University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

Electrical & Computer Engineering, Department of

4-2017

Reducing Graphene-Metal Contact Resistance via Laser Nano-welding

Kamran Keramatnejad University of Nebraska-Lincoln, kkeramatnejad2@unl.edu

H. Rabiee Golgir University of Nebraska-Lincoln, rabiee@huskers.unl.edu

Y. S. Zhou University of Nebraska-Lincoln, yzhou5@unl.edu

D. W. Li University of Nebraska-Lincoln, dli8@unl.edu

X. Huang University of Nebraska-Lincoln

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses Part of the <u>Computer Engineering Commons</u>, and the <u>Other Electrical and Computer</u> <u>Engineering Commons</u>

Keramatnejad, Kamran; Rabiee Golgir, H.; Zhou, Y. S.; Li, D. W.; Huang, X.; and Lu, Yongfeng, "Reducing Graphene-Metal Contact Resistance via Laser Nano-welding" (2017). *Theses, Dissertations, and Student Research from Electrical & Computer Engineering*. 78. http://digitalcommons.unl.edu/elecengtheses/78

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Kamran Keramatnejad, H. Rabiee Golgir, Y. S. Zhou, D. W. Li, X. Huang, and Yongfeng Lu

Reducing Graphene-Metal Contact Resistance via Laser Nano-welding

K. Keramatnejad, H. Rabiee Golgir, Y. S. Zhou, D. W. Li, X. Huang, and Y. F. Lu* Department of Electrical and Computer Engineering, Univ. of Nebraska-Lincoln

Lincoln, Nebraska 68588-0511, United States

E-mail: ylu2@unl.edu

Website: http://lane.unl.edu

Laser Assisted Nano-Engineering Lab

MOTIVATION AND CHALLENGES

Nebraska-Lincoln

Flexible electronics

Transparent electrodes

Optoelectronics

RESULTS AND DISCUSSION

I. Reducing the Contact resistance via laser nano-welding

 Slight increase in R_C for all samples after the laser-irradiation.

 $_{\odot}$ Significant reduction of $R_{\rm C}$ values after the annealing.

The large graphene-metal contact resistance is

a major limitation for development of graphene electronics.

graphene behaves as an insulator for out-ofplane carrier transport to metallic contacts.

PROPOSED SOLUTION

Laser nano-welding of graphene to the metal contacts

- Laser-induced formation of defects.
- $\circ~$ Increase the chemical reactivity of graphene.
- Avoid unwanted damage to channel region.

o

 $---A_{c}=8.5 \ \mu m^{2}$ -- A_c=26.3 μ m² 10° Annealing Pristine Laser

• $R_{\rm C}$ values as low as 2.57 Ω•µm obtained via laser nano-welding method.

II. Structural characterization using I_D/I_G Raman mapping

 \circ A rise in the I_D/I_G ratio was observed only at the edges of graphene, where laser irradiation was performed.

 \circ No change was observed at the channel region and the middle of

bonding at laser-induced defects.

METHODS

I. Fabrication of the four-point probe structures

II. Laser nano-welding of graphene

A. Laser irradiation

Beam splitter

B. Thermal annealing

graphene-metal interface.

 Performance degradation was avoided, due to selective mechanism of the laser-irradiation.

III. Carrier mobility

- Slight reduction in the mobility after the laser irradiation.
- Increased mobility after the thermal annealing.
- Improved carrier injection efficiency, due to the bonding formation at the edges of graphene.

CONCLUSIONS

Laser nano-welding was developed and led to R_c reductions of up to 84%.

- Wavelength: 514 nm.
- \circ Laser Fluence: 1.6×10³ J/cm².

Sample

Localized laser irradiation at the edges of graphene led to the formation of chemically active point defects.

Precise structural modifications and formation of G-M bonding led to improved carrier efficiency in graphene devices.

ACKNOWLEDGEMENTS

This research work was financially supported by the National Science Foundation (CMMI 1265122), Nebraska Materials Research Science and Engineering Center (MRSEC, DMR-1420645), and Nebraska Center for Energy Sciences Research (NCESR).