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Differential Spatial Gradients of Wheat Streak Mosaic Virus into Winter Wheat
from a Central Mite-Virus Source

Abby R. Stilwell,U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Raleigh, NC;
Donald C. Rundquist, School of Natural Resources, University of Nebraska–Lincoln;David B.Marx,Department of Statistics, University of
Nebraska–Lincoln; and Gary L. Hein,† Plant Health Program, University of Nebraska–Lincoln

Abstract

The wheat curl mite (WCM), Aceria tosichellaKeifer, transmits three po-
tentially devastating viruses to winter wheat. An increased understanding
of mite movement and subsequent virus spread through the landscape is
necessary to estimate the risk of epidemics by the virus in winter wheat.
Owing to the small size of WCMs, their dispersal via wind is hard to
monitor; however, the viruses they transmit produce symptoms that
can be detected with remote sensing. The objective of this study was to
characterize the spatial dispersal of the virus from a central mite-virus
source. Virus infection gradients were measured spatially by using aerial
remote sensing, ground measurements, geostatistics, and a geographic
information system between 2006 and 2009. The red edge position veg-
etation index as measured via aerial imagery was significantly correlated

with in-field biophysical measurements. The occurrence of virus symp-
toms extended differentially in all directions from mite-virus source
plots, and predictions from cokriging revealed an oval pattern surround-
ing the source but displaced to the southeast. The variable dispersal in dif-
ferent directions appeared to be influenced by the mite source density and
wind direction and speed, but temperature also seemed likely to have af-
fected mite spread. The spatial spread revealed in this study may be used
to estimate the potential sphere of influence of mite-infested volunteer
wheat in production fields. These risk parameter estimates require further
validation, but they may potentially aid growers in making better virus
management decisions regarding differential virus spread potential away
from a central source.

The wheat curl mite (WCM), Aceria tosichella Keifer, is a small
eriophyid mite (approximately 250 mm in length) that is widely dis-
tributed in North America (Oldfield 1970). The mite transmits three
viruses to wheat: wheat streak mosaic virus (WSMV), High Plains
wheat mosaic virus (Seifers et al. 1997), and Triticum mosaic virus
(Seifers et al. 2008). Although all three viruses are commonly found,
WSMV is the predominant mite-vectored virus in winter wheat in the
Great Plains (Burrows et al. 2009; Byamukama et al. 2013). This dis-
ease complex is potentially the most devastating disease of winter
wheat in the central Great Plains, and infections in individual fields
often result in complete crop failure (Wegulo et al. 2008).
Mites can only survive about 1 to 2 days off living plants when tem-

peratures are above about 25°C (Wosula et al. 2015); therefore, they
must exploit an alternate host to bridge the gap between wheat harvest
and emergence of the newly planted wheat in the fall (Connin 1956). In
the central Great Plains, the most important bridge host utilized by
mites is volunteer wheat that results when preharvest hail storms shatter
grain onto the ground, enabling it to germinate and grow rapidly (Sta-
ples and Allington 1956; Wegulo et al. 2008). As wheat approaches
maturity and harvest, mite populations are high, and volunteer wheat
emerging at this time is quickly infested with mites as they disperse
frommaturingwheat (McMechan andHein 2017; Staples andAllington
1956). Thus, the most important tool available for management of this
virus complex is the control of preharvest volunteer wheat that serves
as an excellent bridge host (Wegulo et al. 2008).
If this green bridge is not broken before fall planting, there is a high

risk that mites will move to the new wheat crop after it emerges and
subsequently transmit the virus. Throughout the fall, mites continue
to multiply and disperse from volunteer wheat, and the rate of virus
transmission within adjoining fields increases. The risk for serious

virus infection on winter wheat can be decreased by delayed planting
dates in the fall (Hunger et al. 1992; McMechan and Hein 2016;
Slykhuis et al. 1957; Staples and Allington 1956). Reduced risk with
shortened exposure periods through the fall (i.e., later planting dates)
also demonstrates that continuous mite movement and subsequent
virus transmission increasingly impacts disease spread and severity.
Alternately, spring infections result in much lower or often insignif-
icant virus impact (Hunger et al. 1992; Staples and Allington 1956;
Wosula et al. 2018). In the central Great Plains, virus symptom ex-
pression is minimal throughout the fall but rapidly increases in sever-
ity with the onset of warm temperatures (i.e., above 27°C) in the
spring (Hunger 2010; Wegulo et al. 2008). However, warmer fall
temperatures (e.g., during warmer falls or in more southern areas)
are likely to accelerate symptom development.
WCMs disperse on the wind; therefore, the risk of mite movement

and virus spread is dependent on the distance of the field from the
mite source population. Staples and Allington (1956) and Workneh
et al. (2009) sampled transects in a single direction away from a
source and described disease gradients across fields adjacent to mite
sources. Coutts et al. (2008), using transect sampling in two opposite
directions, identified differences in mite movement gradients with
greater mite movement in the prevailing wind direction. However,
in the Great Plains wind direction changes regularly with the move-
ment of weather fronts. The combination of regularly changing wind
direction and mite movement continuing through the fall creates the
potential for the extent of mite movement to change depending on the
direction from a source field; however, the extent and pattern of this
directional mite movement and virus spread have never been docu-
mented. To improve management of this virus complex, it is critical
to understand the potential spatial spread of mite movement sur-
rounding a mite-virus source field that accumulates through the fall,
thus impacting the resulting virus epidemic risk.
Owing to the small size ofWCMs, their movement is hard to quan-

tify; however, the viruses they transmit produce symptoms that can
be detected visually. WSMV interferes with chloroplast development
of systemically infected wheat (Brakke et al. 1988; White and Brakke
1983), and infection causes a disruption of pigments, macromolecules,
proteins, and nucleic acids in chloroplasts and a reduction of chloro-
phyll (Brakke et al. 1988). Initial symptoms of all WCM-vectored
viruses are similar and include yellow to light green streaking, spot-
ting, or mottling (De Wolf and Seifers 2008; Wegulo et al. 2008). In
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Nebraska, virus symptoms do not appear until temperatures rise in
April or May and rapidly become more intense to include stunting,
rosetting, and extreme chlorosis (Wegulo et al. 2008).
Remotely sensed changes in wheat resulting from WSMV infec-

tion have been demonstrated. Workneh et al. (2009) used a handheld
hyperspectral radiometer to determine virus infection severity and
developed a model to predict yield impacts based on the extent of vi-
rus symptoms (Workneh et al. 2017). The potential for separating and
classifying healthy and WSMV-infected wheat based on training
samples from satellite-collected reflectance data was demonstrated
by Mirik et al. (2011). Stilwell et al. (2013) used ground-based sens-
ing to demonstrate that the red edge position (REP) vegetation index
can be used effectively to detect WCM-vectored virus symptoms.
These studies document the potential for using remote sensing to de-
tect WCM-transmitted virus symptoms and to spatially quantify the
cumulative effect of mite movement and subsequent virus spread in
all directions from a mite source. However, it is important to recog-
nize that these studies did not focus on separating reflectance charac-
teristics from other potential stresses, and thus, they relied heavily
on ground-based validation of virus presence (Bravo et al. 2003;
Devadas et al. 2009; Mahlein 2016; Yuan et al. 2014).
A better understanding of the complete spatial pattern of mite

movement and virus spread from a mite source will enhance our abil-
ity to identify the sphere of influence across the landscape around
mite-virus source fields where risk of a virus epidemic is increased.
Whole field studies addressing virus spread would be impractical be-
cause they would risk large areas of adjoining cropland; therefore,
mite movement and virus spread into wheat were evaluated around
small, mite-infested plots established within commercial wheat
fields. The objectives of this study were to (i) establish a detailed spa-
tial pattern of WCM movement and WSMV spread surrounding a
central mite-virus source by using remote sensing to map the spatial
occurrence of virus symptoms, (ii) determine the effects of wind
speed and direction and mite density at the source on mite movement
and virus spread, and (iii) use the data generated in these small-plot
studies to make predictions of WSMV spread in wheat fields.

Materials and Methods
Study site. Stilwell et al. (2013) used proximal (ground-based)

sensors to establish a correlation between the REP vegetation index
and virus infection of wheat. The current study was conducted con-
currently at the same sites and builds on the data reported by Stilwell
et al. (2013), and many of the biophysical parameters on the ground
were measured similarly for both studies. However, this study in-
volved separate aerial-based hyperspectral remote sensing that en-
abled continuous spatial characterization of reflectance changes,
and it also included more intensive ground-based sampling.
To simulate natural volunteer wheat conditions, wheat was estab-

lished in two small plots (10 × 10 m) in the middle of a fallow wheat
field (approximately 10 ha) at the University of Nebraska’s High Plains
Agricultural Laboratory near Sidney, Nebraska, on 13 July 2006
(41°14¢06²N, 103°00¢33²W), 12 July 2007 (41°14¢16²N, 103°00¢
04²W), and 21 July 2008 (41°14¢21²N, 102°59¢57²W). The two
plots, a north and a south plot, were separated by at least 120 m each
year to avoid interference. Simulated volunteer wheat plots were
infested with field-collected WCMs on 10 August 2006, 14 August
2007, and 26 August 2008 as described by Stilwell et al. (2013).
A weather station (CR10X datalogger, Campbell Scientific,

Logan, UT) was placed in the middle of one volunteer source plot
in September of each year, and data were collected hourly to monitor
weather conditions during the fall mite movement period. Mean tem-
perature, wind speed, and wind direction were determined between
27 September and 30 November of each year. This encompassed
the period between wheat emergence and winter dormancy in west-
ern Nebraska, which is the period of primary concern for mite move-
ment and virus spread. The proportion of hours when wind speeds
were over 4.5 or over 9 m/s for each data set was calculated, and max-
imum wind speed and direction were determined.
A WSMV-susceptible wheat variety was planted surrounding the

volunteer plots on 20 September 2006 (cv. Goodstreak; 9.5 ha), 8

September 2007 (cv. Millennium; 12.7 ha), and 16 September
2008 (cv. Overland; 8.8 ha). Biophysical sampling of this wheat
was done at sampling points on concentric rings laid out at intervals
of 7.6 m from the plot center around each plot (Fig. 1). Sampling
points on these rings were located at each cardinal and ordinal direc-
tion from the plot as described by Stilwell et al. (2013). In the spring
of each year when visual symptoms were apparent, additional sam-
pling rings or partial rings were added between the primary rings
to more completely encompass the spatial pattern of the symptom
gradient (Fig. 1). The distance from the center of the source plot to
the farthest sampling points extended well beyond the spatial spread
of visible virus symptoms and varied between plots and years (2007
north, five rings out to 15.2 m; 2007 south, seven rings out to 22.9 m;
2008 north, seven rings out to 38.1 m; 2008 south, six rings out to
45.7 m; and 2009, eight rings out to 61.0 m). The density of sampling
points varied depending on the spread of virus, with a higher density
of sampling points located closer to the mite source plot when virus
spread was more limited. This increased the ability to characterize the
spatial relationship of symptom spread. Owing to a serious weed in-
festation present across much of one plot area, only one plot was uti-
lized in 2008–09. This enabled much more intensive sampling of the
remaining plot this year, and 128 additional sampling points were in-
terspersed within the original sampling pattern. All sampling points
in all years were georeferenced with submeter accuracy (Trimble
TSCe, Tripod Data Systems).
Mite sampling. Plants within volunteer wheat (mite source) plots

were sampled periodically (approximately 4 to 5 times) betweenmid-
August and mid-November to determine mite population density.
Twenty plants were randomly collected from each plot, and the num-
ber of mites per tiller was counted for all tillers of each plant in 2006
and for two randomly chosen tillers per plant in 2007 and 2008.Mean
number of mites per tiller in source plots was calculated for each date.
To measure mite movement from source plots into surrounding
wheat that accumulated throughout the fall, sampling of wheat plants
occurred late in the fall after the plants had entered dormancy and
temperatures were well below those conducive for mite activity.
Plant collections were made in 2006 (north, 5 December, n = 54;
south, 16 November, n = 92), 2007 (north, 15 November, n = 76;

Fig. 1. Spatial layout of sampling pattern surrounding the mite-virus source plots.
Location of the original sampling points (black) laid out in concentric rings with
points on the cardinal and ordinal directions, and sampling points (gray) where
additional relative chlorophyll and leaf area index measurements were taken.
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south 5 December, n = 76), and 2008 (8 December, n = 76). Using a
stereo microscope, mites were counted on three randomly selected
tillers from each of 10 plants that had been randomly collected within
an area of 0.5-m radius surrounding each sampling point.
Biophysical measurements. Measurements of relative chloro-

phyll, leaf area index (LAI), and virus incidence were taken during
the heading stages of wheat when virus symptoms were near their
peak. A Minolta SPAD-502 chlorophyll meter (Minolta Camera,
Osaka, Japan) was used to provide a unitless measure of relative
chlorophyll content. Chlorosis is highly associated with WCM-
vectored viruses (Brakke et al. 1988; Wegulo et al. 2008), and the
SPAD meter has proven to be an efficient tool for measuring chloro-
sis resulting fromWSMV infection (Byamukama et al. 2014; Kariya
et al. 1982; Yadava 1986).
Relative chlorophyll content was determined by averaging SPAD

readings taken from 20 different flag leaves within a 1-m2 area sur-
rounding each sample point. Each reading was taken at approxi-
mately one-third the distance from the base to the tip of each flag leaf.
Because plant stunting and spraddling are symptoms of severe

WSMV infection (Wegulo et al. 2008; Wosula et al. 2018), LAI
was determined by using an LAI-2000 Plant Canopy Analyzer
(Li-Cor, Lincoln, NE). For each LAI measurement, one above-canopy
reading was taken, and four below-canopy readings were made along
a diagonal transect between rows (30-cm row spacing).
In 2007, relative chlorophyll measurements were taken on 4 June,

and the majority of LAI measurements were taken on 1 and 4 June
(north, n = 43; south, n = 67); however, a few LAI measure-
ments were delayed by approximately 1 week owing to unfavorable
weather. In 2008, relative chlorophyll readings in both plots and
LAI measurements in the south plot were acquired between 3 and
6 June (north, n = 62; south, n = 70). LAI readings taken in the north
2008 plot were delayed by approximately 2 weeks owing to unfavor-
able weather conditions. In 2009, relative chlorophyll readings were
obtained between 18 and 19 June, and LAI readings were obtained
between 8 and 15 June (n = 216). Wheat was in the flowering stage
in 2007 and 2008 and late milk to early dough stage in 2009 when
data were collected.
Following the collection of relative chlorophyll and LAI data,

plant samples were collected to determine virus incidence. At each
sampling point, 10 wheat tillers were randomly selected, bagged,
returned to the laboratory, and frozen. Samples were collected on 8
June 2007 (north, n = 43; south, n = 67), between 4 and 6 June
2008 (north, n = 62; south, n = 70), and on 23 June 2009 (n = 76).
WSMV infection in each of the 10 sampled tillers at each sample site
was determined by using an enzyme-linked immunosorbent assay
(ELISA) as described by Byamukama et al. (2013). Absorbance of
each ELISA plate was read at 405 nm (MR 4000 Micro ELISA plate
reader; Dynatech Laboratories, Chantilly, VA). Plants were consid-
ered positive for WSMV when the mean absorbance of the replicate
samples was greater than two times the mean absorbance of negative
controls in the sample plate. The percentage of infected tillers at each
sampling point was determined.
Hyperspectral measurements. Hyperspectral images were col-

lected on 8 June 2007, 30 May 2008, and 22 June 2009. All images
were collected between 0830 and 1200 CST. Hyperspectral images
were acquired with an airborne AISA-Eagle hyperspectral sensor
(Spectral Imaging, Oulu, Finland) by the Center for Advanced
Land Management Information Technologies (University of
Nebraska–Lincoln). Images were collected with a single flight line
with ground speed of 220 km/h at an altitude of 1,158 m above
ground level (39.7° field of view). The AISA-Eagle collected
spectral data between 400 and 970 nm. The spectral resolution
was 2.9 nm, and the slit width was 30 mm. Images were acquired
at 1.0-m spatial resolution, corrected for atmospheric effects with
the Fast Line-of-Sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) software, and georectified with ENVI image
analysis software by using ground control points (ESRI 2006;
Matthew et al. 2003; Narumalani et al. 2009). Georectification was
performed by using the first-order polynomial method and resam-
pled using the nearest neighbor approach.

Data analysis. Stilwell et al. (2013) identified the REP vegetative
index as the best of several indices to identify WSMV symptoms in
wheat. REP (Guyot and Baret 1988) was calculated for each pixel of
each image by using the following equations:

REP = 700 + 40
rrededge − r700nm

r740nm − r700nm

rrededge =
r670nm + r780nm

2

where rx is the reflectance value at wavelength x.
Georeferenced sampling locations used for biophysical measure-

ments were located on the image, and REP values were recorded
for each sampling point. Pearson correlation coefficients among
the biophysical variables and REP were calculated for each data
set (SAS Institute 2002, PROC CORR).
It was possible to establish biophysical parameters at only a lim-

ited number of sites as described above, but remote sensing imagery
can provide continuous data across a landscape at 1-m resolution.
This imagery and its correlation with the ground-based biophysical
variables enable spatial interpolation based on the assumption that
objects that are close together tend to have greater correlation. Cokriging
is an interpolation method that calculates predictions for the
undersampled (primary) variable with the help of the oversampled
(secondary) variable to improve the accuracy of predicting values
at unsampled sites (Estrada-Peña 1999; Mutanga and Rugege
2006; Tarr et al. 2005; Van der Meer 1998). It utilizes a linear model
of coregionalization that makes use of both the spatial autocorrelation
in the primary variable and the cross-correlation between the primary
and secondary variables (Hudak et al. 2002). In remote sensing stud-
ies, the primary variable generally originates from field observations,
whereas the secondary variable is derived from remote sensing imag-
ery (Van der Meer 1998). Cokriging uses the semivariance to express
the degree of relationship between points. The semivariance is the av-
erage of the squared differences between all possible points spaced a
constant distance apart. When data are spatially correlated, the semi-
variance increases as points are compared with increasingly distant
locations.
Cokriging was applied with the Geospatial Analyst in ArcMap 9.2

(ESRI 2006) to develop a prediction map for each data set. To fit the
model, field observations were used for the primary variable, and re-
mote sensing imagery was used for the secondary variable. To deter-
mine if each of the variables exhibited a normal distribution, the
histogram and normal QQPlot, which compares the distribution of
the data to a standard normal distribution, were examined for each
of the data sets. A spherical model with a nugget component was
fit to the semivariogram. Lag size multiplied by the number of lags
was less than half the largest distance in the dataset (<61.3 m). The
partial sill and nugget values were set to default values because these
were already the optimal values.
We hypothesized that WCMmovement and virus symptoms were

directionally dependent and would display anisotropy in the cokrig-
ing model because mites disperse via wind. Geostatistical Analyst
was used to automatically calculate the optimal parameters to ac-
count for anisotropic influence. Each model was checked for anisot-
ropy, and the direction of anisotropy associated with each model was
determined.
Leave-one-out cross-validation was used to determine the accu-

racy of each model. In this cross-validation method, each point in
the sampling scheme was removed individually, and its value was
predicted by cokriging the remaining data (Tarr et al. 2005). The co-
efficients of determination (R2) for the cross-validation between each
biophysical variable and REP were calculated by regressing the val-
ues predicted by cokriging onto the measured values for each model
in each data set (SAS Institute 2002, PROC REG), and a P of 0.05
was used to determine significance.

Results
Study site. Average hourly wind direction and the percentage of

the total hours recorded at various wind speeds for each year and plot
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are listed in Table 1. The maximumwind speed was 14.9m/s in 2006,
15.7 m/s in 2007, and 17.8 m/s in 2008. The mean daily temperature
between 27 September and 30 November was 6.3°C in 2006, 7.8°C
in 2007, and 7.6°C in 2008. The mean number of mites per tiller in
the WCM source volunteer plots varied between years and between
plots (Table 2). The highest mite populations occurred in 2008–09
(17 October) followed by the 2006–07 south (12 October) and the
2007–08 north (11 October) plots.
Biophysical measurements. 2006–07. Spread of WCMs and sub-

sequent virus infection extended in all directions from the WCM
source plots (north and south) in the spring, but spread was limited
to a fewmeters. Even with limited spread, virus symptomswere more
visible south and east of the plots. The mite density in source plots
after wheat emerged was 41.4 mites per tiller in the north plot and
135.0 in the south plot (Table 2); however, a limited number of sam-
pling points were encompassed by virus spread, and we were unable
to statistically describe the spatial pattern of symptoms.
Correlation coefficients between REP and the biophysical vari-

ables in the 2006–07 data sets were not statistically significant. A
cokriging model could not be fit to any variable for either of the
2006–07 data sets, indicating no measurable spatial pattern. The
2006–07 data were not used in further analysis.
2007–08. A discernible pattern of virus symptoms with a severity

gradient extending in all directions was visible around the mite
source plots. Althoughmild chlorosis was noticeable in tillers located
further from the source plots, the majority of yellowing was observed
within 15 m of the source plot. Stunted plants were common close to
source plots, with severity decreasing with distance. Chlorosis and
stunting formed an obvious oval pattern surrounding the source plots,
and this oval was displaced to the southeast. Chlorosis was more vis-
ible in the north plot than in the south plot.
The mean number of mites per tiller, the percentage of tillers

infested in the fall of 2007, and the mean percentage of tillers infected
with WSMV in the spring of 2008 were highest near the WCM
source plots in each data set and decreased with distance. Mite den-
sity in the source plots following wheat emergence varied consider-
ably, from 98.8 mites per tiller in the north plot down to 27.6 mites
per tiller in the south plot (Table 2). Relative chlorophyll readings
generally were in the 40s for healthy plants, whereas plants with se-
vere virus symptoms generally had readings near or below 30. Indi-
vidual SPAD readings ranged from 25 to 48.2 in the north plot and
28.2 to 47.9 in the south plot. LAI values ranged from 0.97 to 4.07
in the north plot and 1.7 to 3.9 in the south plot. LAI was significantly
correlated with relative chlorophyll in the south plot but did not have
a significant relationship with any of the other biophysical variables
(Table 3). This can be attributed to the limited range of LAI values.

Significant correlation coefficients among the biophysical variables
ranged from 0.37 to 0.82 in the north plot and from 0.34 to 0.84 in
the south plot (Table 3).
2008–09. Significant virus symptoms were observed surround-

ing the source plot. Plants closest to the source plot were severely
chlorotic, and chlorosis continued to be visible approximately 30
to 38 m from the source plot. Symptoms appeared to be distributed
in an oval pattern surrounding the source plots that was displaced
to the southeast.
Mean values for biophysical parameters associated with mite

movement (mean mites per tiller and percentage of tillers infested)
in the fall of 2008 and virus symptoms in the spring of 2009 (percent-
age of tillers infected withWSMV, relative chlorophyll, and LAI) de-
creased with distance from the WCM source plot. Mite density in the
fall following wheat emergence was the highest of any plots and av-
eraged 232.2 mites per tiller (Table 2). Individual SPAD readings
ranged from 10.6 to 44.7, and LAI values ranged from 0.72 to
4.16. Correlation coefficients among the biophysical variables were
much higher than in 2007–08 and ranged from 0.49 to 0.84 (Table 3).
Hyperspectral measurements. All of the biophysical variables

for each plot were significantly correlated to REP (Table 3). Relative
chlorophyll values and LAI increased with increasing REP values;
however, mites per tiller, percentage of tillers infested with mites,
and percentage of tillers infected with virus decreased with increas-
ing REP. The lowest correlation coefficients for REP occurred in
the 2007–08 south plot (range: 0.37 to 0.84), which also had the low-
est symptom severity.
Cokriging. REP was spatially correlated with percentage of virus

infection and relative chlorophyll values in all three plots according
to the semivariance. REP was spatially correlated with LAI and per-
centage of tillers infested with mites in the 2007–08 north and
2008–09 plots. Because these variables were spatially correlated,
it was possible to fit a model between REP and these variables by
using cokriging.
The coefficients of determination (R2) for the cross-validation be-

tween each biophysical variable and the REP vegetation index were
higher for percentage of virus infection than for relative chlorophyll
values for the 2007–08 plots (Table 4). The R2 was higher for relative
chlorophyll values (R2 = 0.82) than percentage of virus infection
(R2 = 0.74) in the 2008–09 plot. Because of the importance in deter-
mining the extent of WCMmovement and subsequent WSMV spread
from the source plots, percentage of virus infection was determined to
be the most useful primary variable to utilize in the cokriging model.
By using percentage of virus infection as the primary variable in cok-
riging, a prediction map was created that displayed the spatial pattern
associated with specific classes of virus infection.

Table 1. Average hourly wind direction and percentage of hours at various wind speeds during the fall mite movement period (27 September to 30 November)
and degree of anisotropy associated with each cokriging model

Year

Mean hourly wind direction (percentage of hours at specified wind speed)

Degree of anisotropy
Wind speed >0 m/s

(0 to 17.8 m/s)
Wind speed ‡4.5 m/s

(4.5 to 17.8 m/s)
Wind speed ‡9 m/s
(9.0 to 17.8 m/s)

2006–07 231.1° (100%) 261.4° (30.5%) 313.0° (1.9%) –

2007–08 260.6° (100%) 290.0° (33.8%) 323.5° (4.4%) North: 333.7°
South: 334.2°

2008–09 237.7° (100%) 270.1° (33.5%) 312.0° (6.8%) 319.2°

Table 2. Mean number of wheat curl mites per wheat tiller in source volunteer plots through the fall (mean ± SE)

Date

Number of wheat curl mites per tiller in mite source plots

2006–07 north 2006–07 south 2007–08 north 2007–08 south 2008–09

Date 1 73.1 ± 10.5 (24 Aug) 19.8 ± 3.1 (24 Aug) 10.6 ± 2.8 (16 Aug) 4.4 ± 1.4 (16 Aug) –

Date 2 – – 22.5 ± 3.7 (30 Aug) 10.8 ± 2.1 (30 Aug) 26.3 ± 5.7 (3 Sept)
Date 3 24.4 ± 2.9 (8 Sept) – 82.6 ± 8.8 (14 Sept) 74.3 ± 12.5 (14 Sept) 76.2 ± 11.5 (16 Sept)
Date 4a 23.6 ± 2.2 (27 Sept) 48.1 ± 6.0 (27 Sept) 92.1 ± 20.6 (26 Sept) 30.0 ± 6.8 (26 Sept) 149.0 ± 18.4 (30 Sept)
Date 5 59.2 ± 10.3 (12 Oct) 221.9 ± 27.8 (12 Oct) 105.4 ± 21.3 (11 Oct) 25.3 ± 4.3 (11 Oct) 315.4 ± 31.8 (17 Oct)

aWheat surrounding the mite source plot had emerged prior to mite sampling on date 4.
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The geographic information system utilized to perform cokriging
allowed up to three secondary variables to be utilized. Therefore,
cokriging was used to determine if R2 could be increased by utilizing
percentage of virus infection as the primary variable and both the
REP index and relative chlorophyll readings as secondary variables.
The addition of relative chlorophyll values as a secondary variable
did not greatly affect R2 in the 2007–08 data (north, R2 = 0.56; south,
R2 = 0.43) because relative chlorophyll values were not oversampled
compared with percentage of virus infection that year. However, R2

increased from 0.74 to 0.78 and the root mean square error was re-
duced by 7.8% (from 17.28 to 15.93) by adding relative chlorophyll
values as a secondary variable in 2008–09. The additional sampling
locations where only relative chlorophyll values were measured in
2008–09 may have effectively resulted in an increased R2 for the
model between percentage of virus infection and REP index. In
2007–08, the same number of samples were collected for virus infec-
tion determination and relative chlorophyll. To remain consistent
when developing models across data sets, cokriging models were de-
veloped for each data set by utilizing percentage of virus infection as
the primary variable and the REP index and relative chlorophyll val-
ues as the secondary variables.
The histogram and normal QQPlot were normally distributed for

each of the three data sets. Lag size and lag number were 6.4 and
12 (2007–08 north plot), 7.7 and 10 (2007–08 south plot), and 7.4
and 12 (2008–09 plot), respectively. The partial sill and nugget de-
fault values were 699.0 and 202.2 for the 2007–08 north plot,
548.7, and 291.0 for the 2007–08 south plot, and 1,284.5 and 57.1
for the 2008–09 plot, respectively. The major range resulting from
anisotropic effects in the data sets was 48.3 for the 2007–08 north
plot, 75.9 for the 2007–08 south plot, and 62.5 for the 2008–09 plot.
The direction of anisotropy was similar for all three data sets
(Table 1).
The predicted variables determined by cokriging were classified

into four classes based on virus incidence (0 to 25, 25 to 50, 50 to
75, and 75 to 100%). The spatial patterns of virus spread predicted
by cokriging are displayed for each data set (Fig. 2). In each map,
cokriging predicted the highest percentage of virus infection to be
closest to the plots, with virus incidence decreasing with distance
from the source plot. The maps displayed a generally oval-shaped
pattern of virus spread that was displaced to the southeast for each
data set. These observations were consistent with the degree of

anisotropy in the associated models as well as visible virus symptoms
observed in the field.

Discussion
The REP indices calculated from the airborne hyperspectral sensor

data were found to be effective in evaluating WSMV spread. The
REP indices correlated with biophysical variables associated with
symptoms ofWCM-vectored viruses, and these data enabled the pro-
duction of cokriged prediction maps of the spatial pattern of virus
spread surrounding a central mite-virus source. The reflectance rela-
tionships with biophysical variables calculated in this aerial-based
study were comparable but slightly lower than previous relationships
from proximal data from Stilwell et al. (2013). However, aerial data
provided continuous 1-m spatial resolution across the dispersal plots.
Small differences between proximal and aerial reflectance data may
be attributed to atmospheric effects on aerial data, resulting in a rel-
atively uniform reduction in reflectance across the visible spectrum
and more effective absorption as well as scattering in the near-
infrared region.
The detailed resolution from the airborne sensors enabled quanti-

fication of the spatial structure of mite movement and virus spread
surrounding a central mite-virus source. There have been reports
on WSMV symptom gradients, but these studies have been limited
to transects extending in a single or at most two directions from
the source (Coutts et al. 2008; Workneh et al. 2009). Because we
evaluated virus spread in the spring after symptoms were at their
peak, the distribution of symptoms represents the spread of virus
for the season. Previous work has indicated that virus infection

Table 3. Degree of association (correlation coefficient, r) between biophysical variables, the red edge position (REP) vegetation index, and distance from the
center of the mite source plot for each data set (P < 0.05)a

Site

Correlation coefficient (r)

REP RC LAI % virus infection Mites per tiller % tillers infested

2007–08 north
RC 0.80 (n = 61) –

LAI 0.76 (n = 62) 0.60b (n = 62) –

% virus infection –0.71 (n = 61) –0.69b (n = 61) –0.59b (n = 61) –

Mites per tiller –0.50 (n = 43) –0.42 (n = 42) NS 0.45 (n = 41) –

% tillers infested –0.82 (n = 43) –0.62 (n = 43) –0.55 (n = 43) 0.70 (n = 43) 0.82 (n = 41) –

Distance 0.67 (n = 63) 0.49 (n = 61) 0.61 (n = 62) –0.68 (n = 61) –0.37 (n = 43) –0.62 (n = 43)
2007–08 south
RC 0.84 (n = 70) –

LAI 0.37 (n = 70) 0.34b (n = 70) –

% virus infection –0.58 (n = 70) –0.56b (n = 70) NSb –

Mites per tiller –0.69 (n = 52) –0.64 (n = 52) NS 0.56 (n = 52) –

% tillers infested –0.76 (n = 53) –0.72 (n = 53) NS 0.69 (n = 53) 0.80 (n = 52) –

Distance 0.37 (n = 70) 0.45 (n = 70) NS –0.56 (n = 70) –0.36 (n = 52) –0.59 (n = 53)
2009-09
RC 0.79 (n = 215) –

LAI 0.81 (n = 211) 0.66 (n = 210) –

% virus infection –0.72 (n = 74) –0.82 (n = 74) –0.71 (n = 73) –

Mites per tiller –0.49 (n = 76) –0.64 (n = 76) –0.51 (n = 76) 0.60 (n = 74) –

% tillers infested –0.72 (n = 76) –0.84 (n = 76) –0.70 (n = 75) 0.82 (n = 74) 0.83 (n = 76) –

Distance 0.73 (n = 76) 0.82 (n = 76) 0.69 (n = 75) –0.77 (n = 74) –0.50 (n = 76) –0.71 (n = 76)

a RC = relative chlorophyll; LAI = leaf area index; and NS = not significant.
b From Stilwell et al. (2013).

Table 4. Coefficients of determination (R2) for the cross-validation between
each biophysical variable and the red edge position vegetation index (P <
0.001)

Biophysical variable

Coefficients of determination (R2)

2007–08 north 2007–08 south 2008–09

% virus infection 0.56 (n = 61) 0.42 (n = 70) 0.74 (n = 74)
Chlorophyll 0.37 (n = 61) 0.30 (n = 70) 0.82 (n = 215)
Leaf area index 0.66 (n = 62) –a 0.76 (n = 211)
% tillers infested 0.22 (n = 43) –a 0.71 (n = 76)

a Variable could not be modeled with cokriging owing to lack of spatial
correlation.
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originating in the fall before winter dormancy has the greatest impact
on wheat (Hunger et al. 1992; Wosula et al. 2018). In all plots, the
cumulative virus spread indicated that mites moved the virus to some
degree in all directions. This would be expected from varying wind
directions occurring through the fall mite movement period.
Even though virus spread was seen to occur in all directions, both

visible symptoms in the field and predictions by cokriging showed
virus symptoms extended further to the southeast of the source plots.
The degree of anisotropy for the cokriged plots was approximately
from the northwest (319 to 334°; Table 1). However, mean hourly
wind direction was from the west to southwest (231 to 261°) during
the fall mite movement period (Table 1). Predominant winds in the
region come from both the northwest and south/southeast; therefore,
it is logical that the average wind direction would be between these
two directions (i.e., southwest). The average direction of winds over
9 m/s during the fall ranged from 312° to 323°, and this was close to
the degree of anisotropy seen in the cokriged plots, 319° to 334°
(Table 1). In addition, the percentage of hours with wind speeds
greater than 9 m/s was highest for the plots with greatest dispersal
(2008–09) and much lower for the plots where dispersal was limited
(2006–07; Table 1). This pattern of virus spread that is more preva-
lent in the direction of the highest wind speeds indicates that WCMs
disperse more readily when wind speeds are higher. In the central
high plains of the United States, strong northwesterly winds are asso-
ciated with high-pressure systems (i.e., increased barometric pres-
sure) and more clear weather conditions. These conditions would
be more favorable for mites to move and establish on new hosts.
An association between dispersal and rising barometric pressure
has been demonstrated for twospotted spider mites (Li andMargolies
1994) and could be a factor in WCM dispersal.
Mite dispersal in the fall is not visually apparent, and expression of

symptoms caused by virus transmission in the fall is generally
delayed until temperatures rise in the spring (Wegulo et al. 2008;
Wosula et al. 2017). Even though primary mite infestation in the fall
was not clear visually, mite infestation (percentage of infested tillers)
correlated with most virus-associated symptoms (i.e., relative chloro-
phyll, LAI, and percentage of virus infection) in the spring (Table 3).
However, mites per tiller was not spatially correlated with REP for
any plot. This was likely owing to high variability involved in sam-
pling mites, and greater sampling effort would be needed to better
evaluate this relationship. However, percentage of tillers infested
with mites was spatially correlated with REP for some plots
(Table 4). When virus spread outside the mite source plot was great-
est (2008–09), the relationship between percentage of tillers infested
with mites and REP was comparable to the other three biophysical
variables, even though percentage of tillers infested with mites was
not sampled as intensively as with relative chlorophyll and LAI
(Table 4).Thomas and Hein (2003) indicated that WCM movement
and subsequent WSMV spread were dependent on the mite density
of the source. In the current study, densities of WCMs in the source

plots were significantly different between plots (Table 2), and
the highest mite density coincided with the greatest virus spread
(2008–09). However, this was not always the case, because mite dis-
persal was considerably limited in 2006–07, even with moderate mite
densities. These results demonstrate that other factors are also
important.
Lower velocity winds occurring in 2006–07were noted earlier, but

one additional factor that may have limited spread was lower fall tem-
peratures. The mean daily fall temperature was lowest in 2006 com-
pared with 2007 and 2008. Temperature is an important factor that
influences the abundance and activity of virus vectors and viruses
in plants (Thresh 1976) and WSMV specifically (Wosula et al.
2017). Cooler temperatures during fall months of this studymay have
limited WCM movement and subsequent virus development in
2006–07. Thus, the spatial relationship of mite movement and virus
spread likely is influenced by multiple important factors, including
wind direction and speed, mite density at the source, and fall temper-
atures. Accurate predictions of spread must account for these factors.
Prediction of the sphere of influence that establishes virus risk sur-

rounding a mite-virus source is critical to optimal management of this
virus complex. Full-field-scale experiments involving the release of
virus-infected mites would be difficult and impractical owing to po-
tential impacts on wheat in the surrounding agroecosystem. How-
ever, the results of this small-plot study were utilized to estimate
the potential spatial spread of WCMs and subsequent virus spread
at the whole-field scale. For example, if the small mite-virus source
plots (10 × 10 m) used in this study were increased to 32.4 ha (80
acres; 569 × 569m) and the source population ofWCMs and weather
conditions were similar to those in 2008–09, we can estimate the
distance of spread using Figure 2. Using comparative ratios (10/x =
569/y, where x is the distance value estimate from Figure 2 and y is
the estimated distance of spread at the larger scale), we can predict
the spatial spread of mites and virus.
Assuming WCM movement under these conditions would prog-

ress in a linear fashion as the mite-virus source increases in size,
movement in the southeast direction would potentially result in the
following: 75 to 100% of tillers infected 1.4 km from the center of
the source field, 50 to 75% of tillers infected 2.2 km from the center
of the source field, and 25 to 50% of tillers infected 3.3 km from the
center of the source field. The validity of the assumption that a linear
increase with increasing scale for this relationship would occur is dif-
ficult to establish. However, mite movement is extremely difficult to
measure, and this provides an estimate of potential distance and spa-
tial structure of virus spread from a central mite-virus source. Based
on numerous observations made during epidemic occurrences in the
field, these estimates appear reasonable; however, future efforts to
track virus presence on a larger scale may enable validation of these
virus spread estimates in naturally occurring epidemic situations.
It is clear from this study that the sphere of influence (virus in-

fection risk) surrounding a mite-virus source field extends in all

Fig. 2. Spatial spread of different infection classes surrounding each of the wheat curl mite source plots as predicted by cokriging: A, 2007–08 north; B, 2007–08 south; and C,
2008–09.
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directions, but it extends further in the direction of the highest winds.
Risk parameters established from these distance estimates could be
used by wheat growers to evaluate and predict the potential sphere
of influence for mite source fields (e.g., volunteer wheat). This infor-
mation can be used to improve management decisions, such as prior-
itizing control of preharvest volunteer wheat or use of virus-resistant
wheat varieties in areas of highest risk.
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