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High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance
against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change
the rumen microbial population structure and help establish a stable microbial population within the rumen.
Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally
cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay
at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the
step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using
terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quan-
titative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure
during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen
microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational
taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a
significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene
libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum
Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Strepto-
coccus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-
concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations
gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen
microbial population using several molecular approaches and presents a broader picture of the rumen
microbial population structure during adaptation to a high-grain diet from a forage diet.

The rumen is a complex microbial ecosystem that is com-
posed of an immense variety of bacteria, protozoa, fungi, and
viruses (5). Among these microorganisms, bacteria are the
most investigated population and have a significant effect on
the animal’s performance. However, our understanding of how
rumen bacteria change and adapt to different ruminal environ-
ments is in its infancy.

In the feedlot cattle industry, when animals on a forage diet
are directly put on a high-grain diet, a decrease in ruminal pH
due to lactate production has been observed (23, 31, 42), which
leads to the possibility of digestive disorders, which can cause
a decrease in the animal’s performance (23, 45). Therefore,
feeding programs have been implemented to adapt feedlot
cattle from a high-forage diet to a high-concentrate diet by
gradually increasing the concentration of grain in the diet and
decreasing the fiber content (2, 35). During this adaptation to
high-grain diets, significant changes in the ruminal environ-

ment and rumen bacterial population structure have been re-
ported (17, 46, 48). However, the microbial changes that occur
during this transition phase are poorly understood (17, 21, 26,
46). Studies performed to date have utilized culture-based
techniques or have looked at the fluctuation of a few indicator
bacteria (48, 47) to evaluate bacterial population changes. Due
to limitations in culturing rumen bacteria, the use of culture-
based techniques to evaluate bacterial populations substan-
tially underestimates the diversity of microorganisms within
the rumen. In this study, we have utilized culture-independent
approaches to evaluate bacterial population structure and di-
versity using terminal restriction fragment length polymor-
phisms (T-RFLPs) and sequence analysis of 16S rRNA gene
libraries to compare the rumen bacterial population structure
in animals on prairie hay against that in animals adapting to a
high-concentrate (high-grain) diet. We have also quantified the
fluctuations in the populations of previously reported indicator
bacterial species using quantitative real-time PCR (qRT-PCR)
to assess the role of these organisms during adaptation to a
high-concentrate diet.

MATERIALS AND METHODS

Animals and diets. Eight ruminally cannulated beef steers (weight, 380 � 27
kg) were fed prairie hay ad libitum for a period of 2 weeks. Following adaptation
to prairie hay, four steers were randomly selected and were shifted to a step-up
diet regimen containing incrementally increased amounts of metabolizable en-
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ergy (ME) with constant incremental increases in the grain level. The step-up
diets were formulated to meet the animals’ nutrient requirements, as described
by the National Research Council (29a), and were composed of 2.0, 2.4, 2.7, or
3.0 Mcal of ME/kg of dry matter with fiber-to-concentrate (grain) ratios of 80:20
(diet 1), 60:40 (diet 2), 40:60 (diet 3), and 20:80 (diet 4), respectively. The four
steers selected were fed each diet for 7 days and were then moved to the next
stage of the diet (e.g., all four animals were fed diet 1 containing 2.0 Mcal of
ME/kg of dry matter with a fiber-to-grain ratio of 80:20 for 7 days and then
shifted to diet 2 containing 2.4 Mcal of ME/kg of dry matter with a fiber-to-grain
ratio of 60:40). The remaining four animals were maintained on prairie hay
throughout the sampling period and were used as control animals to compare
microbial shifts during adaptation to the high-grain diet from prairie hay. The
total duration of the experiment was 6 weeks.

Sampling. Ruminal content (partially digested feed [solid] plus rumen fluid)
was collected via a ruminal cannula from the dorsal sac after mixing of the
contents. Sampling was done after 7 days of adaptation to each diet. The samples
collected were snap-frozen in liquid nitrogen and were stored at �20°C until
DNA extraction.

DNA isolation. Frozen rumen samples were snap-frozen in liquid nitrogen and
homogenized (�2 to 3 min) using a domestic coffee grinder. Additional liquid
nitrogen was added to the sample to maintain the cold chain during sample
processing. Total DNA was extracted from 0.5 g of homogenized sample using a
QIAamp DNA stool minikit (Qiagen, Valencia, CA), according to the manufac-
turer’s protocol but with a few modifications. The modifications included (i)
incubation of the sample at 95°C for 10 min after ASL buffer addition and (ii)
performance of the proteinase K digestion for 30 min.

T-RFLP analysis. T-RFLP analysis (22, 27, 32) was performed using 100 ng of
isolated total DNA. PCR amplification of the 16S rRNA gene was performed in
a dyad thermocycler (MJ Research, Watertown, MA) using a 6-carboxyfluores-
cein (6-FAM)-labeled forward primer (primer FAMBacT0008F, 5�-AGAGTTT
GATCCTGGCTCAG-3�) and an unlabeled reverse primer (primer BacT0805R,
5�-GGACTACCAGGGTATCTAATCCC-3�). The 50-�l PCR mixture con-
tained 100 ng of DNA, 1� PCR buffer (Promega, Madison, WI), 1.5 mM MgCl2,
400 nM each primer, 200 �M deoxynucleoside triphosphates (dNTPs), 100 ng/�l
bovine serum albumin (BSA), and 3 U Taq DNA polymerase (Promega). The
cycling conditions were 1 cycle of 1 min at 95°C, 30 s at 52°C, and 1 min at 72°C,
followed by 34 additional cycles of 30 s at 95°C, 30 s at 52°C, and 1 min at 72°C
and a final extension step of 3 min at 72°C.

PCR products were ethanol precipitated (38), resuspended in 5 �l of distilled
water, and independently digested with RsaI (Invitrogen, Carlsbad, CA), HaeIII
(Invitrogen), and MspI (Promega). A 10-�l restriction digest mixture contained
1� buffer, 2.5 U enzyme, and 5 �l of the PCR product. The MspI digestion
mixture contained an additional 250 ng/�l of BSA. All reaction mixtures were
incubated at 37°C for 4 h, followed by 65°C for 20 min. Digested PCR product
(2 �l) was mixed with 0.5 �l of GeneScan ROX1000 size standard (Applied
Biosystems, Foster City, CA) and 3.5 �l of loading dye (Applied Biosystems) and
was electrophoresed for 8 h in an ABI 377 sequence analyzer (Applied Biosys-
tems). The resulting data were analyzed using GeneScan (version 3.1) analysis
software (Applied Biosystems). The data sets were subsequently normalized by
dividing the cumulative peak height of each sample by the height for the sample
with the smallest cumulative peak height. The normalized T-RFLP profiles for
each restriction enzyme were aligned using the T-Align program (43), and prin-
cipal component analysis (PCA) was performed using the UnscramblerX pro-
gram (CAMO Software Inc., Woodbridge, NJ) to identify shifts in microbial
population structure. In addition, phylogenetic assignment of the T-RFLP pro-
files was performed using a custom database generated from 16S rRNA reads
available at the Ribosomal Database Project (7) with the help of the Phyloge-
netic Analysis Tool (PAT) (22).

Construction and sequence analyses of 16S rRNA gene libraries. Four 16S
rRNA gene libraries were constructed from the bacteria from animals on the
high-concentrate diet and on prairie hay. Two libraries were constructed from
the bacteria from grain-fed animals by pooling equal amounts of DNA from
animals on the 80:20 (grain/hay) diet. The other two libraries were constructed
from the bacteria from hay-fed animals. One library for hay-fed animals was
constructed by pooling the DNA from four different animals maintained on
prairie hay, while the other library was constructed using the DNA from a single
animal which was later transitioned to the high-concentrate diet. A DNA frag-
ment of �797 bp (based on the Escherichia coli numbering) of the 16S rRNA
gene was PCR amplified using primers BacT0008F (5�-AGAGTTTGATCCTG
GCTCAG-3�) and BacT0805R (5�-GGACTACCAGGGTATCTAATCCC-3�)
and a high-fidelity Taq DNA polymerase. The 50-�l PCR mixture contained 100
ng of DNA, 1� PCR buffer (Invitrogen) 1.5 mM MgCl2, 400 nM each primer,
200 �M dNTPs, and 2 U Taq DNA polymerase (Invitrogen). Thermal cycling

conditions were 1 cycle of 2 min at 95°C, 30 s at 52°C, and 1 min at 68°C, followed
by 34 additional cycles of 20 s at 95°C, 30 s at 52°C, and 1 min at 68°C and a final
extension of 3 min at 68°C. The blunt-ended PCR products generated were
ligated into a PCR-Blunt (Invitrogen) plasmid vector and transformed into E.
coli DH5� maximum-efficiency competent cells (Invitrogen). Random libraries
of approximately 384 colonies were picked from each library and grown, and
plasmid DNA was isolated for sequence analyses. Sequencing reactions were
performed bidirectionally, as described previously (4), on an ABI 3700 capillary
DNA sequencer. The resulting sequences were base called, analyzed, and as-
sembled into contigs using the Phred, Phrap, and Consed suite of software (13,
12, 18). The resulting data were further analyzed using the NCBI BLAST pro-
gram and tools available at the Ribosomal Database Project (7, 8).

Phylogenetic and comparative analyses. The assembled reads were aligned
using Infernal (30) secondary structure-based alignment software, and contigs
were generated at 97% similarity. Phylogenetic analysis of the contigs and sin-
gleton reads were performed using the Phyml program (19) with 100 bootstrap
replications. A phylogenetic tree was constructed using the maximum-likelihood
method and was visualized using the iTOL program (25). The Ribosomal Da-
tabase Project classifier software tool (50) was used to classify the sequences into
taxonomic units, and the library compare software tool was used to compare the
libraries with each other to identify statistically significant changes in microbial
population structure (7, 8). The Mothur analysis tool (40) was used for cluster
analysis of sequences and for generation of diversity statistics.

Quantitative real-time PCR analyses. Fluctuations in the levels of previously
isolated microbial species (Prevotella bryantii, Fibrobacter succinogenes, Seleno-
monas ruminantium, Megasphaera elsdenii, Streptococcus bovis, and Butyrivibrio
fibrisolvens) were evaluated using qRT-PCR. The assays included samples from
all four animals from each diet (biological replicates) and two technical repli-
cates of each sample. Therefore, a single assay included 40 � 2 samples, in
addition to the negative controls. Each real-time PCR assay was performed using
a SYBR green I reporter assay kit (Roche Diagnostics, Indianapolis, IN). The
dynamic range and PCR efficiency of each assay were evaluated using positive
controls. The primers and PCR conditions are shown in Table 1. For all assays,
the PCR products generated were sequenced to verify amplification of the
correct bacterial species.

A 15-�l reaction mixture contained 400 nM (each) forward and reverse
primer, 1� master mixture (Roche Diagnostics), and 30 ng of rumen DNA.
Thermal cycling conditions were 95°C for 10 min, followed by 50 additional
cycles of 95°C for 30 s, 50 to 62°C for 30 s (depending on the annealing tem-
perature of each primer set [Table 1]), and 72°C for 40 s or 1 min, on the basis
of the size of the amplicon, and finally, a melting curve was prepared. A univer-
sally conserved single-copy gene, rpoB, was used for normalization (10, 39). The
qRT-PCRs were performed in an ABI Prism 7500 sequence detection system
(Applied Biosystems). Relative quantification of bacterial population changes
was performed using the comparative threshold cycle (CT) method, as described
previously (20). Statistical analysis was performed using the PROX MIXED
program in SAS software to identify statistically significant fluctuations in the
population.

Nucleotide sequence accession numbers. All sequence data generated in this
study have been submitted to GenBank under accession numbers HM104710 to
HM105497.

RESULTS

T-RFLP analysis. T-RFLP analysis displayed distinct differ-
ences in the bacterial population structures between prairie
hay-fed animals and animals adapted to a high-concentrate
diet (Fig. 1). Principal component analysis displayed a shift in
microbial population structure by diet 3 (60% corn, 40% hay),
and the shift was more apparent by diet 4 (80% corn, 20%
hay). The phylogenetic assignment of the terminal restriction
fragments annotated only 30% to 50% of the terminal frag-
ments. Thus, the phylogenetic assignments cannot be used to
identify trends in the change in the microbial population struc-
ture and are therefore used only to identify what bacterial
candidate species were present in the sample. On the basis of
the phylogenetic assignment, the ratios of the phyla Firmicutes/
Bacteroidetes were compared between hay-fed animals and an-
imals adapted to the high-concentrate diet (Fig. 2). There was

VOL. 76, 2010 MICROBIAL POPULATION DYNAMICS IN HIGH-GRAIN DIETS 7483



no significant change in the ratio between hay-fed animals and
high-concentrate-fed animals until diet 3, when the ratio was
higher in hay-fed animals than in grain-fed animals. T-RFLP
analyses identified a total of 115 different bacterial genera
among the animals on prairie hay and high-concentrate diets.

16S rRNA gene library and phylogenetic analysis. The com-
parison of 16S rRNA gene libraries using the classifier soft-
ware tool revealed significant changes in rumen bacterial pop-
ulation diversity and structure between animals on prairie hay
and animals on a high-concentrate diet (Fig. 3). The two li-
braries from animals on prairie hay were not significantly dif-
ferent from each other. Similarly, the two libraries from ani-
mals on a high-concentrate diet were not significantly different
from each other. Animals on prairie hay displayed a signifi-
cantly higher number of bacteria belonging to the phylum
Fibrobacteres than animals on a high-concentrate diet (Fig.
3A). Animals on a high-concentrate diet displayed a signifi-
cantly higher number of bacteria belonging to the phylum
Bacteroidetes than animals fed prairie hay (Fig. 3A). All the
bacteria detected in the phylum Fibrobacteres belonged to the
genus Fibrobacter, while a majority of the bacteria detected in

the phylum Bacteroidetes belonged to the genus Prevotella. Al-
though the fluctuations in Firmicutes were not statistically sig-
nificant, further analysis of members within the phylum de-
tected significantly higher numbers of organisms belonging to
the families Clostridiaceae and Acidaminococcaceae in animals
fed a high-concentrate diet (Fig. 3B).

Hierarchical classification of the 16S rRNA gene libraries
attributed 620 clones from animals on the prairie hay diet and
677 clones from animals on the high-concentrate to the domain
Bacteria and 5 clones to the domain Achaea. Among the 620
sequences generated from the 16S rRNA libraries from ani-
mals fed prairie hay, 15 clones belonged to the phylum Spiro-
chaetes, 19 to the Fibrobacteres, 219 to the Firmicutes, 15 to the
Proteobacteria, and 147 to the Bacteroidetes. Out of the 677
sequences from the 16S rRNA libraries from animals fed a
high-concentrate diet, 24 clones belonged to the Spirochaetes,
2 to the Fibrobacteres, 271 to the Firmicutes, 6 to the Proteobac-
teria, and 303 to the Bacteroidetes. The rest of the clones (202
from prairie hay-fed animals and 67 from high-concentrate-fed
animals) could not be classified into a phylum. Comparison of
the ratios of Firmicutes/Bacteroidetes predicted using the clas-
sifier software tool (see Material and Methods) showed that
hay-fed and high-concentrate-fed animals displayed ratios of
1.49 and 0.89, respectively. Phylogenetic analysis demonstrated
significant bacterial diversity both in animals fed prairie hay
and in animals fed a high-concentrate diet (Fig. 4). Libraries

FIG. 1. PCA of T-RFLP data. A shift in bacterial population struc-
ture begins by diet 3 (60:40 grain/hay) and is more apparent by diet 4
(80:20 grain/hay).

TABLE 1. Primer sequences used in real-time PCR analyses

Primer Sequence 5�–3�
Product
size (bp) Tm

a (°C) Reference

Prevotella bryantii-For ACTGCAGCGCGAACTGTCAGA 421 58 46
Prevotella bryantii-Rev ACCTTACGGTGGCAGTGTCTC
Fibrobacter succinogenes-For GGTATGGGATGAGCTTGC 445 62 46
Fibrobacter succinogenes-Rev GCCTGCCCCTGAACTATC
Selenomonas ruminantium-For TGCTAATACCGAATGTTG 513 53 46
Selenomonas ruminantium-Rev TCCTGCACTCAAGAAAGA
Megasphaera elsdenii-For GACCGAAACTGCGATGCTAGA 128 60 33
Megasphaera elsdenii-Rev TCCAGAAAGCCGCTTTCGCCACT
Streptococcus bovis-For ATTCTTAGAGATAGGGTTTCTCTT 134 60 This study
Streptococcus bovis-Rev ACCTTATGATGGCAACTAACAATA
Butyrivibrio fibrisolvens-For CGCATGATGCAGTGTGAAAAGCTC 625 56 This study
Butyrivibrio fibrisolvens-Rev CCTCCCGACACCTATTATTCATCG
rpoB-For AACATCGGTTTGATCAAC 371–390 53.5 10
rpoB-Rev CGTTGCATGTTGGTACCCAT

a Tm, melting temperature.

FIG. 2. Firmicutes/Bacteroidetes ratio during adaptation to high-
concentrate diet based on T-RFLP analysis and 16S rRNA library
analysis. Gray line, prairie hay; black line, high-concentrate diet; black
filled circles, rRNA 16S libraries.
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constructed from animals on prairie hay consisted of 398 dif-
ferent operational taxonomic units (OTUs), and libraries con-
structed from animals on a high-concentrate diet had 315
OTUs. There were only 24 OTUs that were shared between
the animals on the two different diets. A significantly larger
number of clones belonging to the phylum Firmicutes was de-
tected in animals fed prairie hay (Fig. 4). These Firmicutes
clones accounted for 44% of the total bacterial sequences in
the libraries from animals fed prairie hay. The libraries con-
structed from animals on a high-concentrate diet displayed a
significantly higher number of Bacteriodetes spp. (Fig. 4). A few
Archaea were also detected from the libraries constructed from
animals fed prairie hay. These sequences belonged to the ge-
nus Methanobrevibacter.

The diversity statistics (4) calculated for each diet estimated
significant diversity within the rumen and had Chao1 values of
2,725 and 1,177 for hay-fed and grain-fed animals, respectively,
and ACE values of 4,445 and 2,699 for hay-fed and grain-fed
animals, respectively.

Quantitative real-time PCR analysis. The qRT-PCR results
are summarized in Fig. 5. qRT-PCR analysis displayed fold
increases in the Megasphaera elsdenii, Streptococcus bovis, Sel-
enomonas ruminantium, and Prevotella bryantii populations
during adaptation to the high-concentrate diet, whereas the
Butyrivibrio fibrisolvens and Fibrobacter succinogenes popula-
tions gradually decreased as animals were adapted to the high-
concentrate diet.

DISCUSSION

Programs aimed at adaptation of animals to a high-grain diet
are widely used in the U.S. feedlot cattle industry in an effort
to balance enhanced growth against the risk of acidosis (2).
During adaptation to high-grain diets, significant changes in
the ruminal environment and microbial populations have been
reported (17, 46, 47). This stepwise adaptation to a high-grain
diet from a high-forage diet is known to help establish a stable
microbial population within the rumen (23, 2). The change in
the rumen microbial population structure due to a change in
diet is of great interest, as it increases the energy density within
the rumen and helps improve feed efficiency and average daily
gain (ADG) (2). However, microbial population dynamics dur-
ing this transition phase are poorly understood, as only a few
studies have been reported (6, 17, 48). Most of these studies
have utilized culture-based techniques on a few indicator spe-
cies, which have limited these studies to a few rumen bacterial
species (46, 48, 51). This study, based on culture-independent
molecular methods, presents a broader picture of the rumen
microbial population dynamics during adaptation to a high-
concentrate diet from a forage diet.

In this study we detected a significant change in population
structure during adaptation to a high-concentrate diet from
prairie hay (Fig. 1). When the animals on prairie hay were first
put on the step-up diet, no significant change in population
structure was detected in the principal component analysis.
However, by diets 3 and 4 the change in microbial population
structure was clearly apparent. This change in microbial pop-
ulation structure and diversity may be due to the increased
fermentable substrate present in the diet favoring the growth
of amylolytic and other starch-digesting bacterial species.
Goad and coworkers (17) also detected a similar change in the
rumen microbial population numbers, where they observed an
increase in the total amount of viable anaerobic and amylolytic
bacteria in animals fed high-concentrate compared to the
amount in animals fed prairie hay. Analysis of the T-RFLP
data using the Ribosomal Database Project 16S rRNA data-
base was able to assign phylogeny to only 30% to 50% of the
terminal fragments generated, suggesting the presence of a
large number of uncharacterized bacteria within the rumen.
Therefore, the phylogenetic assignments were used only to
identify the bacterial species present in animals on each diet.

A majority of the bacteria identified during diets 3 and 4
were Proteobacteria. Proteobacteria are predominantly com-
posed of Gram-negative bacteria, which have highly diverse
metabolic functions (15, 16). The increased detection of Pro-
teobacteria during diets 3 and 4 suggests an increase in the
numbers of bacterial species that are metabolically capable of
handling the newly available fermentable carbohydrates. The
increasing numbers of Proteobacteria detected by T-RFLP
analysis was not consistent with the results obtained by use of
the 16S rRNA libraries, which did not detect an increase in
Proteobacteria. This can be explained by looking at the 16S
rRNA reads available in the databases. A majority of the reads
in databases and sequenced genomes are from Proteobacteria;
thus, out of the T-RFLP fragments characterized, a majority
represent Proteobacteria due to the availability of more pro-
teobacterial sequence information. Firmicutes were abundant
in the 16S rRNA libraries and also in the T-RFLP profiles for

FIG. 3. Comparison of 16S rRNA gene libraries at the phylum
level. Populations that are significantly different at a P value of �0.01
are indicated by an asterisk. (A) Total population (prairie hay [gray
bars] versus high-concentrate diet [black bars]); (B) distribution of
organisms within the phylum Firmicutes among animals on prairie hay
(gray bars) versus a high-concentrate diet (black bars).
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both diets. Firmicutes are mainly comprised of Gram-positive,
low-G	C-content bacteria (3). Thus, the presence of Firmi-
cutes in high numbers in both ruminal environments suggests
that Firmicutes represent a core bacterial component within
the rumen. The ratios between Firmicutes and Bacteroidetes in
the T-RFLP analysis (Fig. 2) displayed a significant difference
by diet 3, when the ratio was larger in hay-fed animals than in
grain-fed animals. This observation was consistent with the
results obtained with the 16S rRNA library sequences, where
ratios of 1.49 and 0.89 were observed in hay-fed and high-
concentrate-fed animals, respectively (Fig. 2). This is contrary
to the ratios observed in the human gut, where an increase in

weight gain was reflected by a higher Firmicutes/Bacteroidetes
ratio (49). However, the gastrointestinal tracts of humans and
ruminants are completely different, with humans being hindgut
fermenters and cattle being foregut fermenters (5, 52). As
such, it is possible that in foregut fermenters the Firmicutes/
Bacteroidetes ratio is lower during weight gain.

T-RFLP analysis identified over 350 bacterial species be-
longing to 115 different genera. The bacterial genera identified
included many previously described genera. These include
Bifidobacterium spp., Butyrivibrio spp., Eubacterium spp., Lac-
tobacillus spp., Prevotella spp., Ruminococcus spp., Selenomo-
nas spp., Streptococcus spp., Fusobacterium spp., and Pep-

FIG. 4. Phylogenetic analysis of libraries constructed from hay-fed animals and grain-fed animals. A consensus phylogenetic tree constructed
using the maximum-likelihood method is shown. The scale bars indicate the length of 1 substitution per 100 residues. Phylogenetic analysis was
performed on a nonredundant set of OTUs identified from each treatment (diet). The inner ring shows the distribution of each clone at the phylum
level (see the key); the white region represents unclassified sequences. The outer ring shows where each clone originated. Green, prairie hay; blue,
high concentrate; black, both.
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tostreptococcus spp. T-RFLP analysis, although reliable and
highly reproducible, allows identification only of previously
characterized bacterial species. In addition, multiple bacterial
species may share the same terminal restriction fragment. Thus,
additional independent molecular approaches are needed to ver-
ify terminal restriction fragment analysis results.

For definitive identification of the bacterial species in the
samples analyzed, we constructed four 16S rRNA gene librar-
ies and sequenced 384 clones from each library (4 � 384).
Sequence analysis of the reads from animals fed prairie hay
displayed a significantly larger number of bacteria belonging
to the phylum Bacteroidetes. This Bacteroidetes population
accounted for a majority of the clones sequenced and was
composed of bacteria belonging to the genera Prevotella,
Anaerophaga, and Tannerella. However, 82% of the bacteria
belonging to the phylum Bacteroidetes were unclassified Bac-
teroides spp., suggesting that a greater number of bacterial
species within the rumen are yet to be characterized. The
libraries from prairie hay-fed animals displayed significantly
higher numbers of bacteria belonging to the phylum Fibrobac-
teres. Fibrobacter spp. have been identified as the major cellu-
lolytic bacterial species present within the rumen (14, 24, 46);
as such, this observation of Fibrobacter species within our li-
brary is consistent with previous reports. Although we did not

detect significant changes in total rumen Firmicutes popula-
tions, the hierarchical classification of the microbial popula-
tions within the phylum Firmicutes revealed significant differ-
ences between the Firmicutes populations in animals on the
two diets (Fig. 3B). The bacterial populations in animals fed
high-concentrate diet contained more species belonging to the
genera Mitsuokella, Anaerovibrio, and unclassified Clostridi-
aceae. Mitsuokella is an amylolytic organism that flourishes in
the presence of fermentable sugars (44); therefore, an increase
of Mitsuokella isolates during adaptation to a high-concentrate
diet was expected. We also detected the presence of a few
Archaea belonging to the genus Methanobrevibacter within our
libraries from animals fed prairie hay. Previous studies using
Archaea-specific primers have demonstrated that Methanobre-
vibacter is a common inhabitant in the bovine rumen and is
present in forage diets (41).

Hierarchical classification further demonstrated that 202
and 67 sequences from libraries constructed from animals fed
prairie hay and a high-concentrate diet, respectively, were un-
characterized. This validates our previous assertion that the
bovine rumen microbiome is yet to be properly characterized
and is confirmed by diversity estimates that predict �1,700
bacterial species based on chao1 and ACE. In addition, the
significantly higher number of unclassified bacteria in prairie

FIG. 5. qRT-PCR-based population changes of some selected rumen bacterial species during adaptation to a high-concentrate diet. Assays
included four biological replicates and two technical replicates. Changes in population are shown as the fold change compared to the size of the
population when the animals were fed hay during the adaptation phase. rpoB was used for normalization, and fold changes in bacterial populations
were calculated as described in Materials and Methods.
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hay-fed animals suggests that the ruminal bacterial diversity in
animals on forage-based diets is higher than that in grain-fed
animals. The diversity statistics also support this notion, as the
predicted chao1 and ACE values are much higher for hay-fed
animals than grain-fed animals.

Phylogenetic analysis was performed on the sequenced 16S
rRNA gene libraries to identify the phylogenetic relatedness
among the bacterial sequences (Fig. 4). This analysis demon-
strated significant diversity among animals fed prairie hay and
those on a high-concentrate diet, suggesting that the rumen
microbiome is composed of a diverse bacterial population with
flexible metabolic capabilities. This was apparent by the fact
that only 24 OTUs were common between the animals on the
two diets, showing minimum overlap and the presence of distinct
microbial population structures. This also suggests that the rumen
microbial environment is highly dynamic and changes constantly.
The libraries constructed from animals fed prairie hay con-
tained 398 OTUs, and the libraries constructed from animals
fed a high-concentrate diet displayed 315 OTUs. Although the
numbers of OTUs identified were relatively similar, the distri-
bution and relatedness of the 16S rRNA sequences were sig-
nificantly different among the two ruminal environments (Fig.
4). This suggests that when animals are shifted from a forage
diet to a high-concentrate diet, the microbial diversity in terms
of the number of different species remains somewhat similar
but the composition or the species makeup changes signifi-
cantly to adapt to the new ruminal environment. Phylogeneti-
cally distant Firmicutes observed in prairie hay-fed animals
accounted for more than 44% of the total sequences and
were composed of Anaerobaculum, Butyrivibrio, Acetivibrio,
and other Clostridium spp. The few Archaea identified in ani-
mals on prairie hay belonged to the genus Methanobrevibacter.
Although we were initially surprised at the observation of ar-
chaeal sequences, further analysis of these primers reveals that
they do amplify a small group of Archaea (1). We also detected
a phylogenetically diverse Bacteroidetes population in animals
fed a high-concentrate diet. This Bacteroidetes population was
twice the size of the population found in animals fed prairie
hay. The Bacteroidetes population observed in grain-fed ani-
mals was mainly composed of unclassified Bacteroidetes spp.
but also contained a high number of bacteria belonging to the
genera Anaerophaga and Prevotella. The rarefaction curves for
the two diets and the chao1 and ACE diversity estimates show
that the rumen microbial population is highly complex and
diverse.

In addition to T-RFLP analysis and 16S rRNA libraries, we
also evaluated microbial population changes using real-time
PCR analysis. Real-time PCR was used to quantify the popu-
lation shifts of some of the better-characterized rumen micro-
bial species. The prevalence of Fibrobacter succinogenes grad-
ually decreased as animals were adapted to a high-concentrate
diet, and their numbers were 40-fold lower than those in ani-
mals on prairie hay. Fibrobacter succinogenes is a fibrolytic
bacterium that digests fiber (24, 46) and is predominantly
present in diets high in fiber. Therefore, Fibrobacter popula-
tions were expected to drop during adaptation to a high-grain
diet. The 40-fold decrease in the numbers of Fibrobacter iso-
lates detected was consistent with previous observations re-
ported by Tajima et al. (2001), who reported a 20-fold decrease
in population size by day 3 and a 57-fold decrease by day 28 in

animals on high-concentrate diets (46). The population of
Butyrivibrio fibrisolvens also declined 20-fold during adaptation to
a high-concentrate diet. Butyrivibrio fibrisolvens is also known
to be a fibrolytic organism, but it also has a high affinity toward
maltose and sucrose utilization (36) and produces butyrate
(17). As such, Butyrivibrio fibrisolvens is an organism capable of
utilizing both cellulose and starch. The population of Butyriv-
ibrio fibrisolvens had a slight decrease during the first three
stages of the step-up diet (�5-fold) and decreased 20-fold on
the 4th diet. This suggests that Butyrivibrio fibrisolvens is able to
utilize both fiber and concentrate. However, the drop in the
Butyrivibrio fibrisolvens population during diet 4 may be be-
cause of ruminal pH changes due to the increased amount of
fermentable substrates present within the rumen. This is con-
sistent with the results of a recent study that shows Butyrivibrio
fibrisolvens populations increasing in high-fiber diets and de-
creasing in high-energy diets (28). Quantitative real-time PCR
analysis displayed an 11-fold increase in the Megasphaera els-
denii population by diet 3 of the step-up diet and a 6-fold
decrease by diet 4. Megasphaera elsdenii is one of the most
widely studied rumen organisms (37) and is known to utilize
the lactic acid produced within the rumen to help prevent lactic
acid accumulation and acidosis (9). The increase in the Megas-
phaera elsdenii population is a mechanism of maintaining ru-
minal pH by utilizing the increasing lactic acid produced within
the rumen on high-energy diets. The 5-fold decrease in the
Megasphaera elsdenii population during the 4th stage of the
step-up diet may be due to the decrease in ruminal pH beyond
the survival limits of the organism. The Streptococcus bovis
population increased 2-fold by the start of the step-up diet but
decreased by the end of the step-up diet regimen and did not
show a significant change. Streptococcus bovis is a facultative
anaerobe and is known to predominate during lactic acidosis
(34, 11, 42). The rapid growth of Streptococcus bovis had not
been reported in animals adapted to grain but was seen to be
similar to that in animals on a forage diet (29). Therefore, our
observation of no significant change in the S. bovis population
is consistent with previous reports and suggests that by using a
step-up diet to adapt animals to a high-concentrate diet, the S.
bovis population can be controlled and will help control the
ruminal pH. The Selenomonas ruminantium population in-
creased 30-fold by the second stage of the step-up diet and
thereafter was consistently 30-fold higher than that in the an-
imals fed prairie hay. Selenomonas ruminantium is a propi-
onate-producing species and is known to produce propionate
through succinate decarboxylation (44). Selenomonas ruminan-
tium also has the ability to utilize a wide range of substrates,
including lactate (36). Hence, the increasing Selenomonas ru-
minantium population may help utilize the increasing amount
of fermentable substrates and the lactic acid produced within
the rumen during adaptation to a high-concentrate diet. Thus,
the increasing Selenomonas ruminantium and Megasphaera els-
denii populations during adaptation to a high-concentrate diet
may help decrease lactic acid concentrations by utilization.
Prevotella bryantii populations increased gradually, reaching
8,000-fold by the 3rd regimen of the step-up diet, and then
decreased rapidly by diet 4. A similar trend in population
change was reported by Tajima et al. (2001), who reported a
263-fold increase in the P. bryantii population by day 3 of the
step-up program and a large decrease in the P. bryantii popu-
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lation in later stages (46). This decrease in the P. bryantii
population on diet 4 may be due to the decreasing ruminal pH
caused by the excess fermentable substrates in the diet.

This study of microbial population dynamics utilizing several
molecular approaches provides valuable insight into microbial
population structure and diversity in hay-fed and grain-fed
animals. This approach also helps overcome the drawbacks of
one or another technique and helps get a better understanding
of the community. T-RFLP profiles provide a global view of
the population structure and allow a low-cost approach to
monitor microbial population shifts. However, T-RFLP anal-
ysis does not allow characterization of the microbial commu-
nity, as classification of terminal restriction fragments is de-
pendent on previously characterized sequences. Thus, only a
fraction of the terminal fragments can be characterized. In
addition, T-RFLP analysis prevents the identification of novel
species. However, using 16S rRNA libraries in combination
with T-RFLP profiles helps overcome several of these draw-
backs. 16S rRNA gene sequence analyses provide both specific
sequence identification and the relative representation of each
species and offer a unique perspective into the rumen micro-
biomes of hay-fed and grain-fed animals. Quantitative real-
time PCR analysis adds a new dimension to the community
analysis, as it allows quantifying the change in selected bacte-
rial species and helps identify how important the change in a
bacterial species is for the ruminal function. This study, using
three different molecular approaches, provides a broader pic-
ture of the rumen microbial population dynamics in hay-fed
and grain-fed animals during adaptation to high-grain diets
and shows the value of using multiple approaches to study
microbial community structure and diversity. Our analyses
identified numerous organisms that were not previously re-
ported from the rumen. Although it is impossible to function-
ally characterize them without isolation, the hierarchical clas-
sification performed should help predict their function. As far
as we are aware, this investigation of rumen microbial popu-
lation structure and diversity using 16S rRNA gene libraries is
among the largest sequence-based analyses of the rumen mi-
crobiome conducted thus far.
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