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Accurate Computation of Field Reject Ratio Based on 
Fault Latency 

Dharamvir Das, Sharad C. Seth, Senior Member, IEEE, and Vishwani D .  Agrawal, Fellow, IEEE 

Abstract-The field reject ratio, the fraction of defective de- 
vices that pass the acceptance test, is a measure of the quality 
of the tested product. Although the assessment of quality is im- 
portant, a n  accurate measurement of the field reject ratio of 
tested VLSI chips is often not feasible. We show that the known 
methods of field reject ratio prediction a re  not accurate since 
they fail to realistically model the process of testing. We model 
the detection of a fault by a n  input test vector as a random 
event. However, we recognize that the detection of a fault may 
be delayed for various reasons: the fault may be detectable only 
by application of a sequence of vectors or  it may not have been 
targeted until later. In  our statistical model, a fault is charac- 
terized by two parameters: a per-vector detection probability 
and an integer-valued latency. Irrespective of the detection 
probability, the fault cannot be detected by a vector sequence 
shorter than its latency. The circuit is characterized by the joint 
distribution of latency and detection probability over all faults. 
This distribution, obtained by applying the Bayes’ rule to  the 
actual test data, enables us to compute the field reject ratio. 
The sensitivity of this approach to variations in the measured 
parameters is also investigated. 

I. INTRODUCTION 
OR VLSI devices, the$eld reject ratio (or reject ratio F for short) is defined as the ratio of faulty chips among 

the chips passed by the tests. Thus, a reject ratio of 0.001 
means that the average number of faulty chips after test- 
ing is one in a thousand. Average outgoing quality (AOQ) 
and defect level are equivalent terms used in the industry 
for the field reject ratio, represented in parts per million 
(ppm). A large number of chips must be in use in the field 
before an adequate amount of field return data can be ob- 
tained to estimate the reject ratio. Direct measurement of 
reject ratio, therefore, is difficult and can be quite expen- 
sive. Researchers have proposed several indirect meth- 
ods. 

It is clear that if the chip fabrication process is perfect, 
there will be no defective parts, and hence the reject ratio 
will be zero. Or, if the testing process is perfect, no de- 
fective parts will escape tests, and again, the reject ratio 
will be zero. These considerations suggest that any model 
for reject ratio computation must take into account param- 
eters characterizing the processing line and chip testabil- 
ity. 
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Previous attempts [ 11-[6] have derived relations be- 
tween fault coverage and product quality. For an accept- 
able reject ratio, e.g., 1 in  10 000, the models in the cited 
works compute fault coverage requirements close to 
loo%, which is difficult to obtain in large highly sequen- 
tial circuits. Difficulties are caused by the presence of re- 
dundant faults and the ways a fault simulator models 
faults, circuit initialization, race conditions, etc. 

A method that computes reject ratio in the absence of 
fault simulator data was developed by Seth and Agrawal 
[6]. They define a per-vector probability of failure detec- 
tion for the circuit. Implicit in this model are the proba- 
bility of occurrence of a fault and the probability of de- 
tection given the fault has occurred. Note that the 
detection probability of a fault is a conditional probabil- 
ity. That is, it is the probability of detecting the fault given 
that the fault is present in the circuit. Hence, the product 
of the two probabilities is the fuilure detection probability 
of the chip by a vector. In other words, a realistic cover- 
age requirement can be obtained by weighting the detec- 
tion probabilities of faults with their occurrence probabil- 
ities. In this method, only wafer test data are needed to 
determine the reject ratio. The entire process of testing is 
characterized by a detection probability density function 
which is determined using the measured fraction of failing 
chips versus the number of vectors. 

11. MOTIVATION 
We derive the motivation for the present work from the 

shortcomings of the available methods of estimating re- 
ject ratio, observed while evaluating them on experimen- 
tal data [ 7 ] .  These methods are reviewed in the next two 
subsections, followed by their experimental evaluation. 

A .  Fault Coverage Bused Methods 
Methods to compute reject ratio based on fault cover- 

age data often require that the yield be known at least 
approximately. Consider M single stuck faults that can 
occur on a chip. Of these, m are covered by the given test 
vectors. The fault coverage f is then m / M .  Suppose K 
faults are present on the chip being tested. Let q k ( K )  be 
the probability of detecting exactly k faults given that K 
faults have occurred. Then, q k ( K )  has a hypergeometric 
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density function and is given by [8] 

The probability of passing the chip having K faults as good 
is given by (1) when k = 0, i.e., 

= (1 - ff. ( 2 )  
("m " )  
(3 90(K) = 

This approximation is quite accurate for K << 
JM(1 - f ) / f .  Since K is a random variable, given a dis- 
tribution for K ,  the expectation of qO(K)  gives the mea- 
sured yield, i.e., the sum of true yield y and the fraction 
of defective chips tested as good. If the true yield is 
known, the reject ratio is computed by the following for- 
mula: 

( 3 )  

where E(qo(K))  is the expectation of qO(K)  and is given 
by 

M 

E(qo(W) = c (1 - f > % K ) .  (4) 
K = O  

In the above expression, p ( K )  is the density function of 
K .  Results for different probability density function p ( K )  
of K are summarized in Table I. The geometric density 
model was introduced by Wadsack [l], and the binomial 
density was used by Williams and Brown [ 3 ] .  The gen- 
eralization of these two models based on the gamma den- 
sity function was also given by Wadsack [ 2 ] .  In Table I ,  
we have shown the geometric and binomial density cases 
because these are most frequently quoted in the literature. 
The key feature of the remaining two models [4], [5] in 
Table I is that they assume the faults to be clustered, as 
is generally believed to be the case for VLSI chips. Notice 
that except for compound density, all others require the 
true yield as a parameter. In the case of compound den- 
sity, parameters A ,  a ,  b, and c together determine the 
yield. 

probability. The product of these two probabilities is the 
absolute detection probability of a chip by a test vector. 
This is equivalent to obtaining fault coverage where faults 
are weighted by their occurrence probabilities. For ex- 
ample, a fault that never occurs will have zero weight and 
is not required to be covered. We include the following 
details of the CFP method since they are relevant to the 
new method given in Section 111. The analysis presented 
in this and the remaining sections uses the following no- 
tation: 

C total number of chips tested 
N total number of test vectors applied 
Cj number of chips that fail at vector i 
y true yield, i.e., fraction of good chips 
yn estimated yield of chips after application of n vec- 

tors. 

Each failing chip has associated with it a random vari- 
able x which is the probability of a fault occurring on the 
chip and being detected by a test vector. If x = 0, then 
the chip has no defects. Since x is a probability, its value 
lies in the range 0- 1 .  Let F ( x )  represent the density of the 
chips. Then, F ( x ) A x  is the fraction of chips in which 
faults have occurred, and are detected with detection 
probability between x and x + A x .  Chips having faults 
with detection probability 0 are essentially good chips. 
Therefore, F ( 0 )  = y .  It is easy to verify that 

s,: F ( x )  dx = 1. (5) 

Let ~ ( x )  represent the distribution of defective chips. 
Then, 

(6) 

where 6(x) is the Kronecker delta function. Suppose a fault 
has occurred on a chip, and that n test vectors have been 
applied. Since x is the probability of the fault being de- 
tected by a test vector, the probability that the chip has 
not failed after the application of n test vectors is (1 - 
x)". The expectation of this probability with the distribu- 
tion F ( x )  gives the yield of chips after the nth vector, i.e., 

F ( x )  = y6(x) + %(X) 

y, = j: ( 1  - x)"F(x) dx 

B.  Chip Failure Probability (CFP) Method 
The methods tabulated above use the fault coverage f 

as a parameter. Another method that does not depend on 
the fault coverage of test vectors was proposed by Seth 
and Agrawal [6]. Their method relies on the fact that de- 
tection probability of a fault is really a conditional prob- 
ability. It is the probability of detection by an input vector 
given a fault is present. Associated with each fault is its 
probability of occurrence on the chip. Just as all faults are 
not equally detectable, they also do not occur with equal 

The density function F ( x )  is estimated from chip failure 
detection data obtained by testing a sample of C chips 
with a test sequence of N vectors. As these vectors are 
applied, the number of chips that fail for the first time at 
each vector is recorded. For vector number i ,  let Cj  denote 
the number of such chips. The probability that a chip fails 
at the ith vector is x( 1 - x)'- I .  Thus, C j / C  is used as a 
weight for this probability in determining the distribution 
function F ( x ) .  If a uniform a priori distribution is as- 
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TABLE I 
REJECT RATIOS FOR VARIOUS DISTRIBUTIONS OF K 

Density Function p ( K )  = Prob.(number of faults = K )  Reject Ratio 

Geometric [ I ] :  

p ( K )  = Y ( I  - Y)" 
where .v = true yield andf = fault coverage. 

Binomial [3]: 

p - 1 - . v l / M  
M -  

where M = total number of faults that can occur. 

Modified Poisson [4]: 

p(0)  = Y 

where K,, = average number of faults on a faulty chip. 

Compound IS]: 

pW) = p d K l x ) p , ( x )  

where 

m 

I = (1 

pl(x) = Prob.(number of defects = x )  

= (' + - I )  (Ab)'(l  + Ab)-"' 

A = chip area 

b = defect density 

U = clustering parameter 

p , ( K l x )  = Prob.(number of faults = K l x  defects) 

c = average number of faults per defect 

sumed for F(x) ,  then the weight is modified to reflect the 
Bayes' estimation [9]. Also, another component of F ( x )  
is the probability that a chip does not fail after the appli- 
cation of N vectors and is given by ( 1  - x ) ~ .  The weight 
for this is (1 - y - ( l / C )  E:= I C J ( N  + 1). Hence, the 
distribution of chips, over the random variable x is deter- 
mined to be 

Substituting for F(x)  in (7), we get 

C i = l  ) ( N : : :  1 )  

) .  (9) 
l N  i(i + 1) 
C i = i  

+ -  c c;( 
(n + i ) (n  + i + 1) 

In the above expression, the true yield y is still an un- 
known parameter. It is evaluated by equating the esti- 

mated yield yN after N vectors to the measured yield. The 
measured yield is 1 - (E:= I C J / C  which, when equated 
to yN obtained from (9), gives the following solution for 
Y :  

i(i + 1) 
( N  + i ) ( N  + i + 1) '  

The reject ratio is now computed from (9) and (10) as 

(11) 

Next, we will illustrate the application of the above anal- 
ysis to experimental data. 

C. Experimental Data 
The CFP method also allows us to estimate the true 

yield. Wafer test data for a CMOS chip obtained from 
Delco Electronics were used to compare the reject ratio 

Y N  - Y r = -  
Y N  
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TABLE I1 
ESTIMATED REJECT RATIOS FOR A CMOS DEVICE 

Geometric 
Binomial 
Modified Poisson 
Compound 
CFP 

0.00087 
0.00103 
0.00048 
0.00064 
0.00532 

-O-O- - --., .moc..o mo 

0 2000 4ooo 6ooo 8000 loo00 lZo00 14000 
0.7 

VECTORS 

Fig. 1. Experimental data on yield for a chip. 

values computed from the formulas given in the previous 
sections [7]. The test data obtained were for 79 912 de- 
vices. Of these, 847 failed the parametric test and 7699 
failed the continuity test. Thus, functional testing was 
done on 64 366 devices. The test consisted of 12 188 test 
vectors, and had a stuck fault coverage of 99.7% as mea- 
sured by a fault simulator. True yield computed by the 
CFP method (from (lo),  which involves only the chip 
failure data) is 0.7092. The reject ratios computed by dif- 
ferent methods are given in Table 11. 

The estimated reject ratios lie between 480 and 5320 
parts per million. This wide variation is undesirable, and 
leads us to suspect the assumptions made in deriving the 
results in Sections 11-A and 11-B. The methods of Section 
11-A rely on fault coverage and the density function of the 
number of faults. The method of Seth and Agrawal [6] 
does not rely on the fault coverage information. 

Our recent investigation suggests that the accuracy of 
the Seth and Agrawal method could be improved by con- 
sidering possible latencies in the detection of faults on a 
chip by the chip test [lo]. The latencies can arise due to 
a variety of causes (e.g., sequential nature of the circuit 
or functionally partitioned nature of long test sequences), 
but here we are concerned primarily with their effect. Fig. 
1 shows a plot of the yield of chips as a function of test 
length (measured in number of vectors). A careful look at 
the plot reveals discontinuities or sudden jumps in the 
yield at several points (a similar phenomenon is also seen 
in the fault coverage versus vectors graphs). We believe 
that such discontinuities are an essential part of any chip 
test data, and that they occur because of clustering of fault 

latencies. In the following section, we propose a latency 
model capable of providing an accurate fit to the experi- 
mental data. 

111. CURVE FITTING TO EXPERIMENTAL DATA 
As mentioned above, there may be many plausible ex- 

planations for the observed phenomenon. For example, in 
a sequential circuit, the fault activation may require the 
control of several flip-flops. Depending on the levels (se- 
quential depth) of the flip-flops in the circuit, a sequence 
of test vectors will be needed. Further, the fault effect 
may have to be propagated through several levels of flip- 
flops, again requiring another sequence of vectors. Jumps 
can also occur in combinational circuits if the vectors are 
specifically generated to test different parts of the circuits. 

The idea of fitting a model to experimental data is to 
eliminate random variations. However, the delayed de- 
tection of faults due to the sequential nature of the circuit 
is not entirely a random phenomenon; the stepped in- 
crease in fault coverage is real and not random. Any at- 
tempt at fitting a smoothly rising curve will therefore lead 
to erroneous results. The method described in the follow- 
ing sections is such that it tracks the experimental data. 

Let us associate with each fault an integer called fa-  
tency or the number of test vectors that must be applied 
before the fault is considered detectable by the subsequent 
vectors. The latency is zero for all detectable stuck type 
faults in a combinational circuit. The latency of some 
faults in a sequential circuit may also be zero; such faults 
may be called combinational, while the faults with non- 
zero latency will be called sequential. It is the discrete 
nature of the integer-valued latency random variable that 
will give rise to jumps in the observed value of yield as a 
function of vector number. 

A. Chip Failure Analysis 
We will assume that chip failure detection on an ap- 

plied test vector is a random event. For a chip with a fault, 
we can speak of the following random variables. 

1) d: A random variable representing the latency of a 
fault. It takes values in the set (0, 1, 2, , m} .  A fault 
with latency d can only be detected by vectors d + 1, d 
+ 2, etc. 

2) x: A random variable representing the detection 
probability of a fault of latency d. This is the probability 
that a fault with latency d has occurred and is detected by 
the vector, 0 5 x I 1 .  

3) g,,(x, d ) :  A function of two random variables. This 
represents the probability that a chip fails at the nth vec- 
tor. 

g,,(x, d )  = x(1 - X ) " ~ " - ' Z { ~ +  I , .  . . ,ml(n) (12) 
where Z{(,+ I ,  . . . . , { (n )  is the indicator function' [9]. The 

'Indicator function: Let 0 be any space with points w and A any subset 
of 0. The indicator function of A is defined as 

1 i f w E A  

0 i f w 6 . 4 .  
[,(U) = 
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expression indicates that a chip with a fault of latency d 
cannot fail for the first d vectors. Thereafter, its failure 

the test length is sufficiently long so as to include all the 
latencies. 

detection probability is determined by the per-vector de- 
tection probability x. q.r(x) = 1 0 I x I 1 

O i d r N .  
Yield Model: Let us define a density function F ( x ,  d ) ,  1 

N + l  q d w  = ~ such that F ( x ,  d ) A x  is the fraction of chips that have la- 
tency d and per-vector detection probability between x and 
x + A x .  If y is the yield, then only a fraction 1 - y of 
the total chips can fail. Hence, we can write 

Hence, 

x(l - p - 1  I{o,  . . . , i  - 11(d) 
F(x, d )  = yS(x, d )  + a@, d )  (13) a i (x ,  d )  = N - 1  I 

c j x(1 - x ) i - d - l  l { O ,  ' ' ' . I  - 1 } ( 4  dr where 6(x, d )  is the Kronecker delta function. The partial d = O  0 
density function a(x, d )  corresponds to only the -faulty 
chips. Since F ( x ,  d )  is a density function, we have 

m n l  m n l  

c J F(x, d )  dr = y + c 
d = O  0 

i + l  . x(1 - x y -  -- - 
. I  - 

where Suppose, after application of n test vectors, that a cer- 
tain fraction of chips has not failed. Then, the expected k, = ( i  + l ) / i .  (17) 
value of this fraction is the yield of chips after n vectors 
and is denoted by y , .  It is easily verified that 

m P I  
Prob.(a chip does not fail after n vectors) 

n s d  

(1 - x ) n - d  n > d  

c 1 a@, d )  dx = 1 .  (18) 
d = O  0 

Probability of Chip Not Failing: The probability that a 
chip does not fail on the application of a test sequence is 

- - z{o. . . , d } ( n )  + (1 - x) f l -dz{d+  I .  . . . . m ) ( n > .  (1 - x ) ~ - ~  0 I d I N .  
Therefore, The corresponding Bayesian probability distribution is 

We assume that the random variables x and d are inde- 
pendent. This assumption is justified since the detection 
probability and latency of a fault depend on rather inde- 
pendent circuit characteristics. Detection probability is 
strongly influenced by the functionality of the circuit, 
while latency depends on the location of the fault site rel- 
ative to the flip-flops in the circuit. Under the assumption, 
a(x, d )  = ax(x)ad(d),  where ax@) and a d ( d )  are the 
probability density functions of random variables x and d. 

Probability of Chip Failure Detection at ith Vector: 
From (12), the probability that a chip fails at vector num- 
ber i is x(1 - x ) ' - ~ - ' ,  i > d. Let N be the test length. 
Therefore, i takes a value between 1 and N .  Since x and 
d are random variables, we use Bayes' theorem to write 
the probability that a chip fails at the ith vector as 

where ko = 1 /Cy=+,' (1 /i). Also, 

5 j '  no(x, d )  du = 1 .  (20) 

Estimation of a(x, d ) :  Having obtained the analytical 
expressions for the probability of a chip failing at the ith 
vector and for the chip not failing over the entire test se- 
quence, we can now determine n ( ~ ,  d )  from experimental 

d = O  0 

d = O  JO 

where qx (x) and q d  ( d )  are the a priori density functions 
of detection probability and latency. For simplicity, we 
may assume uniform distribution for qx (x) and qd(d), with 
d taking integer values from 0 to N .  Here, we assume that 

data. Let a sample of C chips be tested by a sequence of 
N vectors. As these vectors are applied, we record the 
number of chips that fail for the first time on each vector. 
Let Ci denote the number of such chips for vector number 



542 lEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. I .  NO. 4. DECEMBER 1993 

i. If y is the true yield, then ( 1  - y - (1  / C )  Er= C;) is 
the fraction of chips that are bad but did not fail on any 
of the vectors from 1 through N .  To determine the com- 
plete chip failure detection probability distribution, a;(~, 
d )  is weighted with C i / C  and no@, d )  is weighted with 
( 1  - y - ( l / C )  Ey=o C;). Thus, 

l N  
n(x, 4 = ( 1  - y - - c c;) 7r&, d )  C i = l  

. N  
I + - c C;n;(x, d) .  C i = l  

Using (18) and (20), we get 
r l  c J n(x, d )  dr = 1 - y 

d = O  0 

which verifies that n(x, d )  is indeed a density distribution 
of failed chips. Substituting this in (13), after substitution 
for a;(x, d )  and ao(x, d )  from (16) and (19), we get 

F(x,  d )  = ~ S ( X ,  d )  + c;= 1 

(23) 
The second term in the above equation is the faulty chips 
not rejected by any of the N vectors. The third term groups 
the chips according to the vector number at which they 
failed. From the wafer test data, we have obtained the 
probability density distribution of chips in terms of the 
detection probability and fault latency. 

Substituting for F ( x ,  d )  in (14) gives us the following 
yield equation: 

Multiplying out the terms in the square brackets, we get 
m 

The first term in the above equation evaluates to zero since 
Z{o, . . . . d ~ ( n )  = 0 for all values of n > 0. Using the prop- 
erty of Kronecker delta, the second term evaluates to y. 
To solve the integrals in the remaining terms, we use the 
following definition of beta function [9]: 

l N - I  C; k; + - c  c 
C d = n  i = d +  I (i  - d + l)(i - d )  

l n - I  C; k; + - c  c 
C d = O i = d + l  (n  + i - 2d)(n + i - 2d + 1)' 

(26) 
Also, the measured yield for N vectors is given by 

number of chips that pass the tests l N  
= 1 - -  c c;. 

C ci= I 
Y N  = 

(27) 
Evaluating Reject Ratio: We have now obtained an an- 

alytical expression for y,, in terms of tester data. We need 
to determine the value of y so that the computed yield 
tracks the measured yield. We will therefore make an as- 
sumption that the analytical yield tracks the measured 
yield and the two are equal at the last test vector, i .e.,  at 
n = N yn = y N .  Making these substitutions in (26), we 
get 

+ l l  

1 
Y N  = Y + ( Y N  - Y ) ~ O  

1 N - l  C, k; 
C d = o  i = d +  I ( N  + i - 2d)(N + i - 2d + 1 ) '  

+ - c  c 
(28) 



DAS et a l . :  COMPUTATION OF REJECT RATIO BASED ON FAULT LATENCY 

1 

543 

Solving for y ,  we have 

where 

1 N -  I 

e l  = ko [ c 
d = ~  2N - 2d + 1 

and 

1 5 C, ki e2 = - 
C d = ~  i = d + ~  (N + i - 2d)(N + i - 2d + 1) 

The above expressions can be used for estimating the 
true yield, the apparent yield after n vectors, and the re- 
ject ratio from the chip failure data. The reject ratio is 
then computed as 

The application of this analysis is illustrated in the next 
section. 

IV. EXPERIMENT 
The wafer test data used earlier in Section 11-C are used 

again to compute the reject ratio by the latency based 
method. The observed functional yield of the chip after 
the 12 188 clock steps is 0.712954, that is, the fraction 
of chips that passed the full test. According to our as- 
sumption in the preceding section, for N = 12 188, yN = 
0.712954. The estimated true yield y computed using (29) 
is 0.712923. The resulting reject ratio, computed from 
(30), is 43 ppm. The resolution in this measurement is 
0.000015, which corresponds to one chip out of the total 
of 64 366 chips tested in this experiment. Fig. 2 shows 
the fit obtained for the experimental data. From the figure, 
we see that the computed yield closely tracks the mea- 
sured yield. Fig. 3 gives the same data between 1-500 
vectors at an enlarged scale to show how well our model 
can fit the jumps. 

The experimental data also enable us to obtain the den- 
sity function as described by (21). The derivation of this 
equation assumed a priori uniform distributions for the 
chip failure detection probability and the latency. Based 
on this assumption, Bayes’ rule was used to estimate the 
actual distribution of failed chips. This distribution char- 
acterized by the experimental data is shown in Fig. 4. 
Although the chip failure detection density is concen- 
trated at latency values that correspond to the vector num- 
bers at which the actual chips failed, it has a nonzero value 
for all latencies. This can be explained as follows. If we 
rewrite (21) as 
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Fig. 3 .  Efficacy of the model in fitting the jumps. 
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Fig. 4. Density distribution of failed chips 
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where 

I N  
7rh(X, d )  = 1 - 4' - - C , = l  c c,) ( d )  

l N  
T j ( X ,  d )  = - c C;7r;(x, d )  

c i = l  

we see that the coefficient of 7ro(x), ( 1  - Y - ( I / C )  
E:= I C,) is proportional to the number of bad chips tested 
as good. These chips can have a latency value between 0 
and N and a detection probability in the interval [0, 11. 
For a given value of d, the density function of these chips 
varies as ( I  - x ) ~ - " .  When x = 0, then a&, d )  = ( 1  - 
y - ( 1  /C  ) Cy= I C,) for all values of d, and for x = I ,  
the value is 0. This component of the density function has 
the same shape for all latency values and is not included 
in the surface plot of Fig. 4. 

Fig. 4 is actually the surface plot for the second com- 
ponent, i .e.,  a , ( ~ ,  d ) .  For clarity of illustration, only a 
limited range of latency d is shown. For any given value 
of d, the contribution to the density function is made by 
the fraction of chips that have failed during the testing 
process. If C, chips failed at the ith vector, then these 
chips have a latency value between 0 and i - I ,  and there- 
fore make a contribution to the density function whose 
variation due to x is given as x( 1 - x)' - " - I .  This expres- 
sion has the value 0 at x = 0 and x = 1 .  For d = i - I ,  
the density function is proportional to x. 

V. ROBUSTNESS ANALYSIS 
In this section, we will analyze the variation in reject 

ratio as computed from (30) due to statistical variations 
in chip failure data. For a given N (the test length), e l  in 
(30) is independent of the Cl's. Hence, rN depends on C,'s 
only through e 2 .  We rewrite the expression for e2 as a 
summation of Cl's ,  and expanding the outer summation, 
we get 

In the above equation, the coefficients of Ci's have been 
labeled as wi's. We can view e2 as a weighted sum of Ci's. 

Let V denote variance, Cov the covariance, and E the 
expectation of a random variable. To estimate the vari- 
ance of rN, it suffices to estimate the variance of e2 since 
rN depends on C,'s through e 2 .  Thus, 

. N  

i +; 

The number C, of chips failed at vector number i is a sta- 
tistical quantity. To evaluate the variance of e2, we need 
to know the variance of C, for all i .  The distribution for 
any given C, depends on the parameters of the process 
line, information about which is difficult to analyze. 
Therefore, we will use a Monte Carlo experiment to es- 
tablish the robustness of the predicted value of reject ra- 
tio. 

Monte Carlo Experiment: We assume a distribution for 
the random variable C, and use a random number gener- 
ator to obtain samples of C, according to the distribution 
[ 1 11. Thus, we can modify the chip failure data to com- 
pute the spread in the values of the reject ratio using (30). 
In the above analysis, we have made an assumption that 
test length is sufficiently long so as to cover all latencies. 
Therefore, we will assume that the number of test vectors 
N is fixed. We choose a binomial distribution with mean 
equal to the observed value of C,. Now, if the data are 
modified a specified number of times, we can establish 
the confidence interval for reject ratio. The Monte Carlo 
procedure can be algorithmically stated as follows: 

l N  c, k ,  e , = - C  
C I = i  ( N  + i ) ( N  + i + 1) 

1 ,", C. k, 
I ,  +-t 

C I = I  ( N  + i - 2 ) ( N  + i - 1) ' ClY3 ( N  + i - 4 ) ( N  + i - 3 )  

l N  Ci k, + -  C + . . .  
C , = N ( N  + i - 2N + 2 ) ( N  + i - 2N + 3 )  

>IRZ ( ( N  + 2 ) ( N  + 3) ' N(N + I ) )  

1 
(2N - 2 ) ( 2 N  - 1)  2 . 3  

+ * . .  + cNkN[ l +  
2N(2N + 1) 

1 
C 

= - [ C I W ,  + CZW? + . . 
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Fig. 5 .  Spread of reject ratio values. 

while iterations < 1000 { 
for ( i= l ,  i(=datapoints, i + + ) {  

Change C[ i l  according t o  the  binomial distribution; 

1 
Compute the observed yield w i th  this new data set; 
if observed yield is wi th in established guard band; 
then compute the  new reject ratio; 
else reject the data set; 

1 
For the chip under consideration, the failure data are 

obtained in lots and then merged as a single data set. Thus, 
we do have the knowledge of percentage variation for each 
datapoint. Assuming a uniform distribution centered 
around the fraction of chips failing at any vector number 
and the width of this distribution as the maximum of the 
percentage variation measured in the observed data, we 
perform the Monte Carlo experiment. The experiment is 
repeated 1000 times. Fig. 5 is the histogram of reject ratio 
values. The height of a vertical bar represents the number 
of times the corresponding reject ratio value was ob- 
served. A 95 % confidence interval of (4 1, 47) ppm for 
reject ratio is established by this method. The spread in 
the values of the reject ratio is from 35 to 50 ppm, as the 
yield varied from 0.69 to 0.73. 

VI. CONCLUSION 
The phenomenon of latency of faults in sequential cir- 

cuits has been observed for a long time [12]. However, 
this is the first time a yield model for this phenomenon is 
presented. The model with two parameters, namely, per- 
vector detection probability and latency, has the neces- 
sary degrees of freedom to provide a close fit to experi- 
mental test data. As a result, reject ratio predictions will 
be more realistic. When latency is neglected, the fit to 
data becomes crude, and the analysis predicts a much 
higher reject ratio. At an abstract level, the attempt in this 
work is on extracting information from the yield versus 
vector number graph, which is related to the structural 

properties of the circuit. This information is used to pre- 
dict the reject ratio. 
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