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Abstract
Understanding	factors	that	 influence	observation	processes	 is	critical	 for	accurate	
assessment	of	underlying	ecological	processes.	When	indirect	methods	of	detection,	
such	as	environmental	DNA,	are	used	to	determine	species	presence,	additional	lev-
els	of	uncertainty	 from	observation	processes	need	to	be	accounted	for.	We	con-
ducted	a	field	trial	to	evaluate	observation	processes	of	a	terrestrial	invasive	species	
(wild	pigs‐	Sus scrofa)	from	DNA	in	water	bodies.	We	used	a	multi‐scale	occupancy	
analysis	to	estimate	different	levels	of	observation	processes	(detection,	p):	the	prob-
ability	DNA	is	available	per	sample	(θ),	the	probability	of	capturing	DNA	per	extrac-
tion	(γ),	and	the	probability	of	amplification	per	qPCR	run	(δ).	We	selected	four	sites	
for	each	of	three	water	body	types	and	collected	10	samples	per	water	body	during	
two	months	(September	and	October	2016)	in	central	Texas.	Our	methodology	can	
be	used	to	guide	sampling	adaptively	to	minimize	costs	while	improving	inference	of	
species	distributions.	Using	a	 removal	 sampling	approach	was	more	efficient	 than	
pooling	samples	and	was	unbiased.	Availability	of	DNA	varied	by	month,	was	consid-
erably	higher	when	water	pH	was	near	neutral,	and	was	higher	in	ephemeral	streams	
relative	to	wildlife	guzzlers	and	ponds.	To	achieve	a	cumulative	detection	probability	
>90%	(including	availability,	capture,	and	amplification),	future	studies	should	collect	
20	water	samples	per	site,	conduct	at	least	two	extractions	per	sample,	and	conduct	
five	qPCR	replicates	per	extraction.	Accounting	for	multiple	levels	of	uncertainty	of	
observation	processes	improved	estimation	of	the	ecological	processes	and	provided	
guidance	for	future	sampling	designs.

K E Y W O R D S

detection,	environmental	DNA,	invasive	species,	monitoring,	multi‐scale	occupancy,	Sus scrofa

1  | INTRODUC TION

A	primary	challenge	to	understanding	ecological	processes	and	the	
patterns	they	produce	(e.g.,	survival,	abundance,	distribution)	is	that	

they	are	rarely,	if	ever,	observed	perfectly.	Understanding	variation	
in	the	ability	to	detect	a	target	species	in	the	wild	is	necessary	for	dis-
entangling	the	noise	in	observation	processes	(i.e.,	detection)	from	
the	signal	of	ecological	processes	of	 interest.	The	need	to	account	
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for	observation	processes	 is	well	 recognized	 in	ecology,	and	many	
factors	 are	 known	 to	 impact	 these	 processes	 including	 observer	
error	 (Nichols,	 Hines,	 Sauer,	 Fallon,	 &	 Heglund,	 2000),	 environ-
mental	 conditions	 (Simons,	Alldredge,	Pollock,	&	Wettroth,	 2007),	
detection	method	 (Digby,	Towsey,	Bell,	&	Teal,	2013),	 and	 species	
behavior	(Diefenbach,	Marshall,	Mattice,	&	Brauning,	2007).	In	mo-
lecular	ecology,	there	are	additional	 levels	of	uncertainty	 in	obser-
vation	processes	dealing	not	just	with	species	availability	and	human	
observation	error	but	also	with	DNA	availability	and	assay	specific-
ity	and	sensitivity	(Willoughby,	Wijayawardena,	Sundaram,	Swihart,	
&	DeWoody,	2016).	To	effectively	use	molecular	techniques	to	make	
inference	to	underlying	ecological	processes,	it	is	necessary	to	eval-
uate	and	account	for	the	various	levels	of	uncertainty	in	observation	
processes	 (Bohmann	 et	al.,	 2014;	 Hunter	 et	al.,	 2015;	 McClintock	
et	al.,	 2010;	Spear,	Groves,	Williams,	&	Waits,	2015).	Because	 the	
sources	of	error	for	genetic	methods	span	multiple	levels	of	biolog-
ical	 organization,	 the	 overall	 error	 structure	 should	 be	 hierarchi-
cal—that	is	total	error	should	be	equivalent	to	a	series	of	conditional	
probabilities.

Detection	rates	of	individuals	in	the	field	may	be	influenced	by	
vegetation	or	weather	conditions	such	as	dense	foliage	or	rain	that	
create	visual	obstructions,	or	road	or	stream	noise	that	cause	audi-
tory	disturbance,	or	 time	of	day	or	 season	 that	may	cause	behav-
ioral	differences	 in	detection	 rates	 (Christy,	Yackel	Adams,	Rodda,	
Savidge,	&	Tyrrell,	2010;	Farnsworth	et	al.,	2002).	Observation	pro-
cesses	for	molecular	tools	are	unique	because	there	are	additional	
levels	of	observation	(e.g.,	availability	of	DNA,	DNA	capture	rate,	and	
amplification	success).	Environmental	conditions	(pH,	temperature,	
substrate,	etc.)	may	strongly	influence	the	observation	processes	at	
these	 different	 levels.	 Incorrectly	 accounting	 for	multi‐level	 influ-
ences	could	lead	to	biases	in	estimates	of	the	underlying	ecological	
process	(Gu	&	Swihart,	2004).	It	is	possible	to	get	unbiased	estimates	
of	the	cumulative	detection	process	without	accounting	for	the	dif-
ferent	levels	of	uncertainty	(Schmidt,	Kéry,	Ursenbacher,	Hyman,	&	
Collins,	2013).	However,	identifying	the	observational	processes	by	
level	allows	for	the	optimization	of	sampling	effort	to	increase	over-
all	detection	probability.	Thus,	an	understanding	of	both	the	factors	
affecting	observation	as	well	as	the	 level	they	act	on	 is	critical	for	
accurately	 quantifying	 ecological	 processes	 such	 as	 species	 distri-
bution	(invasive	or	endangered)	or	pathogen	spread	using	molecular	
methods	such	as	environmental	DNA	 (eDNA;	DNA	collected	from	
the	environment	rather	than	directly	from	a	target	species).

Detection	 of	 a	 target	 species’	 eDNA	 from	 water	 bodies	 is	
emerging	 as	 a	 potentially	 valuable	 method	 to	 infer	 the	 distribu-
tion	of	species	and	pathogens	(Bohmann	et	al.,	2014;	Hunter	et	al.,	
2015;	Takahara,	Minamoto,	&	Doi,	2013).	Efforts	have	been	largely	
focused	 on	 aquatic	 and	 semi‐aquatic	 species	 such	 as	 amphibians	
(Biggs	et	al.,	2015;	Pilliod,	Goldberg,	Arkle,	&	Waits,	2013;	Schmidt	
et	al.,	2013),	reptiles	(Hunter	et	al.,	2015;	Piaggio	et	al.,	2014),	inver-
tebrates	(Doi	et	al.,	2017;	Thomsen	et	al.,	2012),	and	fish	(Takahara	
et	al.,	2013;	Thomsen	et	al.,	2012).	As	more	recent	work	has	applied	
eDNA	detections	in	water	bodies	to	terrestrial	mammals	(Rodgers	&	
Mock,	2015;	Ushio	et	al.,	2017;	Williams,	Huyvaert,	&	Piaggio,	2017),	

the	method	could	be	especially	useful	for	detecting	new	invasions	
of	terrestrial	species	 in	the	early	stages.	To	maximize	the	utility	of	
eDNA	 in	understanding	 landscape‐level	 ecological	 processes	 (e.g.,	
occupancy,	distribution),	 it	 is	 important	 to	determine	 the	observa-
tion	processes	(i.e.,	detection	rates)	at	many	levels	(Willoughby	et	al.,	
2016)	 that	may	 influence	 the	 probability	 of	 detecting	DNA	 in	 the	
environment.	Once	cells	 are	 shed,	 abiotic	 and	biotic	 factors	begin	
to	degrade	DNA	(Barnes	&	Turner,	2016).	Previous	work	has	shown	
that	 the	 influence	of	microbial	communities,	 temperature,	pH,	UV,	
and	other	environmental	factors	will	impact	the	availability	of	DNA	
in	the	environment	(Barnes	&	Turner,	2016)	and	therefore	should	be	
accounted	for	when	assessing	the	detection	probability	of	eDNA.

Occupancy	 models	 (MacKenzie	 et	al.,	 2006)	 are	 well	 suited	 for	
quantifying	species	distributions	 in	space	and	time	while	accounting	
for	levels	of	uncertainty	across	observation	processes,	and	have	been	
used	to	assess	species	presence	through	eDNA	(Hunter	et	al.,	2015;	
Schmelzle	&	Kinziger,	2016;	Schmidt	et	al.,	2013;	Valentini	et	al.,	2016).	
When	using	eDNA	as	a	passive	detection	method,	there	is	the	added	
complexity	 over	 a	 classical	 occupancy	 model	 because,	 even	 when	
the	species	of	interest	is	present,	the	DNA	in	a	given	sample	may	not	
be	present	 (Furlan,	Gleeson,	Hardy,	&	Duncan,	2016;	Williams	et	al.,	
2017).	Therefore,	the	detection	process	(p)	of	a	species	by	eDNA	can	
be	split	into	three	levels:	the	probability	that	DNA	is	present	and	can	
be	detected,	“available”,	in	the	water	sample	(θ),	the	probability	of	cap-
turing	DNA	in	an	extraction	procedure	 (γ)	given	 it	 is	available	 in	 the	
sample,	and	the	probability	of	amplifying	DNA	in	a	qPCR	run	(δ) given 
it	has	been	captured	in	an	extract.	Separating	these	probabilities	allows	
evaluation	of	factors	that	influence	observation	of	DNA	across	each	of	
these	levels	as	well	as	their	influence	on	overall	detection	probability.	
By	separating	the	observation	process	out	in	this	manner,	we	can	iden-
tify	the	level	that	will	improve	the	most	by	increased	sampling	and	thus	
ensure	resources	are	optimally	allocated.	Enhancing	overall	detection	
probability	will	result	in	better	inference	of	underlying	ecological	pro-
cesses	using	this	approach	for	the	detection	of	cryptic	(Bickford	et	al.,	
2007)	or	elusive	(Rogala	et	al.,	2011)	species.

We	sampled	for	eDNA	of	wild	pigs	(Sus scrofa),	an	invasive	terres-
trial	species	in	North	America	and	other	parts	of	the	world.	They	are	
capable	of	rapid	geographic	expansion	(Snow,	Jarzyna,	&	VerCauteren,	
2017)	and	cause	high	levels	of	damage	to	ecosystems	and	the	econ-
omy	 (Anderson,	 Slootmaker,	 Harper,	 Holderieath,	 &	 Shwiff,	 2016;	
Chavarria,	Lopez,	Bowser,	&	Silvy,	2007;	West,	Cooper,	&	Armstrong,	
2009).	Because	they	are	reliant	on	water	bodies	for	drinking	and	wal-
lowing,	 and	 their	 distribution	 and	 densities	 vary	widely,	 they	 are	 a	
good	model	system	for	evaluating	the	potential	application	of	eDNA	
for	assessing	the	presence	of	terrestrial	species,	understanding	spatial	
expansion	of	invasive	species,	and	developing	protocols	for	monitor-
ing	the	effectiveness	of	invasive	species	control	programs.	As	elimina-
tion	programs	for	wild	pigs	occur	in	many	countries	across	the	globe,	
there	is	great	need	for	cost‐effective	methods	for	evaluating	success	
and	guiding	decisions	(Hone,	1983;	Korn	&	Bomford,	1996;	Saunders	
&	 Bryant,	 1988).	 Further,	 in	 areas	 without	 wild	 pigs,	 the	 ability	 to	
evaluate	reports	of	sightings	or	sign	 is	critical	 to	 implementation	of	
early	control	measures	that	could	curb	the	establishment	of	a	newly	
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invasive	population.	Environmental	DNA	is	a	promising	tool	to	aid	in	
these	monitoring	efforts	because	 it	has	 the	potential	 to	be	an	effi-
cient	field	method	(Williams	et	al.,	2017).	Yet,	application	of	eDNA	in	
terrestrial	species	is	currently	limited	by	a	poor	understanding	of	the	
observation	processes	and	inferences	of	ecological	processes.

Our	objectives	were	to:	(a)	examine	factors	that	influence	obser-
vation	processes	across	several	levels:	availability	of	eDNA	in	water	
sampling,	 the	 capture	 rate	 of	DNA	 in	 the	 extraction	 process,	 and	
the	 amplification	 probability	 during	 qPCR,	 (b)	 evaluate	 our	 ability	
to	correctly	assess	target	species	presence	at	sampling	sites	given	
our	 observation	process,	 and	 (c)	 develop	 an	 adaptive	 approach	 to	
eDNA	collection	and	analysis	to	balance	field	and	laboratory	effort	
for	efficiency.	By	accounting	for	multiple	levels	of	uncertainty	in	the	
observation	 process,	 we	 aim	 to	 improve	 estimation	 of	 ecological	
processes	 and	provide	guidance	 for	 future	 sampling	designs	using	
eDNA	for	detection	of	a	target	species.

2  | METHODS

2.1 | Study area

One	way	to	understand	the	detection	probability	of	a	method,	such	as	
eDNA,	is	to	evaluate	the	ability	to	detect	a	target	species	in	a	setting	
where	the	species	is	known	to	be	present.	Typically,	the	presence	or	
absence	of	a	species	is	of	primary	interest	and	the	detection	probabil-
ity	is	often	thought	of	as	a	nuisance	parameter	that	must	be	accounted	
for	 to	 obtain	 unbiased	 estimates	 of	 species	 occupancy	 (MacKenzie	
et	al.,	2002).	However,	to	get	precise	estimates	of	detection	probabil-
ity	based	on	the	detection	method	alone,	we	can	reframe	the	prob-
lem	 to	 eliminate	 the	 “nuisance”	 parameter	 of	 occupancy	 probability	
(MacKenzie	et	al.,	2006)	by	sampling	 in	an	area	where	 the	presence	
of	the	species	is	known.	This	allows	for	the	assessment	of	factors	that	
might	 influence	detection	 such	as	 environmental	 (abiotic	 and	biotic)	
factors	or	laboratory	processes.

Our	study	was	conducted	at	Camp	Bullis	Training	Site	(112.9	km2),	
in	 northern	 Bexar	 County,	 Texas,	 USA	 operated	 by	 Joint	 Base	 San	
Antonio	(Figure	1).	Camp	Bullis	is	a	restricted	access	property	with	pe-
rimeter	fencing	and	high	densities	of	pigs.	This	property	is	located	in	
the	Edwards	Plateau	ecoregion	of	the	south‐central	semi‐arid	prairies	
of	Texas	(Bailey,	1980,	1998).	Vegetation	is	primarily	comprised	of	an	
oak	woodland	and	grassland	matrix	(Wills,	2006).	Topography	consists	
of	rolling	hills	with	limestone	outcrops,	rocky	soils,	and	caves	typical	
of	the	Edwards	Plateau	(Kastning,	1983).	Semi‐ephemeral	streams	and	
pools	fluctuate	throughout	the	year,	usually	peaking	during	the	wet-
test	month	of	May.	Camp	Bullis	reports	that	>140	guzzlers	are	scat-
tered	throughout	the	property	as	catchments	of	rainwater	for	wildlife,	
although	not	all	of	these	guzzlers	are	maintained	and	hold	water.

2.2 | Cameras

Remote	 cameras	 (Reconyx®	 PC900,	 Holmen,	 WI,	 USA)	 were	
mounted	on	trees	overlooking	the	focal	sampling	sites	(water	bodies)	

where	 obvious	 sign	 of	 animal	 visitation	 had	 occurred	 (e.g.,	 tracks,	
trails,	 or	 scat).	Cameras	were	mounted	≤10	m	 from	 the	water	 and	
were	programed	to	record	motion‐activated	images.	Upon	motion,	
the	 cameras	 took	 three	 photos	 that	were	 30	s	 apart,	 followed	 by	
a	quiet	period	of	15	min.	The	memory	cards	and	batteries	of	cam-
eras	were	 refreshed	 once	 per	month,	 and	 the	 camera	 positioning	
adjusted	depending	on	water	 level.	From	the	camera	 trap	data	 lo-
cated	at	each	water	body	at	the	time	of	sampling,	we	recorded:	the	
number	of	hours	since	the	last	pig	visit	to	the	water	body;	the	num-
ber	of	 images	 in	 the	 last	day,	week,	and	month	with	pigs;	and	 the	
average	group	size	of	pigs	in	pictures	with	pigs	using	the	Colorado	
Parks	and	Wildlife	Photo	Database	(v3.0)	for	image	processing	(Ivan	
&	Newkirk,	2016).	These	data	were	collected	to	help	us	assess	our	
ability	to	successfully	collect	wild	pig	eDNA	after	a	documented	visi-
tation	to	the	site.

2.3 | Field eDNA collection

Previous	 studies	 some	 of	 us	 developed	 (Williams,	 Huyvaert,	 &	
Piaggio,	 2016;	Williams,	 Huyvaert,	 Vercauteren,	 Davis,	 &	 Piaggio,	
2018;	Williams	et	al.,	2017)	a	method	for	detecting	pig	DNA	in	water.	
Typically,	wild	 pigs	 use	 smaller	 bodies	 of	water	 or	 edges	of	water	

F I G U R E  1  Map	of	study	area,	Camp	Bullis,	Texas.	Sampling	
locations	are	shown	as	colored	circles	(pond‐yellow,	stream‐green,	
and	wildlife	guzzler‐black)
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bodies.	The	activity	of	pigs	and	the	nature	of	the	water	bodies	they	
use	mean	 that	 the	 target	water	 bodies	 are	often	 very	 turbid	with	
high	 degree	 of	 suspended	 sediment	 and	 floating	 debris.	 Thus,	we	
specifically	 tested	methods	 for	capturing	DNA	from	such	systems	
(Williams	et	al.,	2017).	Further,	to	meet	our	agency’s	goal	of	detect-
ing	wild	pigs,	we	had	some	practical	considerations	to	build	into	our	
method	 development:	 (a)	 our	 field	 personnel	 could	 not	 transport	
extra	equipment	such	as	filters,	(b)	field	personnel	did	not	have	time	
to	conduct	filtering	of	samples	in	the	field,	(c)	field	samples	could	not	
require	a	cold	chain	for	field	preservation,	and	(d)	samples	collected	
had	 to	be	made	 small	 and	 light.	 Thus,	 the	 collection	 implemented	
in	this	study	reflects	these	practical	considerations	as	incorporated	
into	the	optimized	collection	and	lab	assay	we	developed	for	wild	pig	
detection	(Williams	et	al.,	2016,	2017,	2018).

We	selected	12	sites	within	Camp	Bullis	 for	water	sample	col-
lection	(Figure	1).	We	stratified	the	sites	by	three	water	body	types	
(natural	 ponds,	 streams,	 and	 wildlife	 guzzlers).	 We	 randomly	 se-
lected	four	sites	from	each	of	three	water	body	types:	natural	ponds,	
stream	(broken	 into	100	m	segments),	and	wildlife	guzzlers.	Water	
samples	were	collected	once	a	month	for	2	months	(September	and	
October	 2016).	We	 focused	 on	 this	 time	 period	 to	 avoid	 camera	
damage	 (i.e.,	March–May)	 associated	with	 spring	 flooding	 and	be-
cause	our	access	was	restricted	to	some	of	the	sites	during	hunting	
season	(i.e.,	November–December).

Each	sampling	event	consisted	of	taking	10	water	samples	from	
each	of	12	sites.	Sampling	was	evenly	spaced	in	wildlife	guzzlers,	
and	 spread	 around	ponds	 and	 along	 streams.	The	goal	 of	 taking	
multiple	samples	was	to	get	a	diverse	selection	of	water	from	the	
site	to	maximize	the	chance	that	the	samples	would	contain	wild	
pig	DNA	and	overcome	the	heterogeneous	distribution	of	eDNA	
in	 the	 environment	 (Furlan	 et	al.,	 2016).	 Samples	were	 collected	
by	submerging	a	60	ml	Nalgene	bottle	ten	centimeters	below	the	
surface	of	the	water	(when	possible)	until	the	bottle	was	filled	to	a	
line	marked	on	the	bottle	at	45	ml.	Then,	15	ml	of	Longmire’s	lysis	
buffer	was	added	to	the	sample	 (1	part	Longmire’s:	3	parts	sam-
ple	water	as	in	Williams	et	al.,	2016).	With	the	collection	of	each	
sample,	our	intent	was	to	collect	as	little	sediment	as	possible	to	
avoid	colloidally	bound	DNA	that	may	not	have	been	shed	recently	
(Barnes	et	al.,	2014).	A	negative	control	 (15	ml	 tap	water	carried	
by	 sampler	 with	 5	ml	 of	 Longmires	 buffer	 added)	 was	 collected	
during	each	sampling	session	at	each	site.	Gloves	were	worn	at	all	
times	while	sampling	and	were	changed	between	sites.	Collectors	
were	 instructed	not	 to	walk	 in	 the	water	body	 to	avoid	contam-
ination	between	sites.	Each	bottle	was	 labeled	with	a	unique	 ID	
relating	to	site,	field	replicate	number,	and	date	collected.	The	lo-
cality	 information,	 number	 of	 samples,	 type	 of	 water	 body	 (i.e.,	
wallow,	moving,	 artificial	 waterer/tank,	 other),	 approximation	 of	
size	 of	 water	 body	 (i.e.,	 small	 (<10	m2),	 medium	 (10–1,000	m2),	
large	(>1,000	m2)),	pH,	approximation	of	depth	where	the	sample	
was	collected	(cm),	if	it	was	collected	along	a	transect	or	randomly,	
and	whether	 there	was	 evidence	of	 pig	 activity	 in	 the	 area	 (i.e.,	
tracks,	rooting,	wallowing)	were	all	recorded	as	site‐level	charac-
teristics.	 Samples	 were	 stored	 in	 a	 box	 at	 ambient	 temperature	

until	being	shipped	to	the	United	State	Department	of	Agriculture	
(USDA)	 Animal	 and	 Plant	 Health	 Inspection	 Service	 (APHIS)	
National	Wildlife	Research	Center	 (NWRC)	within	a	week	of	col-
lection.	 Once	 received	 at	 NWRC,	 the	 samples	were	 placed	 in	 a	
−80°C	freezer	until	further	processing.

2.4 | eDNA capture, extraction, and amplification

We	 compared	 two	 strategies	 for	 our	 extraction	 and	 amplification	
procedures.	For	the	first	procedure,	we	followed	protocols	that	rec-
ommend	pooling	 samples	by	 site	 (Biggs	et	al.,	 2015)	 and	 conduct-
ing	three	extractions	from	the	pooled	sample	(Piaggio	et	al.,	2014).	
From	each	extraction,	we	ran	five	qPCR	replicates	before	inhibitor	
removal	and	5	qPCR	replicates	after	inhibitor	removal	(Figure	2;	de-
tails	 on	 inhibitor	 removal	 below).	 This	method	was	more	 efficient	
for	laboratory	work;	however,	it	produced	few	positive	water	sam-
ples	 despite	 camera	 data	 showing	 pigs	 at	 sampled	 water	 bodies.	
We	suspected	that	pooling	all	10	samples	from	each	site	diluted	the	
DNA	below	detectable	 levels.	 Therefore,	 for	 our	 second	 strategy,	
we	examined	the	10	samples	by	site	separately	and	conducted	two	
extractions	per	 sample.	From	each	extraction,	we	 ran	 three	qPCR	
replicates	before	inhibitor	removal	and	three	qPCR	replicates	after	
inhibitor	removal	 (Figure	2).	Therefore,	each	 individual	sample	was	
split	in	half,	with	one	half	being	pooled	by	site	and	the	second	half	
being	treated	separately.

The	 analyses	 of	 the	 separate	water	 samples	 by	 site	 increased	
the	detection	probability	substantially	(see	results)	but	proved	bur-
densome	for	laboratory	personnel	and	resources.	Therefore,	for	the	
second	month	(October),	we	compared	the	amplification	for	pooled	
samples	 as	 in	 the	 previous	month,	 but	we	 additionally	 used	 a	 re-
moval	sampling	approach	on	the	separate	samples	to	reduce	labo-
ratory	costs.	For	the	removal	sampling	approach,	we	analyzed	one	
water	sample	at	a	time	(conducting	two	extractions	per	sample	and	
three	qPCR	replicates	per	extraction),	per	site	and	stopped	once	a	
positive	detection	occurred.	For	each	sample,	we	proceeded	as	for	
the	standard	sampling	design	in	which	we	took	two	extractions	per	
sample	and	ran	six	qPCR	replicates	per	extraction	(three	pre‐inhibi-
tor	removal	and	three	post‐inhibitor	removal).

Each	field	sample	for	both	months	had	a	total	volume	of	60	ml	
(45	ml	 sample	 water	+	15	ml	 Longmires	=	60	ml).	 Therefore,	 30	ml	
from	each	 of	 the	 field	 samples	were	 pooled	 and	30	ml	were	 kept	
separate.	Each	extraction	for	both	pooled	and	separate	samples	was	
conducted	on	15	ml	subsamples.	We	conducted	three	extractions	of	
15mls	from	our	pooled	water	samples	and	two	extractions	of	15	ml	
for	our	separate	samples.

We	followed	an	optimized	eDNA	extraction	protocol	for	detect-
ing	wild	pig	DNA	in	turbid	waters	(Williams	et	al.,	2017).	Briefly,	this	
involved	centrifuging	each	15	ml	subsample	at	9,000	g	for	15	min	at	
room	temperature,	extracting	DNA	from	the	pellet	with	the	DNeasy	
mericon	Food	Kit	(Qiagen)	in	triplicate.	We	included	a	negative	con-
trol	in	each	set	of	extractions	to	monitor	for	contamination.

The	number	of	qPCR	replicates	varied	by	month	for	pooled	sam-
ples	 (first	month	of	study:	 five	 replicates,	 second	and	 third	month	
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of	 study:	 six	 replicates)	 and	were	conducted	on	a	CFX96	 (BioRad)	
following	Williams	et	al.	(2017).	Each	qPCR	reaction	was	a	30	μl re-
action.	Each	 reaction	contained	15	μl	Taqman	environmental	mas-
termix	 (Life	Technology),	1	μl	BSA,	6	μl	distilled	water,	1	μl	of	each	
primer	(10	μmol/L),	1	μl	of	the	probe	(2.5	μmol/L),	and	5	μl	of	tem-
plate	 DNA.	 Amplificarions	 were	 performed	 on	 a	 Biorad	 real‐time	
PCR	thermocycler	(Biorad,	Hercules,	CA,	USA).	The	real‐time	ther-
mocycling	was	a	single	cycle	for	10	min	at	95°C,	then	50	cycles	of	
95°C	 for	 15	s,	 and	 a	 final	 extension	 of	 1	min	 at	 52°C.	A	 standard	
curve	was	 run	 in	 triplicate	with	each	 run	using	dilutions	of	 a	 syn-
thetic	sequence	of	our	target	amplicon	(gBlocks®	Gene	Fragments,	
IDT).	We	included	three	negative	controls	with	each	qPCR	reaction	
and	also	attempted	amplification	from	extraction	and	field‐collected	
negative	controls	to	monitor	for	contamination.

For	analysis	of	each	of	the	10	samples	per	site	(no	pooling),	we	
performed	two	extractions	per	sample	(15	ml	each)	for	September	
and	October	with	 three	 qPCR	 technical	 replicates	 per	 extraction.	
Further,	 each	 extraction,	 from	 both	 pooled	 and	 individual	 water	
samples,	 was	 amplified	 with	 qPCR	 before	 and	 after	 OneStep	
Inhibitor	Removal	kit	(Zymo	Research)	to	determine	the	influence	of	
removing	inhibitors.	All	instruments	and	bench	tops	were	decontam-
inated	after	each	run	with	10%	bleach	and	all	steps	associated	with	
pre‐PCR,	 PCR,	 and	 post‐PCR	were	 conducted	 in	 different	 labora-
tory	rooms,	each	dedicated	to	the	processing	of	low	quality/quantity	
DNA.	Our	assay	was	sensitive	enough	to	detect	down	to	1	copy/μl 
of	DNA	(LOD—limit	of	detection).	DNA	extracts	may	be	heteroge-
neous	in	the	distribution	of	DNA	and	since	only	5	μl	out	of	the	150	μl 
elution	 of	 extract	 is	 used,	 we	 may	 not	 have	 transferred	 enough	

template	DNA	 to	be	 successfully	 amplified	 successfully.	 Inhibitors	
are	humic	substances	that	may	be	coextracted	with	DNA	and	inter-
fere	with	downstream	processing	(PCR),	and	are	therefore	can	affect	
the	probability	that	PCR	will	be	successful	(Matheson,	Gurney,	Esau,	
&	Lehto,	2010;	McKee,	Spear,	&	Pierson,	2015).

2.5 | Analytical methods

To	estimate	the	presence	of	wild	pig	DNA	at	each	level	of	sampling,	
we	 adopted	 the	 multi‐scale	 occupancy	 framework	 developed	 by	
Nichols	et	al.	 (2008)	and	was	first	proposed	for	use	with	eDNA	by	
Schmidt	 et	al.	 (2013)	 to	 include	multiple	 levels	 in	 the	 observation	
process	to	the	classic	occupancy	model	(Figure	2;	MacKenzie	et	al.,	
2002,	2006).	When	using	eDNA	to	detect	a	species,	we	considered	
the	 following	 levels	 of	 the	 observation	 process	 (Figure	2):	 (a)	 the	
sampling	 process	 level	 which	 describes	 the	 probability	 that	 DNA	
of	the	study	species	is	available	for	detection	at	the	sample	level,	j, 
given	that	the	species	is	present	at	site	i (θij),	(b)	the	capture	process	
level	which	describes	the	probability	DNA	is	captured	at	the	extrac-
tion	level,	k,	given	DNA	is	in	sample	j (γijk),	and	(c)	the	amplification	
process	level	which	describes	probability	of	amplification	in	a	qPCR	
assay,	 l,	 of	 the	 sample	given	DNA	 is	 captured	 in	extraction	k (δijkl; 
Kendall	&	White,	2009;	Schmidt	et	al.,	2013).	The	multi‐level	occu-
pancy	model	can	be	written	as	a	series	of	Bernoulli	random	variables	
such	that	zi	represents	the	true	presence/absence	status	of	the	spe-
cies	of	interest	at	site	i; aij	is	the	availability	status	of	the	DNA	in	sam-
ple	j	given	the	species	is	present	at	site	i; dijk	is	the	capture	status	of	
DNA	in	extraction	k,	of	sample	j,	at	site	i;	and	yijkl	is	the	amplification	

F I G U R E  2  Schematic	showing	the	different	levels	of	uncertainty.	On	the	right	hand	side	is	the	classic	two‐level	occupancy	model	
structure	(MacKenzie	et	al.,	2002)	with	the	occupancy	of	the	species	at	the	site	level	(ψ i)	and	the	overall	detection	probability	by	sample	“j”	
at	site	“i”	(pij).	On	the	left,	the	detection	probability	is	split	into	different	levels	(similar	to:	Schmidt	et	al.,	2013):	availability	of	DNA	by	sample	
(θij)	given	pigs	are	at	the	site,	capture	rate	of	DNA	by	extraction	(γijk)	given	DNA	was	available	in	the	sample,	and	amplification	probability	by	
qPCR	replicate	(δijkl)	given	DNA	was	captured	in	the	extraction.	Covariates	are	shown	by	the	level	they	are	modeled	on
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status	of	the	qPCR	assay,	l,	given	DNA	is	present	at	site	i,	available	in	
sample	j,	and	captured	in	extraction	k.

 

 

 

Since	we	knew	the	true	occupancy	status	at	all	of	our	sites	was	
1	(confirmed	by	camera	data	and	pig	sign	at	all	sites),	we	fixed	the	
top	level	(�i=1)	and	conducted	a	three‐level	multi‐scale	occupancy	
analysis	(Nichols	et	al.,	2008)	to	parse	out	the	variability	associated	
at	 the	 levels	 of	 water	 samples,	 extractions,	 and	 qPCR	 replicates.	
Detection	 data	 include	 only	 detections	 (y	=	1)	 and	 non‐detections	
(y	=	0).	To	estimate	each	parameter	in	the	three	level	model,	we	need	
replication	at	each	 level	 in	 the	hierarchy	 (θij, γijk,	δijkl).	We	only	had	
replicates	at	each	level	in	the	months	where	we	kept	the	water	sam-
ples	separate,	thus	only	data	from	months	2	and	3	were	used	in	this	
analysis.

For	 the	 multi‐scale	 analysis,	 we	 examined	 the	 potential	 re-
lationship	 of	DNA	 availability	 and	 the	 pH	of	 the	water,	 the	water	
body	 type	 (i.e.,	 wildlife	 guzzler,	 pond,	 and	 stream),	 and	 the	water	
sample	depth	(all	of	these	were	site‐level	characteristics;	Figure	2).	
Additionally,	we	allowed	availability	to	vary	by	month.	The	only	fac-
tor	we	examined	on	the	capture	rate	by	extraction	was	the	inhibitor	
removal	treatment.	In	addition,	we	had	several	covariates	from	the	
camera	data	that	we	thought	might	predict	DNA	availability	by	sam-
ple	including:	hours	since	last	pig	visited	the	water	body,	the	number	
of	pictures	with	pigs	within	the	last	month,	and	the	average	group	
size	when	pigs	visited	the	water	body.	We	examined	DNA	availability	
both	with	and	without	the	camera	data.	The	camera	data	were	used	
to	provide	a	better	understanding	of	 the	biological	processes	 that	
relate	to	DNA	availability.

We	used	the	three	level	multi‐scale	occupancy	model	to	under-
stand	which	factors	influence	the	observation	processes	at	differ-
ent	 levels,	 satisfying	 our	 first	 objective.	 By	 better	 understanding	
the	observation	process,	we	should	be	better	able	to	evaluate	the	
biological	state	of	interest	(i.e.,	occupancy	of	the	species).	Our	sec-
ond	objective	was	 to	determine	whether	we	could	accurately	 as-
sess	the	status	of	animal	presence	in	an	area	with	known	wild	pig	
populations.	 Therefore,	we	 used	 a	 standard	 two‐level	 occupancy	
model	(classic	occupancy)	where	the	detection	parameter	(pij here) 
is	the	product	of	the	DNA	availability	probability	by	sample	(θij),	the	
capture	probability	by	extraction	 (γijk),	and	the	DNA	amplification	
probability	 (δijkl);	 the	 species	 detection	 status	 is	 given	 by	wij.	We	
used	 the	 information	 gained	 regarding	 important	 covariates	 from	
the	three‐level,	multi‐scale	analysis	to	inform	the	detection	process	
in	this	analysis.

For	 the	classical	occupancy	analysis,	we	condensed	 the	detec-
tion	data	such	that	if	any	qPCR	replicate	in	any	extraction	had	a	de-
tection,	the	detection	history	would	be	a	1,	otherwise,	it	would	be	
a	0.	We	used	the	pre‐	and	post‐	inhibitor	removal	treatment	periods	
as	our	two	detection	occasions.	We	used	this	approach	to	compare	
occupancy	 estimates	 between	 pooled	 and	 separate	 samples	 and	
among	months.

Our	third	objective	was	to	evaluate	the	power	to	correctly	detect	
animal	presence	under	different	conditions	and	provide	guidance	on	
eDNA	sampling	design	that	would	be	most	reliable	and	efficient	in	
the	 field	 and	 laboratory.	We	 used	 estimates	 from	 the	multi‐scale	
occupancy	 analysis	 (where	 ψ	=	1).	 These	 provided	 us	 with	 realis-
tic	 estimates	 of	 the	 probability	 of	 detecting	wild	 pigs	 at	 different	
water	 body	 types,	 under	 different	water	 conditions,	 and	pre‐	 and	
post‐	inhibitor	removal	treatment.	We	ignored	information	from	the	
cameras	as	this	type	of	data	would	not	be	available	in	most	eDNA	
based	field	studies.	To	estimate	the	cumulative	probability	of	detec-
tion	(denoted	with	an	“*”),	given	sampling	effort	(number	of	samples/
extractions/replicates,	n)	 for	 the	availability	of	DNA	by	sample	 (θ),	
capture	 probability	 of	DNA	 through	 extraction	 (γ),	 and	 the	 ampli-
fication	probability	of	qPCR	 (δ),	we	used	equation	6.	The	variance	
for	the	cumulative	probability	was	calculated	using	the	delta	method	
(equation	7;	Powell,	2007).	We	used	the	cumulative	probabilities	to	
determine	the	minimum	number	of	samples	per	site,	extraction	rep-
licates,	and	qPCR	replicates	to	achieve	90%	detection	probabilities	
at	those	respective	levels.	We	used	the	cumulative	probabilities	of	
detection	to	determine	the	minimum	number	of	samples	per	site,	ex-
traction	replicates	per	sample,	and	qPCR	replicates	per	extraction	to	
achieve	90%	detection	probability	for	each	level	of	the	observation	
process/observation	hierarchy.	Using	equations	5	and	6,	we	calcu-
lated	the	cumulative	probability	of	detection	given	sampling	effort	
for	different	ranges	of	effort	(Supporting	Information	Appendix	S1).

 

 

We	analyzed	all	data	using	occupancy	models	in	Program	MARK	
(Cooch	&	White,	2016;	White	&	Burnham,	1999).	We	used	the	sin-
gle‐season,	multi‐scale	occupancy	option	 (Nichols	 et	al.,	 2008)	 for	
the	multi‐scale	analysis.	We	used	 the	standard	occupancy	estima-
tion	method	for	 the	classic	occupancy	analysis.	For	both	analyses,	
we	treated	the	sites	across	months	independently	as	we	were	inter-
ested	in	the	independent	assessments	for	each	month	to	determine	if	
there	was	a	temporal	component	to	the	estimates	of	occupancy,	and	
because	 the	 estimation	 of	 extinction	 and	 colonization	 parameters	
would	be	extraneous	nuisance	parameters.	Model	comparison	was	
conducted	using	Akaike’s	Information	Criterion	corrected	for	small	
samples	sizes	(AICc,	Burnham	&	Anderson,	2002;	Doherty,	White,	&	
Burnham,	2012).	For	the	multi‐scale	occupancy	model	investigating	

(1)zi∼Bernoulli(�i)

(2)aij|zi∼Bernoulli(zi�ij)

(3)dijk|aij∼Bernoulli(aij�ijk)

(4)yijkl|dijk∼Bernoulli(dijk�ijkl)

(5)pij=�ij ∗ �ijk ∗�ijkl

(6)x∗ =1− (1−x)n

(7)var(x∗)=n2(1−x)2∗(n−1)var(x)



     |  10885DAVIS et Al.

relationships	with	availability	of	DNA	and	qPCR	amplification	suc-
cess,	we	examined	all	additive	combinations	of	covariates	(including	
the	 inhibitor	 removal	 on	 capture	 rate	 and	pH,	month,	water	 body	
type,	water	depth,	pictures	of	pigs	per	month,	 average	group	 size	
per	picture,	 and	hours	 since	 last	 visit	 on	availability).	The	 cumula-
tive	covariate	weights,	covariate	weights	>0.5	were	considered	to	be	
important	(Doherty	et	al.,	2012).	When	model	uncertainty	(multiple	
models	within	2	ΔAICc	of	 the	 top	model)	 existed,	we	used	model	
averaging	 to	 estimate	occupancy	 and	detection	 rates	 (Burnham	&	
Anderson,	2002).

3  | RESULTS

In	month	 one,	 one	 stream	 site	was	 dry	 and	was	 not	 sampled.	 All	
sites	 were	 sampled	 in	 month	 two.	 During	 the	 study,	 there	 were	
12,842	photographs	taken	from	the	12	cameras	(one	at	each	site).	
There	were	1,003	photographs	of	wild	pigs	(264	at	pond	sites,	428	
at	 stream	 sites,	 and	311	 at	wildlife	 guzzler	 sites;	 examples	 shown	
in	Figure	3).	For	the	laboratory	analyses,	we	had	both	positive	and	
negative	controls	in	all	reactions	and	at	all	steps	and	we	did	not	get	
amplification	in	any	of	our	negative	controls.

The	 results	 from	 the	multi‐scale	 occupancy	 analysis	 (objective	
1)	showed	that	DNA	availability	at	the	 individual	sample	 level	was	
influenced	by	the	month	in	which	the	sampling	was	conducted	and	
the	pH	and	the	type	of	water	body	(Table	1,	Supporting	Information	
Appendix	 S3).	 September	 had	 a	 higher	 availability	 of	 DNA	 than	
October	(β	=	1.31,	SE	=	0.05;	Figure	4).	The	availability	of	DNA	was	
higher	in	sites	with	pH	values	closer	to	7	than	8	(β	=	−1.65,	SE	=	0.52;	
Figure	4).	 The	 average	 pH	 value	 in	 our	 study	 was	 7.6	 (SD	=	0.47;	
Supporting	 Information	 Appendix	 S2).	 DNA	 availability	 tended	 to	
be	 higher	 for	 stream	 samples	 than	 for	 ponds	 or	 wildlife	 guzzlers,	
however,	the	95%	confidence	 intervals	overlapped	(βguzzler	=	−1.18,	
SE	=	0.60;	βpond	=	−1.34,	SE	=	0.55;	Figure	4).	We	examined	a	 linear	
trend	 with	 pH	 but	 demonstrate	 the	 estimated	 availability	 associ-
ated	with	two	values	of	pH	to	avoid	extrapolation	past	of	this	trend	
outside	the	range	of	data	we	examined	(Figure	4).	The	depth	of	the	
water	sample	was	not	strongly	related	to	DNA	availability	(Table	1).	
Sample	 depths	 averaged	8.6	cm	 (SD	=	2.8,	 Supporting	 Information	
Appendix	 S2).	 Confidence	 intervals	 for	 point	 estimates	 in	 figures	
rely	on	the	asymptotic	normality	of	maximum	likelihood	estimates	
and	are	back	transformed	from	the	logit	link	estimates	and	standard	
error.

When	camera	data	were	 included,	 the	month	of	 sampling	 and	
pH	was	still	important	predictors	of	availability	but	water	body	type	
was	not	(Table	1,	Supporting	Information	Appendix	S4).	Instead,	the	
number	of	photographs	with	pigs	within	the	last	month	was	related	
to	DNA	availability	 (β	=	0.09,	SE	=	0.03;	Table	1)	 and	was	 substan-
tially	higher	when	more	photographs	with	wild	pigs	were	observed	
within	 the	 last	 month	 (Figure	5).	 The	 average	 number	 of	 photo-
graphs	with	pigs	in	the	last	month	was	25.5	(SD	=	49.8,	Supporting	
Information	Appendix	S2).	Neither	of	the	other	covariates	from	the	
camera	data	was	strongly	related	to	DNA	availability.	The	average	

number	 of	 hours	 since	 the	 last	 pig	 detection	 was	 319	 (SD	=	434,	
Supporting	Information	Appendix	S2),	and	the	average	group	size	in	
photographs	was	1.48	(SD	=	0.37,	Supporting	Information	Appendix	
S2).

F I G U R E  3  Example	images	of	wild	pigs	at	pond	sites	(a),	stream	
sites	(b),	and	wildlife	guzzler	sites	(c).	Images	are	from	camera	traps	
located	at	eDNA	collection	sites	on	Camp	Bullis,	TX
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The	 impact	 of	 the	 inhibitor	 removal	 treatment	 did	 not	 have	 a	
substantial	effect	on	capture	rate	by	extraction	(β =	−0.16	SE 0.34). 
The	estimated	capture	rate	without	treatment	was	0.49	 (SE	0.07),	
whereas	 the	 estimated	 capture	 rate	with	 treatment	was	 0.43	 (SE 
0.07).	However,	there	were	several	 instances	where	wild	pig	DNA	
was	 only	 captured	 without	 the	 inhibitor	 removal	 treatment	 and	
several	instances	where	wild	pig	DNA	was	only	captured	from	ex-
tractions	 with	 the	 inhibitor	 removal	 treatment.	 Therefore,	 even	

though	capture	rates	were	similar	either	before	or	after	the	inhibitor	
removal	treatment,	the	combined	capture	rates	including	both	cap-
tures	before	and	after	the	inhibitor	removal	did	increase	the	over-
all	 apparent	detection	 (raw	samples	without	 treatment	 that	had	a	
detection	=	0.6;	raw	samples	with	treatment	had	a	detection	=	0.5,	
raw	samples	with	or	without	treatment	that	had	a	detection	=	0.79).	
No	covariates	were	examined	with	reference	to	the	qPCR	amplifica-
tion	rate.	The	estimated	amplification	rate	was	0.38	(SE 0.04).

To	determine	if	we	could	correctly	detect	pig	presence	(objective	
2),	we	used	the	important	covariates	from	the	previous	analysis	as	
covariates	on	detection	 (p)	 to	 estimate	overall	 occupancy	 (exclud-
ing	camera	data	as	they	would	not	be	present	in	a	true	field	study).	
When	only	 the	pooled	data	were	 considered,	 the	occupancy	esti-
mates	were	biased	low	for	all	months,	but	the	estimates	were	highest	
in	September	(Figure	6).	Occupancy	was	correctly	estimated	to	be	1	
when	separate	samples	per	site	we	examined	for	both	the	standard	
sampling	design	(all	10	water	samples	were	analyzed,	month	2)	and	
for	 the	 removal	 sampling	 design	 (processing	 samples	 ceased	once	
a	detection	was	found	by	sample,	month	3;	Figure	6).	For	compar-
ison,	we	also	examined	how	the	estimates	in	September	may	have	
changed	had	we	used	a	removal	sampling	approach	and	not	the	full	
data	set.	We	found	that	occupancy	was	estimated	to	be	the	same	
as	when	the	standard	sampling	design	was	used,	but	the	detection	
probability	was	lower	(p	=	0.22,	SE	=	0.09	for	removal	sampling	com-
pared	to	p	=	0.29,	SE	=	0.07	for	standard	sampling).

We	used	the	probabilities	of	DNA	availability	under	each	of	the	con-
ditions	 (month,	pH,	water	body	type),	while	holding	 the	other	values	
constant	at	their	mean,	to	examine	the	cumulative	probability	of	avail-
ability	under	different	numbers	of	water	samples.	To	achieve	a	mean	
90%	 cumulative	 availability	 probability	 in	 September,	we	only	would	
have	needed	five	separate	samples	(95%	CI:	3–8	samples),	whereas	in	
October	we	would	have	needed	15	(95%	CI:	5–25+	samples;	Figure	7,	
using	equations	6	and	7).	Water	pH	had	a	strong	influence	the	number	

TA B L E  1  Cumulative	covariate	weights	from	multi‐scale	
occupancy	model	selection	procedure	comparing	relative	covariate	
relationships	between	DNA	availability	at	the	sample	level	(θ)	and	
capture	rate	at	the	extraction	level	(γ)	from	eDNA	samples	at	Camp	
Bullis,	TX	Sept–Oct	2016.	Covariates	are	separated	by	parameter	
(availability	or	detection).	Covariate	weights	are	shown	for	models	
including	and	excluding	camera	data

Covariate by parameter

Cumulative covariate weight

Excluding camera 
data

Including 
camera data

Availability	(θ)

pH 0.98 0.98

Month 0.92 0.97

Pictures	per	month — 0.95

Group	size — 0.42

Water	body	type 0.80 0.23

Hours	since	last	visit — 0.30

Water	sample	depth 0.35 0.28

Capture	rate	(γ)

Inhibitor	removal 0.31 0.31

F I G U R E  4  Relationships	of	covariates	with	the	probability	of	
DNA	availability	at	the	sample	level	(θij).	Average	probability	of	
availability	from	the	model	containing	important	covariates	(top	
model)	by	month	with	95%	confidence	interval.	The	relationship	
between	pH	of	the	water	body	and	the	DNA	availability	with	95%	
confidence	intervals.	The	relationship	between	water	body	type	
and	eDNA	availability	with	95%	CIs.	Each	estimate	per	covariate	
(month,	pH,	and	water	body	type)	is	given	as	an	average	across	
other	covariates

F I G U R E  5  The	relationship	between	DNA	availability	and	the	
number	of	pictures	with	pigs	in	the	month	prior	to	sampling	and	the	
DNA	availability	with	95%	confidence	intervals
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of	water	samples	as	when	pH	is	7	we	would	need	five	samples	(95%	
CI:	3–7	samples)	to	ensure	at	least	one	detection	but	if	pH	was	8	we	
would	need	18	samples	(95%	CI:	6–25+	samples)	per	site.	The	influence	
of	water	body	type	demonstrated	that	wildlife	guzzlers	and	ponds	re-
quired	9	(95%	CI:	4–14	samples)	and	10	(95%	CI:	5–15	samples)	samples	
per	site,	respectively,	but	streams	would	only	need	four	samples	(95%	

CI:	2–5	samples)	for	90%	cumulative	probability	of	availability.	The	cu-
mulative	capture	probability	at	the	extraction	level	was	slightly	higher	
without	inhibitor	removal	than	with	this	treatment,	requiring	only	four	
extractions	per	sample	(95%	CI:	3–5)	compared	to	five	(95%	CI:	3–6)	to	
achieve	a	90%	cumulative	capture	probability.	Conducting	qPCR	ampli-
fications	on	both	types	of	samples	(with	and	without	inhibitor	removal)	
showed	 a	 substantial	 improvement	 on	DNA	 capture	 rates	 (Figure	7)	
requiring	only	two	extractions	to	achieve	90%	cumulative	probability	
(95%	CI	 2–3	 samples).	 Five	 qPCR	 replicates	 per	 extraction	were	 re-
quired	to	achieve	a	90%	cumulative	amplification	probability.

4  | DISCUSSION

Understanding	the	observation	process	is	an	important	first	step	for	
quantifying	 species	 distribution	 processes,	 especially	 for	 practical	
purposes	in	low‐density	populations	(i.e.,	early	detection	of	invasive	
species	or	timely	detection	of	endangered	species).	When	detection	
does	not	occur,	it	does	not	confirm	that	the	species	is	absent—there	
is	the	possibility	that	the	species	is	present	but	that	detection	prob-
ability	was	below	100%	due	to	variability	 in	observation	processes	
(Schmidt	et	al.,	2013).	Our	results	showed	that	for	observation	pro-
cesses	 that	 span	 multiple	 levels	 of	 uncertainty	 (e.g.,	 non‐invasive	
detection	 methods	 such	 as	 eDNA),	 it	 is	 important	 to	 understand	
the	role	of	different	factors	across	these	levels	and	which	environ-
mental	factors	may	have	the	strongest	influence	on	ecological	infer-
ence.	Dissecting	the	observation	process	not	only	allowed	for	better	
inference	of	 ecological	 processes	 but	 also	provided	 a	 platform	 for	

planning	 sampling	 adaptively,	 in	 a	 way	 that	 minimizes	 laboratory	
costs	and	time	while	maximizing	species	detection	probability.

We	expected	 differences	 in	 detection	 probabilities	 of	wild	 pig	
eDNA	(p)	among	water	body	types	due	to	variations	 in	pig	behav-
ior	 and	 visitation	 rates,	 and	 abiotic	 conditions	 that	 affect	 DNA.	
Detection	 rates	were	similar	between	wildlife	guzzlers	and	ponds,	
which	might	retain	DNA	more	similarly	when	compared	to	streams.	
We	expected	streams	to	have	a	lower	detection	rate	assuming	that	
the	movement	 of	water	would	 relate	 to	 a	 lower	 retention	 rate	 of	
DNA.	However,	streams	had	the	highest	detection	rates	of	all	water	
bodies	in	our	study	while	ponds	and	guzzlers	had	similarly	lower	de-
tection	rates.	Our	study	was	conducted	between	the	seasonal	end	
of	the	summer	and	the	beginning	of	the	fall,	when	water	levels	were	
lower	and	thus	streams	were	intermittent	with	pooling	and	low	flow.	
These	areas	of	multiple	pools	along	a	streambed	proved	conducive	
for	DNA	 retention	and	detection,	perhaps	due	 to	 their	 attractive-
ness	to	pigs	for	multiple	wallowing	sites	in	proximity	to	one	another	
(suggested	by	photographic	evidence).

The	probability	of	detecting	DNA	is	likely	affected	by	water	qual-
ity	(Barnes	&	Turner,	2016;	Barnes	et	al.,	2014).	If	sampling	was	con-
ducted	when	water	resources	were	plentiful,	detection	probability	
would	have	been	lower	as	the	DNA	would	have	been	more	diluted.	
The	 probability	 of	 availability	 of	 DNA	 was	 highest	 in	 September	
when	temperatures	in	the	area	were	higher	with	less	rainfall	(water	
was	 scarcer)	 than	 in	October	when	detection	 rates	were	 lower.	 If	
sampling	were	conducted	during	cooler	 times	of	year,	when	 there	
is	more	standing	water,	the	detection	rates	would	likely	have	been	
lower	 than	we	 observed.	 Lower	 detection	 rates	would	mean	 that	
more	field	samples	would	need	to	be	collected,	and	thus	when	de-
signing	 an	eDNA	monitoring	method	 seasonally	 varying	detection	
rates	will	be	important	to	incorporate	in	practice.

Consistent	with	previous	studies,	we	found	pH	to	be	a	strong	indi-
cator	of	DNA	availability	in	water	samples.	Lorenz	and	Wackernagel	
(1987)	found	that	DNA	has	a	higher	rate	of	adsorption	to	sand,	and	
thus	is	more	available,	when	the	pH	is	neutral	 (pH	7).	Additionally,	
DNA	is	known	to	degrade	more	rapidly	or	adsorb	to	certain	soil	parti-
cle	types	when	pH	deviates	from	neutral	(Barnes	et	al.,	2014;	Lorenz	
&	Wackernagel,	1987).	In	particular,	Strickler,	Fremier,	and	Goldberg	
(2015)	and	Seymour	et	al.	(2018)	found	that	degradation	rates	were	
higher	in	more	acidic	conditions,	and	degradation	rates	were	lower	
or	similar	 in	alkaline	compared	to	neutral	conditions	 (respectively).	
Interestingly,	we	found	higher	detection	rates	in	neutral	conditions	
compared	to	slightly	alkaline	conditions.	The	fact	that	pH	had	such	
a	strong	relationship	with	DNA	availability	was	surprising	given	the	
range	we	observed	was	narrow	(7–8.4).	Considerably,	more	samples	
would	need	to	be	collected	to	ensure	a	cumulative	availability	rate	
>90%	when	the	pH	of	the	water	body	was	close	to	8	compared	to	7	
(18	samples	would	be	required	compared	to	5).	In	addition,	pH	may	
also	be	correlated	with	other	factors	we	did	not	measure	that	influ-
ence	wild	pig	behavior	(e.g.,	plant	community	composition,	turbidity	
of	the	water).	Regardless,	it	appears	that	pH	is	an	important	factor	
in	the	probability	of	detecting	eDNA	and	the	variability	in	observa-
tion	processes	using	 this	method.	Thus,	 if	 pH	 is	 not	 appropriately	

F I G U R E  6  Occupancy	estimates	(with	95%	confidence	intervals)	
of	wild	pigs	from	eDNA	samples	at	sites	at	Camp	Bullis,	TX	
Sept–Oct	2016.	Estimates	by	month	are	shown	for	pooled	versus	
separate	samples
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accounted	for	across	geographic	sites	and	seasons,	species	distribu-
tions	based	on	eDNA	could	be	biased.

We	found	the	observation	processes	(detection	probability)	of	
wild	pig	from	eDNA	to	be	variable	during	our	study.	One	possible	
explanation	for	that	variability	is	that	the	behavior	of	wild	pigs	in	
the	area	may	influence	the	detection	probability.	We	used	cameras	
to	examine	how	detection	related	to	pig	behavior.	It	was	surprising	
that	the	time	period	since	camera	detection	was	not	strongly	re-
lated	to	DNA	availability	given	that	wild	pig	eDNA	degrades	with	
time	(Williams	et	al.,	2018).	Despite	the	fact	that	degradation	rates	
are	higher	for	a	single	wild	pig	relative	to	a	group	(Williams	et	al.,	
2018),	group	size	also	did	not	strongly	correlate	with	DNA	avail-
ability.	However,	 the	number	of	pictures	of	wild	pigs	visiting	our	
sampled	water	sites	was	strongly	related	to	detection	probability,	
suggesting	that	the	general	level	of	wild	pig	activity	influenced	de-
tection.	Thus,	higher	level	of	use	may	act	similarly	to	larger	group	
sizes	in	terms	of	DNA	degradation	rates.	Since	we	are	particularly	
interested	in	detecting	pigs	at	low	densities	using	eDNA,	our	actual	
detection	 probability	may	 be	 lower	 than	 calculated	 in	 this	 study	
when	 implemented	 for	 detections	 of	wild	 pigs	 in	 newly	 invaded	
areas	 or	 areas	where	 control	 has	 reduced	 the	 population	 to	 low	
densities.	Therefore,	larger	number	of	samples	should	be	taken	in	
the	 field	 to	 offset	 the	 lower	 levels	 of	DNA	 availability	 that	may	
occur.

Replicates	that	do	not	provide	the	same	detection	(some	are	pos-
itive,	and	some	are	negative)	may	arise	from	qPCR	instrumentation	
variability	when	at	the	lower	limits	of	DNA	quantity	(Hunter	et	al.,	
2017).	The	assay	we	applied	for	detection	of	wild	pig	eDNA	has	a	
limit	of	detection	of	10	copies/μl	(>95%	of	8	qPCR	replicates	of	our	
standard	curve	amplified;	Bustin	et	al.,	2009).	Thus,	one	level	of	vari-
ability	in	our	observation	process	involves	the	detection	probability	
of	low	quantity/quality	DNA.	We	accounted	for	this	by	including	am-
plification	probability	with	qPCR	in	our	model	and	considering	any	
positive	 as	 a	 detection	 (assuming	no	 false	 positives).	 This	 is	 a	 risk	
if	 the	 specificity	 of	 our	 test	 has	 the	 possibility	 for	 false	 positives.	
We	tested	for	false	positives	due	to	cross‐reactivity	and	found	high	
specificity	 in	 our	 assay	 for	wild	 pigs	 (Williams	 et	al.,	 2017).	 Issues	
with	specificity	would	lead	to	incorrectly	declaring	species	present	
when	 it	 is	 absent	 (Type	 I	 error)	 and	 issues	with	 sensitivity	would	
lead	to	declaring	a	species	absent	when	it	is	present	(Type	II	error).	
Generally,	with	early	detection	for	an	invasive	species,	the	risk	of	de-
claring	a	non‐detection	when	the	species	is	present	(low	detection	
probability	or	poor	sensitivity)	is	a	considerably	worse	type	of	error	
than	poor	specificity	due	to	the	potential	damage	that	may	occur	if	
an	invasion	went	undetected.

We	were	 particularly	 focused	 on	 the	 issues	 of	 false	 negatives	
(which	may	be	very	costly	in	our	case),	and	we	were	confident	that	
false	positives	were	not	an	 issue	 in	our	 study.	However,	 there	are	

F I G U R E  7  Cumulative	probabilities	given	a	hypothetical	number	of	replicates	for	three	levels	of	the	multi‐scale	analysis	on	detection	
using	eDNA.	The	cumulative	detection	probability	is	the	product	of	the	different	levels	of	uncertainty	(Supporting	Information	Appendix	
S1).	The	cumulative	availability	of	DNA	(θ*,	the	probability	that	DNA	is	observed	in	at	least	one	sample	given	the	site	is	occupied)	by	water	
sample	(a)	is	shown	by	the	number	of	separate	water	samples	collected	based	on	estimates	in	September	(dashed	black	line)	and	October	
(solid	black	line),	for	water	pH	values	of	7	(dashed	red	line)	and	8	(solid	red	line),	and	sampling	from	wildlife	guzzlers	(dashed	blue	line),	
streams	(dotted	blue	line),	and	ponds	(solid	blue	line).	(b)	The	cumulative	capture	probability	(γ*,	the	probability	that	DNA	is	observed	in	
at	least	one	extraction	given	it	is	available	in	the	sample)	of	DNA	by	number	of	extractions	is	shown	for	estimates	based	on	pre‐inhibitor	
removal	treatment	(solid	red	line),	post‐inhibitor	removal	treatment	(solid	blue	line),	and	both	pre‐	and	post‐	inhibitor	removal	treatment	
(solid	black	line).	(c)	The	cumulative	amplification	probability	(δ*,	probability	that	DNA	is	observed	in	at	least	one	qPCR	replicate	given	
it	is	captured	in	the	extraction)	is	shown	by	the	number	of	qPCR	replicates	(solid	black	line).	An	interactive	version	can	be	found	in	the	
supplemental	information
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some	cases	where	the	cost	of	responding	to	a	new	invasion	may	be	
considerable	 and	 thus	 there	would	be	 substantial	 concern	 for	 de-
claring	 a	 species	 is	 present	when	 it	 is	 not	 (false	 positive).	 To	 that	
end,	some	studies	require	that	two	or	more	PCR	replicates	confirm	
a	detection	before	they	will	be	declared	a	positive	(Kriger,	Hero,	&	
Ashton,	2006).	If	false	positives	are	possible	at	the	PCR	level,	then	
modifications	must	be	made	to	the	occupancy	analysis	as	that	 is	a	
clear	 violation	 of	 the	 occupancy	 assumptions	 (Mackenzie,	 2005).	
There	 are	 several	 advances	 to	 occupancy	 modeling	 that	 will	 ac-
commodate	false	positives	 (Miller	et	al.,	2011;	Royle	&	Link,	2006)	
and	 approaches	 that	 have	 been	 incorporated	 into	 eDNA	 analyses	
(Ficetola,	 Taberlet,	 &	 Coissac,	 2016;	 Lahoz‐Monfort,	 Guillera‐
Arroita,	&	Tingley,	2016).

Pooling	 field‐collected	 eDNA	 samples	 by	 site	 and	 taking	 ex-
tractions	from	subsamples	of	the	pooled	sample	(Biggs	et	al.,	2015;	
Piaggio	et	al.,	2014)	reduces	laboratory	costs	over	running	multiple	
samples	per	site	separately.	Replicate	samples	per	site	are	collected	
because	 the	 DNA	 distribution	 in	 water	 is	 heterogeneous	 (Furlan	
et	al.,	2016),	such	that	some	samples	may	not	contain	DNA.	Pooling	
the	field	samples	eliminates	the	ability	to	have	true	replicates	to	esti-
mate	the	detection	process.	The	subsampling	of	the	pooled	samples	
only	 allows	 for	 pseudo‐replicates.	 Our	 results	 demonstrated	 that	
pooling	field	replicates	greatly	reduced	the	detection	probability	and	
thus	 added	 to	 the	variability	 in	observation	processes	when	com-
pared	 to	analyzing	 the	 replicate	 samples	 separately.	This	 suggests	
that	although	DNA	may	be	present	in	the	pooled	samples,	the	act	of	
pooling	may	increase	the	effect	of	dilution	(perhaps	requiring	extra	
filtration)	 and	 the	 use	 of	 pseudo‐replicates	 reduces	 our	 power	 to	
make	inference	on	the	hidden	biological	state	of	interest.	Therefore,	
if	pooled	samples	are	used,	a	species	may	go	undetected.	For	threat-
ened	or	endangered	species,	this	may	result	in	failure	to	provide	con-
servation	measures,	whereas	for	an	invasive	species	a	non‐detection	
could	lead	to	a	new	invasion	progressing	unchecked	and	allowing	it	
to	become	established.

Although	 keeping	 samples	 per	 site	 separate	 greatly	 increased	
our	 detection	 probability,	 it	 also	 greatly	 increased	 the	 laboratory	
time	 and	 expenses.	 Instead	 of	 three	 extractions	 for	 each	 site,	we	
conducted	20	extractions	per	site	(2	per	each	of	10	field	water	sam-
ples).	This	method	is	likely	prohibitively	laborious	and	costly	for	use	
as	a	standard	sampling	procedure	to	detect	invasive	terrestrial	mam-
mals.	Therefore,	we	adapted	our	approach	to	a	removal	design	(by	
sample),	which	has	been	found	to	be	the	most	efficient	design	for	
occupancy	studies	(MacKenzie	&	Royle,	2005).	However,	MacKenzie	
and	Royle	(2005)	point	out	that	removal	designs	are	less	robust	to	
violations	 of	 assumptions	 compared	 to	 a	 standard	 design.	 For	 ex-
ample,	 occupancy	 should	 be	 constant	 during	 the	 sample	 frame	 (if	
a	site	 is	occupied	it	should	be	occupied	during	the	entire	sampling	
period),	 detection	 rates	will	 be	 biased	 low	 if	 violations	 of	 this	 as-
sumption	occur,	but	the	bias	will	be	greater	for	the	removal	design	
than	the	standard	design.	This	suggests	that	the	maximum	number	
of	samples	needed	for	a	removal	design	might	be	more	than	the	total	
number	of	samples	 for	a	standard	design.	Based	on	our	estimated	
detection	probability	of	0.2	and	our	high	occupancy	rate,	MacKenzie	

and	 Royle	 (2005)	would	 recommend	 23	 samples	 be	 collected	 per	
site.	Fortunately,	the	field	costs	of	collecting	additional	water	sam-
ples	per	site	are	marginal	and	extractions	would	only	need	to	be	con-
ducted	on	additional	samples	if	no	detections	were	made	from	each	
previous	extraction.

Our	 field	 collection	 protocols	 were	 strategically	 designed	 to	
streamline	and	simplify	sampling	so	they	could	be	used	by	a	variety	
of	agencies	in	a	variety	of	field	conditions	(Williams	et	al.,	2016).	Our	
methods	 are	 species‐specific—we	 focused	 on	 small	 water	 bodies	
which	wild	pigs	are	likely	to	use	for	drinking	and	wallowing	to	opti-
mize	detection	of	this	terrestrial	species.	To	come	up	with	a	generic	
method	 to	sample	 these	small,	 turbid	water	bodies,	we	needed	 to	
use	smaller	water	samples	than	are	often	used	for	detecting	aquatic	
species	 (e.g.,	 Furlan	 et	al.,	 2016;	 Pilliod	 et	al.,	 2013;	 Spear	 et	al.,	
2015).	The	smaller	water	volumes	used	in	our	study	may	contribute	
to	the	lower	levels	of	detection	that	we	observed	compared	to	other	
studies.	Our	results	suggest	that	the	probability	of	detection	would	
be	increased	by	collecting	more	water	samples	per	site	(which	would	
increase	the	overall	volume	of	water	collected	per	site).	By	collect-
ing	more	samples,	we	will	still	be	able	to	use	the	same	protocol	for	
sample	collection	(which	helps	with	consistency	across	study	areas)	
while	addressing	the	issue	that	small	water	volume	may	have	on	de-
tection	probability.

The	 field	 costs	 to	 collect	 additional	 samples	 may	 be	 low,	 but	
processing	those	samples	in	the	laboratory	is	not.	The	removal	ap-
proach	may	 reduce	overall	 costs.	However,	 if	 no	detections	occur	
then	the	costs	will	be	the	same	as	the	standard	sampling	approach	
if	all	samples	are	analyzed.	Although	costs	in	this	case	may	be	high,	
eDNA	has	been	found	to	be	a	cost‐effective	option	for	monitoring	
populations	of	aquatic	species	compared	to	trapping	(Lugg,	Griffiths,	
van	Rooyen,	Weeks,	&	Tingley,	2018)	and	may	be	found	to	be	worth	
the	costs	when	compared	to	potential	costs	of	undetected	invasions	
of	invasive	species.

Pooling	samples	per	site	may	be	used	as	a	first	step	in	a	removal	
sampling	approach,	and	if	there	is	no	detection,	testing	the	field	sam-
ples	could	proceed	discretely	and	in	succession.	However,	using	the	
data	from	September,	if	we	had	used	the	pooled	data	as	a	first	step	in	
a	removal	sampling	approach	(3	extractions	and	12	qPCR	replicates)	
and	then	continued	with	the	separate	samples	(two	extractions	and	
six	qPCR	 replicates)	until	we	came	 to	a	detection,	we	would	have	
needed	a	total	of	228	qPCR	replicates	to	analyze	all	of	the	data.	If	
we	had	forgone	the	pooled	samples	and	just	conducted	the	removal	
approach	on	the	separate	field	samples,	we	would	have	needed	only	
84	qPCR	replicates	to	analyze	all	the	data.	Thus	to	detect	rare	indi-
viduals,	we	recommend	a	removal	approach,	with	eDNA	analysis	on	
the	separate	samples,	to	optimize	detection	probabilities	and	reduce	
false	negatives	and	variability	 in	observation	processes.	A	removal	
approach	 is	 also	 advantageous	 as	 collecting	 field	 samples	 are	 rel-
atively	 inexpensive	 relative	 to	 the	 requisite	 cost	 of	 associated	 lab	
work;	so	this	method	reduces	costs	while	not	compromising	power.

Using	the	detection	probabilities	of	wild	pig	eDNA	(p)	estimated	
from	the	separate	samples	per	site,	we	calculated	the	cumulative	de-
tection	 probability	 given	 the	 number	 of	 samples	 analyzed	 through	
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qPCR	to	evaluate	cumulative	detection	rates	of	using	more	samples	
than	we	collected,	similar	to	Schmidt	et	al.	(2013).	Because	availability	
varied	by	month,	pH,	and	water	body	type,	 the	number	of	samples	
necessary	per	site	to	have	a	high	cumulative	availability	probability	(θ*,	
where θ	is	plugged	into	equation	8,	and	“n”	is	the	number	of	samples)	
was	dependent	on	site	conditions.	For	example,	in	a	stream	sampled	in	
September,	we	had	over	a	90%	cumulative	availability	probability	with	
only	 three	samples	analyzed,	but	 in	streams	 in	October	we	needed	
to	analyze	at	least	six	samples	to	have	the	same	cumulative	availabil-
ity	probability.	While	in	wildlife	guzzlers	or	ponds	in	September,	we	
needed	to	analyze	at	 least	five	samples	for	the	same	level	of	confi-
dence	and	in	October,	we	did	not	reach	a	90%	cumulative	availabil-
ity	probability	until	16	samples	were	analyzed.	Thus	by	collecting	a	
potentially	superfluous	number	of	water	samples	in	the	field,	future	
studies	will	be	better	equipped	to	handle	issues	of	poor	DNA	avail-
ability	that	may	occur	due	to	study	timing,	water	body	type,	or	other	
environmental	conditions	that	reduce	overall	detection	probability.

We	conducted	qPCR	both	pre‐	and	post‐	inhibitor	removal	treat-
ment.	The	 treatment	 strips	 away	 inhibitors	 that	prevent	qPCR	 from	
amplifying	DNA.	However,	 in	cases	where	there	is	a	 low	quantity	of	
DNA	in	the	sample,	the	inhibitor	removal	treatment	may	result	in	re-
ducing	the	DNA	and	not	just	the	inhibitors.	This	might	suggest	that	it	
is	 the	number	of	extractions	 that	 is	 important	 and	not	 the	 inhibitor	
removal	 process.	 However,	we	 found	many	 instances	 of	 detections	
that	only	happened	pre‐	treatment	and	some	that	only	happened	post‐	
treatment.	Additionally,	DNA	concentrations	of	extracts	before	inhibi-
tor	removal	treatment	were	low.	Although,	conducting	one	extraction	
with	data	both	pre‐	and	post‐	 inhibitor	 removal	 resulted	 in	a	 similar	
cumulative	DNA	capture	rate	to	conducting	two	extractions	with	data	
either	just	pre‐inhibitor	removal	or	just	post‐inhibitor	removal,	we	rec-
ommend	that	all	samples	are	subject	to	qPCR	amplifications	both	with	
and	without	inhibitor	removal	to	maximize	detection	probability	of	tar-
get	DNA	or	that	an	internal	positive	control	(IPC)	be	incorporated	into	
the	qPCR	assay	to	monitor	inhibition	(Goldberg	et	al.,	2016).

5  | CONCLUSIONS

We	found	that	observation	processes	of	an	invasive	terrestrial	mammal	
using	eDNA	are	variable	and	dependent	on	the	conditions	of	the	water	
body	sampled	and	laboratory	processes.	We	recommend	collecting	a	
minimum	of	10	water	samples	per	site,	but	20	samples	would	be	better,	
and	using	a	removal	approach	to	laboratory	analysis;	more	samples	will	
be	needed	when	the	pH	of	the	water	body	is	not	neutral.	The	adaptive	
analysis	process	will	maximize	detection	while	making	efficient	use	of	
resources.	We	recommend	running	qPCR	both	pre‐	and	post‐	inhibitor	
removal	to	increase	capture	rate	of	DNA.	Variation	in	time	of	year	and	
water	body	type	will	also	impact	the	overall	detection	probability	using	
eDNA	and	must	be	accounted	for	or	estimates	of	species	presence	will	
be	biased	which	could	have	serious	implications	for	conservation	or	in-
vasive	species	management.	As	has	become	part	of	best	practices	for	
non‐invasive	genetics	studies	(another	approach	for	utilizing	low	qual-
ity/quantity	DNA	 available	 in	 the	 absence	 of	 the	 target	 species),	we	

strongly	advocate	for	conducting	field	studies	on	the	system	of	inter-
est	to	determine	the	factors	influencing	the	study	site	and	the	target	
species	(Lonsinger	et	al.,	2015;	Taberlet,	Waits,	&	Luikart,	1999;	Waits	
&	Paetkau,	2005).	Using	multi‐scale	occupancy	modeling	for	inference	
of	species	distributions	will	provide	more	robust	inferences	about	fac-
tors	affecting	the	observation	processes	of	eDNA,	which	is	particularly	
important	 for	 designing	 efficient	 sampling	 protocols.	 The	multi‐scale	
analysis	may	not	need	to	be	continued	once	greater	understanding	of	
the	different	levels	of	uncertainty	are	reached;	however,	new	programs	
and	packages	(Dorazio	&	Erickson,	2017;	Hunter	et	al.,	2015;	White	&	
Burnham,	1999)	have	been	developed	that	make	performing	this	type	
of	analysis	marginally	more	work	than	a	standard	occupancy	approach	
and	therefore	may	be	worth	continuing.	Improving	the	understanding	
of	the	observational	process	will	help	provide	better	understanding	of	
the	ecological	processes	influencing	the	distribution	of	the	target	spe-
cies	and	guidance	for	future	research	and	management.
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