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Abstract 
SNP chips are commonly used for genotyping animals in genomic selec-
tion but strategies for selecting low-density (LD) SNPs for imputation-me-
diated genomic selection have not been addressed adequately. The main 
purpose of the present study was to compare the performance of eight LD 
(6K) SNP panels, each selected by a different strategy exploiting a combina-
tion of three major factors: evenly-spaced SNPs, increased minor allele fre-
quencies, and SNP-trait associations either for single traits independently or 
for all the three traits jointly. The imputation accuracies from 6K to 80K SNP 
genotypes were between 96.2 and 98.2%. Genomic prediction accuracies 
obtained using imputed 80K genotypes were between 0.817 and 0.821 for 
daughter pregnancy rate, between 0.838 and 0.844 for fat yield, and between 
0.850 and 0.863 for milk yield. The two SNP panels optimized on the three 
major factors had the highest genomic prediction accuracy (0.821–0.863), 
and these accuracies were very close to those obtained using observed 80K 
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genotypes (0.825–0.868). Further exploration of the underlying relationships 
showed that genomic prediction accuracies did not respond linearly to im-
putation accuracies, but were significantly affected by genotype (imputation) 
errors of SNPs in association with the traits to be predicted. SNPs optimal for 
map coverage and MAF were favorable for obtaining accurate imputation 
of genotypes whereas trait-associated SNPs improved genomic prediction 
accuracies. Thus, optimal LD SNP panels were the ones that combined both 
strengths. The present results have practical implications on the design of 
LD SNP chips for imputation-enabled genomic prediction. 

Keywords: Holstein, Imputation, Genomic prediction, Low-density SNP 
chips 

Abbreviations 

ANOVA  Analysis of variance 
DPR  Daughter pregnancy rate 
FY  Fat yield 
GEBV  Genomic-estimated breeding value 
GER  Genotype (imputation) error rate 
GPA  Genomic prediction accuracy 
GS  Genomic selection 
HD  High-density 
LD  Low-density 
LGPA  Loss in genomic prediction accuracy 
MAF  Minor allele frequencies 
MCMC  Markov chain Monte Carlo 
MD  Moderate-density 
MOLO  Multiple-objective, local-optimization 
MY  Milk yield 
PTAs  Predicted transmitting abilities 
RGPA  Relative genomic prediction accuracy 
RTMGL  Relative total maximum gap length 
TMGL  Total maximum gap length 

Introduction 

The availability of whole-genome DNA information has opened the 
door for genome-enabled genetic improvement in agricultural ani-
mals (Hayes and Goddard 2001; van der Werf 2013), and SNP arrays 
are commonly used for genotyping animals in genomic selection. 
Though genotyping cost per SNP has been drastically decreased in 
the past 10 years, use of moderate-density (MD) or high-density (HD) 
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SNP chips is still expensive for animal breeding and selection pro-
grams in practice. Consequently, when the advantage of GS is com-
pared to traditional genetic selection in terms of genetic gain per unit 
of cost, it is clear that low-density (LD) SNP chips are preferred in or-
der to fully exploit the genetic gain advantages of GS because they 
are cost-effective (Habier et al. 2009; Weigel et al. 2009; Biochard et 
al. 2012; Bolormaa et al. 2015). 

Often, LD-SNP chips are selected either based on their map lo-
cations, such as evenly-spaced SNPs (Habier et al. 2009; Wiggans et 
al. 2012), or selected based on their associated effects (Weigel et al. 
2009). Recently, a multiple-objective, local-optimization (MOLO) al-
gorithm was proposed to select LD SNPs, which is capable of select-
ing SNPs to meet multiple objectives, which included map coverage, 
minor allele frequency (MAF), map gaps, and many more criteria (Wu 
et al. 2016). Nevertheless, genomic prediction using LD SNP geno-
types directly can suffer from information loss due to insufficient ge-
nome coverage, which in turn can result in substantially decreased 
prediction accuracy (Weigel et al. 2009). Besides, it has been discov-
ered that selected SNPs based on a certain statistical cut-off tend to 
explain only a small portion of its total genetic variation for a quan-
titative trait of polygenic inheritance (Manolio et al. 2009; Eichler et 
al. 2010; Zuk et al. 2012). Alternatively, MD or HD genotypes can be 
imputed based on a set of known LD SNP genotypes and then used 
for genomic prediction with increased accuracy (Erbe et al. 2012; Pi-
mentel et al. 2013). This type of approaches is referred to as imputa-
tion-mediated genomic prediction hereafter. Unlike genomic predic-
tion using trait-specific LD SNP chips, imputation-mediated genomic 
prediction allows the use of a common, multiple-trait SNP chip, which 
not only saves over-head costs associated with chip design and man-
ufacturing, thus simplifying the practicality of genotyping by provid-
ing one assay for multiple economically relevant traits, but it also can 
minimize the loss of genomic prediction accuracy (LGPA) as compared 
to that using observed MD or HD SNP genotypes. 

Consider GS in dairy cattle in the USA, for example. The genomic 
prediction system (i.e., linear prediction equations with SNPs as the 
predictors) was built on 50K (now 66K) SNP genotypes (Wiggans et 
al. 2009). With the genomic prediction system for Holsteins in place, 
it is possible to genotype these candidate animals using a LD SNP 
chip and then impute to 50K genotypes for these animals, instead of 
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genotyping all candidate animals using the bovine 50K SNP chip. Fi-
nally, genomic-estimated breeding values (GEBVs) are computed us-
ing imputed 50K genotypes for candidate animals, according to SNP 
effects estimated on observed 50K genotypes in the training pop-
ulation. Therefore, selection of optimal LD SNPs is central to impu-
tation-mediated genomic prediction. Although there were previous 
studies on the accuracies of imputation from LD SNP genotypes to 
MD- and HD-SNP genotypes (e.g., Boichard et al. 2012), selection of 
LD SNPs for imputation-mediated GS has not been addressed ade-
quately. Wu et al. (2016) investigated the effects of imputation-medi-
ated genomic prediction using trait-associated LD SNPs, but there are 
still many important pieces missing in the portrait of imputation-me-
diated GS, such as lacking of a direct comparison of trait-association 
panels to map-optimal panels relative to prediction accuracy and of 
an understanding as to how genomic prediction accuracies respond 
to imputation accuracies. 

The objectives of the current study were to evaluate the perfor-
mance (i.e., imputation and genomic prediction accuracies) of eight 
sets of imputed 80K SNP genotypes from LD SNPs, each derived us-
ing a different strategy, and further explore genomic prediction errors 
in relation to imputation errors in a U.S. Holstein population. 

Materials and methods 

Genotype and phenotype data 

The data consisted of 6,988 Holstein animals (approximately 54% 
males and 46% females), each genotyped by the GeneSeek Genomic 
Profile (GGP) HD 80K (77,376) SNP chip: http://www.neogen.com/
en/geneseek-announces-next-generation-of-dna-technology-genes-
eek-genomic-profilerbovine-hd . The phenotypes included predicted 
transmitting abilities (PTAs) for daughter pregnancy rate (DPR), fat 
yield (FY), and milk yield (MY). DPR was defined as the percentage 
of cows eligible to become pregnant in a 21-day period that actu-
ally become pregnant. Distributions of these traits showed that they 
were approximately normally distributed, yet skewed slightly toward 
large values (Fig. 1). Data cleaning steps of genotypes included the 
following. Firstly, unmapped SNPs and those on mitochondrial and Y 

http://www.neogen.com/en/geneseek-announces-next-generation-of-dna-technology-geneseek-genomic-profilerbovine-hd
http://www.neogen.com/en/geneseek-announces-next-generation-of-dna-technology-geneseek-genomic-profilerbovine-hd
http://www.neogen.com/en/geneseek-announces-next-generation-of-dna-technology-geneseek-genomic-profilerbovine-hd
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chromosomes were removed. Secondly, monomorphic SNPs and SNPs 
with MAF < 0.05%, and SNPs with > 10% missing genotypes were all 
removed. Finally, co-linearity among SNP genotypes was a concern 
when fitting a genomic model in which all SNPs were evaluated si-
multaneously. To reduce co-linearity between SNP loci, percentage of 

Fig. 1. Distributions of three phenotypes: a) daughter pregnancy rate, b) fat yield, 
and c) milk yield. 
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genotype sharing was computed on a moving window of 20 neigh-
boring SNPs on each chromosome. For SNPs with > 99% genotype 
sharing, only the one with the greatest MAF, and closest to the cen-
tral location of each moving window if there were ties, were kept and 
all the remaining SNPs were deleted. These data editing and clean-
ing steps retained 68,748 SNPs for subsequent genomic prediction. 

To mimic the scenario for forward genomic prediction, these an-
imals were sorted by their dates of birth (Table 1), and SNP effects 
were estimated in 5593 older animals (born on and before 2014-08-
18) as the training set and validated in the remaining 1395 younger 
animals (born after 2014-08-18). The sex ratios (males:females) were 
55.6:44.4% and 44.3:55.7%, respectively, in the training and validation 
sets. For the validation animals, GEBV were computed based on the 
observed and imputed 80K genotypes, respectively, according to the 
estimated SNP effects from the training set. 

Selection of LD SNPs 

Eight LD SNP panels were formed using various strategies for select-
ing SNPs. These strategies attempted to optimize on each or a com-
bination of three major factors, which are optimal map coverage (i.e., 

Table 1. Distribution (by years of birth) of the 
Holstein animals used in the present study 

    Year of birth           Number of animals 

2000  1 
2001  2 
2003  2 
2004  1 
2005  2 
2006  3 
2007  5 
2008  2 
2009  7 
2010  16 
2011  58 
2012  552 
2013  2,647 
2014  3,527 
2015  163 
SUM  6,988  
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evenly-spaced SNPs), large MAF, and significant SNP-traits associa-
tions (Fig. 2). Accordingly, the eight SNP panels can be classified into 
three groups. The first group consisted two panels, namely UNF6K 
and SEL6K, which are 6K SNP panels optimized for SNP map cover-
age, but SEL6K were also optimized for large MAF. The second group 
consisted of four SNP panels which were optimized to have SNPs 
with large SNP-trait associations, either for single traits (STR6KA and 
STR6KB) or for the three traits jointly (MTR6KA and MTR6KB). It 
turned out that, by selecting SNPs with large association effects, it 
led to having SNPs with large MAF as well. The third group included 
two enhanced panels of STR6KA and STR6KB, respectively, by includ-
ing SNPs which are optimal selected for map coverage. The resulting 
two panels were denoted by STR6KA+ and STR6KB+, respectively. 

Selection of SNPs for these eight panel are discussed in more de-
tail as follows. UNF6K consisted of 6,000 approximately uniform-dis-
tributed SNPs. SEL6K had 6,000 SNPs optimally selected based on 
map coverage and MAF, and minimized for maximum gaps. These 
two 6K SNP panels were selected by the selectSNP package accord-
ing to different optimization objectives (Wu et al. 2016). Single-trait 

Fig. 2. Schematic diagram illustrating eight SNP panels in three groups with SNP 
selected by exploring various optimization criteria. SP SNPs with the largest poste-
rior model probability of inclusion based on a single-trait BayesCπ model, SV SNPs 
with the largest SNP variance based on a single-trait BayesCπ model, MP SNPs with 
the largest posterior model probability of inclusion based on a multiple-trait model, 
MV SNPs with the largest weighted SNP variance based on a multiple-trait BayesCπ 
model. The intensity of color represents the optimization intensity on each of the 
three major factors. 
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BayesCπ (Habier et al. 2011) was used to select trait-specific LD SNPs. 
The STR6KA panel was formed by pooling three sets of trait-specific 
LD SNP panels, each consisting of 2000 SNPs with the largest poste-
rior model probability of inclusion (i.e., posterior probability for each 
SNP to have nonzero effects) for each trait. The STR6KB panel was 
formed by pooling three single-trait subsets, each consisting of 2000 
SNPs with the largest SNP variance on each trait. Because there were 
common SNPs among the three trait-specific sets of 2000 SNPs, leav-
ing space for a few hundreds of SNPs on each pooled panel, two en-
hanced LD panels (namely STR6KA+ and STR6KB+) were made by 
adding optimally selected SNPs to these two panels till the 6,000 
slots of SNPs were filled. The multiple-trait BayesCπ (Jia and Jan-
nink 2012) was used to selection LD SNPs of importance to the three 
traits jointly. There were two multiple-trait LD SNP panels: MTR6KA 
consisted of 6000 SNPs which were selected according to their pos-
terior model probability of inclusion evaluated using a multiple-trait 
BayesCπ model and MTR6KB consisted of 6000 SNPs with the larg-
est weighted SNP variances, with the weights being the averages of 
standardized SNP variances of each SNP on the three traits. Selection 
of SNPs using single-trait and multiple-trait BayesCπ were conducted 
using in-house software (Wu et al. 2012a, b). 

Multiple-objective, local-optimization 

The MOLO algorithm was used to optimally select SNPs for the SEL6K 
SNP panel. This algorithm centers on an objective function, f(x) , which 
maximizes the adjusted system information (Shannon entropy) and 
non-gap map length for a set of selected SNPs under multiple con-
straints (e.g., on MAFs, location distribution of SNPs, inclusion of 
obligatory SNPs, and number and size of gaps). That is,

max { f(x)} | g(x),  h(x),  i(x|o), r }                                       (1)

where g(x) collectively includes all equality constraints, h(x) includes 
all inequality constraints, i(x|o) represents constraints given the set 
of obligatory SNPs, and 0 ≤ r ≤ 1 is a tunable parameter for the bin 
width that is used in the heuristic search for local optima. 

Briefly, the putative distributions of SNPs were initialized uni-
formly. Gaps were minimized given the number of SNPs on each chro-
mosome. The SNP quality and fidelity criteria, such as call rate and 
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Mendelian inconsistency, were resolved prior to optimization and 
hence were not included in the MOLO algorithm. Information for a 
chip were computed based on multi-loci frequencies of all involving 
SNPs, adjusted by the uniformness of SNP distribution on each chro-
mosome. The objective function in Eq. (1) was highly non-linear and 
a heuristic search algorithm was used to find local optima in an at-
tempt to approximate the global optimum. 

Single-trait BayesCπ 

For each trait, the phenotype data were described by the following 
linear model: 

yi = μ + ∑k

j=1
 xij bj + ei                                                    (2)

where yi was a PTA for the i-th individual, μ is the overall mean, xij was 
the genotype (which were coded as -1, 0, 1, respectively) of the j-th 
SNP measured on the i-th individual, bj was the additive association 
effect of the j-th SNP, k is the number of SNPs, and ei ~ N (0,σ 2

e ) was 
a residual term. 

The BayesCπ model (Habier et al. 2011) assumed a priori that 
each SNP effect was null with probability π, or it followed a normal 
distribution, N (0,σ 2

b ), with probability 1 − π. 

                  bj|π, σ 2
b   ~ { N (0,σ 2

b ), with probability (1 – π)
0            with probability π                    (3)

In the above, σ 2
b  was a variance common to all non-zero SNP effects, 

which in turn was assigned a scaled inverse Chi square prior distribu-
tion, χ−2 (vb, s2

b). Similarly, the prior distribution for σ 2
e  was also taken 

to be a scaled inverse Chi-square distribution, χ−2 (ve , s2
e). Furthermore, 

the value of π in the model was unknown and was inferred with the 
prior distribution of π taken to be uniform between 0 and 1. 

The BayesCπ model was implemented via Markov chain Monte 
Carlo (MCMC) with three parallel chains each consisting of 50,000 it-
erations after a burn-in of 5,000 iterations, thinned at every one-tenth. 
The posterior inference on each unknown parameter was made on 
the pool of saved posterior samples from the three parallel chains af-
ter the burn-in period. 
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Multiple-trait BayesCπ 

LD SNPs with the greatest impact on all the three traits were selected 
using multiple-trait BayesCπ model (Jia and Jannink 2012). Based on 
the following multiple-trait version of model (2): 

Y = 1 μ′ + ∑k

j=1
 xj b′j                                                    (4)

where Y was a n × m matrix for m traits measured on n individuals, 1 
was a n × 1 vector of 1’s, (μ = μ1 μ2 … μm) was a m × 1 vector of over-
all means for the m traits, xj = ( x1, j … xi, j … xn, j)′ was a n × 1 vector of 
genotypes for the j-th SNP, bj = (bj1 bj2 … bjm) was a m × 1 vector of 
genetic effects of marker j on the m traits, and E = (e1 e2 … en)′ was a 
n × m residual matrix. 

The multiple-trait BayesCπ model was computed via MCMC. Three 
parallel MCMC chains were run each with 50,000 iterations after a 
burn-in of 5000 iterations, thinned at every one-fifth. The saved pos-
terior samples were pooled after the burn-in period and then used to 
make inference on unknown model parameters. 

Weighted SNP variances were computed as follows. Consider the 
j-th SNP selected for the t-th trait, for j = 1, 2 ,…, k and t = 1, 2, 3 . 
Then, the standardized variance of association effects of this SNP on 
the t-th trait was computed to be: 

σ̂ 2
j(t) =

      2pj qj b̂2
j(t)                                           (5)

                                   Σk
j=1 2pj qj b̂2

j(t)   

where pj and qj were the observed frequencies of the two alleles for 
the j-th SNP and b̂2

j(t)  is an estimate of the corresponding additive as-
sociation effects, both pertaining to the t-th trait in the training pop-
ulation. Then, standardized SNP variances were averaged across the 
three traits for each SNP, as follows: 

—
σ 2

j = ⅓ ∑3

t=1 σ̂
2
j(t)                                    (6)  
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Estimation of SNP effects using ridge‑regression BLUP for 
genomic prediction 

SNP effects were estimated for each trait independently using the 
following linear model: 

y = 1μ + Xb + e                                                   (7)

where y was a n × 1 vector of PTA for all the animals in the training 
population, X was an n × p matrix of SNP genotypes, b was a p × 1 
vector of unknown allelic substitution effects of all the SNPs, and e 
was the residual term. 

The ridge regression estimator solved the above linear regression 
using ℓ2 penalized least squares: 

β̂(ridge) = arg minβ || y − 1μ − Xb||2 + λ||b||                    (8)

In the above, || y − 1μ − Xb||2 was the ℓ2–norm (quadratic) loss 

function (i.e., residual sum of squares), ||b||2 = Σk

j=1 b2
j was the ℓ2–norm 

penalty on b, and λ ≥ 0 is the tuning parameter, which regulated the 
strength of the penalty (linear shrinkage). A priori, we set λ = σ̂ 2

e /σ̂ 2
b 

, where σ̂ 2
e  was the estimated residual variance, and σ̂ 2

b  was the esti-
mated variance of regression coefficients given by Var(b) = Iσ 2

b. Let σ̂ 2
a  

and σ̂ 2
e  be the estimated additive genetic variance and the estimated 

residual variance, respectively, from an equivalent animal model. The 
initial values for σ2

b was set up to be 

                                 
   σ̂ 2

b =  
     σ̂ 2

a  

(k×2–p
–

q
–
 ) 

where 2–p
–

q
–
 = k –1 Σk

i=1 (2pj qj ), and pj and qj are the observed frequen-
cies of the two alleles at SNP j. A Bayesian version of the above ridge 
regression model was implemented via MCMC, which allowed for 
sampling the common SNP variance and the residual variance, in ad-
dition to the overall mean and SNP effects. Estimation of SNP effects 
were conducted using in-house genomic prediction pipelines (Wu et 
al. 2012a, b). 
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Preliminary determination of optimal trait‑specific LD SNP 
panel size 

Prior to the design of LD SNP chips, an optimal trait-specific LD SNP 
panel size was determined as such that the loss in genomic predic-
tion accuracy (LGPA) using a subset of selected SNPs were at most 
3% as compared to genomic prediction using the observed 80K SNPs. 
Briefly, eight subsets of SNPs were evaluated, each consisting of top 
500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 SNPs, respectively, 
sorted in the descending order by the posterior probability of inclu-
sion of a SNP as having non-zero effect on each trait in the single-
trait BayesCπ model (Habier et al. 2011). Then, GPA was evaluated by 
three-fold cross-validation (Kohavi 1995). LGPA was measured by per-
cent decrease of GPA using a subset of the 80K SNP genotypes com-
pared to that using the whole set of observed 80K SNP genotypes. 
LGPA were roughly between 1 and 11% with between 500 and 4000 
SNPs selected. The more SNPs were selected for genomic prediction, 
the less LGPA. Overall, LGPA was approximately ≤ 3% for each of the 
three traits with 2000 selected SNPs fitted in the genomic prediction 
model, and it began to plateau when more selected SNPs were fit-
ted in the genomic prediction model (Fig. 3). Hence, this number (i.e., 
2000 SNPs) was taken to be the optimal number of SNP for each trait 
to be included on the panels to guide the SNP selection in the fol-
lowing sections. Note that the optimal LD SNP panel size, as deter-
mined this way, is only empirical and it can vary with the actual data. 

Fig. 3. Relative genomic prediction accuracies using subsets (i.e., from 500 to 4000) 
of selected SNPs with the largest association effects on each of the three traits over 
those using the whole 80K SNPs (i.e., 68,748 SNPs with MAF > 0.05).  
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Measurements of imputation accuracy and genomic prediction 
accuracy 

Imputation accuracy rate was computed as the percentage of correctly 
imputed cases of genotypes for all SNPs that had been imputed, as 
compared to observed genotypes. Conversely, imputation error rate 
is the percentage of incorrectly imputed genotype cases for all SNPs. 
Calus et al. (2014) noted that imputation error rate (and hence impu-
tation accuracy rate) depends on MAF. They also argued that a more 
appropriate measurement of imputation accuracy should be com-
puted as the correlation between true and imputed genotypes, be-
cause the latter does not depend on MAF and therefore can be com-
pared across loci with different MAF (Calus et al. 2014). In the present 
study, imputation error rates were compared among panels but not 
cross loci. Though MAF varied drastically with SNPs and with these 
eight LD SNP panels, there were very slight differences among the re-
maining sets of (~63K) SNPs to be imputed. Thus, we decided to use 
imputation accuracy rate. 

SNP effects were estimated on the observed 80K SNP genotypes 
using ridge-regression BLUP for each of the three traits independently 
in the training population (5393 animals). In the validation set (1,395 
animals), 80K SNP genotypes were imputed based on each set of 6K 
LD SNP genotypes using the FImpute package (Sargolzaei et al. 2014). 
Then, GEBV was computed for each validation animal with the ob-
served and imputed 80K SNP genotypes, respectively, as the predic-
tor variables according to SNP effects estimated on the observed 80K 
genotypes in the training set. GPA obtained using observed or im-
puted 80K genotypes were measured by the correlation between PTAs 
and GEBVs of animals in the validation set. Relative genomic predic-
tion accuracy (RGPA) was also computed as a percentage of GPA us-
ing imputed 80K SNP genotypes over that obtained using observed 
80K SNP genotypes in the validation set. 
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Results 

Design of LD SNP panels 

In the eight LD SNP panels, UNF6K consisted of 6000 approximately 
uniform-distributed SNPs. SEL6K had 6000 SNPs optimally selected 
based on map coverage and SNP information (i.e., MAF), and min-
imized for maximum gaps. After removing duplicated SNPs among 
the three trait-specific sets of 2000 SNPs, the STR6KA panel had 
5373 unique SNPs and the STR6KB panel had 5218 unique SNPs. The 
STR6KA+ panel included all the unique SNPs in the STR6KA panel, 
plus 627 SNPs optimally selected by the selectSNP package (Wu et 
al. 2016), and the STR6KB+ panel included all the SNPs in the STR6KB 
panel plus 782 SNPs optimally selected by the selectSNP package (Wu 
et al. 2016). For convenience of discussion, UNF6K and SEL6K are also 
referred to as map-optimal panels because they were optimized for 
SNP distributions on the maps, and STR6KA+ and STR6KB+ are re-
ferred to as enhanced panels because they contained both trait-spe-
cific SNPs and map-optimal SNPs. There were two multiple-trait LD 
SNP panels: MTR6KA and MTR6KB, each consisting of 6000 SNPs se-
lected by a multiple-trait BayesCπ model. 

Average MAF was 0.45 for the SEL6K panel and 0.30 for the 
UNF6K panel, and it was 0.30 for the 80K SNPs (i.e., 68,748 SNPs with 
MAF > 0.05). Thus optimal selection of SNPs for both map coverage 
and MAF considerably elevated MAF (Fig. 4a vs. c), but selection of 
evenly-spaced SNPs did not change MAF relative to the 80K geno-
types (Fig. 4a vs. b). Selection of 6K SNPs according to their associ-
ation effects did not directly contemplate MAF but it elevated MAF 
indirectly (Fig. 4a vs. d). The means (standard deviations) of MAF 
for STR6KB and MTR6KB panels were 0.36 (0.12) and 0.34 (0.11), re-
spectively, in this Holstein population. This was possibly because of 
the fact that SNPs with small MAF also had larger variances associ-
ated with their estimated effects, and were therefore more difficult 
to pass certain cutoffs imposed in the test of association effects than 
those with larger MAF. 
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Fig. 4. Distributions of MAF computed for: a) 68,748 SNPs with MAF > 0.05, b) 6000 
evenly-spaced SNPs with MAF > 0.05 (UNF6K), c 6,000 SNPs optimally-selected by 
the MOLO algorithm (SEL6K), and d 5218 unique SNPs selected the largest SNP ef-
fect variances on each of the three traits (STR6KB).
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Imputation accuracy from 6K to 80K SNP genotypes 

The average imputation accuracy rates were between 96.2% and 
98.2% (Table 2). The SEL6K had the greatest imputation accuracy 
(98.2%), followed by UNF6K - the 6K panel of evenly-spaced LD SNPs 
(97.6%). For the two enhanced panels, STR6KA+ and STR6KB+, their 
imputation accuracy rates (97.4–97.5%) were only slightly lower than 
those of the two map-optimal panels (SEL6K and UNF6K). 

Table 2. Summary statistics and imputation accuracy rate (SD) of the eight low-
density 6K SNP panels 

Panel  Number   Map  MAF  SNP-trait  Imputation  
 of SNPs optimal  optimal  association  accuracy, % 

UNF6K  6000  Yes  No  No  97.6 (0.45) 
SEL6K  6000  Yes  Yes  No  98.2 (0.27) 
STR6KA  5373  No  Correlated  Yes  96.2 (1.30) 
STR6KA+  6000  Yes  Yes  Yes  97.4 (0.94) 
STR6KB  5218  No  Correlated  Yes 96.4 (1.36) 
STR6KB+  6000  Yes  Yes  Yes  97.5 (0.90) 
MTR6KA  6000  No  Correlated  Yes  96.4 (1.86) 
MTR6KB  6000  No  Corrected  Yes  96.4 (1.88) 

UNF6K = 6,000 evenly-spaced SNPs
SEL6K = 6,000 SNPs optimally-selected by the selectSNP package (Wu et al. 2016)
STR6KA = 5,373 unique SNPs pooled from three sets of trait-specific SNP panels, 

each consisting of 2,000 SNPs with the largest model probability of having non-
zero association effects on each trait (i.e., selected by single-trait BayesCπ)

STR6KA+ = STR6KA plus 627 SNPs optimally-selected by the selectSNP package 
(Wu et al. 2016)

STR6KB = 5,218 unique SNPs pooled from three sets of trait-specific SNP panels, 
each consisting of 2,000 SNPs with the largest variance of SNP association effects 
on each trait (i.e., selected by single-trait BayesCπ)

STR6KB+ = STR6KA plus 782 SNPs optimally selected by the selectSNP package 
(Wu et al. 2016)

MTR6KA = 6,000 SNPs with the largest model probability of having non-zero asso-
ciation effects on the three traits (i.e., selected by multiple-trait BayesCπ)

MTR6KB = 6,000 SNPs with the largest weighted SNP variances on the three traits 
(i.e., selected by multiple-trait BayesCπ

SD = standard deviation of imputation accuracy rates by chromosomes  
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Imputation accuracy rates were negatively associated with maxi-
mum map gaps. To illustrate this situation, the maximum gap length 
on each of 30 chromosomes (29 autosomes and X chromosome), de-
noted by the total maximum gap length (TMGL), were computed and 
summed up for each of the eight 6K LD SNP panels. As shown in Fig. 
5, TMGL was the smallest for UNF6K and SEL6K, and the largest for 
STR6KA, STR6KB, MTR6KA and MTR6KB (Fig. 5). Nevertheless, the two 
enhanced 6K panels (STR6KA+ and STR6KB+) had considerably de-
creased TMGL, which were only slightly larger than those for the two 
map-optimal 6K SNP panels (UNF6K and SEL6K). Relative to TMGL 
for the UNF6K panel (which was set to be 100%), SEL6K had a relative 
TMGL (RTMGL) of 114.38%, and STR6KA+ and STR6KB+ had a RT-
MGL of 156.87 and 129.36%, respectively. These four LD SNP panels 
had comparable TMGL and their imputation accuracy rates were also 
comparable. However, the remaining four LD SNP panels (STR6KA, 
STR6KB, MTR6KA, and MTR6KB) had TGML which were approximately 
4 to 7 times (434.14–759.76%) larger than UNF6K, and their imputa-
tion accuracy rates were the lowest. Thus, our results support adding 
a set of optimally-selected SNPs to association LD SNP panels (as in 
the cases of STR6KA+ and STR6KB+) in order to decrease map gaps 
and increase imputation accuracies. 

Fig. 5. Sum of maximum gap length, in 1000 base pairs, on the 29 autosomes and 
X chromosome, computed for each of the eight 6K low-density SNP panels.  
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Genomic prediction accuracy using observed vs. imputed 80K 
genotypes 

Genomic prediction accuracies using observed 80K SNP genotypes 
were 0.825 for DPR, 0.847 for FY, and 0.868 for MY (Table 3). Genomic 
prediction accuracies using imputed 80K SNP genotypes were slightly 
lower than those using the observed 80K SNP genotypes, which were 
0.817–0.821 for DPR, 0.838–0.844 for FY, and 0.850–0.863 for MY (Ta-
ble 3). Relative genomic prediction accuracy (RGPA), which was de-
fined as a percentage of genomic prediction accuracy (GPA) using 
imputed 80K SNPs over that using observed 80K SNPs, were 97.9–
99.6% for all the eight 6K LD SNP panels, and 99.3–99.6% for the two 
map-enhanced panels (STR6KA+ and STR6KB+). Our results showed 

Table 3. Genomic prediction accuracy using imputed 80K and observed 80K SNP 
genotypes, respectively 

SNP panels  DPR (%)   FY (%)   MY (%) 

 GPA  RGPA (%)  GPA  RGPA (%)  GPA  RGPA 

UNF6K->80K  0.817  99.0  0.838  98.9  0.850  97.9 
SEL6K->80K  0.819  99.3  0.841  99.3  0.851  98.0 
STR6KA->80K  0.819  99.3  0.842  99.4  0.855  98.5 
STR6KA+->80K  0.821  99.5  0.844  99.6  0.862  99.3 
STR6KB->80K  0.818  99.2  0.842  99.4  0.856  98.6 
STR6KB+->80K  0.821  99.5  0.844  99.6  0.863  99.4 
MTR6KA->80K  0.820  99.4  0.843  99.5  0.858  98.8 
MTR6KB->80K  0.820  99.4  0.844  99.6  0.858  98.8 
Observed 80K  0.825  100  0.847  100  0.868  100 

GPA stands for genomic prediction accuracy, which was computed to be the cor-
relation between PTA and genomic estimated PTA, and RGPA stands for relative 
genomic prediction accuracy, which was the percentage of GPA using imputed 
80K genotypes over than using the observed 80K genotypes, both evaluated in 
the validation population (i.e., 2,639 U.S. Holstein animals) 

See Table 2 for acronyms of the eight LD panels (UNF6K, SEL6K, STR6KA, STR6KA+, 
STR6KB, STR6KB+, MTR6KA, MTR6KB) 

X->80K = 80K SNP genotypes imputed from the LD X SNP panel, where X stands 
for UNF6K, SEL6K, STR6KA, STR6KA+, STR6B, STR6KB+, MTR6KA, and MTR6B, 
respectively.

Observed 80K = observed 80K genotypes  
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that GPA using imputed HD-SNP genotypes were highly comparable 
to that using observed HD SNP genotypes, in particular when the LD 
SNP panel was constructed with optimized SNP coverage, MAF and 
SNP-trait associations. 

Genomic prediction accuracies using imputed 80K genotypes did 
not show a parallel relationship with the corresponding imputation ac-
curacies. For example, the two map-optimal panels, SEL6K and UNF6K, 
had the greatest imputation accuracy (97.6–98.2%) but their corre-
sponding genomic prediction accuracies (0.817–0.851) were among 
the lowest. On the other hand, the two enhanced LD SNP panels 
(STR6KA+ and STR6KB+) had the highest genomic prediction accu-
racies (0.821–0.863), though their corresponding imputation accura-
cies (97.4–97.5%) were slightly lower than the two map-optimal panels 
(SEL6K and UNF6K). To probe into this situation, the results from three 
sets of imputed 80K SNP genotypes (derived from UNF6K, STR6KB 
and STR6KB+, respectively) were examined further. For each of the 
three LD panels, imputed 80K (68,748) SNPs were divided into two 
subsets: one subset consisting of 6000 SNPs with the largest SNP vari-
ance for each trait (Top6K) and the other subset including all the re-
maining 62,748 SNPs (R63K). In other words, all the 68,748 SNPs were 
assigned to two groups, one with SNPs having decisive impacts on 
genomic prediction and the other with SNPs whose impacts on ge-
nomic prediction were trivial. Then, genotype (imputation) error rate 
for each of the two subsets of SNPs (and their ratio) was computed 
(Table 4). Note that imputation error rates were computing by includ-
ing all the SNPs, either reference SNPs or imputed SNPs, in this part 
of the search, which was collectively referred as genotype error rate 
(GER) hereafter. Our purpose was to compare how many SNPs had 
wrong genotypes, compared to the corresponding observed geno-
types. For the uniform panel UNF6K, GER were comparable between 
these two groups, though slightly higher for SNPs in the Top6K group. 
Because SNPs on the UNF6K panel were map-optimally selected with-
out considering SNP-trait associations, genotype (imputation) error 
rates were expected to be comparable between these two groups. 
The observed slight differences could be intrinsic or resulted from 
random sampling bias. For the two panels featuring SNP-trait asso-
ciations (STR6KB and STR6KB+), GER for the 6,000 “influential” SNPs 
in the Top6K group was only 50.0–69.3% as much as that for SNPs in 
the R63K group. This coincided with the fact that a majority of these 
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6000 SNPs were included in the selected 6K LD SNPs and their gen-
otypes were known (i.e., not imputed). Thus, UNF6K had a lower GER 
in general but not necessarily lower GER for SNPs of importance to 
genomic prediction. In contrast, selection of LD SNPs based on SNP-
trait associations did not increase the overall imputation accuracy per 
se, but, by including most-influential SNPs into the reference SNPs for 
imputation, their genotypes were known (instead of being imputed) 
and the negative impact of imputation errors for this set of trait-as-
sociated SNPs on genomic prediction was minimized. 

Furthermore, the association effect variance of each SNP on DPR 
was plotted against its imputation error for two SNP panels, UNF6K 
and STR6KB. For STR6KB, SNPs with large association effects mostly 
had zero imputation errors (Fig. 6b) whereas for the map-optimal LD 
SNP panel (UNF6K), very few SNPs with large association effect vari-
ances had non-zero GER (Fig. 6a). These results confirmed our as-
sumption that SNPs selected according to SNP-trait association had 
smaller GER. For the two enhanced panels (STR6KA+ and STR6KB+), 
each had a number of map-optimal SNPs, in addition to SNPs with 
significant associations with the quantitative traits. Therefore, their 
GER were minimized for both “trait-influential” SNPs and for all SNPs 

Table 4. Comparing genotype (imputation) error rates for top 6000 (Top6K) SNPs 
with the largest SNP variance on each trait and those for the remaining 62,748 
(R63K) SNPs 

Traits  SNP panel  Imputation error,%   Top6K/R63K  

  All  Top6K  R63K  (%)

DPR  UNF6K  1.99  2.5  1.96  127.6 
 STR6KB  3.49  1.88  3.65  51.5 
 STR6KB+ 2.35 1.67  2.41  69.3 
FY  UNF6K  1.99  2.32  1.94  119.6 
 STR6KB  3.49  1.85  3.65  50.7 
 STR6KB+  2.35  1.5  2.43  61.7 
MY  UNF6K  1.99  1.89  1.66  113.9 
 STR6KB  3.49  1.82  3.64  50.0 
 STR6KB+  2.35  1.47  2.43  60.5 

See Table 2 for acronyms of the three LD panels (UNF6K, STR6KB, STR6KB+) 
Top6K/R63K (%) = Ratio of genotype (imputation) error rate for the SNPs in Top6K 

over that for the SNPs in R63K  
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in general, and these two enhanced panels had the greatest genomic 
prediction accuracies among the eight LD SNP panels. 

Impact of imputation error rates on genomic prediction 
accuracy 

Finally, analysis of variance (ANOVA) was conducted to determine the 
impact of GER on genomic prediction using imputed 80K SNP geno-
types. Briefly, GER were split into two variables, one pertaining to top 
6,000 SNPs with largest (weighted) association effect variance on the 
three traits (GER1) and the other attributable to the remaining 62,748 
SNPs (GER2). Two ANOVA models were evaluated: Model 1 include 
traits and GER as the explanatory variables (treatments), in addition 
to the residuals; Model II included traits, GER1 and GER2, in addition 
to the residuals. In both models, RGPA was the dependent variable. 
The ANOVA results from model I showed that RGPA using imputed 
80K genotypes was significantly different among the three traits (P 
= 3.55e−06) but it was not significantly affected by the overall GER 
for all LD SNPs panels (P = 0.38). The ANOVA results from model II 

Fig. 6. Illustration of the relationship between single SNP variance contribution rate 
(%) for daughter pregnancy rate (DPR) and genotype (imputation) error rate (%) per 
SNP basis for two 6K LD SNP panels: a) UNF6K, and b) STR6KB. 
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showed that GPA was significant among traits (P = 1.98e−06) and it 
was significantly affected by GER1 (P = 0.0308), but not significantly 
affected by GER2 (P = 0.5559). Therefore, it is concluded that the ac-
curacy of imputation-mediated genomic prediction critically depends 
on genotype (imputation) accuracies of a set of SNPs with large im-
pacts on genomic prediction. 

Discussion 

Imputation accuracy 

Generally speaking, the two SNP panels with optimal SNP map cov-
erage (group 1 SNP panels; Fig. 2) had greater imputation accuracies 
than the remaining six SNP panels (group 2 and 3 SNP panels; Fig. 
2). Of these two map-optimal SNP panels, SEL6K had greater impu-
tation accuracy rate than UNF6K. This possibly reflected the fact that 
SEL6K had highest MAF on average (0.449) than UNF6K (0.301). Simi-
larly, Boichard et al. (2012) designed a LD array of 6,909 SNPs optimal 
both in map distributions and MAF, yet using a different optimization 
method and they obtained an average imputation accuracy of 98.9% 
in North American Holstein cattle. Their imputation accuracy rate was 
slightly higher than that of the SEL6K panel, because their LD SNP ar-
ray had 909 more SNPs and they imputed to approximately 10,000 
less SNPs than in the current study. It is important to note that impu-
tation accuracy is decided by many factors including the relationships 
between the reference and the target imputation set, and the num-
ber of animals in the reference population, both of which varied be-
tween these two studies. 

Imputation accuracy rates were negatively associated with map 
gaps. Evidently, UNF6K and SEL6K (group 1 SNP panels; Fig. 2) had 
the smallest gaps and therefore the greatest imputation accuracies. 
On the other hand, SNPs selected based on their association effects 
(group 2 SNP panels; Fig. 2) tended to be extremely unevenly-distrib-
uted, leaving large gaps on the genome. This also reflected the fact 
that causative variants for each of the traits were not evenly distrib-
uted. Thus, trait-association LD SNP panels tend to have lower im-
putation accuracies, as compared to map-optimal SNP panels, as-
suming that everything else is the same. Nevertheless, by including 
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map-optimal, informative SNPs to trait-specific SNP panels, these 
large gaps were filled, which in turn led to improved SNP coverage 
on the genome and therefore greater imputation accuracy rates. Thus, 
tor these two enhanced panels in group 3 (STR6KA+ and STR6KB+), 
their imputation accuracy rates were only slightly lower than those of 
the two map-optimal panels (SEL6K and UNF6K). 

Minor allele frequency of a SNP was another factor affecting im-
putation accuracy. Here, we distinguish SNPs by their roles in the im-
putation: SNPs with missing genotypes to be imputed and SNPs with 
known genotypes as the reference for imputation. For a SNP with 
missing genotypes to be imputed, larger MAF indicates greater uncer-
tainty in the determination of its genotypes and hence may be associ-
ated with large imputation error rate. Consider a frequency-based im-
putation approach and assume a complete linkage between the SNP 
with missing genotypes and the SNP with known genotypes as the 
reference, Calus et al. (2014) showed, both analytically and with em-
pirically, that imputation error rates depended on MAF. However, in 
this part of discussion, we relax the assumption of complete linkage. 
A reference SNP (i.e., one with known genotypes to be used for infer-
ring missing SNP genotypes) can be any SNP which is informative of 
the missing genotypes. This also included the situation in which pop-
ulation-wise linkage disequilibrium contributed to imputation (e.g., 
Sargolzaei et al. 2014). Thus, SNPs with greater MAF are more infor-
mative in the determination of the phases of a missing SNP geno-
type than those with lower MAF. Possibly, this could explain the situ-
ation with the SEL6K panel, which was optimized on MAF in addition 
to map positions. SEL6K outperformed the UNF6K panel in terms of 
imputation accuracy, because the former had more SNPs with high 
MAF than the latter. 

Genomic prediction accuracy 

Genomic prediction accuracies obtained using imputed 80K SNP gen-
otypes were highly comparable to those obtained using observed 80K 
SNP genotypes, in particular for group 3 SNP panels (STR6KA+ and 
STR6KB+), which were was optimally constructed for SNP coverage, 
MAF and SNP-trait associations. Compared to previous studies, our 
genomic prediction accuracies were higher than those reported by 
VanRaden et al. (2009), who obtained genomic prediction accuracies 
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of 0.54 for DPR, 0.66 for FY and 0.70 for MY in a U.S. Holstein popu-
lation. This was probably because they used fewer SNPs (i.e., 38,416 
SNPs) and fewer calibration animals (3,576 bulls) for genomic predic-
tion. Cooper et al. (2015) reported genomic prediction accuracies of 
0.76 for DPR, 0.87 for FY and MY with a calibration set of 6,623 U.S. 
Holstein bulls, which were comparable to ours in both calibration/
training population size and genomic prediction accuracies. Never-
theless, they had higher genomic prediction accuracies (i.e., 0.84 for 
DPR and 0.90 for FY and MY) than ours with a calibration set of 17,407 
bulls. Genomic prediction accuracies in the present study were lower 
than those reported by Wu et al.(2016), because the PTAs for the three 
traits used by Wu et al.(2016) included genomic information whereas 
PTAs in the current study did not. 

GPA obtained using imputed SNP genotypes were subject to im-
putation errors, but they did not show a parallel relationship in the 
present study. For example, the two map-optimal panels (group 1 
SNP panels: SEL6K and UNF6K) had the greatest imputation accuracy 
but their corresponding genomic prediction accuracies were not the 
best. On the other hand, the two enhanced LD SNP panels (group 3 
SNP panels: STR6KA+ and STR6KB+) had the best genomic predic-
tion accuracies (0.821–0.863), though their corresponding imputa-
tion accuracies were slightly lower than the two map-optimal panels 
(SEL6K and UNF6K). Our results indicated that SNPs varied relative to 
their impacts on genomic prediction, and imputation errors that were 
projected through these SNPs onto genomic prediction errors could 
vary as well. Thus, by including “influential” SNPs in the LD SNP pan-
els, genotype (imputation) errors relative to the set of “influential” 
SNPs could be reduced dramatically and therefore the correspond-
ing imputed 80K SNPs could be highly predictive. In other words, se-
lection of LD SNPs based on SNP-trait associations did not necessar-
ily increase the overall imputation accuracy per se, but, by including 
most-influential SNPs into the reference SNP list, their genotypes were 
known (instead of being imputed) and the negative impact of impu-
tation errors on genomic prediction was minimized. This assumption 
was affirmed by the ANOVA results, which showed that the accuracy 
of imputation-mediated genomic prediction critically depended on 
genotype (imputation) accuracies of a set of SNPs with large impact 
on genomic prediction. This is an interesting finding which has im-
portant implications to the design of LD panels for imputation-medi-
ated genomic prediction. 
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In group 2 SNP panels, the two pooled, single-trait 6K LD SNP pan-
els (STR6KA and STR6KB) performed slightly worse than the two mul-
tiple-trait 6K SNP panels, possibly because these two former LD SNP 
panels had a few hundred less SNPs than the two multiple-trait pan-
els. Nevertheless, the two enhanced single-trait 6K LD SNP panels 
(STR6KA+ and STR6KB+), with the inclusion of map-optimal and in-
formative SNPs, had better imputation accuracy and better GPA than 
the two multiple-trait 6K LD SNP panels. Our results, however, should 
not be used to suggest that the single-trait approach was worse or 
better than the multiple-trait approach to select LD SNPs, because 
the results from these two sets were not directly comparable. Nev-
ertheless, these results justified the need to include SNPs associated 
with traits to be selected in LD SNP chips for imputation-mediated 
genomic prediction. 

Conclusions 

Genomic prediction using 80K genotypes imputed from 6K LD SNPs 
had accuracies which were comparable to (or slightly lower than) 
those using observed 80K SNPs in the Holstein population. The eight 
6K LD SNP panels showed some differences in their imputation accu-
racies and prediction accuracies. Generally speaking, evenly-spaced, 
informative (e.g., large MAF) SNPs (group 1 SNP panels) were favor-
able for obtaining accurate imputation because they had a better cov-
erage of genome than trait-associated SNPs. On the other hand, SNPs 
selected based on their association effects (group 2 SNP panels) were 
favorable for obtaining increased GPA because a majority of SNPs of 
importance to genomic prediction were included the LD panel and 
their genotypes were known (not imputed). Hence, optimal LD pan-
els for imputation-mediated genomic prediction were the ones that 
combined both strengths (group 3 SNP panels). Our results justified 
the need to include SNPs associated with traits of interest in LD SNP 
chips for imputation-mediated genomic prediction. 

Finally, it is worth mentioning that, in practice, however, it may not 
be possible to include all trait-specific SNPs in the design of LD SNP 
chips, but it is favorable to consider some major traits of interest in 
genomic selection. The differences in both imputation accuracy and 
genomic prediction accuracy, as were observed in the present study, 
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were obvious though not drastic, and they could vary with the size 
of LD panels. As we observed, the differences in imputation and ge-
nomic prediction accuracies tend to be diminished as the SNP panel 
size went beyond 20K (data not presented). Hence, the conclusions 
of this study are more relevant to the optimal design of LD SNP chips, 
rather than that for MD or HD SNP chips.   
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