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[1] Artificial neural networks (ANNs) have been extensively used for forecasting
problems involving water quantity and quality. In most cases, the geometry and model
parameters of the ANN are set using a trial-and-error approach to achieve better network
generalization ability, whereby the available data are divided arbitrarily into training,
testing, and validation subsets. It has been shown that using the arbitrary sample selection
method to assign samples into the training subset commonly results in the inclusion of
samples from densely clustered regions and omission of samples from sparsely
represented regions. This paper presents a systematic approach using the self-organizing
map (SOM) clustering technique that identifies which samples and determines how many
samples should be included in each of the three subsets required by ANN for optimum
predictive performance efficiency. In addition, this paper presents the microgenetic
algorithms (mGA) that optimize ANN’s geometry and model parameters in terms of the
correlation coefficient (R). In the sensitivity analysis, mGA model parameters are found to
be least sensitive to the optimum R value, while ANN’s predictive performance is
significantly affected by (1) the poor selection of its geometry and model parameters and
(2) the arbitrary selection of samples for the three subsets of data used. It is demonstrated
that the mGA-ANN model using the SOM technique for data division outperforms the
mGA-ANN model using arbitrary data division. For the training subset, the model using
the SOM technique identifies samples that are representative of the region, requiring only
20% of the total samples, whereas the arbitrary sample selection method requires
50–90%. Because resampling on a regional scale is expensive and time consuming,
substantial cost and time could be saved if resampling could be done only on the 20%
representative drinking water wells.

Citation: Sahoo, G. B., and C. Ray (2008), Microgenetic algorithms and artificial neural networks to assess minimum data

requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale, Water Resour. Res., 44, W05414,

doi:10.1029/2007WR005875.

1. Introduction

[2] Groundwater constitutes 96% of the world’s total
available freshwater resources [Gleick, 1996]. Over 95%
of rural residents and 50% of the total population in the
United States rely on groundwater for their drinking water
[Solley et al., 1998; Barbash and Resek, 1999]. There is a
potential threat of groundwater contamination across the
nation, particularly from synthetic organic pesticides used
for controlling weeds, insects, and other organisms in
agricultural and nonagricultural settings [U.S. Environmental
Protection Agency, 1990; Kolpin et al., 1994; Barbash and
Resek, 1999; Barbash et al., 1999]. Not surprisingly, most of
the chemicals found in rural domestic wells are herbicides

because of the quantity used in agriculture [Weber et al.,
1997].
[3] A number of solute transport and nonpoint source

(leaching) models are available to predict the movement of
chemicals from the land surface to groundwater [e.g., Carsel
et al., 1984; U.S. Department of Agriculture Agricultural
Research Service, 1992; Knisel, 1993; Simunek et al., 1998].
For predictive calculations, these models require data on
physical descriptions of the porous media, suitable initial
and boundary conditions for flow and transport processes,
and reactions occurring between the solid matrix and water
phase chemicals in the soil. None of these models are able to
predict pesticide concentrations at a well site on a regional
scale for the following three reasons: (1) none includes the
detailed complex interactions between soils and pesticides,
heterogeneity of soil physical and chemical properties, and
uncertainty in estimating regional flow and transport param-
eters; (2) input parameters to these models are space- and
time-dependent, and at the same time they undergo complex
interactions; and (3) detailed soil characterization data on a
regional scale are not available. Prediction of a well’s
vulnerability to pesticide contamination using available
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information is often important from a public health perspec-
tive as well as from a regulatory perspective in order to
guide future monitoring efforts [Ray and Klindworth, 2000;
Sahoo et al., 2006]. Empirical models such as artificial
neural networks (ANNs) are capable of predicting pesticide/
pollutant occurrence in drinking water wells in complex
systems [e.g., Ray and Klindworth, 2000; Mishra et al.,
2004; Dixon, 2005; Sahoo et al., 2006; Wang et al., 2006].
Examples of the use of ANN for estimating pesticide fate
and transport in soils can be found in the works of
Lohninger [1994] and Yang et al. [2003]. Although ANN
is not intended as a substitute for conceptual process-based
models, it can be used as a viable alternative to assess
vulnerability of wells using readily available information
about well sites.
[4] The ANN model requires three subsets of data:

(1) training, (2) testing, and (3) validation. These subsets
must represent the same population for the ANN to achieve
adequate generalization ability [Masters, 1993; Tokar and
Johnson, 1999; ASCE Task Committee, 2000; Maier and
Dandy, 2000; Bowden et al., 2002]. They emphasized the
importance of the training subset because it represents
the whole data set, providing information that extends to
the edges of the modeling domain in all dimensions for the
optimization of ANN’s connection weights and model
parameters. If this condition is not fulfilled, the predictive
performance efficiency of an undertrained ANN would
suffer significantly. Flood and Kartam [1994] pointed out
that the number of training samples can significantly influ-
ence a network’s performance. Minns and Hall [1996,
p. 416] acknowledged that ANN is susceptible to becoming
‘‘. . . a prisoner of its training data.’’ To ensure that their
training subset included information on all dimensions of
the whole population, Ray and Klindworth [2000] made it
large enough to represent the full population. Mishra et al.
[2004], Sahoo and Ray [2006a], and Wang et al. [2006]
used approximately 85–90%, 63%, and 50%, respectively,
of the total available samples in their individual training
subsets. In all cases, the total samples were divided arbi-
trarily among the subsets, so even if the sample size was
large, there was no guarantee that the training subset would
include information on the entire population. Therefore,
Maier and Dandy [2000] proposed to divide the original
data set into the three subsets using a trial-and-error method
for achieving optimum ANN performance. However, if 100
samples are divided into training, testing, and validation
subsets consisting of 63, 19, and 18 samples, respectively,
there will be 100!/(63! � 19! � 18!) = 1.2 � 10125 ways of
arranging the samples. It would be practically impossible to
examine all the combinations.
[5] Radial basis function network (RBFN) and back

propagation neural network (BPNN) are commonly used
for predictive purposes in water resources systems [ASCE
Task Committee, 2000; Alp and Cigizoglu, 2007]. Thus, we
used these two types of ANNmodels in this study.Maier and
Dandy [2000], ASCE Task Committee [2000], Birikundavyi
et al. [2002], Shi et al. [2005], Sahoo and Ray [2006a], and
Alp and Cigizoglu [2007] stressed that ANN’s geometry and
modeling parameters have a significant influence on its
performance efficiency and should be optimized using a
trial-and-error procedure. Kingston et al. [2005] pointed out
that a significant component of prediction uncertainty can

be attributed to the uncertainty in parameters that govern the
model function. However, in cases where the solution space
is large enough, use of an optimization technique, such as a
microgenetic algorithm (mGA), saves time and computa-
tional effort. For example, if the solution space of the spread
and the optimum number of neurons in an RBFN hidden
layer (described in section 2.3) are in the range 1 to 80 and 1 to
90, respectively, then there will be 80 � 90 = 7200 ways of
arranging the spread and the number of neurons. The spread
is a real number and is searched up to an accuracy of 0.0001
in this study. Thus, the number of ways of arranging the
spread and the number of neurons increases significantly.
Searching for the optimal solution in this range using a trial-
and-error approach is cumbersome and time consuming.
[6] In this study, we used a data set originally collected

for the midcontinental United States during 1991 to 1994 to
estimate pesticide contamination in drinking water wells
derived from nonpoint sources, i.e., from pesticides applied
to agricultural and nonagricultural fields [Kolpin et al.,
1995]. Initial assessment of contamination requires one-
time sampling. Resampling is needed to ensure if the well is
free from contamination. Because sampling and resampling
of individual wells on a regional scale (throughout the
midcontinental United States) would be expensive and time
consuming, it is not practical to have a large data set for
using an ANN. Thus, identification of well sites vulnerable
to pesticide contamination allows us to limit monitoring
(i.e., resampling) to only those wells when preparing an
ANN training subset that is representative of the whole
region. Therefore, the objectives of this study are (1) to
identify the samples that should be included in a training
subset for optimum ANN performance, (2) to develop a
mGA-ANN model for searching optimal ANN’s model
parameters and geometry, (3) to evaluate the sensitivity of
the mGA’s model parameters on the basis of ANN predictive
efficiency, and (4) to develop guidelines for the preparation
of three subsets of data when the total available samples are
limited. The first objective is achieved using a data-cluster-
ing technique, the self-organizing map (SOM). The second
objective is to present a model that optimizes the ANN
predictive performance efficiency for a given training subset.
The third objective finds a set of optimized model parameters
for the mGA. Finally, the fourth objective addresses (1) which
samples and (2) what proportions of the total number of
samples should be included in the training, testing, and
validation subsets. Subroutines available in MATLAB ver-
sion 7.1 [The Mathworks Inc., 2005] were modified and used
to create RBFN, BPNN, and SOM models.

2. Background

2.1. Microgenetic Algorithms

[7] Genetic algorithms (GAs) are widely used for opti-
mization of water resources variables [e.g., Bowden et al.,
2002; Jain and Srinivasulu, 2004; Ines and Honda, 2005].
In this study, a binary (chromosomes are made of 0 and 1
digits, hence binary) mGA is applied to optimize the ANN’s
geometry and model parameters. For a simple GA, the
reader is referred to Goldberg [1989]. For detailed informa-
tion on mGA, the reader is referred to Krishnakumar [1989],
Carroll [1996], Abu-Lebdeh and Benekohal [1999], Ines
and Honda [2005], and D. L. Carroll (FORTRAN genetic
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algorithm (GA) driver version 1.7.0, 1999, available at
http://www.cuaerospace.com/carroll/ga.html).
[8] A mGA is similar to a standard GA. However,

important distinctions of the mGA are that it uses a small
population (i.e., m population), restarts when the character-
istics of the chromosomes are greater than or equal to 95%
similarity in a generation, and performs no mutation since
sufficient diversity is introduced after convergence of a m
population. Krishnakumar [1989] showed that a mGA
reaches the near-optimal region faster than a simple GA
for stationary and nonstationary function optimization.
Also, Carroll [1996] demonstrated that a mGA is able to
find a global maximum of the third-order deceptive function
described in Goldberg [1989] that a simple GA failed to
optimize. Abu-Lebdeh and Benekohal [1999] found that a
mGA performed better than a simple GA in terms of best
fitness value for the deceptive function. Thus, the modified
mGA (http://www.cuaerospace.com/carroll/ga.html) was
modified as necessary for optimization of ANN’s geometry
and model parameter for use in this study.

2.2. Self-Organizing Map

[9] The SOM technique is used to detect regularities and
correlations among the samples of a data set. A schematic of

SOM architecture is shown in Figure 1. SOM consists of the
Kohonen layer (i.e., the output layer), the neurons of which
are fully connected to each neuron of the input layer with a
connection weight but not to the neurons of the same layer.
The Kohonen [1982] learning algorithm, which belongs to
the class of unsupervised competitive learning algorithms, is
commonly used in training the SOM to group randomly
sequenced input patterns into clusters [Haykin, 1999; Lin
and Chen, 2006; Chen et al., 2006].
[10] The SOM input layer is an array of N neurons equal

to the number of samples in the data set. It can be denoted
by

X ¼ x1; x2; . . . ; xN½ �T ð1Þ

where superscript T denotes matrix transposition. The
output layer includes the output neurons uj, where j =
1, 2, . . ., M, which are typically organized in a two-
dimensional planar lattice. Each connecting line in Figure 1
denotes a value, referred to here as connection weight. The
weights from the input layer neuron to the output layer
neuron are wij, where i = 1, 2, . . ., N. The weight vector of

Figure 1. (a) Schematic of a two-layer Kohonen network. The input layer neurons, equal to the total
number of input samples N, are connected to each neuron of the Kohonen layer (i.e., output layer)
through a connection weight. Here wij represents the connection weight for ith input neuron to jth neuron
of the output layer. Each input sample consists of 15 input parameters, i.e., Pi,1 to Pi,15. (b) Final
configuration of the neighborhoods of Kohonen layer neurons, each including input samples of similar
characteristics. A single neuron can respond to several input samples of similar characteristics, thus
representing a cluster of input samples in its space. Only four clusters neighboring the winning neuron are
illustrated. The winning neuron is at the center, surrounded by neighborhoods of increasing diameter.
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each Kohonen neuron has the same dimension as the input
data set. The weight vector can be written as

Wj ¼ w1j;w2j; . . . ;wij; . . . ;wNj

� �T ð2Þ

[11] The SOM training process begins with all weights
initialized to small random real numbers. The SOM algo-
rithm computes a similarity (distance) measure between the
input vector X and the weight vector Wj of each neuron uj.
The Euclidean distance dj between Wj and X is frequently
used as the similarity measure [Lin and Chen, 2006; Chen et
al., 2006]. It is given as

dj ¼ X �Wj

�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

xi � wij

� �2
vuut ð3Þ

where k. . .k is the Euclidean distance. The neuron on the
Kohonen layer whose Euclidean distance (equation (3)) is
the smallest is the winner. The weights of this winning
neuron are adjusted in the direction of the input vector. Not
only the winning neuron but also the neurons in the
topological neighborhood of the winning neuron are
affected by the competition. The influence of competition
decays symmetrically from the winning neuron’s location.
The winning neuron is at the center of the topological
neighborhood. A typical choice of a topological neighbor-
hood function that satisfies these requirements is the
Gaussian function [Lin and Chen, 2006; Chen et al.,
2006; Lin and Wang, 2006; Lau et al., 2006]:

hj ¼ exp �
uj � uj*
�� ��2

2s2
s

 !
ð4Þ

where hj is the topological neighborhood, ss is the effective
width of the topological neighborhood, and u*j is the
winning neuron.
[12] During training, the weight vector Wj changes at

each iteration as

DWj ¼ hhj X �Wj

� �
ð5Þ

where h is the learning rate parameter of the algorithm.
Hence, the updating weight vector Wj (t + 1) is defined by
Kohonen [1982] as

Wj t þ 1ð Þ ¼ Wj tð Þ þ h tð Þhj tð Þ X �Wj tð Þ
� �

ð6Þ

where t is the iteration number, and h(t) and hj(t) are the
learning rate parameter and the topological neighborhood
function at t, respectively. Equation (6) is applied to all
neurons in the lattice that lie inside the topological
neighborhood of the winning neuron. During SOM
training, the weight vectors tend to move toward the
input pattern because of the neighborhood updating, that
is, the adjustment makes the weight vectors similar to the
input pattern.

[13] The synaptic weights in the network are updated in
two phases: (1) an ordering or self-organizing phase fol-
lowed by (2) a convergence phase [Haykin, 1999].
[14] 1. The ordering or self-organizing phase is the first

phase of the adaptive process in which the topological
ordering of the weight vectors takes place. This phase takes
1000 or more iterations of the SOM algorithm [Haykin,
1999]. In this phase, the following two criteria must be
considered in the choice of h(t) and hj(t) [Haykin, 1999]:
(1) h(t) starts at an initial value (say, 0.1), and then it
decreases gradually as t increases but remains above 0.01;
and (2) the neighborhood function hj(t) initially includes all
neurons in the network centered on the winning neuron, and
then it shrinks slowly with time. Specifically, during the
ordering phase, hj(t) is reduced to a small value of only a
couple of neighboring neurons around a winning neuron or
to the winning neuron itself. For the case of a two-
dimensional lattice, the initial size s0 of the neighborhood
function is set equal to the radius of the lattice.
[15] 2. The convergence phase of the adaptive process is

needed to fine tune the feature map, thereby providing an
accurate statistical quantification of the input space. As a
general rule, the number of iterations constituting the
convergence phase must be at least 500 times the number
of neurons in the output layer of the network [Haykin,
1999]. Thus, the convergence phase continues for thousands
or more iterations considering the following two conditions
[Haykin, 1999]: (1) For good statistical accuracy, the
learning parameter h(t) is maintained at a small value, on
the order of 0.01 during the convergence phase. However, it
is not allowed to decrease to zero. (2) The neighborhood
function hj contains only the nearest neighbors of a winning
neuron, which may eventually reduce to one or zero
neighboring neuron.
[16] In this study, the number of iterations for the order-

ing phase was set at 2000. The ordering phase and conver-
gence phase learning rates were set to 0.9 and 0.02,
respectively. The number of iterations involved in the
convergence phase was set at 500 times the number of
neurons in the SOM output layer.
[17] The concept of neighborhoods is illustrated in Figure

1b, which shows a winning neuron in a two-dimensional grid
top Kohonen layer. The winning neuron has neighborhoods
of increasing diameter surrounding it. The neighborhood of
diameter 1 includes the winning neuron and its immediate
neighbors. The neighborhood of diameter 2 includes the
diameter 1 neurons and their immediate neighbors.
[18] There is no theoretical principle for determining the

optimum size of the output layer; hence, the output layer is
kept large enough to ensure that the maximum number of
clusters is formed from the input data set. Equation (4)
indicates that the number of clusters depend on both the
input data set pattern and the SOM size (i.e., number of
neurons in the Kohonen layer).

2.3. Radial Basis Function Neural Network

[19] Details of RBFNs can be found in work by Haykin
[1999], Principe et al. [1999], Shi et al. [2005], and Alp and
Cigizoglu [2007]. This paper presents only the RBFN
training process, the network geometry, processing neurons
functions, and model parameters used in this study. An
RBFN starts with a minimal network of one RBF neuron.
The network is trained with the RBF neuron, and a mean
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square error (MSE) is estimated for the training subset.
MSE is the average of sum square error between ANN-
predicted output and measured target values of the training
subset. If the MSE is greater than the network’s threshold
MSE, which is set low to prevent premature cessation of the
training process (10�20 in this study), another RBF neuron
is added to the hidden layer. The MSE of the network is
changed for the new geometry (i.e., a new set of weight
matrices). The RBFN training continues until one of the
following conditions occurs:
[20] 1. The MSE is less than or equal to the threshold

MSE.
[21] 2. The total number of RBFN neurons is equal to the

maximum number of RBF neurons. Since each RBF neuron
must respond to at least one input sample, the maximum
number of neurons cannot exceed the number of input
samples [Haykin, 1999; Principe et al., 1999]. Because
the optimal number of RBF neurons is not known a priori
for a specific problem, it is determined using the mGA.
[22] 3. The MSE starts to exceed the MSE of the

validation subset. The modified RBFN model estimates
the MSE of the validation subset presented to the network.
The MSE should remain below the MSE of the validation
subset to prevent overtraining.
[23] The most popular and widely used RBF is the

Gaussian basis function [Kisi, 2004; Shi et al., 2005;
Manrique et al., 2006]. The spread (i.e., the radius of
influence, s) of an RBF needs to be precisely fixed for
optimum RBFN performance [Shi et al., 2005; Alp and
Cigizoglu, 2007] because it determines the radius of influ-
ence of the RBF neuron to which more than one input
sample responds. The spread of the RBF neuron should be
large so that the active input regions overlap enough for
several neurons to always have fairly large outputs at any
given moment. This makes the network function smoother
and results in better generalization than a network having a
small spread. However, the spread should not be so large
that each input neuron effectively responds to one neuron of
the hidden layer [Haykin, 1999; Principe et al., 1999]. The
optimum spread of RBF neurons is determined using mGA.

2.4. Back Propagation Neural Network

[24] The details of BPNNs can be found in work by
Hagan et al. [1996] and Haykin [1999]. This paper only
explains the geometry, processing neurons functions, and
model parameters used in the network employed.
[25] Bipolar sigmoid activation functions (between �1

and 1), such as the hyperbolic tangent (see Appendix A for
the equation), are most commonly used for neurons in
hidden layers and produce better network performance in
terms of convergence and central processing time than other
activation functions [Ray and Klindworth, 2000; Maier and
Dandy, 2000]. However, the output layer is normally
provided with a linear activation function so that the output
range is between �1 and 1. This avoids remapping of the
outputs. Therefore, the hyperbolic tangent sigmoid and the
linear activation functions (see Appendix A for the equation)
were used for neurons of the hidden and output layers,
respectively. The Levenberg-Marquardt (LM) training algo-
rithm (see Appendix A) was selected because (1) it has the
faster convergence ability than the conventional gradient
descent algorithms [Principe et al., 1999; El-Bakyr, 2003;
Kisi, 2004; Cigizoglu and Kisi, 2005; Alp and Cigizoglu,

2007], (2) it does not require a learning rate and momentum
factor like the gradient descent algorithms [Hagan et al.,
1996; Principe et al., 1999; Alp and Cigizoglu, 2007], and
(3) in many cases it converges when other back propagation
algorithms fail to converge [Hagan and Menhaj, 1994].
Flood and Kartam [1994], Maier and Dandy [1998, 2000],
and Sahoo and Ray [2006a] reported that the use of more
than one hidden layer provides greater flexibility and
enables the approximation of complex functions with fewer
neurons. Therefore, a two-hidden-layer BPNN is considered
for this study. Maier and Dandy [1998, 2000] showed that
optimal ANN predictive performance efficiency depends on
the ratio of first-hidden-layer neurons (H1) to second-hidden-
layer neurons (H2). Conversely, the predictive performance
efficiency of a network is undermined by either overtraining
(i.e., the number of epochs is higher than optimum, E0) or
undertraining (i.e., the number of epochs is lower than
optimum, E0) [Maier and Dandy, 2000; Alp and Cigizoglu,
2007]. Thus, the network geometry (i.e., H1 and H2) and
epoch size (E0) need to be optimized using mGA.
[26] In addition to BPNN geometry, BPNN efficiency is

severely affected by (1) the selection of initial weights and
(2) the training cessation criteria of the network. Little
research has been conducted into finding good initial
weights [Principe et al., 1999; Haykin, 1999]. In general,
the initial weight is implemented with a random number
generator that provides a random value within the range of
�a (lower boundary) and a (upper boundary) [Principe et
al., 1999; Haykin, 1999; Maier and Dandy, 2000], where a
is a real number. Maier and Dandy [2000] emphasized that
too large or too small an a value results in the cessation of
training at suboptimal levels and the value of a is problem
specific [Alp and Cigizoglu, 2007]. In this study, the initial
weights randomly generated between �1 and 1 produced
consistent results. Nevertheless, in order to overcome a set
of poor initial weights, the BPNN is trained several times
(50 times in this study) with different sets of initial weights.
The set having the greatest ANN predictive performance
efficiency in terms of R is kept for analysis. To prevent
overfitting of connecting weights, the BPNN training stops
when any of the following conditions occurs:
[27] 1. The maximum number of epochs (iterations) is

reached.
[28] 2. The network’s training MSE falls below or meets

the threshold MSE.
[29] 3. The performance gradient (i.e.,DMSE =MSE(t)�

MSE(t� 1)) falls below the minimum gradient (10�10 in this
study). If the performance gradient is below the minimum
gradient, practically, network training does not improve the
weight matrix. So, training is terminated and the network is
restarted with a new set of weight matrices.
[30] 4. The MSE remains above the validation perform-

ances in terms of MSE continuously for a number of
iterations. In a preliminary run, the MSE was found to be
fluctuating around the validation MSE for a few iterations
(5 to 15) before falling below the validation MSE. There-
fore, to avoid undertraining, the maximum number of
iterations of which the MSE can remain above the valida-
tion MSE was set at 50 (determined in section 5.3 through
sensitivity analysis).
[31] 5. The scalar number, z, used in the LM algorithms

(see Appendix A) exceeds the maximum z set in the model
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(1010 in this study). When z is large, LM becomes the
gradient descent with a small step size; contrarily, when z
is small, LM is the same as the Gauss-Newton method.
Since the Gauss-Newton method converges faster and
more accurately toward the threshold MSE than does the
gradient descent method, the goal is to shift toward that
method as quickly as possible. Thus, z is decreased after
each successful step (reduction in performance function)
and is increased only when a tentative step increases the
performance function. In this way, the MSE diminishes in
each iteration. In this study, the initial z was set to 0.001,

and it was decreased or increased by a factor of 10 in each
iteration (t).

3. Data Used

[32] The data used in this study are the same as used in
Mishra et al. [2004]. A summary of the data used is
provided in Table 1. The input data, such as well depth,
depth to aquifer material, and distance from well to crop-
land, do not hold any linear relationship between input
parameters and observed pesticide concentration; rather, the
data are recognized in clusters. There is a general trend of

Table 1. Actual, Range-Specific, and Descriptive Input Parameters for the ANN Model

Item Parameter Type of Data Collected

Actual/Range-Specific/Descriptive
Data Arranged in Recognized
Clusters for ANN Modeling Model Value

1 Well depth Actual depth, m <7.6 4
7.6–15.2 3
>15.2 2

Unknown 1
2 Depth to aquifer material Actual depth, m �1.5 4

>1.5–6.1 3
>6.1–15.2 2

>15.2 1
3 Age of well Actual year of excavation Year � 1936 4

1936 < Year � 1956 3
1956 < Year � 1976 2

<1976 1
4 Distance to cropland Actual distance or range-specific data, m <6.1 4

6.1–15.2 3
15.2–30.5 2
>30.5 1

5 Distance to barnyard Actual distance or range-specific data, m <15.2 4
15.2–30.5 3
30.5–61 2
>61 1

6 Distance to septic systems Actual distance or range-specific data, m <15.2 4
15.2–30.5 3
30.5–61 2
>61 1

7 Flush windows (time between pesticide
application and first significant

storm over 25 mm d�1)

Actual days or range-specific data, d <3 4
3–10 3
10–20 2
>20 1

8 Distance to streams or other
contaminant sources

Rang-specific data, m �30.5 2
>30.5 1

9 Well-site topography Descriptive data Level land 4
Hill top 3

Depression 2
Hill slope 1

10 Season of sample collection Descriptive data Fall 4
Winter 3
Spring 2
Summer 1

11 Presence of irrigation well Descriptive data Yes 2
No 1

12 Spill or disposal site Descriptive data Yes 2
No 1

13 On-site pesticide storage Descriptive data Yes 2
No 1

14 Presence of animals Descriptive data Yes 2
No 1

15 Aquifer class Descriptive data Sand/gravel 2
bedrock 1

16 Pesticide leaching Actual concentration (mg/L) Real index value
(in the range 0.1 to 10.000)

Index value
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shallower wells (e.g., <7.6 m) being more vulnerable to
pesticide contamination than deeper wells (e.g., >15.2 m).
Such heterogeneity of the data set can be classified using
given patterns by recognizing the cluster of responses
(observed pesticide occurrence) to perturbing inputs. A
generic procedure to utilize a set of categorical input
parameters for predictive purposes can be found in work
by Ray and Klindworth [2000], Brodnjak-Vonèina et al.
[2002], Mishra et al. [2004], and Sahoo et al. [2005, 2006].
For example, shallower wells are more prone to higher
pesticide contamination and vice versa. Thus a numeric
value for the actual input value of a well is assigned
depending on the lower and upper bounds of observed
clusters (e.g., for four clusters of well depths: 4 for shallow
well, 1 for deeper well, and 2 and 3 for depths in between,
see Table 1). Using a similar approach, the measured values
of all input parameters are categorized into different classes,
as shown in Table 1. There are 15 types of input parameters
in this study, all of which are primarily of three types in
terms of data collected: (1) exact (parameters 1 to 3),
(2) exact or range-specific (parameters 4 to 8), and
(3) descriptive (parameters 9 to 15). The pesticide concen-
tration index is used as the model target value.

4. Methodology

4.1. Data Division Using Random Selection Method

[33] The bootstrap technique [Efron and Tibshirani,
1998; Schaap and Leij, 1998; Chrysikopoulos et al.,
2002] was used to randomly choose samples from the
original data set containing N number of samples for the
training, testing, and validation subsets. In the algorithm, an
array of zeros equal to N is generated. A random integer a is
generated by taking the integer part of the real number
generated by a random real number between 0 and 1 and
multiplied by N. The zero corresponding to the ath spot in
the matrix is replaced by adding 1. The procedure is carried
out N times. Since the value of the ath position can be
replaced several times, each sample has a chance of being
replaced once or multiple times for a particular data set. The
matrix containing the zeros is then placed alongside the
original data set. Samples corresponding to zeros are
selected for the training subset, while the other samples
are randomly divided into the testing and validation subsets.
Since, the ath position can be selected more than once for
replacement, the ath value is equal to the number of
selections/replacements. Thus, random selection for the
validation and testing subsets is carried out on the basis
of different numbers (e.g., 2 for testing and greater than 2
for validation). Penalty constraints are added to ensure that
the maximum and minimum values are in the training
subset.

4.2. Data Division Using SOM Clustering

[34] SOM is trained to cluster the whole data set. Two
samples from each cluster are selected, one for the training
subset and another for the validation subset, while other
samples are placed in the testing subset. In the instance of a
cluster containing only one record, the record is placed in
the training subset. However, if a cluster contains two
records, one record is placed in the training subset and the
other in the validation subset.

4.3. Estimation of ANN Performance Efficiency

[35] The performance efficiency of the network is esti-
mated by comparing the measured and ANN-estimated
values. The ANN performance measures used in this study
are the correlation coefficient (R), mean error (ME), root
mean square error (RMSE), and MSE. The mathematical
expressions of R, ME, RMSE, and MSE can be found in
work by Jain and Srinivasulu [2004] and Sahoo and Ray
[2006a]. Briefly, the ANN predictions are optimum if R,
ME, RMSE, and MSE are found to be close to 1, 0, 0, and
0, respectively. In the present study, MSE is only used for
the estimation of network training performance, whereas R,
ME, and RMSE are used to measure the predictive perfor-
mance of ANN on the testing subset, which is independent
of ANN network training and validation.

4.4. Selection of mGA Model Parameters

[36] Krishnakumar [1989], Carroll [1996], and Carroll
(1999, available at http://www.cuaerospace.com/carroll/
ga.html) suggested using a population size of 5 for mGA
model. Abu-Lebdeh and Benekohal [1999] reported that
mGA performs best for a population size around or above
the square root of the string length. The string length of a
parameter is estimated using the equation y = (XXm,max �
XXm,min)/(2

� � 1) presented by Goldberg [1989, p. 82]. The
symbol y represents the accuracy of the search parameter,
XXm,max and XXm,min are the maximum and the minimum
values of mth parameter, respectively; and superscript � is
the bit size of the mth parameter. We need to optimize three
parameters (i.e., H1, H2, and E0) for BPNN; so, the square
root of the string length (e.g., 27 bits for three parameters at
9 bits per parameter) is around 5. Note that each bit
represents either 0 or 1 for the binary mGA. We used a
population size equal to 10. Abu-Lebdeh and Benekohal
[1999] reported using a binary tournament selection, 0.5
uniform probability crossover rate (Pcross), and no muta-
tion. Carroll (1999, http://www.cuaerospace.com/carroll/
ga.html) suggested using binary tournament selection with
shuffling and a uniform crossover rate of 0.5, whereas
Krishnakumar [1989] recommended using a crossover rate
of 1.0 and a mutation rate equal to 0. Ines and Honda
[2005] reported using binary tournament selection with
shuffling, a uniform Pcross equal to 0.5, a probability of
creep mutation (Pcreep) equal to 0.1, and 150 generations.
However, Wardlaw and Sharif [1999] pointed out that the
value of uniform Pcross is problem-specific. Therefore, we
used binary tournament selection with shuffling and per-
formed a sensitivity analysis for uniform Pcross, Pcreep,
and number of generations for evolution of optimum R.

4.5. mGA-ANN Model Development

[37] The primary objective of mGA-ANN model devel-
opment is to optimize the ANN’s geometry and model
parameters so that the differences between ANN-estimated
output and measured target values are minimized. Since
only an optimized trained network can predict output values
close to measured targets and R value increases as the
differences between measured and ANN-estimated values
decreases, R value estimated on the testing subset is used as
the fitness value in the optimization processes using mGA.
The procedure for searching an optimal network’s geometry
and model parameter(s) using mGA involves interexchang-
ing the information (solution set of mGA to ANN and ANN-

W05414 SAHOO AND RAY: MICROGENETIC ALGORITHMS

7 of 20

W05414



estimated R value to mGA) between mGA and ANN (see
Figure 2).
[38] Values of the lower and upper bounds of each ANN

model parameters and geometry are fixed according to the
number of samples included in the training subset. Thus, the
data preparation techniques are the outermost loop in the
flowchart. The mGA model parameters are assigned accord-
ing to the ANN model to be optimized and subsets of data
prepared using either the SOM technique or the bootstrap
technique. The mGA generates one set of solutions (i.e., s
and N0 for RBFN and H1, H2, and E0 for BPNN). The
solution set is passed on to the ANN. Using the solution set
from the mGA, an ANN geometry is created and the ANN is
trained using the training and validation subsets prepared
using either the SOM clustering or the bootstrap technique.
The performance efficiency (R) of the trained network is
estimated using the testing subset that is unused during the
training processes, and the R value is passed on to mGA to
generate another set of solutions for the ANN that is
supposed to produce better R. Thus, the interexchanging
of information between mGA and ANN, referred to here as
the mGA-ANN model, quickly eliminates weaker solutions
and upholds/produces a solution set for the ANN that
produces optimum R. The procedure continues until the
last generation and population number for one set (consist-

ing of three subsets) of data. The optimization of ANN
geometry and modeling parameters for another set of data
are performed as described above. The procedure continues
for all sets of data prepared using either the SOM or the
bootstrap technique. The three subsets, prepared from the
original data set, producing the highest R value is
considered to be having similar populations and the
corresponding ANN model is the optimum. Thus, the
objective function of the mGA-ANN combination is to
maximize ANN-estimated R on the basis of the testing
subset. Mathematically,

max R ¼

PN
i¼1

mipiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

m2
i

s ffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

p2i

s ð7Þ

where mi = Mi � M , pi = Pi � P, and Mi and Pi are the
measured and predicted values for i = 1, . . ., N, and M and
P are the mean values of the measured and predicted data
sets, respectively.
[39] To prevent the generation of unrealistic solution sets

by mGA, a few preliminary runs were made to determine
realistic lower and upper boundaries of each model

Figure 2. Flowchart for searching the three subsets of data having similar populations and for
optimization of the ANN’s geometry and modeling parameters.
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parameter for ANN. Thus, equation (7) is subjected to the
following constraints:

For RBFN

smin � s � smax

Nmin � N0 � Nmax

8<
: ð8Þ

For BPNN

H1;min � H1 � H1;max

H2;min � H2 � H2;max

Emin � E0 � Emax

8>>>><
>>>>:

ð9Þ

where smin and smax are the minimum and the maximum
spreads of an RBFN, respectively; Nmin and Nmax are the
minimum and the maximum number of RBF neurons in the
hidden layer; H1,min, H2,min, and Emin are the minimum
neurons of the first hidden layer, the minimum neurons of
the second hidden layer, and the minimum epoch number of
a BPNN, respectively; and H1,max, H2,max, and Emax are the
maximum neurons of the first hidden layer, the maximum
neurons of the second hidden layer, and the maximum
epoch number of a BPNN, respectively.
[40] The data set consists of 15 input parameters and 1

output parameter (i.e., pesticide concentration index).
Therefore, H1,max, H2,max, and Emax are set to 25, 25, and
1000, respectively. The present study sets H1,min, H2,min,
and Emin to 1, 1, and 5, respectively. Because smax is
problem-specific, it is set to a higher value (80 in this
study). The smin is set to 0.1. Since each RBF neuron must
respond to at least one input sample, Nmax cannot exceed the
number of input samples [Haykin, 1999; Principe et al.,
1999]. Thus, Nmin and Nmax are set to 1 and the number of
input samples of the training subset, respectively. The
model parameters s, N0, H1, H2, and E0 are optimized
using a mGA.

4.6. Data Preprocessing

[41] Repetitive samples (i.e., two or more samples each
having identical input values for a different target value)
undermine ANN training [ASCE Task Committee, 2000].
Because of the categorical inputs (e.g., 1 to 4 instead of the
actual value, see Table 1) for all 15 input parameters and
pesticide concentration index as the target, there are few
repetitive samples in the data set. All repetitive samples are

replaced by one input sample and the average target value
(i.e., the average pesticide concentration index) of all similar
samples, thus reducing the sample size from 631 to 572.
[42] The data set is scaled to the range of 0 to 1.

According to Bowden et al. [2002], scaling to this range
has two advantages: (1) inputs with much larger values are
prevented from dominating the ANN training process, and
(2) penalty constraints can be included more easily (i.e., the
maximum and minimum values can be identified by the
mGA as 1 s and 0 s). The training, testing, and validation
subsets are scaled to the range of 0 to 1 using the equation
xni = (xi � xmin)/(xmax � xmin), where xi is the input value, xni
is the scaled input value of the real-world input value xi,
and xmax and xmin are the respective maximum and
minimum values of the unscaled data set. The network-
estimated output values, which are in the range of 0 to
1, are converted to real-world values using the equation
xi = xni (xmax � xmin) + xmin.

5. Results and Discussion

5.1. Data Clustering Using SOM

[43] A SOM of 100 neurons (10 � 10 grid) was trained
using 50,000 iterations. SOM training assigned each input
sample a number (1 to total Kohonen neurons, e.g., 100) on
the basis of distance from the winning neuron. If nine
samples clustered in one SOM neuron, then their assigned
numbers or distances from the winning number would be
the same. In other words, samples having the same number
are considered to have similar characteristics of influence on
pesticide occurrence. All 572 samples clustered in 100
Kohonen neurons are presented in Table 2a. Table 2a shows
that only 91 clusters were formed for 572 samples and none
of the samples was grouped into 9 Kohonen neurons. The
number of samples grouped in a cluster is represented by
the number indicated in that particular Kohonen neuron in
the lattice (Table 2a).
[44] To examine the number of clusters for a number of

SOM neurons other than 100, the SOM of 64 neurons
(8 � 8 grid) and 144 neurons (12 � 12 grid) are trained
using 32000 and 72000 iterations, respectively. All 572
samples were grouped into 58 clusters in the case of the
64-neuron SOM (Table 2b) and into 132 clusters in the case
of the 144-neuron SOM (Table 2c). No sample was grouped
into 6 and 12 Kohonen neurons of the 64-neuron SOM and
the 144-neuron SOM, respectively. The reason for obtaining
a different cluster number for each of the three different
SOMs is that samples are different from each other on the

Table 2a. Total 572 Samples Divided Into 91 Clusters in

100-Neuron (10 � 10 Grid) Square SOM Networksa

A B C D E F G H I J

j 9 8 9 13 4 11 3 7 6 9
i 3 13 1 3 1 13 8 6 4 11
h 12 6 5 5 4 9 6 3 4 7
g 14 5 5 4 1 15 1 11 0 5
f 0 0 0 3 4 0 2 5 3 6
e 10 7 0 8 4 7 2 0 0 7
d 7 3 13 1 2 5 4 2 3 5
c 10 7 7 4 6 4 8 10 0 4
b 3 7 6 6 9 1 7 3 3 7
a 12 10 12 6 8 10 3 10 4 8

aThe combination of lowercase and capital letters indicates the position
of the Kohonen neuron of each square SOM network.

Table 2b. Total 572 Samples Divided Into 58 Clusters in

64-Neuron (8 � 8 Grid) Square SOM Networksa

A B C D E F G H

h 20 4 12 4 11 16 0 12
g 16 9 7 6 3 0 12 5
f 9 3 15 8 12 0 2 5
e 9 3 13 3 4 13 3 10
d 22 6 16 0 8 9 2 11
c 11 10 0 15 8 12 15 7
b 6 4 16 0 11 13 7 10
a 13 5 0 21 11 15 7 32

aThe combination of lowercase and capital letters indicates the position
of the Kohonen neuron of each square SOM network.
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basis of their effects (i.e., characteristics) on pesticide
concentration. Samples having similar effects on the occur-
rence of pesticide concentration are clustered in one neuron.
Thus, a large SOM produces more clusters, narrowing down
the differences in characteristics of samples in a cluster (see
equation (4)) and vice versa. The training, testing, and
validation subsets are prepared from SOM-produced clus-
ters, as described in section 4.2. The training subset is
checked to ensure that samples having the maximum and
minimum pesticide concentrations are present as penalty
constraints. The numbers of samples in the training data sets
become 58, 92, and 132, for the 64-, 100-, and 144-neuron
SOMs, respectively. The numbers of samples in the valida-
tion data sets become 57, 85, and 116 for the 64-, 100-, and
144-neuron SOMs, respectively. Thus, out of 572 samples,
numbers of samples left for the testing data sets are 457,
394, and 324 samples for the 64-, 100-, and 144-neuron
SOMs, respectively.

5.2. Sensitivity Analysis of mGA Parameters

[45] The sensitivity of Pcross and Pcreep values is
demonstrated in Figure 3 using mGA-RBFN and 92 training

samples of 100-neuron SOM. In total, four cases (see
Figure 3) using four combinations of Pcross and Pcreep
values were examined. Although the R value of mGA-
RBFN was found to be optimum for Pcross and Pcreep
equal to 0.5 and 0.0 (case 2 in Figure 3), respectively, the
difference between the optimum R of case 2 and that of case
3 is only 0.001. The Pcross and Pcreep values of case 2
were found to be consistent with those of Carroll (1999,
http://www.cuaerospace.com/carroll/ga.html), Abu-Lebdeh
and Benekohal [1999], and Ines and Honda [2005] and
are used in the rest of the analysis.

5.3. Sensitivity Analysis of ANN Geometry and Model
Parameters

[46] Using subsets prepared from 10 � 10 grid SOM
clusters, the mGA-ANN model generates a set of solutions
(i.e., 1000 combinations of s and N0 in 100 generations) for
RBFN and another set of solutions (i.e., 500 combinations
of H1, H2 and E0 in 50 generations) for BPNN. All
combinations were plotted against their respective ANN R
values in Figure 4. Figure 4a shows RBFN-estimated R
values for respective combinations of s and N0. For clarity,
the E0 parameter generated alongside H1 and H2 for BPNN
is not shown in Figure 4b. The wire mesh surface created by
linear interpolation of R values shows the variation of R
values for the combinations of ANN parameters. The
distinguishing hill top and valley portions show high and
low R values for the combination of corresponding ANN
parameters. Figure 4 illustrates that the ANN-estimated R
value is sensitive to ANN’s geometry and model parameters
and that the optimum combinations lie in a narrow range.
[47] Training should be stopped at the iteration where the

MSE of the training subset is more than the MSE of the
validation subset. The idea of stopping the training process
is justified because the ANN begins to overtrain after that
point. However, it is seen that the MSE of the training
subset falls below the MSE of the validation subset after a
few iterations. Thus, setting a small value (e.g., 5) for the
maximum number of failed iterations allowed (MFA) may
undertrain the network and vice versa. In such cases,

Table 2c. Total 572 Samples Divided Into 132 Clusters in 144-

Neuron (12 � 12 Grid) Square SOM Networksa

A B C D E F G H I J K L

l 14 4 10 0 4 2 5 3 1 3 1 4
k 9 2 3 5 1 2 0 4 0 2 3 8
j 13 3 2 0 2 4 1 2 6 5 4 5
i 6 2 3 6 3 2 5 1 1 2 1 10
h 6 4 7 1 6 0 9 2 2 4 5 4
g 5 6 2 7 3 0 3 3 5 5 7 5
f 6 3 1 0 2 1 4 5 6 2 3 1
e 3 7 3 5 8 1 4 6 3 7 2 6
d 5 2 4 4 6 3 3 8 3 3 2 5
c 5 4 3 3 4 0 3 11 3 7 0 7
b 4 2 0 3 4 1 0 5 5 0 3 1
a 2 6 3 10 5 10 0 9 2 16 4 10

aThe combination of lowercase and capital letters indicates the position
of the Kohonen neuron of each square SOM network.

Figure 3. Effects of Pcross and Pcreep on the evolution of optimum RBFN predictive performance
efficiency (R) using the 10 � 10 grid SOM data set. Lines for case 1 and case 3 overlap.
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different possible scenarios for setting MFA are examined.
In all of the above mentioned cases, the MFA is set at 15 for
the RBFN. Therefore, RBFN is examined for four cases, as
shown in Figure 5. Although the evolution of highest R
values (Figure 5a) of all four cases (MFA = 0, 5, 15, and 50)
considered here are near to each other for the 92-sample
training subset, the highest R value for the case of 58-
sample training subset is obtained at MFA equal to 15.
Therefore, for the rest of the study, the MFAvalue was fixed
at 15 for the RBFN.

[48] The sensitivity of MFA for the BPNN is shown in
Figure 6. The R values for all four cases examined here
finally converge between 20 and 30 generations. However,
the evolution of optimum R value is achieved earlier (i.e.,
on 6th generation) for the case of MFA = 50 than for other
cases (i.e., 23rd, 30th, and 8th generation for cases where
MFA equals to 5, 15, and 100, respectively). The optimum
R values for all cases are almost the same (R = 0.9968,
0.9966, 0.9967, and 0.9964 for MFA equal to 5, 15, 50, and
100, respectively). Figure 6 shows that the optimum value
for some cases may not be achieved in the 30 generations
for MFA equal to 5 or 15. Setting a value greater than 30 for
the generation number in the mGA-BPNN model takes more
computer CPU time to complete a model run. Note that a
Pentium 4, 1.8 GHz, and 512 MB RAM computer takes
nearly 24 h to complete one run consisting of 30 gener-
ations. Thus, the MFA is set at 50 for the BPNN.

5.4. Sensitivity Analysis Using Different SOM Clusters

[49] Three sets of training, validation, and testing subsets
prepared from clusters of the three SOM sizes are used to
examine effects of the number samples in the training subset
on RBFN and BPNN prediction performance efficiency in
terms of R. Figure 7 presents the evolution of optimum R
using the mGA-RBFN. Figure 7 indicates that the optimum
R value increases as the number of samples in the training
subset increases. Similarly, Figure 8 shows that the R values
of mGA-BPNN for 92 and 132 training samples for 50
generations vary within a close range, while the R values of
mGA-BPNN for 58 samples are lower than that of the other
two training subsets. Note that increasing the maximum
number of generations (e.g., to 150) for the mGA-RBFN
does not improve the R value. On the basis of Figures 7 and
8, the maximum number of generations for mGA-RBFN and
mGA-BPNN are set to 100 and 30, respectively.
[50] In Figures 7 and 8, the R values are low at the

beginning because the ANN’s geometry and model param-
eters are not optimum. As the mGA generations proceed, the
solution set (i.e., the combination of ANN’s geometry and
model parameters) tends toward optimum. The fluctuations
of R values for the BPNN result in because of different
weight matrices of different neural networks. Note that
initial weight matrices generated using a random number
generator and mGA-generated epoch number for BPNN
training are different for each case (i.e., solution set).
Nevertheless, the standard deviation (SD) of R values for
50 generations is less than 0.3% (i.e., SD for 8 � 8, 10 �
10, and 12 � 12 grid SOM are 0.0024, 0.0012, and 0.0006,
respectively). This indicates that the fluctuations in R values
are minimized for the training subset containing a higher
number of samples and vice versa. This infers that a training
subset containing a larger number of samples provides more
detailed information to the network.

5.5. Effects of Data Sets Prepared Using SOM and
Random Selection Method on R

[51] Using the bootstrap technique for randomly assign-
ing sample into the three subsets, it is found that the total
samples in the training, validation, and testing subsets are
264, 97, and 211, respectively. To examine the effects of the
number of samples in the training subset on the ANN-
estimated R value, the number of training samples is
reduced from 264 to 58, 92, and 132 by taking off the

Figure 4. Linearly interpolated topography of R values of
(a) 1000 sets of N0 and s generated by mGA in 100
generations for RBFN and (b) 500 sets of H1 and H2

generated by mGA in 50 generations for BPNN. The epoch
numbers (E0) generated for BPNN, along with values of H1

and H2, are not shown in Figure 4b for clarity. Solid
diamonds represent the actual ANN-estimated R values.
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tail-end samples. The deleted tail-end samples are added
into the testing subset. The purpose of preparing training
subset size equal to that of three SOMs is to compare the
respective ANN-estimated R values.
[52] The R values produced by the mGA-RBFN model

using the SOM-clustered subsets and random selection
subsets are presented in Figure 9. The R values of the
mGA-RBFN model using SOM-clustered 92 and 132 sam-
ples in the training subsets (Figure 9a) are higher than those
of the mGA-RBFN model using randomly selected data sets
(Figure 9b). The low R values of the mGA-RBFN model
using 58 SOM-clustered samples in the training subset can
be attributed to a fewer number of training samples avail-
able for the RBFN to achieve adequate generalization
ability.
[53] Figure 7 shows that the mGA-RBFN produced a

higher R value for the training subset with a larger number
of samples. Therefore, a similar trend was expected for the
training subsets prepared using random sample selection
method in Figure 9b. However, the R value (0.9692) was
found to be highest for the training subset containing 132
samples. For the other three cases, a general trend was
found, that is, a training subset consisting of a larger number

of samples evolves with a higher R value. This discrepancy
clearly indicates that the three subsets are not of the same
population or properties. Particularly, the training and
validation subsets include samples mostly from densely
clustered regions. Thus, samples from clusters having one
or two samples are underrepresented in the network training.

5.6. Effects of Selecting More Than One Sample From
Each Cluster for Subsets on R

[54] Figures 9 and 10 indicate that using a larger number
of clustered samples in the training subset increases the
predictive performance efficiency of ANN. This advocates
increasing the number of Kohonen neurons in the SOM. As
seen in Tables 2a, 2b, and 2c, if the number of Kohonen
neurons (i.e., clusters) increases, the number of samples
clustering in each Kohonen neuron decreases. Kohonen
neurons having only zero-, one-, and two-input samples in
the 8 � 8, 10 � 10, and 12 � 12 grid SOMs are 6, 0, and 2;
9, 6, and 4; and 12, 14, and 21; respectively. Therefore,
increasing the number of SOM neurons generates more
clusters each having one or two samples of unique
characteristics resulting in greater discrepancy among
training, testing, and validation subsets. On the other
hand, decreasing the number of Kohonen neurons (e.g.,

Figure 5. Effects of maximum number of iterations allowed where the MSE of the validation subset
continuously remains above the MSE of the training subset (i.e., MFA is maximum failed iterations
allowed) on the evolution of RBFN predictive performance efficiency (R) using (a) 92 training samples of
a 10 � 10 grid SOM and (b) 58 training samples of an 8 � 8 grid SOM.
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8 � 8 grid SOM) means generating a small number of
clusters each having samples of wider characteristics
because ss in equation (4) is a fixed value. Thus, using
an extremely large or small SOM is not useful for finding an
optimal training subset; rather, a tradeoff is more useful.
There is no straightforward solution for finding a suitably
sized SOM. Thus, the case of inclusion of more than one
sample per cluster in the training and validation subsets is
examined below.
[55] The initial training and validation subsets include the

first and second samples of each cluster, respectively. In the

first increment, the third and fourth samples are placed in
the training and validation subsets, respectively, and in the
second increment, the fifth and sixth samples are placed in
the training and validation subsets, respectively. If the
number of samples available in a cluster is less than the
required amounts for the training and validation subsets,
first preference is given to the training subset. The sample
selection process is continued for all clusters because
selecting samples from only a few clusters will result in
information discrepancies in subsets (particularly in the
training and validation subsets). This generates two

Figure 6. Effects of maximum number of iterations allowed where the MSE of the validation subset
continuously remains above the MSE of the training subset (i.e., MFA is maximum failed iterations
allowed) on the evolution of BPNN predictive performance efficiency (R) using 92 training samples of a
10 � 10 grid SOM.

Figure 7. Effects of the number of samples included in the
training subset (i.e., number of SOM clusters) on the
evolution of optimum RBFN predictive performance
efficiency (R).

Figure 8. Effects of the number of samples included in the
training subset (i.e., number of SOM cluster) on the
evolution of optimum BPNN predictive performance
efficiency (R).
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additional data sets for the training and validation subsets.
The ANN predictive performance efficiency for all data sets
is examined using the mGA-ANN model.
[56] Comparing the results in Figure 9 with those in

Figure 11 for the mGA-RBFN, it is clear that the training
subset with two samples per cluster of 8 � 8 grid SOM
outperforms all other data sets (also see Table 3). Similar
results are obtained for the mGA-BPNN when comparing
the results in Figure 10 with those in Figure 12. The
R values of both the mGA-RBFN and mGA-BPNN for
the training subset including three samples per cluster of the
12 � 12 grid SOM are found to be the worst, even though
this training subset contains the highest number of samples.
This is clearly attributed to the discrepancies of information
in the three subsets, particularly in the training and
validation subsets. Although the training subset contains
samples from all clusters, the validation subset is void of
samples from clusters representing one or two samples.
Therefore, the validation subset, intended to prevent
overfitting or undertraining, could not adequately help
training the network. Contrary to this observation, the R
values for the training subset including three samples per
cluster of the 8� 8 grid SOM is the second highest among all
cases. It can be explained similarly that subsets consisting of

two and three samples per cluster of the 8� 8 grid SOM have
less discrepancy among those of other two SOM data sets as
the number of clusters consisting of one or two samples is
very small. Therefore, the best way to select samples for the
three subsets required by ANN is to find SOM-trained
clustered data which have less number of clusters with single
or two samples, and each of the subsets (particularly the
training and validation subsets) should include more than one
sample from each cluster.
[57] Two hypothesis tests: one to test if the standard

deviations of two populations are equal (F test) and the other
to test if the means of two populations are statistically
different from each other (t test) were used. The greater the
F test value deviates from 1, the stronger is the evidence for
unequal population. In t test, the null hypotheses are
examined for a significance level of a1 = 0.05. For each
input and output variables, the validation and testing subsets
were compared with the training subsets for F test and t test.
Values of F test and t test for the cases (1) two samples per
cluster of 8� 8 grid SOM and (2) 264 training samples using
RSSM are shown in Table 4 for comparison. The null
hypothesis (acceptance range is �1.96 to +1.96) for t test
were accepted for all cases except two cases of 264 training
samples using RSSM and one case of 8 � 8 grid SOM (see

Figure 9. Evolution of RBFN predictive performance efficiency (R) for training subsets prepared using
(a) SOM technique and (b) random sample selection method (RSSM).
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Table 4). Also, Table 4 shows that overall, the statistics
(i.e., values of F test and values of t test) of two samples
per cluster of 8 � 8 grid SOM are in better agreement than
those of 264 training samples using RSSM. Because of
this, theR value of two samples per cluster of 8� 8 grid SOM
was found to be the highest among all other cases in Figures 11
and 12. For this reason, the R value of 264 training samples
using RSSM is found to be high in Figures 11 and 12.

5.7. Comparison of Results With Previous Studies

[58] Bowden et al. [2002, p. 2.1] reported that ‘‘. . . an
ANN model performs poorly, given that the poor perfor-
mance is primarily related to the data themselves and not the
choice of the ANN’s parameters or architecture.’’ The
present study demonstrated using mGA-BPNN and mGA-
RBFN that the ANN predictive performance efficiency
significantly affects the choice of ANN’s geometry and
model parameter(s). Further, Bowden et al. [2002] used only
one architecture of the SOM and made the training and
validation data pools by selecting one sample from each
cluster. It is demonstrated in this study that the number of
clusters formed was dependent on the SOM architecture and
the difference in characteristics of samples (or responses of
samples to output) between two neighboring clusters

decreases when the number of clusters increases. Also,
they did not examine how many samples should be selected
from each cluster for the optimum training and validation
subsets.
[59] Sahoo and Ray’s [2006b] work is the first to optimize

the ANN’s geometry and model parameter(s) using a simple
GA; however, they only used the training subset, but not the
training and validation subsets in the ANN training process.
In the absence of a validation subset, ANN training continues
until the end of the assigned epoch size. This does not prevent
a network from overtraining. ANN training ceases when the
MSE of the validation subset starts to exceed the training
MSE. To prevent premature cessation of the training
processes, the present study introduces the MFA parameter
which was not done previously. Also, in Sahoo and Ray’s
study, the whole data set was arbitrarily divided into training
and testing subsets. The present study uses a mGAwhich is
more robust than a simple GA, and performs sensitivity
analysis for the mGAmodel parameters using the mGA-ANN
model. To accommodate the validating subset in the RBFN
training process, the present study modifies the RBFN
subroutine. Thus, the present study not only integrates two
previous independent studies but also significantly improves
the methodologies in search of the three subsets of similar

Figure 10. Evolution of BPNN predictive performance efficiency (R) for training subsets prepared
using (a) SOM technique and (b) random sample selection method (RSSM).
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populations, as well as optimum ANN’s geometry and model
parameters collectively.

6. Summary and Conclusions

[60] This paper presents a systematic method that answers
the questions ‘‘which samples’’ and ‘‘how many samples’’
should be selected for the training, testing, and validation
subsets required by ANN when total available samples are

limited. Also, it investigates the use of mGA to develop a
mGA-ANN model to search for optimal combinations of
ANN’s geometry and model parameters in the large solution
space. Given an optimized network and model parameter(s),
the ANN model using SOM as a data division technique
outperformed the ANN model using random selection of
samples as the data division technique. Two of the most
commonly used ANN models, BPNN and RBFN, are

Figure 11. Evolution of RBFN predictive performance efficiency (R) using two and three samples per
cluster of 8 � 8, 10 � 10, and 12 � 12 grid SOMs and random sample selection method (RSSM) in the
training subsets.

Table 3. Number of Samples in the Training, Validation, and Testing Subsets and the Highest Performance Efficiency Values of mGA-
Optimized RBFN and BPNNa

Preparation of Subsets

Number of Samples
Performance Efficiency of

RBFN
Performance Efficiency of

BPNN

Training Validation Testing Total R RMSE ME R RMSE ME

8 � 8 grid SOM 58 57 457 572 0.9627 0.2660 0.0625 0.9831 0.1700 0.0201
10 � 10 grid SOM 92 85 395 572 0.9712 0.2078 �0.0029 0.9870 0.1403 �0.0529
12 � 12 grid SOM 132 116 324 572 0.9741 0.1914 0.0165 0.9854 0.1431 �0.0018
8 � 8 grid SOM with one increment 113 107 352 572 0.9791 0.1882 0.0266 0.9909 0.1266 0.0011
8 � 8 grid SOM with two increments 159 150 263 572 0.9750 0.1980 0.0028 0.9896 0.1290 �0.0119
10 � 10 grid SOM with one increment 173 154 245 572 0.9652 0.1926 0.0164 0.9865 0.1385 0.0264
10 � 10 grid SOM with two increments 230 202 140 572 0.9635 0.1869 0.0058 0.9894 0.1289 �0.0104
12 � 12 grid SOM with one increment 228 186 158 572 0.9557 0.1525 0.0079 0.9861 0.0901 0.0049
12 � 12 grid SOM with two increments 280 220 72 572 0.8966 0.1704 0.0061 0.9786 0.0606 �0.1824
RSSM (264 samples) 264 97 211 572 0.9663 0.1752 �0.0194 0.9874 0.1811 �0.0006
RSSM (58 samples) 58 97 417 572 0.9453 0.3082 �0.1041 0.9712 0.2093 �0.0692
RSSM (92 samples) 92 97 383 572 0.9588 0.2483 �0.0412 0.9841 0.1824 �0.0861
RSSM (132 samples) 132 97 343 572 0.9692 0.2135 �0.0176 0.9901 0.1522 �0.0699

aRSSM represents random sample selection method for the three subsets. The bold values represent highest ANN predictive performance efficiency
among all training subsets. Performance efficiency is highest in all generations.
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employed to examine the effects of the proposed data
division technique on the evolution of optimum predictive
performance efficiency in terms of R.
[61] Sensitivity analysis was performed on model param-

eters of mGA in terms of R value before using them to
optimize the ANN’s geometry and model parameters.

Although the optimumR value was found to be least sensitive
to Pcreep and Pcross values of the parameters producing the
optimum R value are used in the mGA-ANN model.
[62] The bootstrap technique is used to randomly select

samples from the whole population for three subsets of
data required by the ANN. However, random selection of

Figure 12. Evolution of BPNN predictive performance efficiency (R) using two and three samples per
cluster of 8 � 8, 10 � 10, and 12 � 12 grid SOMs and random sample selection method (RSSM) in the
training subsets.

Table 4. Statistical Significance Tests (F Test and t Test) for the Input and Output Parametersa

Input/Output Parameter

Two Samples per Cluster of 8 � 8 Grid Samples 264 Training Samples Using RSSM

Training Subset to
Validation Subset

Training Subset to
Testing Subset

Training Subset to
Validation Subset

Training Subset to
Testing Subset

F Test t Test F Test t Test F Test t Test F Test t Test

Well depth 0.97 �1.04 1.13 �0.89 1.91 �1.62 1.02 �0.59
Depth to aquifer material 1.22 �0.66 1.09 �0.87 0.98 �0.30 1.00 �0.50
Age of well 1.11 0.19 1.19 0.39 0.84 �1.28 1.10 0.35
Distance to cropland 1.12 0.43 0.91 0.46 0.94 �0.92 0.84 �1.09
Distance to barnyard 1.66 �0.12 1.59 �0.01 2.70 1.93 0.93 0.02
Distance to septic systems 1.16 0.85 1.35 0.65 1.01 �0.21 0.63 �1.96
Flush windows 0.91 �0.60 1.04 �0.92 0.93 0.62 1.04 �0.49
Distance to streams 1.36 0.73 1.58 1.47 0.88 0.07 0.75 �0.95
Well-site topography 0.11 0.93 0.34 0.32 3.25 �1.06 0.25 1.62
Season of sample collection 1.00 0.02 1.00 �0.60 0.99 �0.09 1.00 0.15
Presence of irrigation wall 1.02 0.10 0.77 0.09 0.93 �0.86 1.12 1.35
Spill or disposal site 1.04 0.17 1.49 0.59 0.88 �0.47 0.90 �0.54
On-site pesticide storage 0.87 �0.54 0.99 �0.34 1.02 0.10 1.16 0.81
Presence of animals 2.30 2.25 2.10 0.48 1.23 0.04 0.90 �0.18
Aquifer class 2.83 1.40 1.83 0.34 1.48 1.01 2.43 2.12
Output parameter 3.79 1.52 1.93 1.34 1.36 0.58 2.77 2.13

aPopulations of each parameter in validation and testing subsets are compared with those of training subset.
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samples results in inclusion of samples fromdensely clustered
regions and omission of samples from sparsely represented
regions, thereby undermining the ANN prediction efficiency.
Thus, ANN is unable to find a generalized solution to the
problem being investigated because the training and vali-
dation subsets that help train the network for adequate
generalization ability are not totally representative of the
entire population. To avoid this problem, the SOM cluster-
ing technique is employed to divide all the samples into
clusters and then select an equal number of samples from
each cluster for the three subsets. Selection of a suitable
number for neurons in Kohonen layer is important because
a small SOM groups samples of wider characteristics into
a cluster while a large SOM is unable to generate clusters
each with enough samples to contribute equally to the
three subsets. It is important to note that overfitting occurs
when the training and validation subsets are not represen-
tative of the entire population. Given a suitable size of data,
the methodology presented herein helps in identifying
samples for the training and validation subsets with
information extending to the edges of the modeling
domain in all dimensions.
[63] A small SOM (e.g., 8 � 8 grid; see Table 2b)

generates a small number of clusters, with each comprising
many samples of wider characteristics because ss in
equation (4) is a fixed value. On the other hand, a large
SOM (e.g., 12 � 12 grid; see Table 2c) generates a large
number of clusters, many of which contain one or two
samples of precisely similar characteristics. Each SOM
cluster should contain enough samples for the three subsets,
particularly for the training and validation subsets. Thus,
there is a tradeoff between these two. In this study the
effects of three different sizes of SOM on the R value are
examined. The ANN’s predictive performance efficiency in
terms of R increases as the number of samples in the
training subset increases (case of 12 � 12 grid SOM).
However, when two samples from each cluster are included
in each subset, the R value is found to be the highest for the
8 � 8 grid SOM case. The reason for the 12 � 12 grid SOM
case not getting the highest R value is that most of the
clusters contain only one or two samples, resulting in
greater discrepancy between the training and validation
subsets. Thus, it is necessary to select a suitably sized SOM
which produces the maximum number of clusters with more
than three or four samples each. An extremely small SOM is
not recommended because each cluster will include samples
having largely dissimilar characteristics. The R value for
cases using the conventional data division method is found
to be far below that of the case selecting two samples per
cluster of 8 � 8 grid SOM.
[64] The SOM data division technique needs approxi-

mately 20% of the samples for the training subset (in the
case of selecting two samples per cluster of 8 � 8 grid
SOM) unlike the conventional arbitrary data division tech-
nique that needs more than 50% of the total samples.
Because frequent resampling of drinking water wells on a
regional scale is expensive and time consuming, substantial
cost and time could be saved if resampling is done only in
target areas selected using the SOM clustering technique.
[65] Of the two ANN models considered in this study,

BPNN outperforms RBFN in terms of R. However, the
mGA-BPNN model takes nearly 24 h for the evolution of

optimum R in 30 generations, whereas, the mGA-RBFN
model only takes approximately 1.5 h for the evolution of
optimum R in 100 generations using a Pentium 4, 1.8 GHz,
and 512 MB RAM computer. The findings reported in this
paper are based on the study carried out in one region, so for
other regions, the concepts need to be examined using
available data sets. Nevertheless, the methodology pre-
sented in this study can serve as the basis for future
advanced study.

Appendix A

A1. Levenberg-Marquardt Algorithm

[66] The Levenberg-Marquardt algorithm, an approxima-
tion to Newton’s method [Marquardt, 1963], is

Dw ¼ � r2F wð Þ
� ��1rF wð Þ ðA1Þ

where r2F(w) is the Hessian matrix and rF(w) is the
gradient. r2F(w) and rF(w) can be shown as

rF wð Þ ¼ JT wð Þe wð Þ ðA2Þ

r2F wð Þ ¼ JT wð ÞJ wð Þ þ S wð Þ ðA3Þ

where J(w) is a Jacobian matrix and

S wð Þ ¼
XN
i¼1

eir2ei wð Þ ðA4Þ

[67] For the Gauss-Newton method it is assumed that
S(w)  0, and equation (A1) becomes

Dw ¼ � JT wð ÞJ wð Þ
� ��1

JT wð Þe wð Þ ðA5Þ

[68] The Levenberg-Marquardt modification to the
Gauss-Newton method is

Dw ¼ � JT wð ÞJ wð Þ þ zI
� ��1

JT wð Þe wð Þ ðA6Þ

where I is the unit matrix and z is a scalar value. Equation
(A6) can be written as [Hagan et al., 1996; Haykin, 1999;
Principe et al., 1999]

w t þ 1ð Þ ¼ w tð Þ � JT w tð Þf gJ w tð Þf g þ zI
� ��1

JT w tð Þf ge w tð Þf g
ðA7Þ

where w(t) is the weight matrix of current iteration t and
t + 1 is the next iteration.
[69] When the scalar z is zero, equation (A7) is just the

Gauss-Newton’s method; on the other hand when z is large,
equation (A7) becomes the gradient descent [Haykin, 1999]
with step size 1/z. The Gauss-Newton’s method is faster and
more accurate than the gradient descent near an error
minimum, so the aim is to shift toward Gauss-Newton’s
method as quickly as possible [Kisi, 2004; Cigizoglu and
Kisi, 2005]. The steepest descent method, on the other hand,
has a slow asymptotic convergence rate.

18 of 20

W05414 SAHOO AND RAY: MICROGENETIC ALGORITHMS W05414



A2. Activation Functions

[70] The hyperbolic tangent sigmoid activation function
is

8 zð Þ ¼ 2

1þ e�2z
� 1 ðA8Þ

where z is the argument.
[71] The linear activation function is

8 zð Þ ¼ z ðA9Þ
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