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a b s t r a c t 

Variable rate irrigation (VRI) is the capacity to spatially vary the depth of water application in a field to 

handle different types of soils, crops, and other conditions. Precise management zones must be devel- 

oped to efficiently apply variable rate technologies. However, there is no universal method to determine 

management zones. Using speed control maps for the central pivot is one option. Thus, this study aims 

to develop an intelligent fuzzy inference system based on precision irrigation knowledge, i.e., a system 

that can create prescriptive maps to control the rotation speed of the central pivot. Satellite images are 

used in this study because remote sensing offers quick measurements and easy access to information on 

crops for large irrigation areas. Based on the VRI-prescribed map created using the intelligent decision- 

making system, the pivot can increase or decrease its speed, reaching the desired depth of application in 

a certain irrigation zone. Therefore, considering the spatial variability in the crop has made the strategy 

of speed control more realistic than traditional methods for crop management. The intelligent irrigation 

system pointed out areas with lower leaf development, indicating that the pivot must reduce its speed, 

thus increasing the water layer applied to that area. The existence of well-divided zones could be ob- 

served; each zone provides a specific value for the speed that the pivot must develop for decreasing 

or increasing the application of the water layer to the crop area. Three quarters of the total crop area 

had spatial variations during water application. The set point built by the developed system pointed out 

zones with a decreased speed in the order of 50%. From the viewpoint of a traditional control, the relay 

from pivot percent timer should have been adjusted from 70% to 35% whenever the central pivot passed 

over that specific area. The proposed system obtained values of 37% and 47% to adjust the pivot percent 

timer. Therefore, it is possible to affirm that traditional control models used for central-pivot irrigators do 

not support the necessary precision to meet the demands of speed control determined by the developed 

VRI systems. Results indicate that data from the edaphoclimatic variables when well-fitted to the fuzzy 

logic can solve uncertainties and non-linearities of an irrigation system and establish a control model for 

high-precision irrigation. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The Food and Agriculture Organization (FAO) of the United Na- 

tions estimates that to meet food demands in 2050 agriculture 

production must at least double or triple in the next 40 years, and 
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80% of this increase must come from increasing the production. 

Considering the limited resources of our planet, reaching this goal 

will be challenging ( FAO, 2016 ). 

The adoption of irrigated agriculture enables increased produc- 

tivity and the production of several crops ( Borghetti, Silva, Nocko, 

Loyola, & Chianca, 2017 ). However, with the growing limitation of 

water resources, the use of water in agriculture must be more ef- 

ficient to maintain the current levels of productivity in conjunc- 

tion with the expansion of irrigated areas. Decisions for irriga- 

tion management require taking into consideration inter-related 
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economic, physical, and biological variables, which are frequently 

difficult to foresee and over which there is little or no control 

( Herrera, Ibeas, & de la Sen, 2013 ). The decade-long search for 

automated solutions to improve agricultural application for more 

efficient use ( Evans & King, 2012; Gilley, Mielke, & Wilhelm, 1983; 

Omary, Camp, & Sadler, 1997; Sadler, Camp, Evans, & Usrey, 1996 ) 

has resulted in the introduction of several solutions for agricultural 

inputs to conduct water application with spatial correction. Irriga- 

tion systems that operate using variable rate water application are 

required for a spatial water management to increase crop efficiency 

( Armindo, Botrel, & Garzella, 2011 ). 

Decision support systems for irrigation and water conservation 

are used intensely for minimizing water application and maximiz- 

ing yield. However, the numerical optimization of irrigation sys- 

tems is computer-intensive and often requires simplification and 

discretization of the model ( Dogan, Gumrukcuoglu, Sandalci, & 

Opan, 2010; Navarro-Hellín, Martínez-del-Rincon, Domingo-Miguel, 

Soto-Valles, & Torres-Sánchez, 2016 ). Furthermore, sensorial system 

and model integration do not reflect the natural flow of the envi- 

ronment ( Voinov & Shugart, 2013 ), creating significant limitations 

in performance. Control systems also do not reflect or satisfy the 

requirements of the final users due to the lack of domain knowl- 

edge capture ( McIntosh et al., 2011 ). The use of advanced control 

techniques is a promising possibility. Literature shows that these 

tools can significantly improve irrigation systems and efficient use 

of water resources ( McCarthy, Hancock, & Raine, 2013; Romero, 

Muriel, García, & Muñoz de la Peña, 2012 ). The final challenge of 

an environmental and agricultural support system is to overcome 

the uncertainty related to data quality and difficulties in remote 

sensing of large areas ( Dutta, Morshed, Aryal, D’Este, & Das, 2014; 

McCarthy et al., 2013 ). Moreover, the inter-related economic, phys- 

ical, and biological variables are multi-attributed vaguely and in 

subjective terms. 

A neat approach to deal with such uncertain situations is found 

in the fuzzy set theory, which has now reached a mature state for 

expansion and application. Zadeh’s paper “Fuzzy Sets” was pub- 

lished in 1965; since then, the theory of fuzzy sets has been used 

for writing more realistic decision support models. Fuzzy logic 

can analyze the imprecise information and is efficient in decision- 

making for vague and uncertain phenomena ( Kweon, 2012 ). Spe- 

cialized systems that used fuzzy logic in its inception have been 

successfully applied to problems concerning decision, control, di- 

agnose, and classification ( Castillo & Melin, 2008 ) because they are 

capable of managing intrinsic complex reasoning in an application 

area. In agriculture, the interface of these systems allows a natural 

and straightforward use, as a planning tool for the manager and 

farmer. In irrigation systems, the interaction between components 

is not always accurately defined. Fuzzy logic can be used in such 

systems for extracting inferences from an inaccurate input and for 

solving problems in this area ( Thangavadivelu & Colvin, 1997 ). An 

irrigation system based on the fuzzy logic with simple rules is 

more attractive to most farmers ( Bahat, Inbar, Yaniv, & Schneider, 

20 0 0 ) since these systems do not require a precise measurement 

or a precise model, which may be very complicated and require 

considerable funds, resources and development time. 

This study is based on the premise that irrigation problems do 

not require precise measures. The support system to the fuzzy de- 

cision is considered useful due to its interactive nature and flexible 

approach ( Kumar & Rajkumar, 2014; Raju & Kumar, 2005 ); there- 

fore, the integration of fuzzy logic and irrigation planning issues in 

the field is very effective. Herein, several control techniques for VRI 

have been presented, of which some use fuzzy inference and neu- 

ral networks for setting the amount of water required for irrigation 

( Bing et al., 2015; Giusti & Marsili-Libelli, 2015; Papadopoulos, Kali- 

vas, & Hatzichristos, 2011; Papageorgiou, Kokkinos, & Dikopoulou, 

2016 ). Other techniques focus on determining when to irrigate and 

Fig. 1. Structure for the strategy of the intelligent irrigation system. Source: Author’s 

archives. 

instruments that show spatial differences among sectors in the 

same crop area ( Montalvo et al., 2013; Omid et al., 2010; Rafea, 

Hassen, & Hazman, 2003 ). 

However, all the techniques mentioned do not present control 

maps for the central pivot, as proposed herein. The problem exam- 

ined herein is part of the crop production domain, approaching the 

issue of necessary decision-making for precision irrigation. 

Therefore, the main objective of this study is to develop a 

fuzzy inference system that decides when to increase or decrease 

the speed of the central pivot by considering the spatial variabil- 

ity of the field and using little or imprecise information of the 

phenophase of the crop provided by satellite images. 

2. Variable rate irrigation system (VRIS) 

An intelligent irrigation system was developed by following the 

structure shown in Fig. 1 . The structure of the proposed system al- 

lows the elaboration of the management map in a systematic, au- 

tonomous, and automatized way to control the irrigation system. 

The commercial systems used more frequently by farmers still can- 

not draw such a control map using the proposed technique. 

2.1. Data 

2.1.1. Normalized difference vegetation index (NDVI) and canopy 

temperature 

Vegetation indexes generated from the data gathered by remote 

sensing constitute an important tool for monitoring natural or an- 

thropogenic changes in the use and coverage of the land. These 

indexes have been used to estimate several vegetation patterns, 

such as leaf area index and green biomass quantity, as well as 

in the evaluation of soil use and the maintenance and recovery 

of degraded areas ( Okin, 2007 ). Information from satellite images 

and values from the normalized difference vegetation index (NDVI) 

reading, which is an essential parameter for irrigation mainte- 

nance, were used and adjusted according to local conditions. Ir- 

rigation management through the plant shows the complexity in- 

herent to the visualization of the symptoms of water deficit, which 

are difficult to detect. In certain occasions, problems are discov- 

ered when it is too late, i.e., when their effects have already com- 

promised the production and quality of the product. Usually, these 

symptoms are related to the color tone of leaves, leaf curling, and 

leaf angle. However, a correlation between NDVI values and the 

basal crop coefficient (Kc) ( Hunsaker, Barnes, Clarke, Fitzgerald, & 

Pinter, 2005 ; and Kamble, Kilic, & Hubbard, 2013 ) can be estab- 

lished since a strong correlation exists between estimated Kc (Kc- 
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Fig. 2. Snapshot of the i-ekbase visual interactive system based on big data inte- 

gration over large farming areas. Source: adapted from i-ekbase system. 

NDVI) and observed Kc ( Allen, Pereira, Raes, & Smith, 1998 /FAO-56) 

in corn and soy crops for guiding irrigation times in the season. 

The use of canopy temperature and infrared thermometry is an- 

other way to relate to the development of the crop through re- 

mote sensing. A plant under water stress has decreased transpira- 

tion and would typically show a higher temperature than a plant 

that is not under stress ( Bellvert, Zarco-Tejada, Girona, & Fereres, 

2014 ), a trait that could be used as a powerful tool to monitor 

and quantify water stress. Canopy temperature increases when so- 

lar radiation is absorbed ( Idso & Baker, 1967 ), but it cools down 

when the latent energy or transpiration is used for evaporating 

water instead of cooling plant surfaces. Further, algorithms based 

on canopy temperature are strongly correlated with quantifiable 

results from crops ( Colaizzi, O’Shaughnessy, Evett, & Howell, 2012 ), 

such as yield, water efficiency use, seasonal evapotranspiration, 

leaf water potential at noon, irrigation rates, and damage caused 

by herbicides. 

2.2. Satellite imagery 

The Intelligent Environmental Knowledgeable system (i- 

ekbase) 1 is an autonomous big data analytics engine running a 

CLOUD system. i-ekbase is an easy-to-use fully automated geo- 

graphic information system (GIS). It primarily focuses on precision 

agricultural and biodiversity monitoring applications, automatically 

integrating data from various satellites with local weather data, 

farmers’ knowledge, and applying Machine Learning techniques 

to create a data-driven future for global agriculture ( Dutta et al., 

2014 ). Fig. 2 illustrates the i-ekbase visual interactive system based 

on big data integration over large farming areas. 

The i-ekbase is regularizing satellite remote sensing for all- 

purpose precision agricultural monitoring on a mobile device, for 

greater benefit to global agriculture community, and for increas- 

ing agriculture business profitability. The system services provide 

weekly or daily large area-wise resource management map prod- 

ucts, including normalized vegetation index (NDVI), soil moisture, 

biomass, surface temperature, vegetation landscape maps for sup- 

porting remote digital scouting, large area-wise farm monitoring 

and decision support system, and rapid intervention of a manage- 

ment issue. 

Herein, we used the i-ekbase system for capturing timely re- 

mote sensing imagery on the study site using Landsat (with a spa- 

tial resolution of 15 m) and Sentinel (with a spatial resolution of 

10 m) satellites. Data were captured for 12 months for developing 

the experimental system. 

1 http://iekbase.com/ . 

Data that compose this image have over 14 thousand geo- 

referential points, which indicate a raster type structure, contain- 

ing in each point or pixel that attributes for agricultural analysis. 

Given the size of the data, only a few lines are shown in Table 1 . 

Different types of software are available on the market, which 

can generate maps from .shp,.kml, or CSV archives, such as Surfer 

(Golden Software, Inc.), ArcView (ESRI), and Global Mapper (Global 

Mapper), all requiring payment. QGIS is an open code licensed 

under General Public License GNU and will be used herein for 

pre-processing and editing the archive provided by the web tool 

i-ekbase. 

After collecting the remote sensing data using the web tool i- 

ekbase ( Table 1 ), the information is pre-processed to filter the data 

that are not required by the decision-making system. Thus, only 

canopy temperature, upper layer soil moisture, NDVI, and coordi- 

nates are considered ( Table 2 ). 

For applying this approach on a commercial scale, remote sens- 

ing data required to describe the soil–plant–atmosphere relation 

can be acquired from satellite images ( Moran, Inoue, & Barnes, 

1997 ) and airplanes ( Fitzgerald, Lesch, Barnes, & Luckett, 2006; 

Wood, Taylor, & Godwin, 2003 ). However, high costs, spatial res- 

olution, data frequency and data availability ( Pinter et al., 2003; 

Trout, Johnson, & Gartung, 2008 ), as well as satellite cloudless 

images ( Barker, Heeren, Neale, & Rudnick, 2018 ) are challenges 

for the correct execution of models based on remote sensing; 

these factors can limit the efficiency of VRI management in real 

time. 

Remote sensing data that accurately describe the soil–plant–

atmosphere relationship was selected for the intelligent irriga- 

tion system at the crop location. In this stage, accurately choos- 

ing the best data is fundamental to ensure that the results are 

calculated correctly. A simple but promising approach uses cul- 

ture coefficients from normalized differentiated variation indexes, 

combined with local climate data, to assume the amount of ETc 

(evapotranspiration) of variable crops almost at real time ( Er-Raki 

et al., 2007; Gonzalez-Dugo & Mateos, 2008; Hunsaker et al., 

2005 ). 

With some consideration of the daily meteorological conditions, 

models based on remote sensing can be used in studies of water 

relations ( Barker et al., 2018 ) in the soil–plant–atmosphere system 

and could become an easy-to-use and fast response tool. Canopy 

temperature is also an important parameter to manage irrigation 

and must be adjusted according to local crop conditions. From the 

location selected for cultivation and the type of crop to be irri- 

gated, in relation to the data linked to the type of plant, a crop 

coefficient will be used together with information from satellite 

images. In this case, NDVI reading, upper layer soil moisture, and 

canopy temperature values will be used. 

2.3. Crop area 

The crop area is a farm at Primavera do Leste, Mato Grosso 

state, Brazil, latitude 15 °14 ′ 24.73 ′ ′ S and longitude 54 °0 ′ 53.29 ′ ′ W. 

This area contains several crops, such as soy, cotton, and “safrinha”

corn, irrigated by a central pivot. The delimited area is 140 ha, with 

a radius of 667 m (see Fig. 3 ). The area delimited by the red cir- 

cle is irrigated with a central pivot, and the information used in 

this study is for a cultivation cycle of “safrinha” corn in 2015/2016. 

To irrigate “safrinha” corn means to provide minimum water con- 

ditions for the development of the crop. Corn is highly sensitive 

to drought. Therefore, the occurrence of a period of lower water 

intake by plants in critical moments for the development of the 

crop, from flowering to physiological maturation, can lead to the 

lower yield. For maximum yield, corn plantation needs approxi- 

mately 650 mm of water ( Bergamaschi et al., 2001 ) during its cycle, 

http://iekbase.com/
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Table 1 

Data exported from the web tool i-ekbase. 

Latitude Longitude Canopy nitrogen (%) Leaf area index (m 

2 /m 

2 ) NDVI (%) Biomass (tn/ha) Soil salinity (dS/m) Soil moisture (%) Canopy temp. ( °C) 

−15.2464 −54.0157 0.0 0.0 13.49 0.0 3.35 13.52 36.48 

−15.2464 −54.0156 0.09 0.0 15.24 0.14 3.32 13.19 36.81 

−15.2464 −54.0155 0.41 0.0 15.36 0.15 3.39 13.93 36.07 

−15.2464 −54.0159 3.36 0.0 22.76 0.76 3.16 11.61 38.39 

−15.2464 −54.0158 4.96 0.0 26.68 1.09 3.10 11.00 39.00 

−15.2463 −54.0162 7.37 0.0 31.78 1.52 2.87 8.65 41.35 

−15.2463 −54.0162 9.30 1.0 36.34 1.89 2.80 8.03 38.97 

−15.2463 −54.0161 11.59 1.0 41.42 2.32 2.68 6.84 40.16 

Source: adapted from the i-ekbase system (2017). 

Table 2 

Pre-processed data. 

Latitude Longitude NDVI (%) Upper layer soil moisture (%) Canopy temperature ( °C) 

−15.2463 −54.0157 5.96 25.75 30.75 

−15.2463 −54.0156 6.49 25.68 30.24 

−15.2463 −54.0154 6.67 25.68 30.03 

−15.2463 −54.0153 6.85 25.68 30.19 

−15.2463 −54.0152 6.66 25.8 30.63 

−15.2463 −54.015 6.47 25.92 30.67 

−15.2463 −54.0149 6.82 25.84 30.44 

−15.2463 −54.0142 7.01 25.77 29.33 

−15.2463 −54.0141 6.37 25.88 29.58 

Source: adapted from the i-ekbase system (2017). 

Fig. 3. Images from the area under study. Source: Author’s archives. 

which varies from 110 to 140 days in hybrids with an average cy- 

cle. 

Plant development is made evident by the images captured 

by remote sensing during growth. After analyzing the NDVI val- 

ues contained in Fig. 4 , the similarity among values attributed to 

crop coefficient (Kc) can be verified ( Hunsaker et al., 2005 ; and 

Kamble et al., 2013 ). As the crop develops, the leaf area increases, 

which makes it possible to establish a NDVI relationship. 

This process is also described by Hunsaker et al. (2005) , with 

relations for calculating the basal crop coefficient (Kcb) for cotton 

as a function of NDVI. When each of the development phases of 

the crop is analyzed, two distinct areas are evident: one with little 

growth and another with average growth. From this differentiation, 

it is possible to build a water demand map as well as speed control 

maps. For the preliminary analysis, the daily average precipitation 

data made available by National Institute of Meteorology 2 (INMET) 

were used. Data were collected from April to September 2016 in 

the municipality of Primavera do Leste, Mato Grosso state, Brazil. 

Fig. 5 illustrates the obtained data. Finally, precipitation readings 

recorded during the development of the crop under study corrobo- 

2 https://www.agritempo.gov.br/agritempo/jsp/Grafico/graficoMicrorregiao.jsp? 

siglaUF=MT . 

rate with the premise of water stress due to the lack of rain, which 

would indicate the possibility of complementing the water demand 

with irrigation. 

2.4. Fuzzy systems 

Over the last 20 years, fuzzy systems have attracted consider- 

able attention and have met great applicability in the agricultural 

domain, helping farmers to make the right decisions for their crops 

( Papageorgiou et al., 2016 ). For example, Bahat et al. (20 0 0) pro- 

posed a solution for an irrigation controller based on the fuzzy 

logic methodology with simple rules, making the system more at- 

tractive for farmers. Raj and Kumar (2005) observed that the inte- 

gration of fuzzy logic and real-world irrigation planning problems 

are very useful, particularly with multiple specialists in a subjec- 

tive data environment. 

Upon using fuzzy systems for decision-making concerning ir- 

rigation, Zhang, Fei, Wei, Congcong, and Yuewei (2011) reported 

that fuzzy logic does not require all the relevant information for 

solving the problem of water in irrigation. Bing, Huifeng, and 

Xia (2015) developed a fuzzy system of decision-making for solving 

uncertainties and non-linearity of the irrigation system, and the 

model showed high precision. 

The system of fuzzy inference proposed by Almeida, Vieira, 

Marques, Kiperstok, and Cardoso (2013) , in turn, provided a con- 

ceptual approach based on the multi-criteria decision-making pro- 

cess. This approach relates water use to environmental factors, 

such as drought, water exploration index, water use, population 

density, and wastewater treatment index, resulting in warnings 

about future water supply. Irrigation based on the fuzzy inference 

system presents better results than traditional methods. The fuzzy 

system will be used to infer the variations in the linear movement 

speed of the pivot according to satellite images. An intelligent sys- 

tem was developed, manipulating various data-driven approaches 

to create a control map. 

Due to the nature of the management of the study area, fuzzy 

systems are used herein to aid irrigation decision-making. Be- 

cause a farmer’s decisions are purely intuitive and knowledge- 

based gained over years of work, we chose not to describe the 

way the farm works explicitly. Another critical piece in the farmer’s 

https://www.agritempo.gov.br/agritempo/jsp/Grafico/graficoMicrorregiao.jsp?siglaUF=MT
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Fig. 4. NDVI variation in a crop cycle. Source: Author’s archives. 

routine was that the pivot utilized extensive amount of time to 

perform a full turn. However, the central pivot irrigation system 

should operate 21 h a day, with 3 h for maintenance because high 

electricity prices are charged by the utility. Three input variables 

were used (NDVI, upper layer soil moisture, and canopy temper- 

ature) to infer the speed, which the central pivot has to reach to 

improve the irrigation level within the crop area, and to find an 

adequate speed for the pivot movement in relation to the amount 

of water coming out of the sprinklers. 

Futhermore, a decision unit or inference machine is imple- 

mented using the Mamdani method to conduct the rule-based in- 

ference operations with crisp input and crisp output. Mamdani 

fuzzy systems use fuzzy sets as a consequent rule; therefore, the 

inference method for a set of conjunctive rules for the r th rule will 

be given by the following condition: 

I f x 1 is A 

k 
1 and x 2 is A 

k 
2 , then y k is B 

k f or k = 1 , 2 , 3 , · · · , r. (1) 

Within the objective proposed for the developed system, once 

linguistic variables are applied to the output of fuzzy inference sys- 

tems, it becomes fitter for modeling the human reflection process. 

Table 3 

Fuzzy set input for the fuzzy inference system. 

Input variables Linguistic variables 

Low Average High 

Canopy Temperature [ ºC] < 14 14 < φ < 27 > 24 

Upper Layer Soil Moisture [%] < 14 12 < φ < 24 > 21 

NDVI [%] < 16 12 < φ < 27 > 27 

Source: Authors. 

By doing so, the interface of the system becomes more straight- 

forward and natural. In the first stage of development, the water 

layer provided by the irrigation system is considered constant. The 

database that defines the association functions of sets used in the 

fuzzy rules is implemented according to Table 3 and Fig. 6 . 

Remote sensing data allow building the universe of discourse 

for each input variable and therefore change the database into lin- 

guistic variables, as shown in Table 3 . Each input was previously 

limited to the discourse universe in question and associated to the 

grade of membership in each fuzzy set through specialized knowl- 

edge. Therefore, to obtain the grade of membership of a certain 
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Fig. 5. Average precipitation obtained in 2016. Source: Agritempo—Agro-meteorological Monitoring System. 

Fig. 6. Membership functions corresponding to each system input. Source: Author’s archives. 

crisp input, one must search for this value in the fuzzy system 

knowledge. 

The fuzzification of the decision-making system in Fig. 6 helps 

to visualize the corresponding membership functions, considering 

these intervals as the discourse universe of the variables. Trian- 

gular membership functions were chosen because they simplify 

the calculation of the fuzzy inference mechanism and couple to 

the fuzzy rules IF-THEN ( Wang, 1997 ). Well distributed triangular 

membership functions change input data into fuzzy values (low, 

average, and high), as shown in Fig. 6 a, as well as values for soil 

moist and NDVI ( Fig. 6 b and c, respectively). 

Fuzzy outputs, which represent the rotation speed of the central 

pivot, were built from five linguistic variables: very low (MB), low 

(B), normal (N), high (A), and very high (MA). All the sets were 

interpreted based on their membership functions, as shown in 

Fig. 7 . Several defuzzification methods have been proposed ( Dubois 

& Prade, 20 0 0 ), of which CENTROID (area center or center of grav- 

ity) is more widely used. For this method, a clear value of the out- 

put variable is calculated by finding the variable for the center of 

gravity of the association function for the fuzzy value ( Jang, Sun, & 

Mizutani, 1997 ) as follows: 

u 

∗ = 

∑ N 
j=1 u i × u out ( u i ) 
∑ N 

j=1 u out ( u i ) 
, (2) 

where u out ( u i ) is the area of a grade of membership modified by 

the fuzzy inference result and u i is the position of the centroid of 

the individual membership functions. 

Finally, the fuzzy rule relating to rotation speed contains 27 

rules, as summarized in Table 3 . Therefore, the reading of the 
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Fig. 7. Membership functions for the speed corresponding to the stage of defuzzification. Membership functions (Velocity). Source: Author’s archives. 

Table 4 

Fuzzy rules for speed control of the central pivot. 

Fuzzy inputs Fuzzy outputs 

NDVI Canopy temperature Upper layer soil moisture Rotation speed 

Low Low Low Low 

Low Low Average Low 

⁞ ⁞ ⁞ ⁞ 
Low Low High Very Low 

Low Average High Very Low 

⁞ ⁞ ⁞ ⁞ 
Average Average Low Normal 

Average Average Average Normal 

Average Average High High 

⁞ ⁞ ⁞ ⁞ 
Average High Average High 

High Low Average Very High 

High Low High Very High 

Source: Authors. 

first line, for example, is IF NDVI = Low AND Canopy Tempera- 

ture = Low AND Soil Moisture = Low THEN Rotation Speed = Low. 

This set of rules is based on basic knowledge of irrigation, accord- 

ing to the methodology adopted in Bernardo, Soares, and Manto- 

vani (2006) and Silva and Azevedo (1998) . 

The rules were elaborated with the connective “AND” and are 

based on the premise that little leaf growth is due to water deficit 

in the soil ( Boyer, 1968; Hsiao, 1973; Wright, 1977 ) along with 

high canopy temperature, which indicates low evapotranspiration, 

in other words, plants under water stress. Values of moisture close 

to the soil given by the web tool are local readings of spots with 

fewer leaves, making it possible to estimate its value. 

3. Results and discussion 

3.1. Control maps for pivot rotation speed 

For mapping the speed control system herein, eight crop areas 

were stipulated with a level of ambiguity regarding the impact of 

the variable application rate ( Feinerman & Voet, 20 0 0 ), given that 

an increase in the flexibility of input application through field sub- 

division in a higher number of management unities did not nec- 

essarily lead to a reduction in the total (optimal) water use. The 

images showing different growth stages of the plantation were an- 

alyzed. The development stage [Kc-Development] was the one that 

presented the highest water stress in different planted areas, as 

shown in Table 5 . Furthermore, performing the analysis of critical 

point was essential to demonstrate the applicability of fuzzy sys- 

tems to create the control maps. 

The information extracted after pre-processing remote sensing 

data was NDVI, canopy temperature, and upper layer soil moisture. 

These values are the input data set for the fuzzy system, which 

is capable of inferring percentages for the central pivot rotation 

speed motion. The case study corresponds to the sampling of two 

readings obtained from different dates of the crop cycle: the first 

on June 15, 2016 and the second on June 28, 2016. 

Table 5 

Analysis of the best dates for the case study. 

Growth stage Crop coefficients [Kc] Input data satellite imagery Walter stress detect Case study 

Emergence Initial May 2016 Less critical Lower leaf 

2 leaves 

4–6 leaves 

6–8 leaves June 15 

10–12 leaves Development June 2016 Critical 

12–16 leaves June 28 

Tassel emerging 

Pollination and silks 

Blister Mid-Season July 2016 No Critical Out of scope 

Milk stage 

Dough 

Dent 

Beginning black layer Late-Season August 2016 No Critical Out of scope 

Maturity 

Adapted from Ritchie, S.W., J. J. Hanway, and G. O. Benson. 1993. How a corn plant develops. Spec. Rep. 48 (revised). Iowa 

State Univ. of Sc. and Technol. Coop. Ext. Serv., Ames, IA. 
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Fig. 8. Input data in the fuzzy inference system. Source: Author’s archives. 

Fig. 9. Output data for the fuzzy inference system: rotation speed of the central pivot. Source: Author’s archives. 

3.2. Case study on June 15th, 2016 

The input set for the intelligent fuzzy system is the analyzed 

and processed data on canopy temperature, moisture close to the 

soil, and NDVI (see Table 2 ) illustrated in Fig. 8 a–c. The input, as 

shown in Fig. 8 , was organized according to the linguistic variables 

of the fuzzy system and separated by tones for better visualization. 

Due to the nature of the central pivot speed control equipment, the 

output given by the fuzzy system was in percentage values. The 

per centimeter, which was responsible for rotational speed control, 
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Fig. 10. Map for the pivot rotation speed control. Source: Author’s archives. 

Fig. 11. Input data for the fuzzy inference system. Source: Author’s archives. 

used only the reference percentage of rotation in relation to the 

time of 60 s. Thus, for the values of 50% (represented in orange 

in Fig. 9 ), the control made the pivot stay in operation for 30 s 

and off for 30 s. The intelligent system obtained the result shown 

in Fig. 9 , which illustrates different regions within the area, with 

different values for the pivot rotation speed. 

Analysis of the input data identified the existence of two broad 

areas with lower leaf development, which could indicate a lack of 

water for development. After processing input data, the intelligent 

irrigation system showed these areas of lower leaf development in 

a more intense red tone. This indicates that the pivot must reduce 

its speed, thus increasing the water layer in that specific location, 

because the rotation speed of the pivot determines the level of the 

water layer applied. A thinner water layer is applied with higher 

speed and a higher application of water in the soil occurs with 

lower rotation speed ( Valín, Cameira, Teodoro, & Pereira, 2012 ). 

The expected result was the creation of control maps; in this 

case, it was possible to determine the reference speed values for 

eight initially programmed zones, as shown in Fig. 10 . Moreover, 

areas that present different colors in Fig. 9 are shown in the con- 

trol map result, which illustrates the existence of well-divided 

zones. In each one, a specific value is observed for the speed that 

the pivot must reach to increase or decrease the water layer in the 

crop area. 
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Fig. 12. Output data for the fuzzy inference system: speed rotation for the pivot. Source: Author’s archives. 

Fig. 13. Map for the rotation speed control of the pivot. Source: Author’s archives. 

The result shown in Fig. 9 b corresponds to reference values, 

which must be sent to the pivot controller, since the control sys- 

tem of these works with a percentage of the speed rotation, known 

as the percentimeter. 

3.3. Case study on June 28th, 2016 

Data analyzed and processed by the SIG can be used as inputs 

for the fuzzy intelligent system. Fig. 11 shows the NDVI images, 

temperature images, and soil moisture images. 

The case study on June 28th included the values of input vari- 

ables for the fuzzy system with linguistic definitions necessary for 

interpretation. 

The intelligent system of irrigation obtained the result shown 

in Fig. 12 , which illustrates different regions within the crop area 

with different values of pivot rotation. A higher rotation speed im- 

plies the application of a thinner water layer, and a lower rotation 

speed leads to more water application in the soil, given that the 

application flow is kept constant in the sprinklers. 

Once the satellite images are compared again, NDVI and canopy 

temperature are essential for the decision-making process of the 

intelligent irrigation system. The large areas with a lower leaf de- 

velopment could indicate a lack of water for development. In the 

case of the output of the intelligent irrigation system, more intense 

red areas indicate that the pivot must reduce its speed. 

In this study, the reference values of the rotation speed of 

the pivot for the eight initially programmed zones of irrigation 

were determined, as shown in Fig. 13 . In this result, the areas 

with different colors in Fig. 12 are the result of the control map 

constructed and are shown in Fig. 13 . Irrigation zones were well 

divided, which makes it is possible to see an absolute value for 

the rotation speed of each pivot, increasing and decreasing the 

water layer applied to the cultivation area. The result shown in 

Fig. 13 b corresponds to reference values to be sent to the pivot 

controller. 

4. Conclusion 

The developed fuzzy system for irrigation control is original and 

innovative. No similar discussion in the scientific literature about 

speed control maps of the central pivot was found. Furthermore, 

there is no information available on commercial systems that can 

autonomously build this type of map. Experiments demonstrated 

the potential effectiveness of the pivot operation based on the 

differences between velocities by management zones. The system 

follows the definition of VRI; once the speed changes, there are 

changes in the amount of supplied water. In this context, fuzzy 

logic can be applied widely in agricultural areas; therefore, a de- 

cision support system can be build that has the knowledge of pre- 

cision irrigation. 
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The implementation of fuzzy logic decision support system was 

successful to develop prescription maps for VRI with central pivots. 

However, a broader and commercial application will depend on the 

integration of data collection systems, management strategies, and 

hardware control. In other words, the fuzzy logic model performed 

as expected, providing excellent results. However, the reliability of 

data sources (NDVI, surface soil water, and canopy temperature) to 

develop a reliable prescription map is the scope of future study. 

The future study will focus on the field implementations and de- 

termine whether any additional data (different types of data, high- 

quality data, and/or more frequent data) will be required for de- 

veloping the map. 

In this analysis, the rotation speed control extracted through in- 

ference does not consider the volume of the water layer to be ap- 

plied. The interpretation given by the fuzzy system is as follows: 

where there is variation in the plant growth, there will be variation 

in water demand. To solve this, more data should be collected to 

validate the system for various scenarios in near future. The results 

were favorable to the continuity of studies on precision irrigation 

and application of the fuzzy logic for creating central pivots irriga- 

tion systems maps. Future research should implement this decision 

support system into field trials to evaluate its ability to reduce ir- 

rigation pumping and/or improve crop yield. 

Contributorship statement 

The authors Willians Ribeiro Mendes, Fábio Meneghetti U. 

Araújo, Ritaban Dutta, and Derek M. Heeren; declare that they are 

responsible for the preparation of the manuscript entitled FUZZY 

CONTROL SYSTEM FOR VARIABLE RATE IRRIGATION USING REMOTE 

SENSING. Below are described each contribution: 

Willians Ribeiro Mendes, conceived the original idea; de- 

signed the model and the computational framework and anal- 

ysed the data and carried out the implementation. And wrote the 

manuscript with input from all authors. 

Ritaban Dutta, and Derek M. Heeren, analyzed the experimen- 

tal data, drafted the manuscript and contributed to the design and 

implementation of the research, to the analysis of the results and 

to the writing of the manuscript. 

Fábio Meneghetti U. Araújo conceived the study and were in 

charge of overall direction and planning. And supervised the find- 

ings of this work. 

All authors discussed the results and contributed to the final 

manuscript. 

Thus, they declare that they had sufficient participation in the 

work to assume responsibility for the total content. 

Acknowledgments 

The authors thank the Federal Institute of Education, Science 

and Technology of Mato Grosso - IFMT - for the financial sup- 

port, and to the Post-Graduation Program in Electrical and Com- 

puter Engineering of the Federal University of Rio Grande do Norte 

- PPGEEC / UFRN - for the technical and administrative support. 

Finally, we thank the Coordination of Improvement of Higher Edu- 

cation Personnel - Ministry of Education (Capes - MEC) for grant- 

ing the PRODOUTORAL scholarship number IFMT/123/2017 to the 

corresponding author. 

References 

Allen, R. G. , Pereira, L. S. , Raes, D. , & Smith, M. (1998). Crop evapotranspiration-guide- 

lines for computing crop water requirements, irrigation and drain (p. 300). Rome, 
Italy: FAO. Paper No. 56 . 

Almeida, G. , Vieira, J. , Marques, A. S. , Kiperstok, A. , & Cardoso, A. (2013). Estimating 
the potential water reuse based on fuzzy reasoning. Journal of Environmental 

Management, 128 , 883–892 . 

Armindo, R. A. , Botrel, T. A. , & Garzella, T. C. (2011). Flow rate sprinkler development 
for site-specific irrigation. Irrigation Science, 29 , 233–240 . 

Bahat, M. , Inbar, G. , Yaniv, O. , & Schneider, M. (20 0 0a). A fuzzy irrigation controller 
system. Engineering Applications of Artificial Intelligence, 13 , 137–145 . 

Barker, J. B. , Heeren, D. M. , Neale, C. M. U. , & Rudnick, D. R. (2018). Evaluation of 
variable rate irrigation using a remote-sensing-based model. Agricultural Water 

Management, 203 , 63–74 . 
Bellvert, J. , Zarco-Tejada, P. J. , Girona, J. , & Fereres, E. (2014). Mapping crop wa- 

ter stress index in a “pinot-noir” vineyard: Comparing ground measurements 

with thermal remote sensing imagery from an unmanned aerial vehicle. Preci- 
sion Agriculture, 15 , 361–376 . 

Bergamaschi, H. , Dalmago, G. A. , Bergonci, J. I. , Bianchi, C. A. M. , Muller, A. G. , Comi- 
ran, F. , et al. (2004). Distribuição hídrica no período crítico do milho e produção 

de grãos. Pesquisa Agropecuária Brasileira, Brasília, 39 , 831–839 (Water Distribu- 
tion in the critical period of corn and grain production. Brazilian Agropecuary 

Research, Brasilia , 39, 831–839 . 

Bernardo, S. , Soares, A . A . , & Mantovani, E. C. (2006). Manual de irrigação (p. 625). 
Viçosa: UFV. p. (Irrigation Manual, 8th edition, Ed. UFV, Vicosa, 625p.) . 

Bing, Z. , Huifeng, J. , & Xia, H. (2015). Study on corn water saving irrigation decision–
making model. Advance Journal of Food Science and Technology, 9 , 9–12 . 

Borghetti, J. R. , Silva, W. L. C. , Nocko, H. R. , Loyola, L. N. , & Chianca, G. K. (2017). 
Agricultura irrigada sustentável no Brasil: identificação de áreas prioritárias p. 243 

(Sustainable irrigated agriculture in Brazil: Identification of priority areas. 

243p.) . 
Boyer, J. S. (1968). Relationship of water potential to growth of leaves. Plant Physi- 

ology, 43 , 1056–1062 . 
Castillo, O., & Melin, P. (2008). Type-2 fuzzy logic: Theory and applications (pp. 5–28). 

Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978- 3- 540- 76284- 3 . 
Colaizzi, P. D. , O’Shaughnessy, S. A. , Evett, S. R. , & Howell, T. A. (2012). Using plant 

canopy temperature to improve irrigated crop management. 24th Annual central 

plains irrigation conference CPIA, Colby KS . 
Dogan, E. , Gumrukcuoglu, M. , Sandalci, M. , & Opan, M. (2010). Modelling of evapo- 

ration from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference 
systems. Engineering Applications of Artificial Intelligence, 23 , 961–967 . 

Dubois, D. , & Prade, H. (20 0 0). Fundamentals of fuzzy sets (p. 647). Norwell, MA: 
Kluwer . 

Dutta, R. , Morshed, A. , Aryal, J. , D’Este, C. , & Das, A. (2014). Development of an in- 

telligent environmental knowledge system for sustainable agricultural decision 
support. Environmental Modelling & Software, 52 , 264–272 . 

Er-Raki, S. , Chehbouni, A. , Guemouria, N. , Duchemin, B. , Ezzahar, J. , & 
Hadria, R. (2007). Combining FAO-56 model and ground-based remote sens- 

ing to estimate water consumptions of wheat crops in a semi-arid region. 
Agricultural Water Management, 87 , 41–54 . 

Evans, R. G. , & King, B. A. (2012). Site-specific sprinkler irrigation in a water-limited 

future. Transactions of the ASABE–Advances in Irrigation, 55 , 493–504 . 
FAO. (2016). The state of food and agriculture. Climate change, agriculture and food 

security : 2016. Rome: Food and Agriculture Organization of the United Nations . 
Feinerman, E. , & Voet, H. (20 0 0). Site-specific management of agricultural inputs: 

an illustration for variable-rate irrigation. European Review of Agricultural Eco- 
nomics, 27 , 17–37 . 

Fitzgerald, G. J. , Lesch, S. M. , Barnes, E. M. , & Luckett, W. E. (2006). Directed 
sampling using remote sensing with a response surface sampling design 

for site-specific agriculture. Computers and Electronics in Agriculture, 53 , 98–

112 . 
Gilley, J. R. , Mielke, L. N. , & Wilhelm, W. W. (1983). An experimental center-pivot 

irrigation system for reduced energy crop production studies. Transactions of 
ASAE, 26 , 1375–1379 . 

Giusti, E. , & Marsili-Libelli, S. (2015). A fuzzy decision support system for irrigation 
and water conservation in agriculture. Environmental Modelling & Software, 63 , 

73–86 . 

González-Dugo, M. P. , & Mateos, L. (2008). Spectral vegetation indices for bench- 
marking water productivity of irrigated cotton and sugarbeet crops. Agricultural 

Water Management, 95 , 48–58 . 
Herrera, J. , Ibeas, A. , & de la Sen, M. (2013). Identification and control of integra- 

tive MIMO systems using pattern search algorithms: An application to irrigation 
channels. Engineering Applications of Artificial Intelligence, 26 , 334–346 . 

Hsiao, T. C. (1973). Plant responses to water stress. Annual Reviews of Plant Physiol- 

ogy, 24 , 519–570. doi: 10.1146/annurev.pp.24.060173.002511 . 
Hunsaker, D. J. , Barnes, E. M. , Clarke, T. R. , Fitzgerald, G. J. , & Pinter, P. J. (2005). 

Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coef- 
ficients. Transactions of ASAE, 48 , 1395–1407 . 

Idso, S. B. , & Baker, D. G. (1967). Relative importance of reradiation, convection and 
transpiration in heat transfer from plants. Plant Physiology, 42 , 631–640 . 

Jang, R. J. S. , Sun, C. T. , & Mizutani, E. (1997). Neuro-fuzzy and soft computing . Upper 

Saddle River: Prentice-Hall . 
Kamble, B. , Kilic, A. , & Hubbard, K. (2013). Estimating crop coefficients using remote 

sensing-based vegetation index. Remote Sensing, 5 , 1588–1602 . 
Kumar, S. U. , & Rajkumar, A. (2014). Multicriterion fuzzy decision making in irriga- 

tion planning. International Journal of Scientific and Research Publications-IJSRP, 4 , 
1–7 . 

Kweon, G. (2012). Delineation of site-specific productivity zones using soil proper- 

ties and topographic attributes with a fuzzy logic system. Biosystems Engineer- 
ing, 112 , 261–277 . 

McCarthy, A. C. , Hancock, N. H. , & Raine, S. R. (2013). Advanced process control of ir- 
rigation: The current state and an analysis to aid future development. Irrigation 

Science, 31 , 183–192 . 

https://doi.org/10.13039/501100008532
https://doi.org/10.13039/501100004567
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0011
https://doi.org/10.1007/978-3-540-76284-3
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0025
https://doi.org/10.1146/annurev.pp.24.060173.002511
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0033


24 W.R. Mendes, F.M.U. Araújo and R. Dutta et al. / Expert Systems With Applications 124 (2019) 13–24 

McIntosh, B. S. , Ascough, J. C. , Twery, M. , Chew, J. , Elmahdi, A. , Haase, D. , 
et al. (2011). Environmental Decision Support Systems EDSS development: 

Challenges and best practices. Environmental Modelling & Software, 26 , 1389–
1402 . 

Montalvo, M. , Guerrero, J. M. , Romeo, J. , Emmi, L. , Guijarro, M. , & Pajares, G. (2013). 
Automatic expert system for weeds/crops identification in images from maize 

fields. Expert Systems with Applications, 40 (1), 75–82 . 
Moran, M. S. , Inoue, Y. , & Barnes, E. M. (1997). Opportunities and limitations for 

image-based remote sensing in precision crop management. Remote Sensing of 

Environment, 61 , 319–346 . 
Navarro-Hellín, H. , Martínez-del-Rincon, J. , Domingo-Miguel, R. , Soto-Valles, F. , & 

Torres-Sánchez, R. (2016). A decision support system for managing irrigation in 
agriculture. Computers and Electronics in Agriculture, 124 , 121–131 . 

Okin, G. S. (2007). Relative spectral mixture analysis—A multitemporal index of total 
vegetation cover. Remote Sensing of Environment, 106 , 467–479 . 

Omary, M. , Camp, C. R. , & Sadler, E. J. (1997). Center pivot irrigation system modifi- 

cation to provide variable water application depths. Applied Engineering in Agri- 
culture, 13 , 235–239 . 

Omid, M. , Lashgari, M. , Mobli, H. , Alimardani, R. , Mohtasebi, S. , & Hesami- 
fard, R. (2010). Design of fuzzy logic control system incorporating human ex- 

pert knowledge for combine harvester. Expert Systems with Applications, 37 (10), 
7080–7085 . 

Papadopoulos, A. , Kalivas, D. , & Hatzichristos, T. (2011). Decision support system for 

nitrogen fertilization using fuzzy theory. Computers and Electronics in Agriculture, 
78 , 130–139 . 

Papageorgiou, E. I., Kokkinos, K., & Dikopoulou, Z. (2016). Fuzzy sets in agriculture. 
In C. Kahraman, U. Kaymak, & A. Yazici (Eds.), Fuzzy logic in its 50th year. Studies 

in fuzziness and soft computing (p. 341). Cham: Springer. https://doi.org/10.1007/ 
978- 3- 319- 31093- 0 _ 10 . 

Pinter, P. J. , Hatfield, J. L. , Schepers, J. S. , Barnes, E. M. , Moran, M. S. , Daughtry, C. S. , 

et al. (2003). Remote sensing for crop management. Photogrammetric Engineer- 
ing & Remote Sensing, 69 , 647–664 . 

Rafea, A. , Hassen, H. , & Hazman, M. (2003). Automatic knowledge acquisition tool 
for irrigation and fertilization expert systems. Expert Systems with Applications, 

24 (1), 49–57 . 

Raju, K. S. , & Kumar, D. N. (2005). Fuzzy multicriterion decision making in irrigation 
planning. Irrigation and Drainage, 54 , 455–465 . 

Romero, R. , Muriel, J. L. , García, I. , & Muñoz de la Peña, D. (2012). Research on au- 
tomatic irrigation control: State of the art and recent results. Agricultural Water 

Management, 114 , 59–66 . 
Sadler, E. J. , Camp, C. R. , Evans, D. E. , & Usrey, L. J. (1996). A site-specific center 

pivot irrigation system for highly-variable Coastal Plain soils. In P. C. Robert, 
R. H. Rust, & W. E. Larson (Eds.), Proceedings of the third international conference 

on precision agriculture (pp. 827–834). Madison, WI: Am. Soc. Agron. . 

Silva, E. M. da , & Azevedo, J. A. (1998). Dimensionamento da lateral de irrigação do 
pivô central p. 54 EMBRAPA-CPAC, Documentos 71(Lateral dimensioning for cen- 

tral pivot irrigation. EMBRAPA-CPAC, Documents 71. 54p.) . 
Thangavadivelu, S. , & Colvin, T. S. (1997). Fuzzy-logic-based decision support system 

for scheduling tillage operations. Engineering Applications of Artificial Intelligence, 
10 , 463–472 . 

Trout, T. J. , Johnson, L. F. , & Gartung, J. (2008). Remote sensing of canopy cover in 

horticultural crops. HortScience, 43 , 333–337 . 
Valín, M. I. , Cameira, M. R. , Teodoro, P. R. , & Pereira, L. S. (2012). DEPIVOT: A model 

for center-pivot design and evaluation. Computers and Electronics in Agriculture, 
87 , 159–170 . 

Voinov, A. , & Shugart, H. H. (2013). Integronsters,” integral and integrated modeling. 
Environmental Modelling & Software, 39 , 149–158 . 

Wang, L. X. (1997). A course in fuzzy systems and control. Prentice Hall PTR. 2. ª ed. 

Wood, G. A. , Taylor, J. C. , & Godwin, R. J. (2003). Calibration methodology for map- 
ping within-field crop variability using remote sensing. Biosystems Engineering, 

84 , 409–423 . 
Wright, S. T. C. (1977). The relationship between leaf water potential ( ψ leaf ) and 

the levels of abscisic acid and ethylene in excised wheat leaves. Planta, 134 , 
183–189 . 

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 , 338–353 . 

Zhang, H. Y. , Fei, L. , Wei, Z. , Congcong, M. , & Yuewei, C. (2011). The fuzzy deci- 
sion-making method of irrigation amount based on ET and soil water poten- 

tial. International Conference on Electronics, Communications and Control (ICECC) , 
2927–2931 . 

http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0041
https://doi.org/10.1007/978-3-319-31093-0_10
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0048
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0048
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0048
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0048
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0049
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0049
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0049
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0049
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30049-1/sbref0056

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2019

	Fuzzy control system for variable rate irrigation using remote sensing
	Willians Ribeiro Mendes
	Fábio Meneghetti U. Araújo
	Ritaban Dutta
	Derek M. Heeren

	Fuzzy control system for variable rate irrigation using remote sensing
	1. Introduction
	2 Variable rate irrigation system (VRIS)
	2.1 Data
	2.1.1 Normalized difference vegetation index (NDVI) and canopy temperature

	2.2 Satellite imagery
	2.3 Crop area
	2.4 Fuzzy systems

	3 Results and discussion
	3.1 Control maps for pivot rotation speed
	3.2 Case study on June 15th, 2016
	3.3 Case study on June 28th, 2016

	4 Conclusion
	Contributorship statement
	Acknowledgments
	References


