model.



Reese et al. 95

deformations. On the other hand, the hybrid model predicts global response of the system, including 
boulder translation and rotation as well as truck ramping, relatively well as shown in Figure 16(c). 
The hybrid simulation did exhibit some boulder “sticking” underneath the truck which caused the 
boulder to drag after truck ramping. This “sticking” did not change the overall performance of the 
hybrid simulation.

Vehicular data were processed from a low-resolution hand-held camera for Test 3. The truck 
velocity in the direction of impact was analyzed and compared to the numerical simulations. Figure 17 
shows a screenshot from the video analysis program. Photron FASTCAM Analysis software was 
used to analyze the video data (Photron, 2014) based on a dimensional scale, stationary point, and 
tracking point shown in Figure 17. The length of the boulder was used as the dimensional scale for 
each frame to determine the movement of the tracking point from one frame to the next. A station-
ary point was needed because the hand-held camera had a lot of movement throughout the impact. 
The stationary point was used to calibrate the tracking point, which was a point on the side door of 
the truck, to remove any artificial movements of the camera during the filming process. The same 
point on the truck was used to compare the truck velocity in the FEM and hybrid analyses. Figure 18 
shows velocity versus time for the field-scale test, FEM simulation, and hybrid simulation. From 
this figure, it is clear that the FEM simulation is inaccurate and actually predicted the truck to stop 

Figure 16. Comparison of digital camera images and LS-DYNA simulations at different simulation time 
steps: (a) Test 3; (b) FEM model; and (c) hybrid model.
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at 0.42 s which was not the case in the field-scale test. The comparison between the field-scale test 
and the hybrid simulation shows good correlation. There is some error but this could be due to the 
quality of the video. For example, the truck shows an increase in velocity at certain points during 
impact which is physically impossible. Even with the poor quality video, the hybrid simulation 
predicts the truck behavior during impact.

From the above figures, it can be seen that there are advantages and disadvantages for both FEM 
and hybrid FEM-SPH modeling approaches. The obvious advantage of using a FEM formulation 
is its proven computational efficiency. However, if a model takes advantage of strategically placing 
more complex modeling techniques (i.e. SPH) in areas that are suspected to produce large defor-
mations, a model can be computationally optimized while producing more accurate results. In all 
three tests, the hybrid approach was able to accurately predict the global response of the system 
under a vehicular impact while the FEM-only model for Test 3 failed to predict the response due 
to the large deformation near the area of impact. Another advantage of using a hybrid modeling 

Figure 17. Video analysis of Test 3 showing length scale, stationary point, and tracking point.

Figure 18. Truck velocity in direction of impact for Test 3: field data, FEM, and hybrid model.
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approach is the ability to optimize the barriers, including size, weight, and embedment depth of the 
barrier, without the fear that the model is inaccurate. By optimizing the barrier, the economic ben-
efits are tremendous. The cost of the boulder will decrease as well as the need to have special 
equipment onsite during the installation phase. These cost savings may be small relative to a single 
barrier but when hundreds are being installed around the perimeter of a critical asset that small 
savings add up.

Conclusion

This article presents three field-scale tests conducted and used to rate the performance of LVAR 
barrier systems against M30 impacts. Each barrier consisted of a single boulder embedded in com-
pacted AASHTO aggregate. For each test, two LS-DYNA models were created to predict the 
global response of the system under vehicular impact. The first LS-DYNA model used traditional 
finite elements while the second model consisted of a hybrid FEM-SPH approach. Test 1 resulted 
in minimal boulder and soil movement; Test 2 resulted in moderate boulder and soil movement; 
and Test 3 resulted in excessive boulder rotation, large soil deformations, and truck override. For 
Tests 1 and 2, both the traditional FEM approach and the hybrid FEM-SPH approach were able to 
accurately match data collected from the field tests. However, for Test 3, the traditional FEM 
approach was not able to accurately predict global response of the system under vehicular impact. 
The hybrid approach was able to capture global response of the system including boulder rotation, 
soil upheaval, and truck override. This research suggests that a hybrid FEM-SPH approach is 
advantageous in simulating the field performance of embedded structures under impact loading 
involving large deformation of soil.

Several parameters were determined to help accurately predict global response of the system 
when implementing a hybrid FEM-SPH modeling approach. First, there needs to be at least five 
SPH particles per finite element length at all FEM-SPH boundaries. Second, the extent of near-
field SPH soil domain needs to be proportional to ½ the embedment depth of the boulder for ade-
quate computational efficiency and accuracy.
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